United States Patent

US009805115B1

(12) (10) Patent No.: US 9,805,115 B1
I : .
Satish 45) Date of Patent Oct. 31, 2017
(54) SYSTEMS AND METHODS FOR UPDATING 2007/0136455 Al* 6/2007 Lee .cvcvrcvcrnviennnn GO6F 21/564
GENERIC FILE-CLASSIFICATION 0070185901 AL 82007 Gat 709/223
ates
DEFINITIONS 2010/0083376 Al 4/2010 Pereira et al.
2011/0107424 A1* 5/2011 Singh GOGF 17/30109
(71) Applicant: Symantec Corporation, Mountain 726/24
View, CA (US) 2011/0271341 A1 11/2011 Satish et al.
2012/0054184 Al* 3/2012 Masud GOGF 17/30598
. : 707/737
(72) Inventor: Sourabh Satish, Fremont, CA (US) 2013/0276114 AL* 102013 Friedrichs ... GOGF 21/56
(73) Assignee: Symantec Corporation, Mountain . 726123
View, CA (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35 S bh Satish: Svst d Methods for Clusterine Data Samol
oural atish; Systems an €thods Tor Clustering Data Samples;
US.C. 154(b) by 234 days. U.S. Appl. No. 13/780,765, filed Feb. 28, 2013.
(21) Appl. No.: 14/210,364 (Continued)
(22) Filed: Mar. 13, 2014 Primary Examiner — Augustine K Obisesan
Assistant Examiner — Lahcen Ennaji
(51) Imt. ClL (74) Attorney, Agent, or Firm — FisherBroyles, LLP
GO6F 17/30 (2006.01)
(52) US. CL 67 ABSTRACT
C.PC — e GO6F 17/30705 (2013.01) A computer-implemented method for updating generic file-
(58) Field of Classification Search classification definitions may include (1) identifying at least
CPC ST TIPS G Q6F 17/30 one generic file-classification definition deployed in a soft-
See application file for complete search history. ware product installed on a client device, (2) classifying at
least one data sample encountered by the client device based
(56) References Cited

U.S. PATENT DOCUMENTS

5,796,924 A 8/1998 Eirico et al.

7,634,661 B2 12/2009 England et al.

8,527,978 Bl 9/2013 Sallam

8,561,193 B1 10/2013 Srivastava et al.

8,627,469 Bl 1/2014 Chen et al.

8,655,883 Bl1* 2/2014 Yukselc.ococoeee. G06Q 30/02

707/735

2002/0099702 Al 7/2002 Oddo
2004/0249774 Al 12/2004 Caid et al.

300

\

at least in part on the generic file-classification definition, (3)
querying at least one verification server in an attempt to
verify the correctness of the classification of the data sample,
(4) determining that the classification of the data sample is
incorrect based at least in part on the query, and then (5)
modifying the generic file-classification definition deployed
in the software product based at least in part on the data
sample. Various other methods, systems, and computer-
readable media are also disclosed.

14 Claims, 6 Drawing Sheets

Identify at least one generic file-classification definition deployed in a software product installed
on a client device

I

Classify, based at least in part on the genaric fle-classification definition, at least one data
‘sampie encountered by the ciient device
304

I

Query at least one verifiation server In an aftempt to verity the correctness of the lassification
of the data sample

I

Determine, based at least in part on the query, that the classification of the data sample is
incorrect

!

Modity, based atleast In part on the data sampie, the generic file-ciassification definition
deployed in the software product to account for the incorrect classification of the data sample.
310

US 9,805,115 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2014/0201208 Al
2014/0207518 Al*

7/2014 Satish et al.
7/2014 Kannan G06Q 30/0201
705/7.29

OTHER PUBLICATIONS

Wikipedia, “Cluster Analysis”, http://en. wikipedia.org/wiki/Data__
clustering#Comparison__between__data_ clusterings, as accessed
on Nov. 29, 2012.

Khorshidpour, Zeinab et al., “An Evolvable-Clustering-Based Algo-
rithm to Learn Distance Function for Supervised Environment”,
IJCSI International Journal of Computer Science Issues, vol. 7,
Issue 5, (Sep. 2010), pp. 374-381.

Sourabh Satish; Systems and Methods for Predicting Optimum Run
Times for Software Samples; U.S. Appl. No. 13/794,720, filed Mar.
11, 2013.

Hu, Xin et al., “MutantX-S: Scalable Malware Clustering Based on
Static Features”, http://0b4afocdc2f0c5998459-
c0245¢5¢937cSdedcca3fl764eccOb2f.r43.cf2 rackedn.com/11753-

atc13-hu.pdf, as accessed Jan. 14, 2014, 2013 USENIX Annual
Technical Conference (USENIX ATC ’13), USENIX Association,
(2013), pp. 187-198.

Joseph H. Chen; Systems and Methods for Preventing Positive
Malware Identification; U.S. Appl. No. 14/197,877, filed Mar. 5,
2014.

Sourabh Satish, et al.; Systems and Methods for Clustering Data;
U.S. Appl. No. 14/214,581, filed Mar. 14, 2014.

Gonzalez, Teofilo F., “Clustering to Minimize the Maximum
Intercluster Distance”, https://www.cs.ucsb.edw/~teo/papers/Ktmm.
pdf, as accessed Jan. 14, 2014, Theoretical Computer Science 38,
North-Holland, Elsevier Science Publishers B.V., (1985), pp. 293-
306.

Satish, Sourabh, “Behavioral Security: 10 steps forward 5 steps
backward”, DeepSec IDSC 2011, Vienna, Austria, (Nov. 15-18,
2011).

You, Chao et al., “An Approach to Detect Malicious Behaviors by
Evading Stalling Code”, Telkomnika, vol. 10, No. 7, (Nov. 2012),
pp. 1766-1770.

Barbara, Daniel, “Requirements for Clustering Data Streams”,

http://www.cs.iastate.edu/~honavar/datastreamcluster.pdf, as
accessed Jan. 14, 2014, SIGKDD Explorations, vol. 3, Issue 2, (Jan.
2002), 23-27.

Nguyen, Hai-Long et al., “Concurrent Semi-supervised Learning of
Data Streams”, http://link.springer.com/chapter/10.1007%2F978-3-
642-23544-3_34, as accessed Jan. 14, 2014, Data Warehousing and
Knowledge Discovery, 13th International Conference, DaWaK
2011, Lecture Notes in Computer Science vol. 6862, Springer
Berlin Heidelberg, Toulouse, France, (Aug. 29-Sep. 2, 2011), 445-
459.

Valko, Michal et al., “Online Semi-Supervised Learning on Quan-
tized Graphs”, http://arxiv.org/ftp/arxiv/papers/1203/1203.3522.
pdf, as accessed Jan. 14, 2014, Proceedings of the Twenty-Sixth
Conference on Uncertainty in Artificial Intelligence (UAI2010),
AUAI Press, Catalina Island, CA, (Jul. 8-11, 2010).

Goldberg, Andrew B., “OASIS: Online Active Semi-Supervised
Learning”, http://pages.cs.wisc.edu/~jerryzhu/pub/oasis.pdf, as
accessed Jan. 14, 2014, Association for the Advancement of Arti-
ficial Intelligence, (2011).

Kholghi, Mahnoosh et al., “Active Learning Framework Combining
Semi-Supervised Approach for Data Stream Mining”, http://link.
springer.com/chapter/10.1007%2F978-3-642-18134-4_ 38, as
accessed Jan. 14, 2014, Intelligent Computing and Information
Science, International Conference, ICICIS 2011, Proceedings, Part
II, Communications in Computer and Information Science vol. 135,
Springer Berlin Heidelberg, Chongqing, China, (Jan. 8-9, 2011),
238-243.

Sourabh Satish; Systems and Methods for Predicting Optimum Run
Times for Software Samples; U.S. Appl. No. 15/192,646, filed Jun.
24, 2016.

* cited by examiner

U.S. Patent Oct. 31,2017 Sheet 1 of 6 US 9,805,115 B1

System
100
Modules
102
Data Sample
I 120
Identification Module
104
Classification Module
106
Software Product
Query Module 130
108
Determination Module
110
Modification Module Generic Flle-Cla?Zgicatlon Definition
112 .

FIG. 1

U.S. Patent Oct. 31,2017 Sheet 2 of 6 US 9,805,115 B1

200
\ Verification Server
206

Modules I

102

208

Information l

Network
204

Client Device
202

Software Product

Modules 130

102

Generic File-Classification
Definition
140(1)
)

Data Sample

120 Generic File-Classification
Definition

140(N)

FIG. 2

U.S. Patent Oct. 31,2017 Sheet 3 of 6 US 9,805,115 B1

300

\

=
|

Identify at least one generic file-classification definition deployed in a software product installed
on a client device
302

A 4

Classify, based at least in part on the generic file-classification definition, at least one data
sample encountered by the client device
304

l

Query at least one verification server in an attempt to verify the correctness of the classification
of the data sample
306

l

Determine, based at least in part on the query, that the classification of the data sample is
incorrect
308

h 4

Modify, based at least in part on the data sample, the generic file-classification definition
deployed in the software product to account for the incorrect classification of the data sample
310

A 4

)

FIG. 3

U.S. Patent

Oct. 31,2017 Sheet 4 of 6

Data Cluster

400

\

Training Data Sample

Training Data Sample 440(6)
440(5) \‘

- ~
~
i
Ve Training Data Sample
Training Data Sample 440(2)
440(1) /
/ Training Data Sample
I Centroid 440(4)
‘ 420
\Training Data Sample
\ 440(3) \'
\ .
\ Distance
AN Threshold
~ 430
~
~
-—

Training Data Sample ~
440(7) \’ S e -

US 9,805,115 B1

Data Sample
450

AN Data Sample
(\-/ 120
\

\
|
1

/

/
/
/s
7

Training Data Sample
440(8)

FIG. 4

US 9,805,115 B1

Sheet 5 of 6

Oct. 31, 2017

U.S. Patent

S '9Old

€ES pA3]
8oIne(obeloig aone(ebelog
dmjoeg Arewild
feras] 74
3 A 8olne(] 8o1AB(]
induj Aeidsiqg
A A
\ 4 y
VES 0ES ferded 48
soeuslu| 80eUsIu| Jsydepy ainjoniselu]
abeio)g induj Aeidsig UONEDIUNWWOD
Y A A \
y 4 h 4
< A A A A A >
y y y y y
201
oo s o senpopy TS
UOHEOIINWWOD J8ljoAU0D O] Jejjosuon Alowsiy — J0SS80014
9l9
Kowsy weshg

X

016

wolsAg Bunndwon

US 9,805,115 B1

Sheet 6 of 6

Oct. 31, 2017

U.S. Patent

(NJ0ZS |
aomeg |
®
.
o
(3 VA D
NJ069 |, Tl E-Tq I
801A8(]
® 4 S
“ 0¢9
[e17¢] ueldn
(17069 FETVEIN
80lne (g
089 559 029
ouged NVS HoMBN Juslo
enm 079 00T
G669 we)sh
Rely obeio)s |« 19AIeS S
webielu) 'y (%]
usIio
NJO99 |,
aoneq |
°
°
: A%
099 | 009
somed [21Nj29}1Y0JY YIOMIBN

US 9,805,115 Bl

1
SYSTEMS AND METHODS FOR UPDATING
GENERIC FILE-CLASSIFICATION
DEFINITIONS

BACKGROUND

Generic file-classification definitions are often used to
classify files based at least in part on the files’ features. For
example, a security software product may apply a generic
file-classification definition to a file encountered by an end
user’s computing device. In this example, the security
software product may compare various features of the file
(such as the file’s name, size, storage location, source,
extension, format, and/or creation date) with the generic
file-classification definition. By comparing such features
with the generic file-classification definition, the security
software product may be able to fairly accurately classify the
file as either clean or malicious.

Unfortunately, such generic file-classification definitions
may still lead to false positives and/or false negatives in
certain scenarios. For example, a security software vendor
may generate the generic file-classification definition from a
set of training data that includes known clean and/or mali-
cious files. However, after generating the generic file-clas-
sification definition and releasing the same to the security
software product, the security software vendor may identity
new clean and/or malicious files. Since the set of training
data did not include these newly identified files, the generic
file-classification definition may fail to account for certain
information derived from these newly identified files. As a
result, the generic file-classification definition may cause the
security software product to produce a false negative and/or
false positive upon encountering one of these files on the
end-user’s computing device.

The instant disclosure, therefore, identifies and addresses
a need for improved systems and methods for updating
generic file-classification definitions to account for newly
identified clean and/or malicious files.

SUMMARY

As will be described in greater detail below, the instant
disclosure describes various systems and methods for updat-
ing generic file-classification definitions to account for
newly identified clean and/or malicious files.

In one example, a computer-implemented method for
updating generic file-classification definitions may include
(1) identifying at least one generic file-classification defini-
tion deployed in a software product installed on a client
device, (2) classifying at least one data sample encountered
by the client device based at least in part on the generic
file-classification definition, (3) querying at least one veri-
fication server in an attempt to verify the correctness of the
classification of the data sample, (4) determining that the
classification of the data sample is incorrect based at least in
part on the query, and then (5) modifying the generic
file-classification definition deployed in the software prod-
uct based at least in part on the data sample.

In one example, the method may also include identifying
at least one data cluster that includes a plurality of training
data samples, a centroid, and/or a distance threshold. In this
example, the method may further include computing a
distance from the centroid of the data cluster to the data
sample. Additionally or alternatively, the method may
include classifying the data sample based at least in part on
the distance from the centroid to the data sample.

10

15

20

25

30

35

40

45

50

55

60

65

2

In one example, the method may also include applying a
distance function that generates a value representing the
distance from the centroid to data sample. In this example,
the method may further include determining that the value
representing the distance from the centroid to the data
sample is below the distance threshold by comparing the
value with the distance threshold. Additionally or alterna-
tively, the method may include determining that the value
representing the distance from the centroid to the data
sample is above the distance threshold by comparing the
value with the distance threshold.

In one example, the method may also include determining
that the distance from the centroid to the data sample is
above the distance threshold. In this example, the method
may further include increasing the distance threshold such
that the distance from the centroid to the data sample is
below the distance threshold.

In one embodiment, the distance threshold may represent
a distance above which data samples are unlikely to include
malware. In this embodiment, the method may also include
classifying the data sample as non-malware due at least in
part to the distance from the centroid to the data sample
being above the distance threshold. Additionally or alterna-
tively, the method may include increasing the distance
threshold beyond the data sample such that the generic
file-classification definition classifies the data sample as
malware.

In one example, the method may also include determining
that the distance from the centroid to the data sample is
below the distance threshold. In this example, the method
may further include decreasing the distance threshold such
that the distance from the centroid to the data sample is
above the distance threshold.

In one embodiment, the distance threshold may represent
a distance below which data samples are likely to include
malware. In this embodiment, the method may also include
classifying the data sample as malware due at least in part to
the distance from the centroid to the data sample being
below the distance threshold. Additionally or alternatively,
the method may include decreasing the distance threshold
within the data sample such that the generic file-classifica-
tion definition classifies the data sample as non-malware.

In one embodiment, the centroid may include a reference
data point calculated based at least in part on the plurality of
training data samples. Similarly, the distance threshold may
include a reference distance determined based at least in part
on the plurality of training data samples.

In one example, the method may also include classifying
a plurality of data samples encountered by the client device
based at least in part on the generic file-classification defi-
nition. In this example, the method may further include
customizing the generic file-classification definition to the
client device based at least in part on the plurality of data
samples encountered by the client device.

In one example, the method may also include obtaining
information about the data sample that was unavailable
when the generic file-classification definition was released.
In this example, the method may further include determining
that the classification of the data sample is incorrect based at
least in part on the information about the data sample.

In one example, a system for implementing the above-
described method may include (1) an identification module
that identifies at least one generic file-classification defini-
tion deployed in a software product installed on a client
device, (2) a classification module that classifies at least one
data sample encountered by the client device based at least
in part on the generic file-classification definition, (3) a

US 9,805,115 Bl

3

query module that queries at least one verification server in
an attempt to verify the correctness of the classification of
the data sample, (4) a determination module that determines
that the classification of the data sample is incorrect based at
least in part on the query, and (5) a modification module that
modifies the generic file-classification definition deployed in
the software product based at least in part on the data
sample. The system may also include at least one processor
configured to execute the identification module, the classi-
fication module, the query module, the determination mod-
ule, and the modification module.

In one example, the above-described method may be
encoded as computer-readable instructions on a computer-
readable-storage medium. For example, a computer-read-
able-storage medium may include one or more computer-
readable instructions that, when executed by at least one
processor of a computing device, may cause the computing
device to (1) identify at least one generic file-classification
definition deployed in a software product installed on a
client device, (2) classify at least one data sample encoun-
tered by the client device based at least in part on the generic
file-classification definition, (3) query at least one verifica-
tion server in an attempt to verify the correctness of the
classification of the data sample, (4) determine that the
classification of the data sample is incorrect based at least in
part on the query, and then (5) modify the generic file-
classification definition deployed in the software product
based at least in part on the data sample.

Features from any of the above-mentioned embodiments
may be used in combination with one another in accordance
with the general principles described herein. These and other
embodiments, features, and advantages will be more fully
understood upon reading the following detailed description
in conjunction with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate a number of exem-
plary embodiments and are a part of the specification.
Together with the following description, these drawings
demonstrate and explain various principles of the instant
disclosure.

FIG. 1 is a block diagram of an exemplary system for
updating generic file-classification definitions.

FIG. 2 is a block diagram of an additional exemplary
system for updating generic file-classification definitions.

FIG. 3 is a flow diagram of an exemplary method for
updating generic file-classification definitions.

FIG. 4 is an illustration of an exemplary data cluster.

FIG. 5 is a block diagram of an exemplary computing
system capable of implementing one or more of the embodi-
ments described and/or illustrated herein.

FIG. 6 is a block diagram of an exemplary computing
network capable of implementing one or more of the
embodiments described and/or illustrated herein.

Throughout the drawings, identical reference characters
and descriptions indicate similar, but not necessarily iden-
tical, elements. While the exemplary embodiments
described herein are susceptible to various modifications and
alternative forms, specific embodiments have been shown
by way of example in the drawings and will be described in
detail herein. However, the exemplary embodiments
described herein are not intended to be limited to the
particular forms disclosed. Rather, the instant disclosure

10

15

20

25

30

35

40

45

50

55

60

65

4

covers all modifications, equivalents, and alternatives falling
within the scope of the appended claims.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

The present disclosure is generally directed to systems
and methods for updating generic file-classification defini-
tions. As will be explained in greater detail below, upon
classifying a data sample based at least in part on a generic
file-classification definition, the various systems and meth-
ods described herein may query at least one verification
server in an attempt to verify the correctness of the classi-
fication of the data sample. By querying the verification
server, the various systems and methods described herein
may determine that the classification of the data sample is
incorrect. In response to this determination, the various
systems and methods described herein may modify the
generic file-classification definition to account for the incor-
rect classification of the data sample.

Moreover, by modifying the generic file-classification
definition at a client device that encountered the data sample,
the various systems and methods described herein may
conserve time and/or resources by eliminating the need to
fully retrain the generic file-classification definition. Addi-
tionally or alternatively, by modifying the generic file-
classification definition at the client device that encountered
the data sample, the various systems and methods described
herein may customize the generic file-classification defini-
tion to the client device based at least in part on the browsing
behavior and/or patterns of the user of the client device.

The following will provide, with reference to FIGS. 1-2,
detailed descriptions of exemplary systems for updating
generic file-classification definitions. Detailed descriptions
of corresponding computer-implemented methods will also
be provided in connection with FIG. 3. Detailed descriptions
of'an exemplary data cluster will be provided in connection
with FIG. 4. In addition, detailed descriptions of an exem-
plary computing system and network architecture capable of
implementing one or more of the embodiments described
herein will be provided in connection with FIGS. 5 and 6,
respectively.

FIG. 1 is a block diagram of an exemplary system 100 for
updating generic file-classification definitions. As illustrated
in this figure, exemplary system 100 may include one or
more modules 102 for performing one or more tasks. For
example, and as will be explained in greater detail below,
exemplary system 100 may include an identification module
104 that identifies at least one generic file-classification
definition deployed in a software product installed on a
client device. Exemplary system 100 may also include a
classification module 106 that classifies at least one data
sample encountered by the client device based at least in part
on the generic file-classification definition 140.

In addition, and as will be described in greater detail
below, exemplary system 100 may include a query module
108 that queries at least one verification server in an attempt
to verify the correctness of the classification of the data
sample. Exemplary system 100 may also include a determi-
nation module 110 that determines that the classification of
the data sample is incorrect based at least in part on the
query. Exemplary system 100 may further include a modi-
fication module 112 that modifies the generic file-classifi-
cation definition deployed in the software product based at
least in part on the data sample. Although illustrated as
separate elements, one or more of modules 102 in FIG. 1
may represent portions of a single module or application

US 9,805,115 Bl

5

(such as SYMANTEC’S NORTON ANTIVIRUS, SYMAN-
TEC’S NETWORK SECURITY, SYMANTEC’S NOR-
TON INTERNET SECURITY, MCAFEE ALL ACCESS,
MCAFEE TOTAL PROTECTION, MCAFEE INTERNET
SECURITY, F-SECURE ANTI-VIRUS, TITANIUM ANTI-
VIRUS+SECURITY, and/or KASPERSKY ANTI-VIRUS).

In certain embodiments, one or more of modules 102 in
FIG. 1 may represent one or more software applications or
programs that, when executed by a computing device, may
cause the computing device to perform one or more tasks.
For example, and as will be described in greater detail
below, one or more of modules 102 may represent software
modules stored and configured to run on one or more
computing devices, such as the devices illustrated in FIG. 2
(e.g., client device 202 and/or verification server 206),
computing system 510 in FIG. 5, and/or portions of exem-
plary network architecture 600 in FIG. 6. One or more of
modules 102 in FIG. 1 may also represent all or portions of
one or more special-purpose computers configured to per-
form one or more tasks.

As illustrated in FIG. 1, exemplary system 100 may also
include one or more data samples, such as data sample 120.
The phrase “data sample,” as used herein, generally refers to
any type or form of computer data, metadata, features,
characteristics, attributes, behaviors, and/or information
related to a file. In one embodiment, data sample 120 may
represent a portion of data included in a file. Additionally or
alternatively, data sample 120 may represent the entire file
(including all of the data, metadata, and/or information
related to the file). Examples of data sample 120 include,
without limitation, executable files, document files, data
files, batch files, archive files, media files, backup files,
library files, compressed files, scripts, binary code, machine
code, portions of one or more of the same, combinations of
one or more of the same, or any other suitable data sample.

Examples of features, characteristics, and/or attributes of
data sample 120 include, without limitation, the name of
data sample 120, the size of data sample 120, the storage
location of data sample 120, the source computing device
that hosts data sample 120, the file extension of data sample
120, the file format of data sample 120, the creation date
and/or time of data sample 120, the number of functions
imported by data sample 120, static features of data sample
120, dynamic features of data sample 120, run-time behav-
iors of data sample 120, whether data sample 120 generates
visible windows for display, whether data sample 120 gen-
erates network traffic, combinations of one or more of the
same, or any other suitable metadata.

As illustrated in FIG. 1, exemplary system 100 may also
include one or more software products, such as software
product 130. The phrase “software product,” as used herein,
generally refers to any type or form of computer software
and/or application. In one embodiment, software product
130 may include one or more generic file-classification
definitions used to classify data samples. Examples of soft-
ware product 130 include, without limitation, security soft-
ware products, classification software products, client-side
agents, SYMANTEC’S NORTON ANTIVIRUS, SYMAN-
TEC’S NETWORK SECURITY, SYMANTEC’S NOR-
TON INTERNET SECURITY, MCAFEE ALL ACCESS,
MCAFEE TOTAL PROTECTION, MCAFEE INTERNET
SECURITY, F-SECURE ANTI-VIRUS, TITANIUM ANTI-
VIRUS+SECURITY, and/or KASPERSKY ANTI-VIRUS,
portions of one or more of the same, combinations of one or
more of the same, or any other suitable software product.

As illustrated in FIG. 1, exemplary system 100 may also
include one or more generic file-classification definitions,

10

15

20

25

30

35

40

45

50

55

60

65

6

such as generic file-classification definition 140. The phrase
“generic file-classification definition,” as used herein, gen-
erally refers to any type or form of tool and/or model capable
of classifying data samples. In one embodiment, generic
file-classification definition 140 may include a plurality of
features used to classify data samples. Additionally or alter-
natively, generic file-classification definition 140 may facili-
tate classifying data samples by comparing the plurality of
features with the data samples. Examples of generic file-
classification definition 140 include, without limitation, sig-
natures, heuristics, classifiers, data clusters, perceptrons,
decision trees, combinations of one or of the same, or any
other suitable generic file-classification definition.

Examples of features used to classify data samples
include, without limitation, the name of data sample, the size
of the data sample, the storage location of the data sample,
the source computing device that hosts the data sample, the
file extension of the data sample, the file format of the data
sample, the creation date and/or time of the data sample, the
number of functions imported by the data sample, static
features of the data sample, dynamic features of the data
sample, run-time behaviors of the data sample, whether the
data sample generates visible windows for display, whether
the data sample generates network traffic, combinations of
one or more of the same, or any other suitable features of
data samples.

Exemplary system 100 in FIG. 1 may be implemented in
a variety of ways. For example, all or a portion of exemplary
system 100 may represent portions of exemplary system 200
in FIG. 2. As shown in FIG. 2, system 200 may include a
client device 202 in communication with a verification
server 206 via a network 204.

In one embodiment, client device 202 may be pro-
grammed with one or more of modules 102. Although
illustrated as external modules, modules 102 may represent
portions of software product 130. In this embodiment, client
device 202 may include data sample 120 and/or software
product 130. Additionally or alternatively, software product
130 may include one or more of generic file-classification
definitions 140(1)-(N).

In one embodiment, verification server 206 may be pro-
grammed with one or more of modules 102. Additionally or
alternatively, verification server 206 may include informa-
tion 208 about data sample 120. As will be described in
greater detail below, information 208 may indicate that data
sample 120 is either clean or malicious.

In one embodiment, one or more of modules 102 from
FIG. 1 may, when executed by at least one processor of
client device 202 and/or verification server 206, enable
client device 202 and/or verification server 206 to update
generic file-classification definitions. For example, and as
will be described in greater detail below, one or more of
modules 102 may cause client device 202 and/or verification
server 206 to (1) identity generic file-classification definition
140(1) deployed in software product 130 installed on client
device 202, (2) classify data sample 120 encountered by
client device 202 based at least in part on generic file-
classification definition 140(1), (3) query verification server
206 in an attempt to verify the correctness of the classifi-
cation of data sample 120, (4) determine that the classifi-
cation of data sample 120 is incorrect based at least in part
on the query, and then (5) modify generic file-classification
definition 140(1) deployed in software product 130 based at
least in part on data sample 120.

Client device 202 generally represents any type or form of
computing device capable of reading computer-executable
instructions. Examples of client device 202 include, without

US 9,805,115 Bl

7

limitation, laptops, tablets, desktops, servers, cellular
phones, Personal Digital Assistants (PDAs), multimedia
players, embedded systems, wearable devices (e.g., smart
watches, smart glasses, etc.), gaming consoles, combina-
tions of one or more of the same, exemplary computing
system 510 in FIG. 5, or any other suitable computing
device.

Verification Server 206 generally represents any type or
form of computing device capable of verifying and/or con-
tradicting classifications of data samples. Examples of veri-
fication server 206 include, without limitation, security
servers, application servers, web servers, storage servers,
and/or database servers configured to run certain software
applications and/or provide various security, web, storage,
and/or database services.

Network 204 generally represents any medium or archi-
tecture capable of facilitating communication or data trans-
fer. Examples of network 204 include, without limitation, an
intranet, a Wide Area Network (WAN), a Local Area Net-
work (LAN), a Personal Area Network (PAN), the Internet,
Power Line Communications (PLC), a cellular network
(e.g., a Global System for Mobile Communications (GSM)
network), exemplary network architecture 600 in FIG. 6, or
the like. Network 204 may facilitate communication or data
transfer using wireless or wired connections. In one embodi-
ment, network 204 may facilitate communication between
client device 202 and verification server 206.

FIG. 3 is a flow diagram of an exemplary computer-
implemented method 300 for updating generic file-classifi-
cation definitions. The steps shown in FIG. 3 may be
performed by any suitable computer-executable code and/or
computing system. In some embodiments, the steps shown
in FIG. 3 may be performed by one or more of the compo-
nents of system 100 in FIG. 1, system 200 in FIG. 2,
computing system 510 in FIG. 5, and/or portions of exem-
plary network architecture 600 in FIG. 6.

As illustrated in FIG. 3, at step 302 one or more of the
systems described herein may identify at least one generic
file-classification definition deployed in a software product
installed on a client device. For example, identification
module 104 may, as part of client device 202 and/or veri-
fication server 206 in FIG. 2, identify generic file-classifi-
cation definition 140(1) deployed in software product 130
installed on client device 202. In this example, generic
file-classification definition 140(1) may include a plurality
of features used to classify data samples encountered by
client device 202. Additionally or alternatively, generic
file-classification definition 140(1) may facilitate classifying
data samples by comparing the plurality of features with the
data samples encountered by client device 202.

The systems described herein may perform step 302 in a
variety of ways. In some examples, identification module
104 may identity generic file-classification definition 140(1)
upon deployment of generic file-classification definition
140(1). For example, a security server (not illustrated in
FIG. 2) may generate generic file-classification definition
140(1) for deployment in software product 130. The security
server may then release generic file-classification 140(1) by
distributing and/or pushing generic file-classification defi-
nition 140(1) to client device 202 via network 204.

Upon receiving generic file-classification definition 140
(1) from the security server, client device 202 may incor-
porate generic file-classification definition 140(1) into soft-
ware product 130. As client device 202 incorporates generic
file-classification definition 140(1) into software product
130, identification module 104 may identify generic file-
classification definition 140(1).

10

15

20

25

30

35

40

45

50

55

60

65

8

In some examples, identification module 104 may identify
generic file-classification definition 140(1) upon installation
of software product 130. For example, a user may install
software product 130 on client device 202. In this example,
software product 130 may come with generic file-classifi-
cation definition 140(1). During the installation of software
product 130, identification module 104 may identify generic
file-classification definition 140(1) as a native component of
software product 130.

In some examples, identification module 104 may identify
certain features of generic file-classification definition 140
(1). For example, identification module 104 may identify a
data cluster 400 in FIG. 4 in connection with generic
file-classification definition 140(1). As illustrated in FIG. 4,
data cluster 400 may include a centroid 420, a distance
threshold 430, and/or training data samples 440(1)-(8).

The term “centroid,” as used herein, generally refers to
any type or form of reference data point within a data cluster.
The term “distance threshold,” as used herein, generally
refers to any type or form of value, measurement, and/or
metric that represents a certain distance from a centroid of
a data cluster. In one embodiment, distance threshold 430
may vary throughout data cluster 400. As illustrated in FIG.
4, distance threshold 430 may create a non-uniform (e.g.,
oval-shaped) virtual perimeter, as opposed to a uniform
(e.g., circular) virtual perimeter, around centroid 420.

The phrase “training data sample,” as used herein, gen-
erally refers to any type or form of computer data, metadata,
and/or information related to a known file. In one embodi-
ment, training data samples 440(1)-(4) may represent a set
of known clean and/or non-malicious files. Additionally or
alternatively, training data samples 440(5)-(8) may represent
a set of known malicious files.

In some examples, the security server may train generic
file-classification definition 140(1) based at least in part on
training data samples 440(1)-(8). Examples of training data
samples 440(1)-(8) include, without limitation, executable
files, document files, data files, batch files, archive files,
media files, backup files, library files, compressed files,
scripts, binary code, machine code, portions of one or more
of'the same, combinations of one or more of the same, or any
other suitable training data samples.

As part of training generic file-classification definition
140(1), the security server may apply at least one statistical
algorithm to fit generic file-classification definition 140(1) to
training data samples 440(1)-(8). Examples of such a sta-
tistical algorithm include, without limitation, Lloyd’s algo-
rithm, Voronoi interaction, linear regression, the perceptron
algorithm, neural networking, regression trees, combina-
tions of one or more of the same, or any other suitable
statistical algorithms.

In one example, the security server may calculate centroid
420 based at least in part on the statistical algorithm. For
example, the security server may apply the statistical algo-
rithm to training data samples 440(1)-(8). Upon applying the
statistical algorithm, the security server may calculate a
value that represents the approximate center of training data
samples 440(1)-(8). The security server may then assign this
value that represents the approximate center of training data
samples 440(1)-(8) to centroid 420.

Additionally or alternatively, the security server may
determine distance threshold 430 based at least in part on the
statistical algorithm. For example, the security server may
apply the statistical algorithm to training data samples
440(1)-(8). Upon applying the statistical algorithm, the
security server may calculate a value that represents an
approximate distance from centroid 420 that includes train-

US 9,805,115 Bl

9

ing all of data samples 440(1)-(4) but excludes all of training
data samples 440(5)-(8). The security server may then assign
this value that represents the approximate distance from
centroid 420 to distance threshold 430.

Returning to FIG. 3, at step 304 one or more of the
systems described herein may classify at least one data
sample encountered by the client device based at least in part
on the generic file-classification definition. For example,
classification module 106 may, as part of client device 202
and/or verification server 206 in FIG. 2, classify data sample
120 encountered by client device 202 based at least in part
on generic file-classification definition 140(1). In this
example, the classification may identify data sample 120 as
malicious. Additionally or alternatively, the classification
may identify data sample 120 as clean and/or non-malicious.

The systems described herein may perform step 304 in a
variety of ways. In some examples, classification module
106 may classify data sample 120 based at least in part on
the distance from centroid 420 of data cluster 400 in FIG. 4
to data sample 120. For example, client device 202 may
encounter data sample 120 while the user of client device
202 browses the Internet. As client device 202 encounters
data sample 120, classification module 106 may analyze
data sample 120 based at least in part on generic file-
classification definition 140(1).

As part of analyzing data sample 120, classification
module 106 may apply generic file-classification definition
140(1) to data sample 120. For example, classification
module 106 may identify certain features, characteristics,
and/or attributes of data sample 120. In this example,
classification module 106 may compare these features, char-
acteristics, and/or attributes of data sample 120 with generic
file-classification definition 140(1). Classification module
106 may then compute the distance from centroid 420 of
data cluster 400 in FIG. 4 to data sample 120 based at least
in part on this comparison.

Upon computing the distance from centroid 420 to data
sample 120, classification module 106 may classify data
sample 120 based at least in part on the distance from
centroid 420 to data sample 120. For example, classification
module 106 may apply a distance function to data sample
120. In this example, the distance function may generate a
value that represents the distance from centroid 420 to data
sample 120. Classification module 106 may determine that
the value representing the distance from centroid 420 to data
sample 120 is below distance threshold 430 in FIG. 4 by
comparing this value with distance threshold 430. Classifi-
cation module 106 may then classify data sample 120 based
at least in part on this determination.

Additionally or alternatively, classification module 106
may determine that the value representing the distance from
centroid 420 to data sample 120 is above distance threshold
430 in FIG. 4 by comparing this value with distance thresh-
old 430. Classification module 106 may then classify data
sample 120 based at least in part on this determination.

In one embodiment, distance threshold 430 in FIG. 4 may
represent a distance below which data samples are likely to
include malware. As illustrated in FIG. 4, data sample 120
may fall inside of the virtual perimeter created by distance
threshold 430. In other words, data sample 120 may lie
between centroid 420 and distance threshold 430. In this
embodiment, classification module 106 may classify data
sample 120 as malware due at least in part to the distance
from centroid 420 to data sample 120 being below distance
threshold 430.

In some examples, classification module 106 may classify
at least one additional data samples encountered by client

10

15

20

25

30

35

40

45

50

55

60

65

10

device 202. For example, client device 202 may encounter
data sample 450 in FIG. 4 while the user of client device 202
browses the Internet. As client device 202 encounters data
sample 450, classification module 106 may analyze data
sample 450 based at least in part on generic file-classifica-
tion definition 140(1).

As part of analyzing data sample 450, classification
module 106 may apply generic file-classification definition
140(1) to data sample 450. For example, classification
module 106 may identify certain features, characteristics,
and/or attributes of data sample 450. In this example,
classification module 106 may compare these features, char-
acteristics, and/or attributes of data sample 450 with generic
file-classification definition 140(1). Classification module
106 may then compute the distance from centroid 420 of
data cluster 400 in FIG. 4 to data sample 120 based at least
in part on this comparison. Upon computing the distance
from centroid 420 to data sample 450, classification module
106 may classify data sample 450 based at least in part on
the distance from centroid 420 to data sample 450.

In one embodiment, distance threshold 430 in FIG. 4 may
represent a distance above which data samples are unlikely
to include malware. As illustrated in FIG. 4, data sample 450
may fall outside of the virtual perimeter created by distance
threshold 430. In other words, data sample 450 may lie
beyond distance threshold 430 relative to centroid 420. In
this embodiment, classification module 106 may classify
data sample 450 as non-malware due at least in part to the
distance from centroid 420 to data sample 450 being above
distance threshold 430.

Returning to FIG. 3, at step 306 one or more of the
systems described herein may query at least one verification
server 206 in an attempt to verify the correctness of the
classification of the data sample. For example, query module
108 may, as part of client device 202 and/or verification
server 206 in FIG. 2, query verification server 206 in an
attempt to verify the correctness of the classification of data
sample 120. By querying verification server 206, query
module 108 may determine whether verification server 206
is aware of any information about data sample 120 that
verifies or contradicts the classification.

The systems described herein may perform step 306 in a
variety of ways. In some examples, query module 108 may
query verification server 206 as to whether the classification
of data sample 120 is correct. For example, query module
108 may direct client device 202 to notify verification server
206 that classification module 106 has classified data sample
120 as malware. Query module 108 may also direct client
device 202 to query verification server 206 as to whether this
classification of data sample 120 as malware is correct.

Additionally or alternatively, query module 108 may
direct client device 202 to notify verification server 206 that
classification module 106 has classified data sample 450 as
non-malware. Query module 108 may also direct client
device 202 to query verification server 206 as to whether this
classification of data sample 450 as non-malware is correct.

In some examples, query module 108 may request any
information about data sample 120 that was unavailable
when generic file-classification definition 140(1) was
released. For example, query module 108 may direct client
device 202 to notify verification server 206 that client device
202 has encountered data sample 120. Additionally or alter-
natively, query module 108 may direct client device 202 to
request any information about data sample 120 that became
available after the release of generic file-classification defi-
nition 140(1).

US 9,805,115 Bl

11

Returning to FIG. 3, at step 308 one or more of the
systems described herein may determine that the classifica-
tion of the data sample is incorrect based at least in part on
the query. For example, determination module 110 may, as
part of client device 202 and/or verification server 206 in
FIG. 2, determine that the classification of data sample 120
is incorrect based at least in part on the query.

The systems described herein may perform step 308 in a
variety of ways. In some examples, determination module
110 may determine that the classification of data sample 120
is incorrect based at least in part on a response from
verification server 206. For example, verification server 206
may provide client device 202 with a response to the query.
As client device 202 receives the response from verification
server 206, determination module 110 may determine that
the response contradicts the classification of data sample
120. Determination module 110 may then determine that the
classification of data sample 120 is incorrect based at least
in part on this response.

In one embodiment, the response may indicate that data
sample 120 is not malware despite the classification of data
sample 120 as malware. Additionally or alternatively, the
response may indicate that data sample 120 is malware
despite the classification of data sample 120 as non-mal-
ware.

In some examples, determination module 110 may obtain
information 208 about data sample 120 that was unavailable
when generic file-classification definition 140(1) was
released. For example, verification server 206 may provide
client device 202 with information 208 about data sample
120 in response to the request. As client device 202 receives
information 208 from verification server 206, determination
module 110 may determine that information 208 contradicts
the classification of data sample 120. Determination module
110 may then determine that the classification of data sample
120 is incorrect based at least in part on information 208.

Returning to FIG. 3, at step 310 one or more of the
systems described herein may modify the generic file-
classification definition deployed in the software product to
account for the incorrect classification based at least in part
on the data sample. For example, modification module 112
may, as part of client device 202 and/or verification server
206 in FIG. 2, modify generic file-classification definition
140(1) deployed in software product 130 based at least in
part on data sample 120. In this example, the modification to
generic file-classification definition 140(1) may account for
and/or address the incorrect classification of data sample
120.

The systems described herein may perform step 310 in a
variety of ways. In some examples, modification module 112
may modify generic file-classification definition 140(1) by
decreasing distance threshold 430. For example, as
described above, classification module 106 may classify
data sample 120 as malware due at least in part to the
distance from centroid 420 to data sample 120 being below
distance threshold 430. In this example, determination mod-
ule 110 may determine that this classification of data sample
120 as malware is incorrect based at least in part on the
query.

In response to this determination, modification module
112 may modity generic file-classification definition 140(1)
by decreasing distance threshold 430 such that the distance
from centroid 420 to data sample 120 is above distance
threshold 430. For example, modification module 112 may
decrease distance threshold 430 within data sample 120 such
that generic file-classification definition 140(1) classifies
data sample 120 as malware. In other words, this decrease to

5

10

15

20

25

30

35

40

45

50

55

60

12

distance threshold 430 may cause generic file-classification
140(1) to classify data sample 120 as non-malware if generic
file-classification 140(1) were to classify data sample 120
anew.

In some examples, modification module 112 may modify
generic file-classification definition 140(1) by increasing
distance threshold 430. For example, as described above,
classification module 106 may classify data sample 450 as
non-malware due at least in part to the distance from
centroid 420 to data sample 450 being above distance
threshold 430. In this example, determination module 110
may determine that this classification of data sample 450 as
non-malware is incorrect based at least in part on the query.

In response to this determination, modification module
112 may modity generic file-classification definition 140(1)
by increasing distance threshold 430 such that the distance
from centroid 420 to data sample 450 is below distance
threshold 430. For example, modification module 112 may
increase distance threshold 430 beyond data sample 450
such that generic file-classification definition 140(1) classi-
fies data sample 120 as malware. In other words, this
increase to distance threshold 430 may cause generic file-
classification 140(1) to classify data sample 450 as malware
if generic file-classification 140(1) were to classify data
sample 450 anew.

In some examples, modification module 112 may custom-
ize generic file-classification definition 140(1) to client
device 202 based at least in part on the browsing behavior
and/or patterns of the user of client device 202. For example,
as described above, classification module 106 may classify
data samples 120 and 450 encountered by client device 202
based at least in part on generic file-classification definition
140(1). In this example, determination module 110 may
determine that the classifications of data samples 120 and
450 are incorrect. Additionally or alternatively, modification
module 112 may customize generic file-classification defi-
nition 140(1) to client device 202 based at least in part on the
incorrect classifications of data samples 120 and 450
encountered by client device 202.

As explained above in connection with exemplary method
300 in FIG. 3, a security software product may update
generic file-classification definitions to account for newly
identified clean and/or malicious files. For example, a secu-
rity software vendor may generate a generic file-classifica-
tion definition from a set of training data that includes
known clean and/or malicious files. However, after gener-
ating the generic file-classification definition and releasing
the same to a security software product installed on a client
device, the security software vendor may identify new clean
and/or malicious files. Since the set of training data did not
include these newly identified files, the generic file-classi-
fication definition may fail to account for certain information
derived from these newly identified files. As a result, the
generic file-classification definition may cause the security
software product to produce a false negative and/or false
positive upon encountering one of these files on the end-
user’s computing device.

In an effort to address this deficiency, the security soft-
ware product installed on the client device may query at least
one verification server in an attempt to verify the correctness
of a classification of a data sample by the generic file-
classification definition. By querying the verification server,
the security software product may determine that the clas-
sification of the data sample is incorrect. In response to this
determination, the security software product may modify the
generic file-classification definition to account for the incor-
rect classification of the data sample.

US 9,805,115 Bl

13

Moreover, by modifying the generic file-classification
definition at the client device, the security software product
may conserve time and/or resources by eliminating the need
to fully retrain the generic file-classification definition.
Additionally or alternatively, by modifying the generic file-
classification definition at the client device, the security
software product may customize the generic file-classifica-
tion definition to the client device based at least in part on
the browsing behavior and/or patterns of the user of the
client device.

FIG. 5 is a block diagram of an exemplary computing
system 510 capable of implementing one or more of the
embodiments described and/or illustrated herein. For
example, all or a portion of computing system 510 may
perform and/or be a means for performing, either alone or in
combination with other elements, one or more of the steps
described herein (such as one or more of the steps illustrated
in FIG. 3). All or a portion of computing system 510 may
also perform and/or be a means for performing any other
steps, methods, or processes described and/or illustrated
herein.

Computing system 510 broadly represents any single or
multi-processor computing device or system capable of
executing computer-readable instructions. Examples of
computing system 510 include, without limitation, worksta-
tions, laptops, client-side terminals, servers, distributed
computing systems, handheld devices, or any other comput-
ing system or device. In its most basic configuration, com-
puting system 510 may include at least one processor 514
and a system memory 516.

Processor 514 generally represents any type or form of
physical processing unit (e.g., a hardware-implemented cen-
tral processing unit) capable of processing data or interpret-
ing and executing instructions. In certain embodiments,
processor 514 may receive instructions from a software
application or module. These instructions may cause pro-
cessor 514 to perform the functions of one or more of the
exemplary embodiments described and/or illustrated herein.

System memory 516 generally represents any type or
form of volatile or non-volatile storage device or medium
capable of storing data and/or other computer-readable
instructions. Examples of system memory 516 include,
without limitation, Random Access Memory (RAM), Read
Only Memory (ROM), flash memory, or any other suitable
memory device. Although not required, in certain embodi-
ments computing system 510 may include both a volatile
memory unit (such as, for example, system memory 516)
and a non-volatile storage device (such as, for example,
primary storage device 532, as described in detail below). In
one example, one or more of modules 102 from FIG. 1 may
be loaded into system memory 516.

In certain embodiments, exemplary computing system
510 may also include one or more components or elements
in addition to processor 514 and system memory 516. For
example, as illustrated in FIG. 5, computing system 510 may
include a memory controller 518, an Input/Output (I/O)
controller 520, and a communication interface 522, each of
which may be interconnected via a communication infra-
structure 512. Communication infrastructure 512 generally
represents any type or form of infrastructure capable of
facilitating communication between one or more compo-
nents of a computing device. Examples of communication
infrastructure 512 include, without limitation, a communi-
cation bus (such as an Industry Standard Architecture (ISA),
Peripheral Component Interconnect (PCI), PCI Express
(PCle), or similar bus) and a network.

10

15

20

25

30

35

40

45

50

55

60

65

14

Memory controller 518 generally represents any type or
form of device capable of handling memory or data or
controlling communication between one or more compo-
nents of computing system 510. For example, in certain
embodiments memory controller 518 may control commu-
nication between processor 514, system memory 516, and
1/O controller 520 via communication infrastructure 512.

1/O controller 520 generally represents any type or form
of module capable of coordinating and/or controlling the
input and output functions of a computing device. For
example, in certain embodiments /O controller 520 may
control or facilitate transfer of data between one or more
elements of computing system 510, such as processor 514,
system memory 516, communication interface 522, display
adapter 526, input interface 530, and storage interface 534.

Communication interface 522 broadly represents any type
or form of communication device or adapter capable of
facilitating communication between exemplary computing
system 510 and one or more additional devices. For
example, in certain embodiments communication interface
522 may facilitate communication between computing sys-
tem 510 and a private or public network including additional
computing systems. Examples of communication interface
522 include, without limitation, a wired network interface
(such as a network interface card), a wireless network
interface (such as a wireless network interface card), a
modem, and any other suitable interface. In at least one
embodiment, communication interface 522 may provide a
direct connection to a remote server via a direct link to a
network, such as the Internet. Communication interface 522
may also indirectly provide such a connection through, for
example, a local area network (such as an Ethernet network),
a personal area network, a telephone or cable network, a
cellular telephone connection, a satellite data connection, or
any other suitable connection.

In certain embodiments, communication interface 522
may also represent a host adapter configured to facilitate
communication between computing system 510 and one or
more additional network or storage devices via an external
bus or communications channel. Examples of host adapters
include, without limitation, Small Computer System Inter-
face (SCSI) host adapters, Universal Serial Bus (USB) host
adapters, Institute of Electrical and Electronics Engineers
(IEEE) 1394 host adapters, Advanced Technology Attach-
ment (ATA), Parallel ATA (PATA), Serial ATA (SATA), and
External SATA (eSATA) host adapters, Fibre Channel inter-
face adapters, Ethernet adapters, or the like. Communication
interface 522 may also allow computing system 510 to
engage in distributed or remote computing. For example,
communication interface 522 may receive instructions from
a remote device or send instructions to a remote device for
execution.

As illustrated in FIG. 5, computing system 510 may also
include at least one display device 524 coupled to commu-
nication infrastructure 512 via a display adapter 526. Dis-
play device 524 generally represents any type or form of
device capable of visually displaying information forwarded
by display adapter 526. Similarly, display adapter 526
generally represents any type or form of device configured
to forward graphics, text, and other data from communica-
tion infrastructure 512 (or from a frame buffer, as known in
the art) for display on display device 524.

As illustrated in FIG. 5, exemplary computing system 510
may also include at least one input device 528 coupled to
communication infrastructure 512 via an input interface 530.
Input device 528 generally represents any type or form of
input device capable of providing input, either computer or

US 9,805,115 Bl

15

human generated, to exemplary computing system 510.
Examples of input device 528 include, without limitation, a
keyboard, a pointing device, a speech recognition device, or
any other input device.

As illustrated in FIG. 5, exemplary computing system 510
may also include a primary storage device 532 and a backup
storage device 533 coupled to communication infrastructure
512 via a storage interface 534. Storage devices 532 and 533
generally represent any type or form of storage device or
medium capable of storing data and/or other computer-
readable instructions. For example, storage devices 532 and
533 may be a magnetic disk drive (e.g., a so-called hard
drive), a solid state drive, a floppy disk drive, a magnetic
tape drive, an optical disk drive, a flash drive, or the like.
Storage interface 534 generally represents any type or form
of interface or device for transferring data between storage
devices 532 and 533 and other components of computing
system 510.

In certain embodiments, storage devices 532 and 533 may
be configured to read from and/or write to a removable
storage unit configured to store computer software, data, or
other computer-readable information. Examples of suitable
removable storage units include, without limitation, a floppy
disk, a magnetic tape, an optical disk, a flash memory
device, or the like. Storage devices 532 and 533 may also
include other similar structures or devices for allowing
computer software, data, or other computer-readable instruc-
tions to be loaded into computing system 510. For example,
storage devices 532 and 533 may be configured to read and
write software, data, or other computer-readable informa-
tion. Storage devices 532 and 533 may also be a part of
computing system 510 or may be a separate device accessed
through other interface systems.

Many other devices or subsystems may be connected to
computing system 510. Conversely, all of the components
and devices illustrated in FIG. 5 need not be present to
practice the embodiments described and/or illustrated
herein. The devices and subsystems referenced above may
also be interconnected in different ways from that shown in
FIG. 5. Computing system 510 may also employ any num-
ber of software, firmware, and/or hardware configurations.
For example, one or more of the exemplary embodiments
disclosed herein may be encoded as a computer program
(also referred to as computer software, software applica-
tions, computer-readable instructions, or computer control
logic) on a computer-readable medium. The phrase “com-
puter-readable medium,” as used herein, generally refers to
any form of device, carrier, or medium capable of storing or
carrying computer-readable instructions. Examples of com-
puter-readable media include, without limitation, transmis-
sion-type media, such as carrier waves, and non-transitory-
type media, such as magnetic-storage media (e.g., hard disk
drives, tape drives, and floppy disks), optical-storage media
(e.g., Compact Disks (CDs), Digital Video Disks (DVDs),
and BLU-RAY disks), electronic-storage media (e.g., solid-
state drives and flash media), and other distribution systems.

The computer-readable medium containing the computer
program may be loaded into computing system 510. All or
a portion of the computer program stored on the computer-
readable medium may then be stored in system memory 516
and/or various portions of storage devices 532 and 533.
When executed by processor 514, a computer program
loaded into computing system 510 may cause processor 514
to perform and/or be a means for performing the functions
of one or more of the exemplary embodiments described
and/or illustrated herein. Additionally or alternatively, one or
more of the exemplary embodiments described and/or illus-

20

40

45

16

trated herein may be implemented in firmware and/or hard-
ware. For example, computing system 510 may be config-
ured as an Application Specific Integrated Circuit (ASIC)
adapted to implement one or more of the exemplary embodi-
ments disclosed herein.

FIG. 6 is a block diagram of an exemplary network
architecture 600 in which client systems 610, 620, and 630
and servers 640 and 645 may be coupled to a network 650.
As detailed above, all or a portion of network architecture
600 may perform and/or be a means for performing, either
alone or in combination with other elements, one or more of
the steps disclosed herein (such as one or more of the steps
illustrated in FIG. 3). All or a portion of network architecture
600 may also be used to perform and/or be a means for
performing other steps and features set forth in the instant
disclosure.

Client systems 610, 620, and 630 generally represent any
type or form of computing device or system, such as
exemplary computing system 510 in FIG. 5. Similarly,
servers 640 and 645 generally represent computing devices
or systems, such as application servers or database servers,
configured to provide various database services and/or run
certain software applications. Network 650 generally repre-
sents any telecommunication or computer network includ-
ing, for example, an intranet, a WAN, a LAN, a PAN, or the
Internet. In one example, client systems 610, 620, and/or
630 and/or servers 640 and/or 645 may include all or a
portion of system 100 from FIG. 1.

As illustrated in FIG. 6, one or more storage devices
660(1)-(N) may be directly attached to server 640. Similarly,
one or more storage devices 670(1)-(N) may be directly
attached to server 645. Storage devices 660(1)-(N) and
storage devices 670(1)-(N) generally represent any type or
form of storage device or medium capable of storing data
and/or other computer-readable instructions. In certain
embodiments, storage devices 660(1)-(N) and storage
devices 670(1)-(N) may represent Network-Attached Stor-
age (NAS) devices configured to communicate with servers
640 and 645 using various protocols, such as Network File
System (NFS), Server Message Block (SMB), or Common
Internet File System (CIFS).

Servers 640 and 645 may also be connected to a Storage
Area Network (SAN) fabric 680. SAN fabric 680 generally
represents any type or form of computer network or archi-
tecture capable of facilitating communication between a
plurality of storage devices. SAN fabric 680 may facilitate
communication between servers 640 and 645 and a plurality
of storage devices 690(1)-(N) and/or an intelligent storage
array 695. SAN fabric 680 may also facilitate, via network
650 and servers 640 and 645, communication between client
systems 610, 620, and 630 and storage devices 690(1)-(N)
and/or intelligent storage array 695 in such a manner that
devices 690(1)-(N) and array 695 appear as locally attached
devices to client systems 610, 620, and 630. As with storage
devices 660(1)-(N) and storage devices 670(1)-(N), storage
devices 690(1)-(N) and intelligent storage array 695 gener-
ally represent any type or form of storage device or medium
capable of storing data and/or other computer-readable
instructions.

In certain embodiments, and with reference to exemplary
computing system 510 of FIG. 5, a communication inter-
face, such as communication interface 522 in FIG. 5, may be
used to provide connectivity between each client system
610, 620, and 630 and network 650. Client systems 610,
620, and 630 may be able to access information on server
640 or 645 using, for example, a web browser or other client
software. Such software may allow client systems 610, 620,

US 9,805,115 Bl

17

and 630 to access data hosted by server 640, server 645,
storage devices 660(1)-(N), storage devices 670(1)-(N),
storage devices 690(1)-(N), or intelligent storage array 695.
Although FIG. 6 depicts the use of a network (such as the
Internet) for exchanging data, the embodiments described
and/or illustrated herein are not limited to the Internet or any
particular network-based environment.

In at least one embodiment, all or a portion of one or more
of the exemplary embodiments disclosed herein may be
encoded as a computer program and loaded onto and
executed by server 640, server 645, storage devices 660(1)-
(N), storage devices 670(1)-(N), storage devices 690(1)-(N),
intelligent storage array 695, or any combination thereof. All
or a portion of one or more of the exemplary embodiments
disclosed herein may also be encoded as a computer pro-
gram, stored in server 640, run by server 645, and distributed
to client systems 610, 620, and 630 over network 650.

As detailed above, computing system 510 and/or one or
more components of network architecture 600 may perform
and/or be a means for performing, either alone or in com-
bination with other elements, one or more steps of an
exemplary method for updating generic file-classification
definitions.

While the foregoing disclosure sets forth various embodi-
ments using specific block diagrams, flowcharts, and
examples, each block diagram component, flowchart step,
operation, and/or component described and/or illustrated
herein may be implemented, individually and/or collec-
tively, using a wide range of hardware, software, or firmware
(or any combination thereof) configurations. In addition, any
disclosure of components contained within other compo-
nents should be considered exemplary in nature since many
other architectures can be implemented to achieve the same
functionality.

In some examples, all or a portion of exemplary system
100 in FIG. 1 may represent portions of a cloud-computing
or network-based environment. Cloud-computing environ-
ments may provide various services and applications via the
Internet. These cloud-based services (e.g., software as a
service, platform as a service, infrastructure as a service,
etc.) may be accessible through a web browser or other
remote interface. Various functions described herein may be
provided through a remote desktop environment or any other
cloud-based computing environment.

In various embodiments, all or a portion of exemplary
system 100 in FIG. 1 may facilitate multi-tenancy within a
cloud-based computing environment. In other words, the
software modules described herein may configure a com-
puting system (e.g., a server) to facilitate multi-tenancy for
one or more of the functions described herein. For example,
one or more of the software modules described herein may
program a server to enable two or more clients (e.g.,
customers) to share an application that is running on the
server. A server programmed in this manner may share an
application, operating system, processing system, and/or
storage system among multiple customers (i.e., tenants).
One or more of the modules described herein may also
partition data and/or configuration information of a multi-
tenant application for each customer such that one customer
cannot access data and/or configuration information of
another customer.

According to various embodiments, all or a portion of
exemplary system 100 in FIG. 1 may be implemented within
a virtual environment. For example, the modules and/or data
described herein may reside and/or execute within a virtual
machine. As used herein, the phrase “virtual machine”
generally refers to any operating system environment that is

10

15

20

25

30

35

40

45

50

55

60

65

18

abstracted from computing hardware by a virtual machine
manager (e.g., a hypervisor). Additionally or alternatively,
the modules and/or data described herein may reside and/or
execute within a virtualization layer. As used herein, the
phrase “virtualization layer” generally refers to any data
layer and/or application layer that overlays and/or is
abstracted from an operating system environment. A virtu-
alization layer may be managed by a software virtualization
solution (e.g., a file system filter) that presents the virtual-
ization layer as though it were part of an underlying base
operating system. For example, a software virtualization
solution may redirect calls that are initially directed to
locations within a base file system and/or registry to loca-
tions within a virtualization layer.

In some examples, all or a portion of exemplary system
100 in FIG. 1 may represent portions of a mobile computing
environment. Mobile computing environments may be
implemented by a wide range of mobile computing devices,
including mobile phones, tablet computers, e-book readers,
personal digital assistants, wearable computing devices
(e.g., computing devices with a head-mounted display,
smartwatches, etc.), and the like. In some examples, mobile
computing environments may have one or more distinct
features, including, for example, reliance on battery power,
presenting only one foreground application at any given
time, remote management features, touchscreen features,
location and movement data (e.g., provided by Global
Positioning Systems, gyroscopes, accelerometers, etc.),
restricted platforms that restrict modifications to system-
level configurations and/or that limit the ability of third-
party software to inspect the behavior of other applications,
controls to restrict the installation of applications (e.g., to
only originate from approved application stores), etc. Vari-
ous functions described herein may be provided for a mobile
computing environment and/or may interact with a mobile
computing environment.

In addition, all or a portion of exemplary system 100 in
FIG. 1 may represent portions of, interact with, consume
data produced by, and/or produce data consumed by one or
more systems for information management. As used herein,
the phrase “information management” may refer to the
protection, organization, and/or storage of data. Examples of
systems for information management may include, without
limitation, storage systems, backup systems, archival sys-
tems, replication systems, high availability systems, data
search systems, virtualization systems, and the like.

In some embodiments, all or a portion of exemplary
system 100 in FIG. 1 may represent portions of, produce
data protected by, and/or communicate with one or more
systems for information security. As used herein, the phrase
“information security” may refer to the control of access to
protected data. Examples of systems for information secu-
rity may include, without limitation, systems providing
managed security services, data loss prevention systems,
identity authentication systems, access control systems,
encryption systems, policy compliance systems, intrusion
detection and prevention systems, electronic discovery sys-
tems, and the like.

According to some examples, all or a portion of exem-
plary system 100 in FIG. 1 may represent portions of,
communicate with, and/or receive protection from one or
more systems for endpoint security. As used herein, the
phrase “endpoint security” may refer to the protection of
endpoint systems from unauthorized and/or illegitimate use,
access, and/or control. Examples of systems for endpoint
protection may include, without limitation, anti-malware

US 9,805,115 Bl

19

systems, user authentication systems, encryption systems,
privacy systems, spam-filtering services, and the like.

The process parameters and sequence of steps described
and/or illustrated herein are given by way of example only
and can be varied as desired. For example, while the steps
illustrated and/or described herein may be shown or dis-
cussed in a particular order, these steps do not necessarily
need to be performed in the order illustrated or discussed.
The various exemplary methods described and/or illustrated
herein may also omit one or more of the steps described or
illustrated herein or include additional steps in addition to
those disclosed.

While various embodiments have been described and/or
illustrated herein in the context of fully functional comput-
ing systems, one or more of these exemplary embodiments
may be distributed as a program product in a variety of
forms, regardless of the particular type of computer-readable
media used to actually carry out the distribution. The
embodiments disclosed herein may also be implemented
using software modules that perform certain tasks. These
software modules may include script, batch, or other execut-
able files that may be stored on a computer-readable storage
medium or in a computing system. In some embodiments,
these software modules may configure a computing system
to perform one or more of the exemplary embodiments
disclosed herein.

In addition, one or more of the modules described herein
may transform data, physical devices, and/or representations
of physical devices from one form to another. For example,
one or more of the modules recited herein may receive a
generic file-classification definition to be transformed, trans-
form the generic file-classification definition, output a result
of the transformation to a computing device, use the result
of the transformation to classify data samples, and store the
result of the transformation for future use. Additionally or
alternatively, one or more of the modules recited herein may
transform a processor, volatile memory, non-volatile
memory, and/or any other portion of a physical computing
device from one form to another by executing on the
computing device, storing data on the computing device,
and/or otherwise interacting with the computing device.

The preceding description has been provided to enable
others skilled in the art to best utilize various aspects of the
exemplary embodiments disclosed herein. This exemplary
description is not intended to be exhaustive or to be limited
to any precise form disclosed. Many modifications and
variations are possible without departing from the spirit and
scope of the instant disclosure. The embodiments disclosed
herein should be considered in all respects illustrative and
not restrictive. Reference should be made to the appended
claims and their equivalents in determining the scope of the
instant disclosure.

Unless otherwise noted, the terms “connected to” and
“coupled to” (and their derivatives), as used in the specifi-
cation and claims, are to be construed as permitting both
direct and indirect (i.e., via other elements or components)
connection. In addition, the terms “a” or “an,” as used in the
specification and claims, are to be construed as meaning “at
least one of.” Finally, for ease of use, the terms “including”
and “having” (and their derivatives), as used in the specifi-
cation and claims, are interchangeable with and have the
same meaning as the word “comprising.”

What is claimed is:

1. A computer-implemented method for updating generic
file-classification definitions, at least a portion of the method
being performed by a computing device comprising at least
one processor, the method comprising:

20

40

45

55

20

identifying at least one generic file-classification defini-
tion deployed in a software product installed on a client
device, the generic file-classification definition com-
prising a data cluster that:
has been trained by a set of known malicious files and
a set of known clean files; and
has been fit to the set of known malicious files and the
set of known clean files by applying a statistical
algorithm;
wherein the data cluster comprises:
a plurality of training data samples;
a centroid that:
has been calculated by applying the statistical algo-
rithm to the set of known malicious files and the
set of known clean files; and
represents an approximate center of the set of known
malicious files and the set of known clean files;
a distance threshold that varies throughout the data
cluster; and
a non-uniform virtual perimeter created by the distance
threshold that varies throughout the data cluster;
computing a distance from the centroid of the data cluster
to a data sample encountered by the client device;
determining that the distance from the centroid to the data
sample is below the distance threshold;
in response to determining that the distance from the
centroid to the data sample is below the distance
threshold, classifying the data sample as malware based
at least in part on the distance from the centroid to the
data sample;
querying at least one verification server in an attempt to
verify the correctness of the malware classification of
the data sample by obtaining information about the data
sample that was unavailable when the generic file-
classification definition was released, the information
indicating that the data sample is clean even though the
generic file-classification definition classified the data
sample as malware;
determining, based at least in part on the information
about the data sample that was unavailable when the
generic file-classification definition was released, that
the malware classification of the data sample is incor-
rect; and
in response to determining that the malware classification
of the data sample is incorrect, modifying the generic
file-classification definition deployed in the software
product based at least in part on the data sample to
account for the incorrect classification of the data
sample without retraining the generic file-classification
definition, wherein modifying the generic file-classifi-
cation definition comprises:
customizing the generic file-classification definition to the
client device based at least in part on browsing behav-
ior or patterns of a user of the client device and due at
least in part to the client device having encountered the
data sample that was incorrectly classified; and
decreasing the distance threshold such that:
the distance from the centroid to the data sample is
above the distance threshold; and
the generic file-classification definition would classify
the data sample as clean in the event that the generic
file-classification definition were to classify the data
sample anew.
2. The computer-implemented method of claim 1,

65 wherein:

computing the distance from the centroid to the data
sample comprises applying, to the data sample, a

US 9,805,115 Bl

21

distance function that generates a value representing
the distance from the centroid to the data sample; and
classifying the data sample comprises determining that
the value representing the distance from the centroid to
the data sample is below the distance threshold by
comparing the value with the distance threshold.
3. The computer-implemented method of claim 1,
wherein:
computing the distance from the centroid to the data
sample comprises applying, to the data sample, a
distance function that generates a value representing
the distance from the centroid to the data sample; and
classifying the data sample comprises determining that
the value representing the distance from the centroid to
the data sample is above the distance threshold by
comparing the value with the distance threshold.
4. The computer-implemented method of claim 1,
wherein:
classifying the data sample comprises determining that
the distance from the centroid to the data sample is
above the distance threshold; and
modifying the generic file-classification definition com-
prises increasing the distance threshold such that the
distance from the centroid to the data sample is below
the distance threshold.
5. The computer-implemented method of claim 4,
wherein:
the distance threshold represents a distance above which
data samples are unlikely to include malware;
classifying the data sample comprises classifying the data
sample as non-malware due at least in part to the
distance from the centroid to the data sample being
above the distance threshold; and
increasing the distance threshold comprises increasing the
distance threshold beyond the data sample such that the
generic file-classification definition classifies the data
sample as malware.
6. The computer-implemented method of claim 1,
wherein:
the distance threshold represents a distance below which
data samples are likely to include malware;
classifying the data sample comprises classifying the data
sample as malware due at least in part to the distance
from the centroid to the data sample being below the
distance threshold; and
decreasing the distance threshold comprises decreasing
the distance threshold within the data sample such that
the generic file-classification definition classifies the
data sample as non-malware.
7. The computer-implemented method of claim 1,
wherein:
the centroid comprises a reference data point calculated
based at least in part on the plurality of training data
samples; and
the distance threshold comprises a reference distance
determined based at least in part on the plurality of
training data samples.
8. The computer-implemented method of claim 1,
wherein:
classifying the data sample encountered by the client
device comprises classifying, based at least in part on
the generic file-classification definition, a plurality of
data samples encountered by the client device; and
modifying the generic file-classification definition com-
prises customizing, based at least in part on the plural-
ity of data samples encountered by the client device, the
generic file-classification definition to the client device.

20

25

30

40

45

50

55

22

9. A system for updating generic file-classification defi-

nitions comprising:
an identification module, stored in memory, that identifies
at least one generic file-classification definition
deployed in a software product installed on a client
device, the generic file-classification definition com-
prising a data cluster that:
has been trained by a set of known malicious files and
a set of known clean files; and

has been fit to the set of known malicious files and the
set of known clean files by applying a statistical
algorithm;

wherein the data cluster comprises:

a plurality of training data samples;
a centroid that:
has been calculated by applying the statistical algo-
rithm to the set of known malicious files and the
set of known clean files; and
represents an approximate center of the set of known
malicious files and the set of known clean files;
a distance threshold that varies throughout the data
cluster; and
a non-uniform virtual perimeter created by the distance
threshold that varies throughout the data cluster;

a classification module, stored in memory, that:

computes a distance from the centroid of the data
cluster to a data sample encountered by the client
device;
determines that the distance from the centroid to the
data sample is below the distance threshold; and
classify, in response to determining that the distance from
the centroid to the data sample is below the distance
threshold, the data sample as malware based at least in
part on the distance from the centroid to the data
sample;

a query module, stored in memory, that queries at least
one verification server in an attempt to verify the
correctness of the malware classification of the data
sample by obtaining information about the data sample
that was unavailable when the generic file-classifica-
tion definition was released, the information indicating
that the data sample is clean even though the generic
file-classification definition classified the data sample
as malware;

a determination module, stored in memory, that deter-
mines, based at least in part on the information about
the data sample that was unavailable when the generic
file-classification definition was released, that the mal-
ware classification of the data sample is incorrect;

a modification module, stored in memory, that modifies,
in response to the determination that the malware
classification of the data sample is incorrect, the
generic file-classification definition deployed in the
software product based at least in part on the data
sample to account for the incorrect classification of the
data sample without retraining the generic file-classi-
fication definition, wherein modifying the generic file-
classification definition comprises:
customizing the generic file-classification definition to

the client device based at least in part on browsing
behavior or patterns of a user of the client device and
due at least in part to the client device having
encountered the data sample that was incorrectly
classified; and
decreasing the distance threshold such that:
the distance from the centroid to the data sample is
above the distance threshold; and

US 9,805,115 Bl

23

the generic file-classification definition would clas-
sify the data sample as clean in the event that the
generic file-classification definition were to clas-
sify the data sample anew; and

at least one physical processor configured to execute the

identification module, the classification module, the
query module, the determination module, and the modi-
fication module.

10. The system of claim 9, wherein the classification
module:

applies, to the data sample, a distance function that

generates a value representing the distance from the
centroid to the data sample; and

determines that the value representing the distance from

the centroid to the data sample is below the distance
threshold by comparing the value with the distance
threshold.

11. The system of claim 9, wherein the classification
module:

applies, to the data sample, a distance function that

generates a value representing the distance from the
centroid to the data sample; and

determines that the value representing the distance from

the centroid to the data sample is above the distance
threshold by comparing the value representing the
distance from the centroid to the data sample with the
distance threshold.

12. The system of claim 9, wherein:

the classification module classifies the data sample by

determining that the distance from the centroid to the
data sample is above the distance threshold; and

the modification module modifies the generic file-classi-

fication definition by increasing the distance threshold
such that the distance from the centroid to the data
sample is below the distance threshold.

13. The system of claim 9, wherein:

the centroid comprises a data point calculated based at

least in part on the plurality of training data samples;
and

the distance threshold comprises a reference distance

determined based at least in part on the plurality of
training data samples.

14. A non-transitory computer-readable medium compris-
ing one or more computer-executable instructions that, when
executed by at least one processor of a computing device,
cause the computing device to:

identify at least one generic file-classification definition

deployed in a software product installed on the com-

puting device, the generic file-classification definition

comprising a data cluster that:

has been trained by a set of known malicious files and
a set of known clean files; and

has been fit to the set of known malicious files and the
set of known clean files by applying a statistical
algorithm;

10

25

35

40

45

24

wherein the data cluster comprises:
a plurality of training data samples;
a centroid that:
has been calculated by applying the statistical algo-
rithm to the set of known malicious files and the
set of known clean files; and
represents an approximate center of the set of known
malicious files and the set of known clean files;
a distance threshold that varies throughout the data
cluster; and
a non-uniform virtual perimeter created by the distance
threshold that varies throughout the data cluster;
compute a distance from the centroid of the data cluster to
a data sample encountered by the computing device;
determine that the distance from the centroid to the data
sample is below the distance threshold;
classify, in response to determining that the distance from
the centroid to the data sample is below the distance
threshold, the data sample as malware based at least in
part on the distance from the centroid to the data
sample;
query at least one verification server in an attempt to
verify the correctness of the malware classification of
the data sample by obtaining information about the data
sample that was unavailable when the generic file-
classification definition was released, the information
indicating that the data sample is clean even though the
generic file-classification definition classified the data
sample as malware;
determine, based at least in part on the information about
the data sample that was unavailable when the generic
file-classification definition was released, that the mal-
ware classification of the data sample is incorrect; and
modify, in response to the determination that the malware
classification of the data sample is incorrect, the
generic file-classification definition deployed in the
software product based at least in part on the data
sample to account for the incorrect classification of the
data sample without retraining the generic file-classi-
fication definition, wherein modifying the generic file-
classification definition comprises:
customizing the generic file-classification definition to
the computing device based at least in part on
browsing behavior or patterns of a user of the
computing device and due at least in part to the
computing device having encountered the data
sample that was incorrectly classified; and
decreasing the distance threshold such that:
the distance from the centroid to the data sample is
above the distance threshold; and
the generic file-classification definition would clas-
sify the data sample as clean in the event that the
generic file-classification definition were to clas-
sify the data sample anew.

#* #* #* #* #*

