PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 00/02132
GOGF 13/00, 11/00, HO4L 9/32, 9/00, Al . o

HO1L 9/08 (43) International Publication Date: 13 January 2000 (13.01.00)
(21) International Application Number: PCT/US99/14434 | (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB,
(22) International Filing Date: 24 June 1999 (24.06.99) GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG,
KP, KR,KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI,
(30) Priority Data: SK, SL, TJ, T™M, TR, TT, UA, UG, US, UZ, VN, YU, ZA,
09/109,472 2 July 1998 (02.07.98) UsS ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ,
UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD,
RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK,
(71) Applicant (for all designated States except US): INTEL COR- ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI
PORATION [US/US]; 2200 Mission College Boulevard, patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR,

Santa Clara, CA 95052 (US). NE, SN, TD, TG).

(72) Inventors; and
(75) Inventors/Applicants (for US only): GRAUNKE, Gary, | Published

L. [US/US]; 12120 S.W. Trail Place, Beaverton, OR With international search report.
97008-7010 (US). ROZAS, Carlos, V. [US/US]; 1534
N.W. Morgan Lane, Portland, OR 97229 (US).

(74) Agents: MILLIKEN, Darren, J. et al.; Blakely, Sokoloff, Taylor
& Zafman LLP, 7th floor, 12400 Wilshire Boulevard, Los
Angeles, CA 90025 (US).

(54) Titlee METHOD AND APPARATUS FOR INTEGRITY VERIFICATION, AUTHENTICATION, AND SECURE LINKAGE OF
SOFTWARE MODULES

400
A\

REGISTRY

L ABC
XYZ -y

402 412
3 [

404 414
N ALICE'S BOB'S
— "CeRT CERT
406 BOB ALICE 416
=] " ") e
4‘& [[516.0F ABC Al MODULE MODULE sgorxvz || *'®
ALICE ABC XYZ BOB

(57) Abstract

A method and apparatus of authenticating and verifying the integrity of software modules (410, 420) is disclosed. In one embodiment,
the software modules (400) initially establish their corresponding credentials. Then the local software module (410) ensures its integrity
by validating its own digital signature (408). The local software module (410) having derived and validated certain information from the
partner module’s (404) credential. In addition, secure linkage between said local software module (410) and the partner software module

(420) is maintained.

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cbote d'Tvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Tsrael

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
us
vz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 00/02132 PCT/US99/14434

METHOD AND APPARATUS FOR INTEGRITY
VERIFICATION, AUTHENTICATION, AND SECURE
LINKAGE OF SOFTWARE MODULES

FIELD OF THE INVENTION

This invention relates to data security generally and particularly to systems

for providing data integrity verification and authentication functionality.

BACKGROUND OF THE INVENTION

As networked computer systems proliferate, individuals or corporations
are subject to more and more unwanted attacks on their systems. For example,
hackers have been reportedly successful in infiltrated into user’s financial
accounts and perform unauthorized transactions from the accounts. Further, even
certain cryptographic applications have been proven vulnerable, because the
trusted software is replaced with infected code without being detected. As a
result, confidential information embedded in the application, such as the user’s
private key, is leaked out in the normal output of the application. Yet another
type of attack is software viruses. These viruses infect their targets by
masquerading as popular software or by attaching themselves to programs. When
the target is infected, its confidential information may be compromised, or worse
yet, its content may be destroyed.

In order to combat these attacks, users need methods of authenticating the
origin of software and validating the integrity of the software. Many existing
methods today address one aspect of the problem, but not the other. For instance,
the known public-key cryptography and digital signature techniques are often
compromised, because the private keys are often embedded in the software

modules. Further, the authentication process often cannot proceed while the

1

WO 00/02132 PCT/US99/14434

modules are being executed. Consequently, when these modules are in memory,
they are susceptible to stealth virus attacks. As has been shown, an improved
method and apparatus is needed to ensure not only the integrity of the software

modules, but also the secured execution of such modules.

SUMMARY OF THE INVENTION

A method and apparatus of authenticating and verifying the integrity of
software modules is disclosed. In one embodiment, each software module
initially establishes its own credentials. Then the local software module ensures
its integrity by validating its own digital signature. The local software module
proceeds to authenticate the integrity of the partner software module after having
derived and validated certain information from the partner module’s credential.
In addition, secure linkage between the local software module and the partner

software module is maintained.
BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and is not limited
by the figures of the accompanying drawings, in which like references indicate
similar elements, and in which:
Figure 1 illustrates a public-key cryptographic system.

Figure 2 illustrates a digital signature system.

Figure 3 illustrates an example of two software modules applying public-key

cryptography and digital signatures.

WO 00/02132 PCT/US99/14434

Figure 4 illustrates the block diagram of one embodiment of the present

invention.

Figure 5 illustrates a general purpose computer system architecture.

Figure 6 illustrates a flow chart for a credential verifier used in partner module

checking phase.

Figure 7 illustrates a flow chart for additional functionality of the credential

verifier.

DETAILED DESCRIPTION

A method and apparatus for authenticating and verifying the integrity of
software modules is described. In the following description, numerous specific
details are set forth such as registry, etc. in order to provide a thorough
understanding of the present invention. However, it will be apparent to one of
ordinary skill in the art that the invention may be practiced without these
particular details. In other instances, well known elements and theories such as
public-key cryptography, encryption, digital signatures, cryptographic hash
functions, etc. have not been discussed in special details in order to avoid
unnecessarily obscuring the present invention. Also, unless having been indicated
otherwise, words such as digital signature, digital certificate and software module
are used interchangeably throughout the description with signature, certificate and
module, respectively.

Figure 1 illustrates a known public-key cryptographic system. Msg 100 is
un-encrypted binary data. It can be a stream of bits, a text file, a stream of
digitized voice, or a digital video image, to present just a few of the many

possibilities. Ciphertext 106 is the result of applying the encryption/decryption
3

WO 00/02132 PCT/US99/14434

function, cipher 104, and the public key 102, to msg 100. In mathematical

notation:

Cipher;o4(Msgio0, Public Key,o2) = Ciphertext;os

The receiver of ciphertext 106 can only recover msg 100 by applying cipher 104

and the proper private key 108 to ciphertext 106. In mathematical notation:

Cipher104(Ciphertext106, Private Keylog) = Msg“o
And the goal is to have:

Msgioo = Msgiio

A public-key cryptographic system is asymmetric. Specifically, the
decryption key, or private key 108 is different than the encryption key, or public
key 102. Although private key 108 cannot be readily derived from public key
102, they are related. Thus, without the proper public/private key pair, the
receiver of ciphertext 106 will have a difficult time deciphering the encrypted
msg 100. Additionally, the receiver is presumed to be the only person who knows
his/her own private key 108, but public key 102 can be made public.

By applying similar encryption and decryption principles, digital
signatures are often used to certify digital messages. Figure 2 illustrates such a
known system. In particular, a unique value 204 for msg 200 is generated by
means of one-way hash function 202. The resulting value 204 is considered a
small finger print of msg 200. It also serves to deter malicious attackers from
substituting false information for msg 200’s original data. After val 204 is
encrypted using private key 206 of the sender and signer of msg 200, the resulting
ciphertext 210 is considered the digital signature of msg 200.

In order to verify that msg 200 has not been altered during transmission,

the recipient first applies one-way hash function 202 to msg 218 and calculates

4

WO 00/02132 PCT/US99/14434

val 214. Then the recipient compares val 214 with val 216. Val 216 is obtained
by deciphering the signature, or ciphertext 210, using the signer’s public key 212
with cipher 208.

Having discussed these fundamental encryption/decryption principles,
Figure 3 demonstrates a prior art system with two software modules applying
these principles. For example, module B only wishes to work with properly
licensed modules, such as module A. Both modules A and B are presumed to
know each others’ public keys 306 and have their private keys 304 and 308
embedded in their own software. To start, module B issues a chalienge 300 with
a random number. Module A responds by signing the random number in

response 302, or in mathematical notations:

R = random number

h; = Hash(R,), where Hash is the previously discussed one-way hash function or
202 in Figure 2

E = encryption function or cipher 104 or 208 in Figures 1 and 2

Thus, response 302 = Eprivate key 304(h1), Where private key 304 is used to encrypt
h;.

Since module B knows module A’s public key, thus:
D = decryption function or cipher 104 or 208 in Figures 1 and 2

hy = Dpublic key 306(Eprivate key 304(hy))

Then B performs another one-way hash function on the received random number,
R,, in response 302:

h; = Hash(R,)

If h, equals to hs, the identity of module A has been authenticated. Module B can

then be assured that module A has been properly licensed. It should be noted that

WO 00/02132 PCT/US99/14434

the discussed authentication process may operate in a bilateral fashion. In other
words, module A may initiate a challenge to authenticate module B.

However, this verification process for the software modules have several
shortcomings. One, since each module’s private key is embedded in the program,
the key can be obtained by reverse engineering the module. Two, the integrity of
the software modules is not verified in this process. Although known techniques
can be used to verify module integrity when the module resides in secondary
storage such as data storage device 510 in Figure 5, such techniques are incapable
of validating the modules after they are loaded into primary memory such as
random access memory 504 in Figure 5. In other words, when these modules
reside in primary memory, they are susceptible to modifications. Three, although
module B may believe that it has module A’s public key and subsequently
authenticates A’s signature, module A may actually be module C and has
defrauded module B into believing module C is module A.

Figure 4 illustrates the block diagram of one embodiment of the present
invention which addresses all the mentioned flaws. The block diagram can be
programmed or implemented in various types of systems. One such system is
illustrated on a general purpose computer system in Figure 5. Such a computer
system architecture comprises a bus element 500 for communicating information,
a processor 502 coupled with said bus element 500 for processing audio, video
and data information, a random access memory 504 coupled with said bus
element 500 for storing static information and instructions for said processor 502,
a data storage device 510 such as a magnetic disk and disk drive coupled with
said bus element 500 for storing information and instructions, a readable medium
512 such as a floppy disk or a CD coupled with said bus element 500 for
retrieving information and instructions for said processor 502, said bus element
500 coupled to network 514 for accessing resources on said network 514 such as
server 518 and remote terminal 516, a display device 506 coupled to said bus

element 500 for displaying information to the computer user and an alphanumeric

6

WO 00/02132 PCT/US99/14434

or other type of input device 508 coupled to said bus element 500 for

communicating information and command selections to said processor 502.

Operation of the Present Invention

The invention at hand is a method and apparatus for authenticating and
verifying the integrity of software modules. Specifically, the present invention
allows software modules to verify their data integrity even while the modules are
being executed. Also, neither module contains the required secret information,
such as private keys, for the authentication process. Lastly, since the present
invention enables software modules to verify each other while they are being
executed, the invention further ensures the modules’ integrity by validating their
expected memory locations and contents of the memory locations.

One embodiment of the invention is a general purpose computer system
operating on various components as illustrated in Figure 4. Registry 400 points to
software modules’ credentials 402 and 412. Alice is the owner of software
module ABC 410, and Bob is the owner of software module XYZ 420. When
Alice initiates the authentication process to verify Bob’s XYZ 420, Alice’s ABC
410 is considered a local software module and Bob’s XYZ 420 a partner software
module. It should be noted that a local software module is not necessarily a
calling module. For example, Alice’s ABC 410 may call Bob’s XYZ 420, but
Bob’s XYZ 420 may initiate the authentication process on Alice’s module. In
that scenario, even though Bob’s XYZ 420 is a callee, it is still considered a local
module in the following discussion. Moreover, when Alice’s ABC 410 calls
Bob’s XYZ 420 or vice versa, a linkage between the modules is established.

Alice’s credential 402 consists of Alice’s certificate 404, a reference 406
to Alice’s module ABC 410 and Alice’s own signature 408 of module 410.
Additionally, Alice’s certificate 404 is signed by Bob using known digital

signature schemes. On the other hand, Bob’s credential 412 contains the same

7

WO 00/02132 PCT/US99/14434

components as Alice’s credential, namely, Bob’s certificate 414, Bob’s reference
416 to module XYZ 420, and Bob’s signature 418 of module XYZ 420.
Similarly, Bob’s certificate 414 is signed by Alice.

It should be noted that although specific components in one embodiment
of the present invention are described, other components may be incorporated
without exceeding the scope of the invention. For example, Alice’s credential
402 may include certificates of partners or licensing authorities, such as another
digital certificate for Bob. This added certificate may be issued by Bob’s
company in an attempt to attest to Bob’s authority to sign Alice’s certificate 404.
Furthermore, Alice’s module ABC 410 may want to cooperate with modules
other than XYZ 420. Thus, registry 400 may include additional entries, and
Alice’s credential 402 may encompass additional certificates signed by Alice’s
desired partners.

The operations of the illustrative system in Figure 4 can be characterized
in four phases: credential building phase, credential registering phase, self
checking phase and partner module checking phase. In one embodiment of the
present invention, each owner of a software module has a credential builder.
Using the example in Figure 4, in phase 1 or the credential building phase, the
credential builder takes various inputs such as Alice’s certificate signed by Bob, a
reference to module ABC and Alice’s signature of module ABC and forms
Alice’s credential. An example of a resulting credential for Alice is a computer
file with all the recited input information.

In phase 2 or the credential registering phase, one embodiment is to
register Alice’s credential in a predetermined location, such as registry 400, so
that other software modules know where to look for Alice’s module information.
It should be noted that registry 400, Alice’s and Bob’s credentials and module
information in Figure 4 do not all have to reside on the same machine. For
instance, Alice’s credential 402 may reside on a network server. When Bob’s

module attempts to find Alice’s module, registry 400 will direct Bob to the
8

WO 00/02132 PCT/US99/14434

appropriate server on the network to identify Alice’s credential 402. After having
located Alice’s credential 402, reference 406 within credential 402 then points
Bob to Alice’s module ABC 410.

Also, although the registry is used in describing one embodiment of the
present invention, it will be apparent to one of ordinary skill in the art to use other
methods for tracking and locating software modules’ credentials. Finally, as the
embodiment in Figure 4 demonstrates, software modules and their credentials are
separate entities. Therefore, software modules do not have any secret information
embedded in them, such as their own private keys.

After credentials have been established and registered, software modules
then enter phase 3 or the self checking phase. Again using Figure 4 as an
illustration, when Alice’s module is initializing, Alice first searches through
registry 400 for her own credential. After the registry points her to credential 402,
Alice uses her digital signature verifier with her public key to verify her signature
408. Specifically, the digital signature verifier is described in detail above and in

connection with Figure 2. In mathematical notations:

h; = Hash(Alice’s module,), where Hash is the previously discussed one-way
hash function or 202 in Figure 2, and Alice’s module; stands for a snap shot of
the module at time one.

E = encryption function or cipher 104 or 208 in Figures 1 and 2

Thus, Alice’s signature 408 = Eajice’s private key(h1), Where Alice’s private key is

used to encrypt h;.

Since Alice knows her own public key, thus:

D = digital signature verifier or cipher 104 or 208 in Figures 1 and 2

hs = Dajice’s public key(EAlice’s private key(hl))

Then Alice may perform another one-way hash function on her current module:
9

WO 00/02132 PCT/US99/14434

h; = Hash(Alice’s module;) where t2 stands for time two and occurs later than
time one.

If h, equals to hs, then the integrity of Alice’s module has been authenticated. Or
in other instances, h3 may not need to be computed. But rather, Alice simply

needs to compare h; with h,.

Although the illustrated digital signature verifier uses one type of message
recovery signature scheme in phase 3, it should be apparent to one ordinarily
skilled in the art to apply other digital signature schemes without exceeding the
scope of the present invention. One such scheme directly uses signature 210,
public key 212 and hash value 214 in one verification step. Furthermore, even
though the above mathematical equations calculate Alice’s signature 408 using
Alice’s entire module at time 1, or Ejice’s private key(h1), it should be apparent to one
ordinarily skilled in the art to generate signature 408 with only portions of Alice’s
module. For instance, the signature generation process may omit the initialized
data sections of Alice’s module, since the data residing in these sections change
during module’s execution.

It should also be emphasized that Alice’s module contains only her public
key information and not her private key information. It should be further noted
that this self checking phase can be performed on a memory image of Alice’s
module in addition to other machine readable mediums such as CDs or disks.
With the capability of verifying memory images of software modules, when
modules reside in primary memory such as random access memory 504 in Figure
5, the present invention may continuously validate the modules even when the
modules are being executed.

After Alice’s module has been verified, Alice’s module calls Bob’s
module and initiates the authentication process. Therefore, Alice’s module is
both the caller module and the local module. Bob’s module, on the other hand, is

both the callee module and the partner module. Figure 6 details a credential

10

WO 00/02132 PCT/US99/14434

verifier’s flow chart in phase 4 or the partner module checking phase in one
embodiment of the present invention. It should be noted that some steps of the
credential verifier can either be expanded, eliminated or combined with other
steps without exceeding the scope of the invention.

Using Figure 4 as an illustration, in step 600 shown in Figure 6, Alice’s
module or the local module searches through registry 400 to search for the
reference to Bob’s credential. After finding Bob’s credential 412, Alice proceeds
in step 602 to identify Bob’s certificate 414, signed by Alice, in Bob’s credential
412. Since Alice knows her own public key, in step 604, Alice puts her public
key along with her signature on Bob’s certificate 414 into a digital signature
verifier, which has been discussed extensively above and in connection with
Figure 2.

- When the verification result from step 606 is invalid, step 608 signals an
error to Alice and stops Alice from proceeding further. If however the result of
the comparison in step 606 is valid, Alice can now trust Bob’s certificate 414.
Since Bob’s certificate 414 contains Bob’s public key information, Alice obtains
Bob’s public key in step 610. With Bob’s public key, Alice proceeds to find
Bob’s signature 418 of Bob’s software module 420 in step 612. In step 614,
Alice enters her copy of Bob’s public key and Bob’s signature 418 into a digital
signature verifier. If the result in step 616 is invalid, step 620 again signals an
error to Alice and stops Alice from continuing on. On the other hand, a valid
result indicates that Bob’s module has been authenticated, and Alice may proceed
to work with Bob’s module. It should be emphasized that the present invention
can operate in a bilateral fashion. Thus, Bob can similarly authenticate Alice’s
module utilizing all the described steps.

It should be further noted that the described credential verifier can
continue operating in part or as a whole while Alice’s and Bob’s modules are
being executed. This ensures the integrity of the modules during the modules’

execution. In particular, depending on design parameters and goals, certain steps

11

WO 00/02132 PCT/US99/14434

shown in Figure 6 may not need to execute each time the credential verifier is
invoked. Each software module may also determine its required frequency of
invoking the credential verifier. These mentioned variations in implementing and
invoking the credential verifier should be apparent to one of ordinary skill in the
art without departing from the spirit and the scope of the present invention.

Moreover, other verification schemes can be included in the credential
verifier without exceeding the scope of the present invention. For example, step
- 614 may incorporate additional checking policies to raise the level of authenticity
for the modules. In particular, Figure 7 illustrates one such policy. In step 700,
Alice checks whether Bob’s module has been loaded into memory. If not, in step
702 Alice verifies Bob’s modules residing on other machine readable mediums
such as disks, CDs, etc. using the previously described digital signature verifier.
If the result from step 703 is valid, Alice proceeds to either wait for Bob to load
his own module into memory or loads the module into memory for Bob in step
704. An invalid result from step 703 directs Alice to step 710 and stops her from
continuing on.

However, when Bob’s module has been loaded into memory, Bob’s
module is verified using the digital signature verifier in steps 706 and 708. After
the validation of Bob’s module, Alice performs another check in step 712 to
ensure a secured linkage between Alice’s module and Bob’s module. In
particular, a memory checker checks the addresses to be called, or the destination
addresses in Bob’s module, against the valid address ranges of Bob’s module. If
the destination addresses remain within the valid ranges in step 712, Alice can
proceed to work with Bob’s module. Additionally, the memory checker checks a
caller’s addresses against the calling module’s, or Alice’s module, valid address
ranges. As has been mentioned previously, such verification steps can continue
while the modules are being executed.

Since an operating system’s program loader may modify software modules

when the loader moves the modules from secondary memory such as data storage

12

WO 00/02132 PCT/US99/14434

device 510 shown in Figure 5 to primary memory such random access memory
504 shown in Figure 5, the memory checker may include intelligence to reverse
such modifications. In particular, a program loader often modifies program
instructions to reflect the address changes from the secondary memory to the
primary memory. The memory checker in one embodiment of the invention may
elect to copy the affected regions of the modules from the primary memory,
reverse the address modifications and then attempt to reconstruct and validate the
signed image of the module.

Thus, a method and apparatus for authenticating the integrity of software
modules has been disclosed. Although the present invention has been described
particularly with reference to the figures, it will be apparent to one of the ordinary
skill in the art that the present invention may appear in any number of systems
which provide data integrity verification and authentication functionality. It is
further contemplated that many changes and modifications may be made by one
of ordinary skill in the art without departing from the spirit and scope of the

present invention.

13

WO 00/02132 PCT/US99/14434

CLAIMS

What is claimed is:

1. A method of authenticating and verifying the integrity of software modules,
the method comprising the steps of:

a. establishing a credential for a local software module and a credential
for a partner software module;

b. verifying the integrity of said local software module by validating said
local software module’s digital signature;

c. authenticating the integrity of said partner software module by
deriving and validating information from said partner software
module’s credential; and

d. securing linkage between said local software module and said partner

software module.

2. The method according to claim 1, wherein said local and said partner software

modules reside on a machine readable medium.

3. The method according to claim 1, wherein said establishing step further
includes the steps of:

providing a digital signature of said local software module in said local
software module’s credential;

providing a digital certificate of said local software module issued by said
partner software module in said local software module’s credential;

providing a reference to said local software module in said local software
module’s credential;

providing a digital signature of said partner software module in said

partner software module’s credential;

14

WO 00/02132 PCT/US99/14434

providing a digital certificate of said partner software module issued by
said local software module in said partner software module’s credential; and
providing a reference to said partner software module in said partner

software module’s credential.

4. The method according to claim 1, wherein step (c) further comprises:
identifying said credentials;
identifying and validating said certificates within said credentials; and

identifying and validating said digital signatures within said credentials.

5. The method according to claim 2, wherein said software modules’

corresponding credentials reside external to said software modules.

6. The method according to claim 4, wherein step (d) further comprises:
having a machine execute said local and partner software modules in said
machine’s memory locations; and

validating said memory locations and contents of said memory locations.

7. An apparatus for authenticating and verifying the integrity of software
modules, the apparatus comprising:

a. means for establishing a credential for a local software module and a
credential for a partner software module;

b. means for verifying the integrity of said local software module by
validating said local software module’s digital signature;,

c. means for authenticating the integrity of said partner software module
by deriving and validating information from said partner software
module’s credential; and

d. means for securing linkage between said local software module and

said partner software module.

15

WO 00/02132 PCT/US99/14434

8. The apparatus according to claim 7, wherein said local and said partner

software modules reside on a machine readable medium.

9. The apparatus according to claim 7, wherein said establishing means further
comprises:

providing a digital signature of said local software module in said local
software module’s credential;

providing a digital certificate of said local software module issued by said
partner software module in said local software module’s credential;

providing a reference to said local software module in said local software
module’s credential;

providing a digital signature of said partner software module in said
partner software module’s credential;

providing a digital certificate of said partner software module issued by
said local software module in said partner software module’s credential; and

providing a reference to said partner software module in said partner

software module’s credential.

10. The apparatus according to claim 7, wherein (c) further comprises:

means for identifying said credentials;

means for identifying and validating said certificates within said
credentials; and

means for identifying and validating said digital signatures within said

credentials.

11. The apparatus according to claim 8, wherein said software modules’

corresponding credentials reside external to said software modules.

16

WO 00/02132 PCT/US99/14434

12. The apparatus according to claim 10, wherein said securing means further
performs the steps of:
executing said local and partner software modules in said apparatus’s
memory locations; and

validating said memory locations and contents of said memory locations.

13. An apparatus for authenticating and verifying the integrity of software
modules, the apparatus comprising:

a. a credential builder for establishing a credential for a local software
module and a credential for a partner software module;

b. adigital signature verifier for verifying the integrity of said local
software module by validating said local software module’s digital
signature;

c. acredential verifier for authenticating the integrity of said partner
software module by deriving and validating information from said
partner software module’s credential; and

d. amemory checker for securing linkage between said local software

module and said partner software module.

14. The apparatus according to claim 13, wherein said local software and said

partner software modules reside on a machine readable medium.

15. The apparatus according to claim 13, wherein said credential builder further
comprises:
providing a digital signature of said local software module in said local
software module’s credential;
providing a digital certificate of said local software module issued by said

partner software module in said local software module’s credential,

17

WO 00/02132 PCT/US99/14434

providing a reference to said local software module in said local software
module’s credential;

providing a digital signature of said partner software module in said
partner software module’s credential;

providing a digital certificate of said partner software module issued by
said local software module in said partner software module’s credential; and

providing a reference to said partner software module in said partner

software module’s credential.

16. The apparatus according to claim 13, wherein said credential verifier further
comprises:
registry entries for referencing to said credentials;
a certificate verifier for validating said certificates within said credentials;
and
a signature verifier for validating said digital signatures within said

credentials.

17. The apparatus according to claim 14, wherein said software modules’

corresponding credentials reside external to said software modules.

18. The apparatus according to claim 16, wherein said memory checker further
performs the steps of:
executing said local and partner software modules in said apparatus’s
memory locations; and

validating said memory locations and contents of said memory locations.

19. A machine readable medium having embodied thereon instructions, which
when executed by a machine, causes said machine to:

authenticate the integrity of software modules on said medium by

18

WO 00/02132 PCT/US99/14434

a. establishing a credential for a local software module and a credential
for a partner software module;

b. verifying the integrity of said local software module by validating said
local software module’s digital signature;

c. authenticating the integrity of said partner software module by
deriving and validating information from said partner software
module’s credential; and

d. securing linkage between said local software module and said partner

software module.

20. The machine readable medium according to claim 19, wherein said
establishing step further includes the steps of:

providing a digital signature of said local software module in said local
software module’s credential;

providing a digital certificate of said local software module issued by said
partner software module in said local software module’s credential,

providing a reference to said local software module in said local software
module’s credential;

providing a digital signature of said partner software module in said
partner software module’s credential;

providing a digital certificate of said partner software module issued by
said local software module in said partner software module’s credential; and

providing a reference to said partner software module in said partner

software module’s credential.

21. The machine readable medium according to claim 19, wherein step (c) further
comprises:
identifying said credentials;
identifying and validating said certificates within said credentials; and

19

WO 00/02132 PCT/US99/14434

identifying and validating said digital signatures within said credentials.

22. The machine readable medium according to claim 19, wherein said software

modules’ corresponding credentials reside external to said software modules.

23. The machine readable medium according to claim 21, wherein step (d) further
comprises:
executing said local and partner software modules in said machine’s
memory locations; and

validating said memory locations and contents of said memory locations.

20

WO 00/02132 PCT/US99/14434

1/6
102 108
PUB-KEY PRI-KEY
100 106 110
3 ! 3 3
MSG —>CIPHER —» CIPHERTEXT —>CIPHER —» MSG
i f PUBLIC-KEY CRYPTOGRAPHY

1 1IG. 1
o (PRIOR ART)
200 218
] \
MSG - MSG
PRI-KEY PUB-KEY
l 206 212 l 202
HASH HASH
200/ l 214
VAL —
v] J l 216
VAL —> CIPHER — CIPHERTEXT — CIPHER —> VAL —
J _ _/ _/
047 208 210 208 DIGITAL SIGNATURE

(PRIOR ART)

WO 00/02132 PCT/US99/14434

2/6
RESPONSE 302
MODULE A MODULE B
PUBLIC KEYA B 306 PRIVATEKEYR 308
PRIVATEKEYp 304 PUBLICKEYAB 306
CHALLENGE 300

FIG. 3

(PRIOR ART)

PCT/US99/14434

WO 00/02132

3/6

v "Old

|l gog
ol ZAX 40 OIS
e
oLy 3017V
| 1930
e $.409
pLy
N:L

/oov

ZAX ogv 3017V NIy
IINAOW IINAON e || 08¥409IS || o)
\ (1472 \ oLy - T
g04 90y
1430 ||
S30IV N
Oy
rmov
T~ ZAX \\
ogy 1
AH1SID3Y

PCT/US99/14434

WO 00/02132

4/6

91%
TVYNINHTL
310W3YH

805 30IA3A LNdNI
H3H10 ANV
OIHINNNYHATY

818 ¢ Ol
HIAHIS
A
V
- WNINIW 30130
HHOMLIN 31gvavay 39VHOLS
%
A
Y
005 INIWIT3 Sng
A
V)
905 v0S AHOW3W 205
300V HOSSIO0Hd
WOQNVH

AV1dSId

WO 00/02132

PCT/US99/14434

5/6

600
LOCATE BOB'S CREDENTIAL
USING THE REGISTRY
FIND BOB'S CERTIFICATE o
SIGNED BY ALICE IN
BOB'S CREDENTIAL

PUT ALICE'S SIG. AND HER 604

PUBLIC KEY INTO A SIG.
VERIFIER

ALICE OBTAINS
BOB'S PUBLIC
KEY

608

DOES THE
SIG. MATCH?

STOP AND
SIGNAL ERROR

FIND BOB'S
SIGNED MODULE
INBOB'S
CREDENTIAL

612

618

PUT BOB'S SIG.
AND HIS PUBLIC
KEY INTO SIGN
VERIFIER

DOES THE
SIG. MATCH?

STOP AND
SIGNAL ERROR

PROCEED TO
WORK WITH BOB'S
MODULE

FIG. 6

WO 00/02132

6/6

START

PCT/US99/14434

IS BOB'S

YES NO

MODULE
LOCKED?

l

l

VERIFY THE MEMORY
IMAGE OF BOB'S
MODULE

N
IS SIG. VALID? 0

VERIFY BOB'S
MODULE ON OTHER
MACHINE READABLE
MEDIUMS 7g2

IS SIG. VALID?

A 4

stop anp 22

SIGNAL ERROR

12

DESTINATION
ADDRESS
REMAINS WITHIN
RANGE?

PROCEED WITH
WORK WITH BOB'S
MODULE 714

LOAD BOB'S MODULE
INTO MEMORY

704

FIG. 7

INTERNATIONAL SEARCH REPORT International application No.

PCT/US99/14434

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) : GOGF 13/00, 11/00; HO4L 9/32, HO4L 9/00; HO1L 9/08
US CL : 713/200, 201; 380/3-4, 21, 23, 25; 705/39
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 713/200, 201; 380/3-4, 21, 23, 25; 705/39

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
N/A

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS, JPO, STN- INPADOC, COMPENDEX, INSPEC search terms: program, modules, switching, exchange, swapping,
software, verified, integrity, authenticate, partner, certificate.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

cited to establish the publication date of another citation or other
special reason (as specified)

"o" document referring to an oral disclosure, use, exhibition or other
means
P* document published prior to the international filing date but later than

the priority date claimed

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 5,559,814 A (ROLIN ET AL.) 24 September 1996, see entire| 1-2,7-8,13-14,19-
document. 22
Y US 5,625,693 A (ROHATGI ET AL.) 29 April 1997, see entire| 1-2,7-8,13-14,19-
document. 21
X US 5,757,914 A (McMANIS) 26 May 1998, see entire document. | 1-2,7-8,13- 14
Y,E US 5,933,503 A (SCHELL ET AL.) 03 August 1999, see entire| 1-23
document.
Y,P US 5,901,227 A (PERLMAN) 04 May 1999, see entire document. | 1-23
AP US 5,903, 721 A (SIXTUS) 11 May 1999, see entire document. 1-23
Further documents are listed in the continuation of Box C. D See patent family annex.
hd Special categories of cited documents: T later document published after the international filing date or priority
. . X date and not in conflict with the application but cited to understand
"A’ :i:(;:n:) efn; ;ir:lf;u;:? ::l‘: 5::::-] state of the art which is not considered the principle or theory underlying the invention
% oalier document published on or after the intornational filing date X O o B e e s oo e o satine s
"L* document which may throw doubts on priority claim(s) or which is when the document is taken alone

"y* document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search

20 SEPTEMBER 1999

Date of mailing of the international search report

22 0CT 1999

Name and mailing address of the lSA/US
Commissioner of Patents and Trademarks

Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer
* Motz

NORMAN MICH

Telephone No. (703) 308-0000

Form PCT/ISA/210 (second sheet)(July 1992)x

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US99/14434
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y.P US 5,915,021 A (HERLIN ET AL.) 22 June 1999, see entire 1-23
document.
Y,P US 5,872,848 A (ROMNEY ET AL.) 14 Feburary 1999, see entire 1-23
document.

Form PCT/ISA/210 (continuation of second sheet)(July 1992)«

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

