(54) 发明名称
用于车辆的间接照明装置

(57) 摘要
一种用于车辆的间接照明装置，可以包括：内部嵌板，在所述内部嵌板的一个表面上形成漫射部分；光导向板，所述光导向板面向所述漫射部分；光源，所述光源设置在所述光导向板可以不面向所述漫射部分的侧部并发射光到所述光导向板的内部；以及外部嵌板，所述外部嵌板设置有从所述外部嵌板的表面突出的导向肋，其中所述导向肋支撑所述内部嵌板的横向侧面和所述光导向板。
1. 一种用于车辆的间接照明装置，包括：
内部嵌板，所述内部嵌板的一个表面上形成漫射部分，所述内部嵌板设置在车身上需要有照明的部分，且根据布置有照明的区域的形状而形成；
光导向板，所述光导向板面向所述漫射部分并且所述光导向板配置成根据所述内部嵌板的形状而改变；
光源，所述光源设置在所述光导向板的侧部并发射光到所述光导向板的内部；以及
外部嵌板，所述外部嵌板设置成围绕所述内部嵌板和所述光导向板的外部，并在所述外部嵌板内部形成导向肋，用于限制所述光导向板的位置同时由导向肋支撑所述光导向板。

2. 根据权利要求1所述的用于车辆的间接照明装置，其中所述内部嵌板、所述光导向板和所述外部嵌板是弯曲的，并被应用在需要照明的弯曲部分上。

3. 根据权利要求2所述的用于车辆的间接照明装置，其中所述光导向板呈平板样式。

4. 根据权利要求1所述的用于车辆的间接照明装置，其中所述导向肋形成为多个。

5. 根据权利要求1所述的用于车辆的间接照明装置，其中所述漫射部分是由漫射墨水涂在所述内部嵌板上。

6. 一种用于车辆的间接照明装置，包括：
内部嵌板，所述内部嵌板的一个表面上形成漫射部分；
光导向板，所述光导向板面向所述漫射部分；
光源，所述光源设置在所述光导向板不面向所述漫射部分的侧部，以发射光到所述光导向板的内部；以及
外部嵌板，所述外部嵌板设置有从所述外部嵌板的表面突出的导向肋，其中所述导向肋支撑所述内部嵌板的横向侧面和所述光导向板。

7. 根据权利要求6所述的用于车辆的间接照明装置，其中所述导向肋沿着所述光导向板和/或所述内部嵌板彼此间隔开。

8. 根据权利要求6所述的用于车辆的间接照明装置，其中所述光导向板是具有均匀厚度的平板条形状。

9. 根据权利要求6所述的用于车辆的间接照明装置，其中所述光导向板是能够弯曲的。

10. 根据权利要求6所述的用于车辆的间接照明装置，其中所述漫射部分是由漫射墨水涂在所述内部嵌板上。
用于车辆的间接照明装置

【0001】 相关申请的交叉引用
【0002】 本申请要求2011年12月9日提交的韩国专利申请第10-2011-0131874号的优先权，该申请的全部内容结合于此用于通过该引用的所有目的。

技术领域
【0003】 本发明涉及一种用于车辆的间接照明装置，其用以准确地设定光导向板的位置，减小装配误差，并使用漫射墨水来代替漫射薄膜来减少部件的数量，通过限制布置在间接照明装置内部的光导向板的装配位置来防止光的不均匀分布。

背景技术
【0004】 近来，随着汽车行业的发展，车辆的驾驶性能逐渐地改善，在车辆内部和外部引入各种便利的装置和安全装置成为了趋势，从而提供了操作的便利性和安全性。
【0005】 另外，随着生活质量的提高，车辆的舒适度也逐渐地提高，因此在购买车辆时，车辆的外观设计已经成为重要的购买因素之一。因此，汽车的外观设计已经领先于更高质量的发展趋势，从而在满足消费者需求的同时促进车辆的购买力。
【0006】 对汽车室内进行豪华地装饰的一种途径就是，在布置于车辆中的指示器、托盘罩、杯托、装饰物等上面设置间接照明装置来改善夜间识别力并且发出柔和的光。
【0007】 其中，装饰物是附接于缓冲垫类和/或饰件类上的，其表面设置有木纹薄膜或被涂色，从而更豪华地装饰了车室的外观设计。
【0008】 另一方面，图1示出了一种布置在上述部件上的间接照明装置的结构，在基体1的顶部，设置有漫射薄板2，设置有漫射薄板2的光导向板3，在光导向板3的一个侧面设置有光源4从而使光导向板3的所述侧面表面发射光。
【0009】 另外，光导向板3的顶部布置有形成外观的遮罩5，即，从光源4发射出的光可以发射到遮罩5的外侧，同时通过光导向板3和漫射薄板2均匀地漫射。
【0010】 然而，在上述描述的现有技术中，布置在车内的间接照明装置的结构并没有很大的限制，但是，当应用于弯曲的或扭曲的结构上时（诸如图6所示的缓冲垫或车门饰件的装饰部分），照明质量会出现问题。
【0011】 也就是说，当遮罩的形状是弯曲的或扭曲的时，设置在其内部的光导向板也是弯曲的或扭曲的。然而，由于光导向板结构本身的性质，光导向板的装配位置可能不会根据遮罩的曲率而准确地设定，从而由于光导向板的安装位置和装配而产生额外的误差，使得在弯曲部分上发生光的不均匀分布。
【0012】 另外，光导向板和漫射薄板是弯曲的，其中在漫射薄板内部由于其内部和外部的曲率的差异而产生褶皱和折叠。因此，分布到漫射薄板的光也会不均匀地分布，从而在某些区域产生光源的集中现象。
【0013】 公开于该发明背景技术部分的信息仅仅旨在加深对本发明的一般背景技术的理解，而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有
发明内容

【0014】本发明的各个方面旨在提供一种用于车辆的间接照明装置，以准确地设定光导向板的位置，并通过限制在布置有所述间接照明装置的弯曲的嵌板内部中的所述光导向板的装配位置来减小装配公差。

【0015】另一方面，本发明提供一种用于车辆的间接照明装置，从而通过使用浸射墨水代替浸射薄板来减少部件的数量，防止由于所述浸射薄板的折叠导致的光的不均匀分布。

【0016】在本发明的一个方面中，一种用于车辆的间接照明装置，包括：内部嵌板，在所述内部嵌板的一个表面上形成浸射部分，所述内部嵌板设置在车身上需要有照明的部分，并根据布置有照明的区域的形状而形成；光导向板，所述光导向板面向所述浸射部分并且所述光导向板配置成根据所述内部嵌板的光谱而改变；光源，所述光源设置在所述光导向板的侧部并发射光到所述光导向板的内部；以及外部嵌板，所述外部嵌板设置成围绕所述内部嵌板和所述光导向板的外部，并在所述外部嵌板的内部中形成导引射，用于限制所述光导向板的位置同时由导向肋支撑所述光导向板。

【0017】所述内部嵌板、所述光导向板和所述外部嵌板是弯曲的，并被应用在需要照明的弯曲部分上。

【0018】所述光导向板可以是平板样式。

【0019】所述导引肋形成多个。

【0020】所述浸射部分是由浸射墨水涂在所述内部嵌板上。

【0021】在本发明的另一方面中，一种用于车辆的间接照明装置，包括：内部嵌板，在所述内部嵌板的一个表面上形成浸射部分；光导向板，所述光导向板面向所述浸射部分；光源，所述光源设置在所述光导向板的内部，以发射光到所述光导向板的内部，并且外部嵌板，所述外部嵌板设置有从所述外部嵌板的表面突出的导引肋，其中所述导引肋支撑所述内部嵌板的横向侧面和所述光导向板。

【0022】所述导引肋沿着所述光导向板和/或所述内部嵌板彼此间隔开。

【0023】所述光导向板是具有均匀厚度的平板条形状。

【0024】所述光导向板是能够弯曲的。

【0025】所述浸射部分是由浸射墨水涂在所述内部嵌板上。

【0026】应当理解，此处所使用的术语“车辆”或“车辆的”或其它类似术语一般包括机动交通工具，例如包括运动型多用途车辆（SUV）、公共汽车、卡车、各种商用车辆的乘坐汽车，包括各种舟艇、船舶的船只、航空器等等，并且包括混合动力车辆、电动汽车、可插式混合动力车辆、氢动力车辆以及其它替代性燃料车辆（例如源于非汽油的能源的燃料）。正如此处所提到的，混合动力车辆是具有两种或更多动力源的车辆，例如汽油动力和电力动力两者的车辆。

【0027】通过纳入本文的附图以及随后与附图一起用于说明本发明的某些原理的具体实施方式，本发明的方法和装置所具有的其它特征和优点将更为具体地变得清楚或得以阐明。
附图说明
[0028] 图1是描述现有技术中用于车辆的间接照明结构的横截面视图；
[0029] 图2是显示根据本发明的用于车辆的间接照明装置的装配形状的视图；
[0030] 图3是示意性地显示根据本发明的用于车辆的间接照明装置的连接结构的横截面图；
[0031] 图4是显示在本发明中设置有光导向板的外部嵌板的形状的立体视图；
[0032] 图5是概念性地示出本发明的由外部嵌板中形成的导向肋对光导向板的限制作用的视图；以及
[0033] 图6是显示应用根据本发明的用于车辆的间接照明装置的实例的视图。
[0034] 应当了解，所附附图不是必须按比例的，其显示了本发明的基本原理的说明性的各种优选特征的略微简化的画法。本文所公开的本发明的具体设计特征包括例如具体尺寸、方向、位置和外形将部分地由具体所要应用和使用的环境来确定。
[0035] 在这些图形中，贯穿附图的多幅图形，附图标记引用本发明的同样的或等同的部分。

具体实施方式
[0036] 下面将对本发明的各个实施方案详细地作出引用，这些实施方案的实例被显示在附图中并描述如下。尽管本发明将与示例性实施方案相结合进行描述，但是应当意识到，本说明书并非旨在将本发明限制为那些示例性实施方案。相反，本发明旨在不但覆盖这些示例性实施方案，而且覆盖可以被包括在由所附权利要求所限定的本发明的精神和范围之内的各种选择形式、修改形式、等价形式及其它实施方案。
[0037] 图2至图6显示了本发明的用于车辆的间接照明装置，其包括内部嵌板10，在所述
内部嵌板10的一个表面上形成反射部分15，所述内部嵌板10设置在车身上需要有照明的部
分，且根据布置有照明的区域的形状和形成；光导向板20，所述光导向板20面向所述反射
部分15设置并且根据所述内部嵌板10的形状形成；光源25，所述光源25设置在所述光导向板
20的侧部并发射光到所述光导向板20的内部；以及外部嵌板30，所述外部嵌板30围绕所述
内部嵌板10和所述光导向板20的外部而设置，并在所述外部嵌板的内部中形成导向肋35，
由此限制了所述光导向板20的位置同时由导向肋35支撑所述光导向板20。
[0038] 这里，固定在车身一侧的内部嵌板10可以直接固定在车身上，但是基板11固定在
内部嵌板10处，使得基板11可以布置为固定到车身上。
[0039] 另外，反射墨水可以在面向内部嵌板10的光导向板20的一个表面上印制成图案形
状，该图案形状与反射部分15分开。
[0040] 此外，光源25可以使用LED，且可以布置在光导向板20的两端。
[0041] 另外，外部嵌板30可以是布置在车辆的缓冲垫或车门饰件上的装饰，也可以应
用到使用间接照明的各种车辆内部部件上，并且，涂料和嵌入薄膜可以印刷或涂覆在外部嵌
板30的表面上以用于装饰上的美观和奢华。
[0042] 也就是说，利用以上结构，导向肋35形成在外部嵌板30的内部，所述导向肋35支撑
光导向板20，因此，可以限制光导向板20的布置的位置。由此，准确的设定了光导向板20的
装配和布置的位置，使得装配公差被减小，且使得光均匀地漫散以加强亮度的均匀性。

【0043】在本发明中，内部嵌板10，光导向板20和外部嵌板30是弯曲的，因此，可以应用到需要照明的弯曲的表面部分上。

【0044】也就是说，由于形成在外部嵌板30上的导向肋35支撑光导向板20的外观表面，光导向板20的布置的位置就限制在车辆上需要间接照明的扭曲部分或连续折弯的弯曲表面部分上，使得光甚至在弯曲的表面部分上也能够均匀地漫射。

【0045】此外，在本发明中，光导向板20具有平板形状，当被导向肋35改变为弯曲的形状时，可以限制其装配的位置。

【0046】也就是说，光导向板20的形状被注射模塑为弯曲或扭曲的形状时，光导向板20的使用范围也受到限制，且在光导向板20的注塑模型上产生了咬边（undercut）的问题。因此，光导向板20被注射模塑为平板形状，从而容易地解决了咬边的问题。特别地，导向肋35支撑光导向板20，从而容易地限制了光导向板20布置的位置。

【0047】在本发明的一个示例性实施方案中，光导向板20的形状可以是具有均匀厚度的平板条。

【0048】在本发明中，形成多个导向肋35，当光导向板20的形状是弯曲或扭曲的时，可以通过对应于光导向板20的外观和不同地形成每个导向肋35的形状来限制光导向板20的位置。

【0049】换言之，设置在外部嵌板30内部的光导向板20是扭曲的或弯曲的，因此，光导向板20和外部嵌板30的内部之间的间隔可以是不相同的。因此，设置多个导向肋35，每个导向肋35的高度、形状等等可以根据导向肋35和光导向板20之间的间隔进行不同的应用，从而可以更容易地限制光导向板20的位置，而且能够对光导向板20进行更准确地装配。

【0050】在本发明的示例性实施方案中，多个导向肋35可以沿着光导向板20和/或内部嵌板10彼此间隔开。

【0051】在本发明中，运用部分15可以用浸射墨水或浸射涂料涂在内部嵌板10上。换言之，移除了现有的浸射薄板，在内部嵌板10上涂上了浸射墨水或印上浸射墨水，从而减少了部件的数量，节省了生产成本，改进了装配性能和间接照明装置的生产率。

【0052】此外，通过移除浸射薄板，在会陡然形成截面变化的部分处因浸射薄板的折叠导致的光的不均匀漫射可以得到解决。

【0053】本发明的措施和效果将具体地进行描述如下。

【0054】在可以布置在缓冲垫或车门饰件上的本发明的用于车辆的间接照明装置中，浸射部分15形成在内部嵌板10上，光导向板20设置为面对所述浸射部分15，外部嵌板30设置成环绕在光导向板20和内部嵌板10的外部的形状。也就是说，外部嵌板30可以是布置在缓冲垫或车门饰件外部的装饰物。

【0055】类似地，装饰物被布置成用于在布置于本发明的车辆的内室材料中的间接照明，光导向板20由在外部嵌板30的内部形成的导向肋35支撑，且布置的位置被固定和受到限制，从而准确地设定光导向板20的装配和布置位置，以便使装配公差最小化，以及使光均匀地浸射和分布。

【0056】此外，在本发明中，在光导向板20被导向肋35改变为折弯或扭曲的三维弯曲的形状的同时，形成为平板的光导向板20布置的位置受到了限制，因此能够容易地模塑光导向板20，并简单地实现三维的光导向板20。
此外，本发明中，在内部嵌板10上的浸射墨水，代替了原有的浸射薄膜，从而减少了部件的数量，节省了间接照明装置的生产成本，改进了间接照明装置的装配性能和生产力。此外，虽然浸射部分15是涂上的，且内部嵌板10是弯曲的，但是光也能够均匀地浸射和分布，而不会在浸射部分15中产生折叠部分。

根据本发明的示例性实施方案，光导向板由在外部嵌板的内部中形成的导向肋支撑，从而固定并限制了布置位置，使得光导向板的布置位置和装配得以准确地设定，装配公差可以最小化，光可以均匀地浸射和分布。

此外，在光导向板被导向肋改变为折弯或扭曲的三维弯曲的形状的同时，形成为平板的光导向板布置的位置受到了限制，因此能够容易地模塑光导向板，并容易且简单地实现光导向板的三维形状。

另外，取代了浸射薄膜的浸射墨水被涂在内部嵌板上，从而由于取消了浸射薄膜的装配步骤而减少了部件的数量，节省了生产成本，并改进了装配性能和生产率。此外，虽然内嵌板是弯曲的，但是在浸射部分中并没有产生折叠部分，从而光得以均匀地浸射和分布。

为了方便解释和精确限定所附权利要求，术语“上”、“下”、“内”和“外”被用于参考附图中所显示的特征的位置来描述示例性实施方案的这些特征。

前面对本发明具体示例性实施方案所呈现的描述是出于说明和描述的目的。前面的描述并不想要成为毫无遗漏的，也不是想要把本发明限制为所公开的确切形式，显然，根据上述教导很多改变和变化都是可能的。选择示例性实施方案并进行描述是为了解释本发明的特定原理及其实际应用，从而使得本领域的其它技术人员能够实现并利用本发明的各种示例性实施方案及其不同选择形式和修改形式。本发明的范围意在由所附权利要求书及其等价形式所限定。