

US 20120104005A1

(19) United States

(12) Patent Application Publication INGLESE

(10) Pub. No.: US 2012/0104005 A1

(43) **Pub. Date:** May 3, 2012

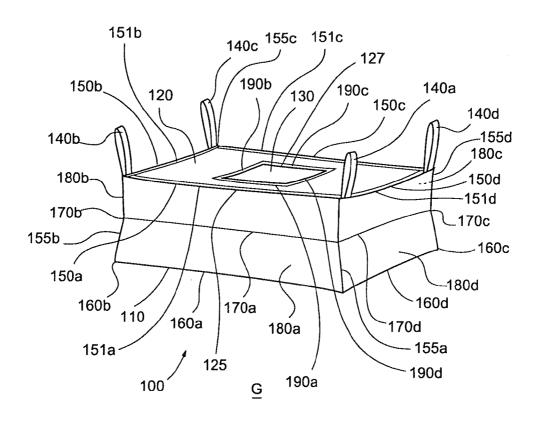
(54) WET(PLASTIC)AND DRY CONCRETE RECLAMATION/DISPOSALDEVICE

(76) Inventor: Pat INGLESE, Smyrna, GA (US)

(21) Appl. No.: 13/346,146

(22) Filed: Jan. 9, 2012

Related U.S. Application Data


- (62) Division of application No. 12/142,711, filed on Jun. 19, 2008, now Pat. No. 8,113,220, which is a division of application No. 10/722,153, filed on Nov. 25, 2003, now abandoned.
- (60) Provisional application No. 60/486,961, filed on Jul. 14, 2003.

Publication Classification

(51) **Int. Cl. B65D 6/16** (2006.01)

(57) ABSTRACT

A device and method for residual concrete collection for disposal or reclamation of same, wherein a bag is formed, generally prismatic in structure, with an opening in the top. Suspension straps serve to attach the bag and support it below the outflow of concrete mixing or delivery equipment such that concrete and/or water will flow into the device, wherein water will subsequently pass therethrough. The device and collected concrete can then be moved and/or stored for disposal or reclamation of the concrete.

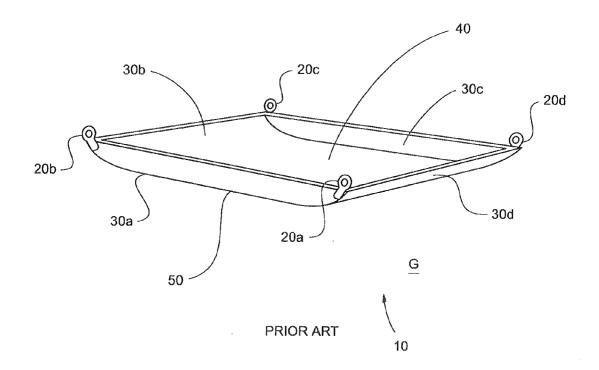
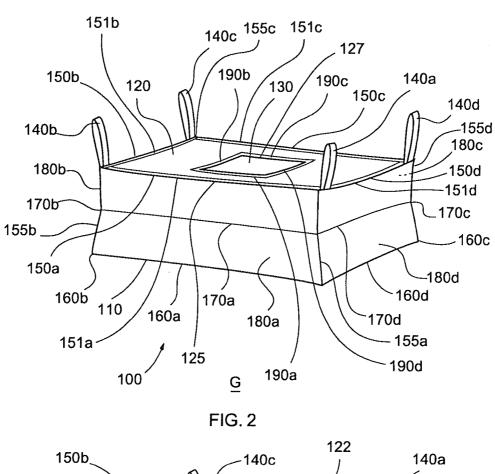



FIG. 1

140d _155d 140b_ 180c 180b-_150d -151d 170b _170c 155b_ _160c 150a -180d 160d 160b 170a 160a 110 170d 180a 151a - 155a 125 - 190d 190a 100 G

FIG. 12

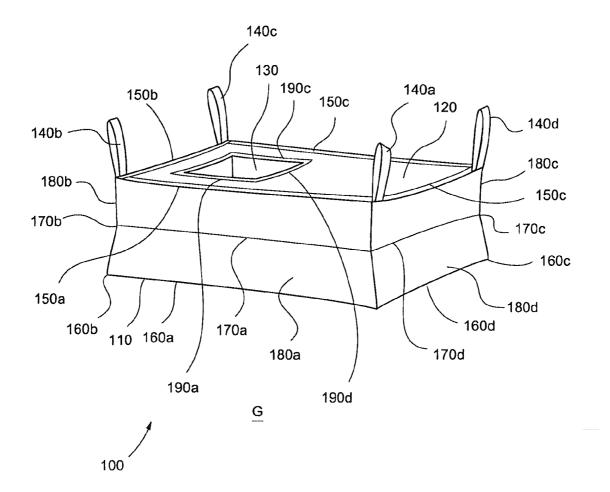
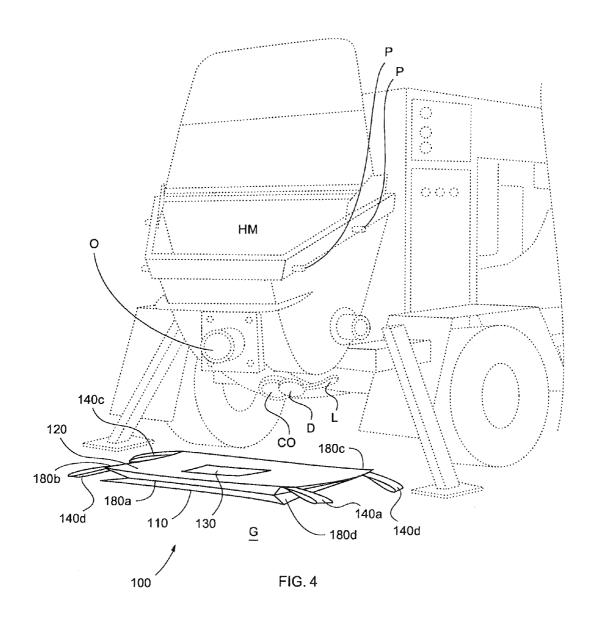
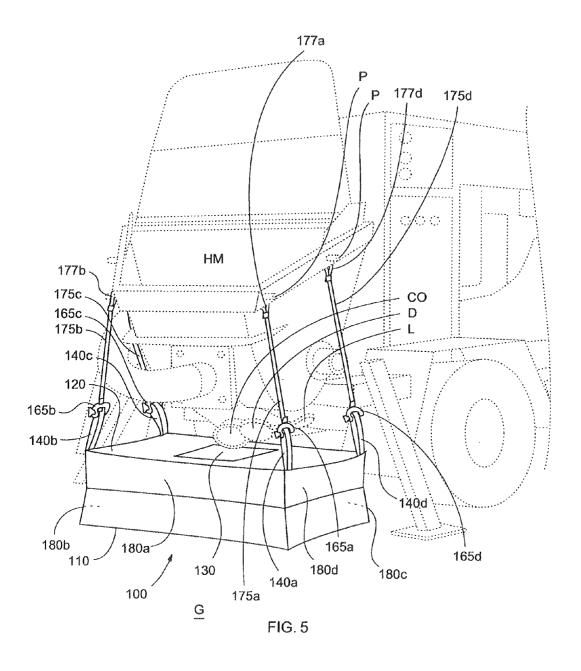




FIG. 3

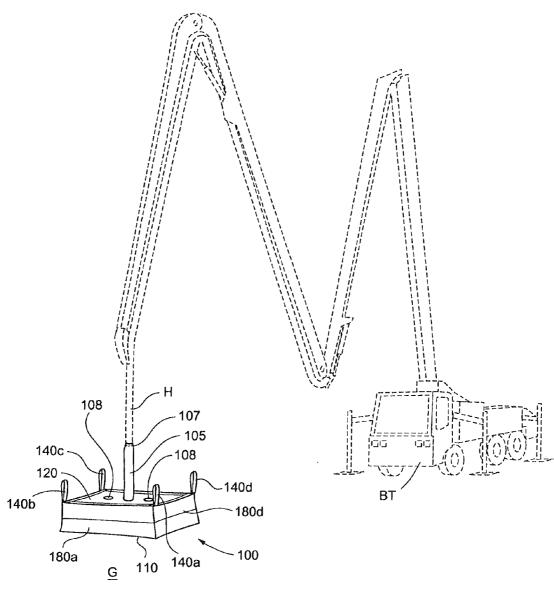
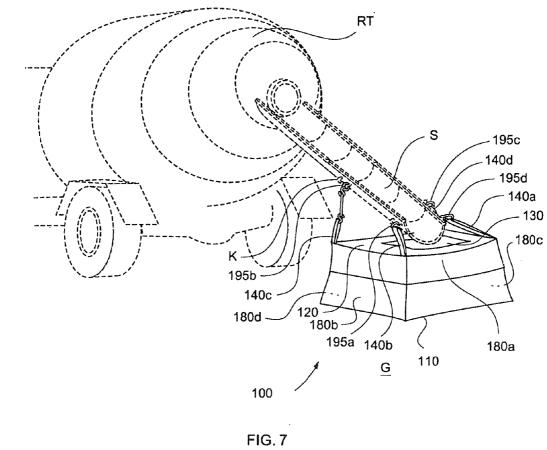
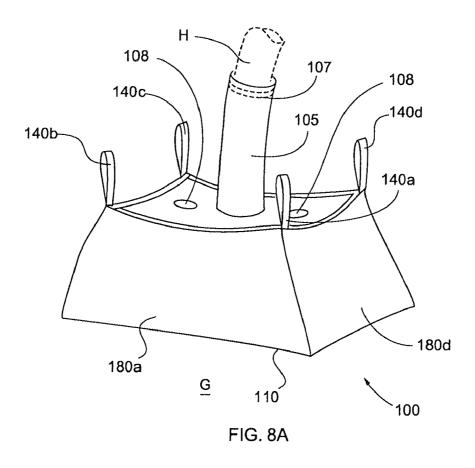
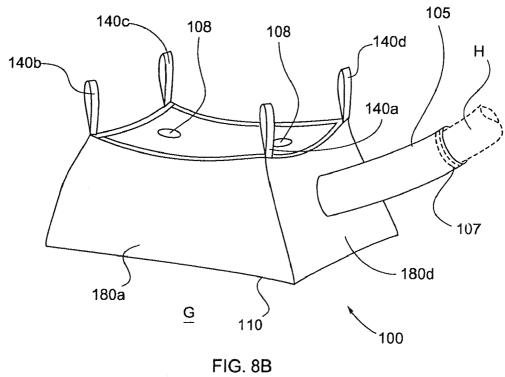





FIG. 6

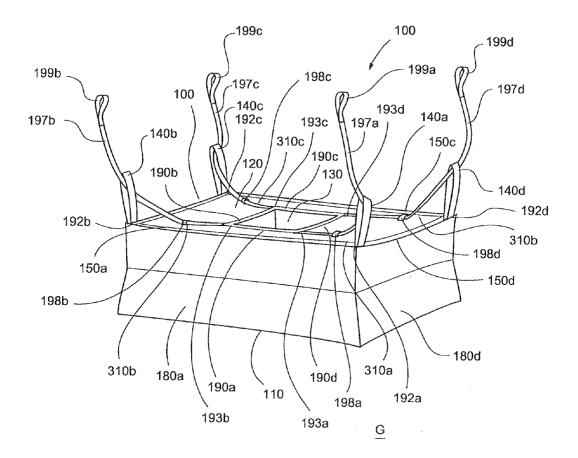


FIG. 9

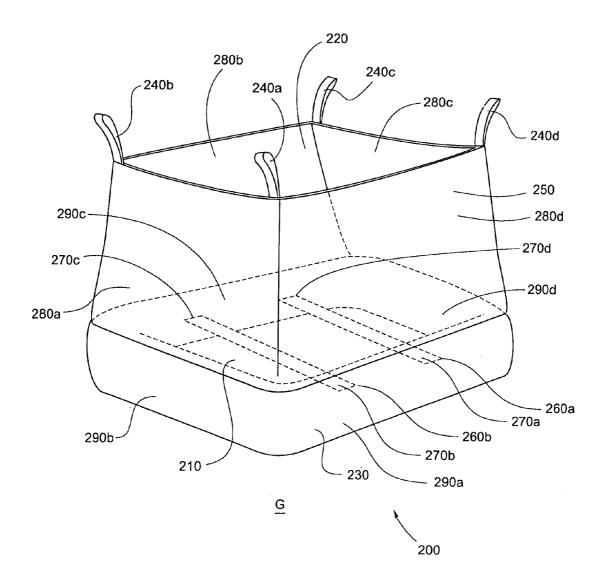


FIG. 10

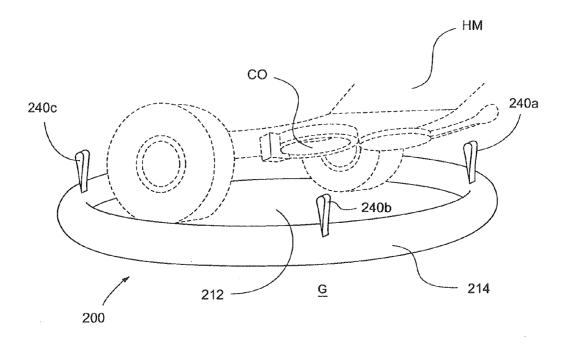


FIG. 11

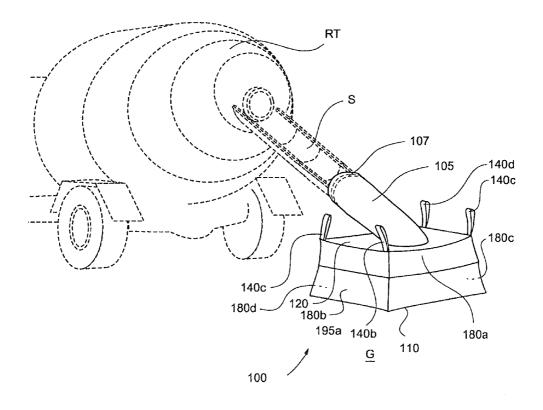


FIG. 13

WET(PLASTIC)AND DRY CONCRETE RECLAMATION/DISPOSALDEVICE

CROSS-REFERENCES TO RELATED APPLICATIONS

[0001] This application is a divisional of U.S. patent application Ser. No. 12/142,711, filed Jun. 18, 2008, which is a divisional of U.S. patent application Ser. No. 10/722,153, filed Nov. 25, 2003, which claims priority to U.S. Provisional Patent Application Ser. No. 60/486,961, filed Jul. 14, 2003, the disclosures of all of which are incorporated herein in their entireties for all purposes.

TECHNICAL FIELD

[0002] The present invention relates generally to concrete handling equipment, and more specifically to an apparatus and method for cleaning or purging of concrete mixing, holding, and pumping equipment, and reclamation or disposal of the residual concrete and like materials obtained thereby.

BACKGROUND

[0003] There are various types of equipment that handle concrete at a job site. Among these are the mixer, typically a hopper with agitator, wherein concrete, grout and/or primers are kept fluid and then pumped or gravity-fed to the point-of-use or to other equipment that will be utilized to feed the concrete to the point-of-use. The hopper/agitator generally includes screws or blades to facilitate such fluidizing. Concrete ready mix trucks are another piece of equipment that handle the mixing and delivery of concrete, wherein the concrete is mixed with water through rotation of a barrel and internal blades or screws.

[0004] Once mixed, concrete is generally delivered to the point-of-use. Delivery may be accomplished via the hopper or ready mix trucks as described above, or via the use of a conveyor or hose. Concrete delivered via flexible hoses or metal pipe from a pump located on a trailer or boom pump. Concrete may also be pumped to a deck placer, which has an extension boom and framework that can be transported to support locations within a building undergoing construction, for placement at a specific point on a roof or floor deck.

[0005] Most concrete mixing and handling equipment require cleaning for purposes of maintaining useable life of the equipment and for removal of residual set and unset product. Set concrete will interfere with the operation of equipment and the delivery of the concrete product by restricting and impeding movement of the flowable concrete through the equipment. Thus, it is necessary to rinse unset concrete out of the equipment prior to the setting or hardening of the concrete because, once hardened or set, concrete is extremely difficult to remove.

[0006] When rinsing the concrete out, an excess amount of water is typically used to carry out the residual concrete and leave the equipment clean. Since concrete mixing and applying equipment is located at a construction site, there is often little or no containment for materials that are discharged either deliberately through cleaning or through spillage. Thus, some means to provide for containment of the concrete and water while being mixed or during cleaning is critical. Once the concrete has been contained in a storage device, it will set and harden. Excess concrete can be reclaimed in this manner for disposal or recycling of its component materials.

[0007] Additionally, due to environmental concerns, concrete can no longer be flushed out of ready mix trucks or pumps onto vacant land. The water used for cleaning concrete off tools and equipment may no longer run into storm sewer systems. The responsibility of cleanup and removal of this concrete falls on the ready mix supplier and/or the pump service company.

[0008] In addition to cleaning, many concrete delivery methods require the priming of the system. In this operation, the interior walls of the hose or pipe must be coated with a substance that encourages the concrete to flow to the delivery point. A priming agent consists of grout (sand, cement and water), and/or a specialized lubricant. It is usually undesirable for this priming agent to be allowed to enter the concrete pour, as its characteristics differ from the concrete to be applied. This material requires a containment apparatus to collect it, as it comes out of the tip-hose prior to the onset of actual concrete pumping. Currently, this prime is collected in jury-rigged apparatus or forms made by each contractor.

[0009] Although various devices and methods for disposal or recycling of residual concrete are known, all are disadvantageous when compared to the present invention.

[0010] For instance, U.S. Pat. No. 3,805,535 to Van Weele teaches a method of forming a concrete post in a hole in the ground by placing a bag of water-permeable flexible material designed to block concrete and retain it in the bag. Such a method presents disadvantages, as the concrete remains in the ground and is not recycled.

[0011] U.S. Pat. No. 4,016,978 to Danna, Jr. teaches a concrete mixer apparatus for separation and reclamation of gravel, stones, pebbles and the like, from the concrete mixer by suspending the residual concrete in an excess of water with settling of the adjunct materials. However, such a method is disadvantageous, as the aggregates only are reclaimed and the concrete is not, it is water intensive and must be located next to a large batch plant where ready mix trucks return the unused portion of the order.

[0012] U.S. Pat. No. 4,154,671 to Borges, U.S. Pat. No. 6,354,439 to Arbore, U.S. Pat. No. 6,155,277 to Barry and U.S. Pat. No. 5,685,978 to Petrick et al. teach the use of screens or strainers to recover cement/concrete and/or aggregates left in concrete mixing and delivery trucks. However, due to the use of such screens to separate the solid materials, these methods are disadvantageous in that they require separate and additional apparatus for transportation of the concrete to be reclaimed or discarded.

[0013] U.S. Pat. No. 5,741,065 to Bell et al. and U.S. Pat. No. 6,039,468 to Kowalcyk teach a cleaning system for concrete mixing trucks, wherein the concrete is recycled onboard and, thus, the concrete trucks are highly specialized and disadvantageous in being unable to handle waste from other standard trucks used in the field.

[0014] While some or all of the above-referenced patents may well be utilized for reclamation of residual concrete, they do not adequately provide an on-site containment vessel without requiring a large volume for storage of unfilled, heavy, and overly complicated rigid vessels. Accordingly, a device and method of containment and reclamation of concrete and related materials is desirable.

SUMMARY

[0015] The present invention began out of a need for a device to contain and hold excess concrete, waste primers,

and the like at construction job sites and to allow for the convenient disposal or reclamation of the materials so captured.

[0016] The present invention is suitable for use as a container for the recovery, disposal, and reclamation of concrete, waste primers, and the like. The invention is a preferably box-shaped structure with suspension straps that can be attached to any of the various forms of construction equipment used in the mixing, application, or installation of concrete or other cementitious products.

[0017] Briefly described, in a preferred embodiment, the present invention overcomes the above-mentioned disadvantages and meets the recognized need for such a device by providing a method and apparatus for receipt and retention of waste concrete material at a construction site via lightweight and collapsible containers that do not take up a large volume.

[0018] According to its major aspects and broadly stated, the present invention in its preferred embodiment is a bag constructed of woven polypropylene having a top opening for receipt of waste concrete therethrough.

[0019] More specifically, the present invention is bag-like device that allows water to weep through its containment surface and, thus, reduce the weight of concrete material to be recycled. For those applications where all the material, including water, must be removed, the present invention utilizes a water impermeable bag or liner as an alternative. This is most typical when waste material occurs on a deck of a building, where water run-off would be unsuitable.

[0020] The present invention relates to a device that could be used to collect the discharge of concrete, grout or primer from a concrete ready mix truck, a boom hose, a conveyor, a deck placer, a hopper, or the like. A further embodiment describes a bag that could serve as a containment area under a truck or other concrete applying or mixing apparatus.

[0021] Accordingly, a feature and advantage of the present invention is its ability to be utilized with a variety of concrete mixing and delivery apparatuses.

[0022] A further feature and advantage of the present invention is that it is easily transported, of low volume and weight, and is suitable for storage on a concrete delivery or mixing truck for use on an as-needed, on-demand basis.

[0023] A feature and advantage of the present invention is that it can be used to contain concrete spills, along with hydraulic and oil spills from equipment, thus preventing environmental contamination.

[0024] A further feature and advantage of the present invention is ease of manufacture and low cost of production.

[0025] A feature and advantage of the present invention is that it is useful either for reclamation of concrete for recycling, or for convenient transport and disposal thereof.

[0026] An additional feature and advantage of the present invention is that it is easily moved within, through and/or atop tall buildings during construction thereof.

[0027] A further feature and advantage of the present invention is that it easily accommodates uneven terrain and surfaces attendant construction sites.

[0028] These and other features and advantages of the present invention will become more apparent to one skilled in the art from the following description and claims when read in light of the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0029] Having thus described the invention in general terms, the present invention will be better understood by

reading the Detailed Description of Example Embodiments with reference to the accompanying drawing Figures, which are not necessarily drawn to scale, and in which like reference numerals denote similar structures and refer to like elements throughout, and in which:

[0030] FIG. 1 is a perspective view of a prior art device;

[0031] FIG. 2 is a perspective view of a concrete reclaim and disposal device according to a preferred embodiment of the present invention;

[0032] FIG. 3 is a perspective view of a concrete reclaim and disposal device according to an alternate embodiment of the present invention;

[0033] FIG. 4 is a perspective view of a concrete reclaim and disposal device according to a preferred embodiment of the present invention shown below a concrete remixing hopper and ready for installation thereon;

[0034] FIG. 5 is a perspective view of a concrete reclaim and disposal device according to a preferred embodiment of the present invention depicting the device installed on a concrete remixing hopper;

[0035] FIG. 6 is a perspective view of a concrete reclaim and disposal device according to a preferred embodiment of the present invention installed on the outlet of a hose from a boom truck:

[0036] FIG. 7 is a perspective view of a concrete reclaim and disposal device according to a preferred embodiment of the present invention shown installed on the chute of a ready mix truck;

[0037] FIG. 8 is a perspective view of a concrete reclaim and disposal device according to a preferred embodiment of the present invention shown forming a conical shape around a concrete discharge hose;

[0038] FIG. 9 is a perspective view of a concrete reclaim and disposal device according to a preferred embodiment of the present invention having reinforcing strips;

[0039] FIG. 10 is a perspective view of a concrete reclaim and disposal device according to an alternate embodiment of the present invention;

[0040] FIG. 11 is a perspective view of a concrete reclaim and disposal device according to an alternate embodiment depicted in place under a concrete mixing apparatus;

[0041] FIG. 12 is a perspective view of a concrete reclaim and disposal device according to an alternate embodiment of the present invention; and,

[0042] FIG. 13 is a perspective view of a concrete reclaim and disposal device according to an alternate embodiment of the present invention shown installed on the chute of a ready mix truck.

DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

[0043] In describing a preferred and selected alternate embodiments of the present invention, as illustrated in the Figures, specific terminology is employed for the sake of clarity. The invention, however, is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner to accomplish similar functions.

[0044] The present invention is suitable for use as a concrete reclamation and disposal device and method at construction sites, wherein the device of the present invention can be easily transported due to its light weight and low collapsed volume.

[0045] FIG. 1 shows prior art device 10 utilized for containing residual concrete and concrete-like materials. Priorart device 10 is a heavy metal, fiberglass or wood shell 50 having support hooks 20a, 20b, 20c and 20d for lifting and moving. Prior-art device 10 rests on ground G. Residual concrete is allowed to fall by gravity or pumping into bottom 40 of prior-art device 10. Concrete is retained by walls 30a, 30b, 30c and 30d, wherein walls 30a, 30b, 30c and 30d form a perimeter preventing leakage of concrete from prior-art device 10. Upon completion of filling prior-art device 10, it may be moved by heavy equipment to trucks that can then return it, along with the concrete within it, for disposal or recycling. Prior-art device 10 is large, heavy and rigid, takes up substantial space within a delivery truck, and adds significantly to the weight to be transported to and from a construction site when utilized for reclamation of concrete.

[0046] Referring now to FIG. 2, apparatus 100 overcomes the disadvantages of previous equipment, such as, for exemplary purposes only, prior-art device 10. Apparatus 100 preferably has a prismatic shape preferably defined by first side 180a, second side 180b, third side 180c and fourth side 180d, top 120 and bottom 110, which preferably rests on ground G. The respective heights of first side 180a, second side 180b, third side 180c and fourth side 180d are preferably less than or equal to their respective lengths. Opening 130 is preferably centrally formed through top 120 and preferably provides access to the interior of apparatus 100. Straps 140a, 140b, 140c and 140d are preferably attached at edges 155a, 155b, 155c and 155d, preferably formed between sides 180a, 180b, 180c and 180d, such that apparatus 100 may preferably be suspended by attachment of straps 140a, 140b, 140c and 140d preferably over posts or hooks located on equipment for mixing, re-mixing or delivery of concrete, or by extension straps located between the equipment and straps 140. Apparatus 100 is preferably constructed from woven polypropylene and/or any other suitable material, such as, for exemplary purposes only, polyolefins, nylon, and other polymers. In particular, the material chosen must preferably possess sufficient porosity to permit water seepage or weepage therethrough, yet preferably retain concrete pieces and/or particles within the bag. The material must be strong enough to prevent puncture and tearing, and must allow lifting and transport of the concrete-laden device.

[0047] Apparatus 100 overcomes the disadvantages of previous equipment, such as prior-art device 10, by preferably being made of lightweight material and by preferably being collapsible. Apparatus 100 preferably has first side 180a, second side 180b, third side 180c and fourth side 180d. First side 180a preferably has top edge 150a, side edge 155a, side edge 155b, and bottom edge 160a, wherein top edge 150a and bottom edge 160a are preferably of equal or greater dimension than side edge 155a and side edge 155b. Second side 180b preferably has top edge 150b, side edge 155b, side edge 155c, and bottom edge 160b, wherein top edge 150b and bottom edge 160b are preferably of equal or greater dimension than side edge 155b and side edge 155c. Third side 180cpreferably has top edge 150c, side edge 155c, side edge 155d, and bottom edge 160c, wherein top edge 150c and bottom edge 160c are preferably of equal or greater dimension than side edge 155c and side edge 155d. Fourth side 180d preferably has top edge 150d, side edge 155d, side edge 155a, and bottom edge 160d, wherein top edge 150d and bottom edge 160d are preferably of equal or greater dimension than side edge 155d and side edge 155a. First side 180a is preferably attached to second side 180b at edge 155b. Second side 180b is preferably attached to third side 180c at edge 155c. Third side 180c is preferably attached to fourth side 180d at edge 155d. Fourth side 180d is preferably attached to first side 180a at edge 155a.

[0048] Preferably located along periphery 125 formed by sides 180a, 180b, 180c and 180d are preferably top edges 150a, 150b, 150c and 150d, respectively, wherein top edges 150a, 150b, 150c and 150d preferably comprise reinforcement strips 151a, 151b, 151c and 151d, respectively. Additionally, reinforcement strips 190a, 190b, 190c and 190d, are preferably located around the periphery 127 of hole 130.

[0049] Preferably located within sides 180a, 180b, 180c and 180d of apparatus 100 are corresponding fold lines 170a, 170b, 170c and 170d. Apparatus 100 may preferably be collapsed by folding along lines 170a, 170b, 170c and 170d, such that lines 170a, 170b, 170c and 170d are folded in towards each other and first top edge 150a is preferably brought into proximity to first bottom edge 160a, second top edge 150b is preferably brought into proximity to second bottom edge 160b, third top edge 150c is preferably brought into proximity to third bottom edge 160c, and fourth top edge 150d is preferably brought into proximity to fourth bottom edge 160d. In such a fashion, apparatus 100 is preferably in collapsed form and consumes very little space on, or folded and placed in the cab of, a transport vehicle. When it is desired to utilize apparatus 100, apparatus 100 is opened and expanded. Upon attaching straps 140a, 140b, 140c and 140d to equipment posts or hooks, apparatus 100 can be raised to any desired height, but preferably is positioned such that bottom 110 is retained on ground G.

[0050] Referring now to FIG. 3, an alternative embodiment is shown. This alternative embodiment is substantially similar in construction and material choice to the embodiment of FIG. 2, except as provided herein. Apparatus 100 has opening 130 located in top 120, such that opening 130 is located off-center within top 120. By positioning opening 130 off-center, apparatus 100 may now be suspended under mixing or delivery equipment having a spout or other opening located away from the central support, wherein the central support can still be provided to apparatus 100 by suspension via straps 140a, 140b, 140c and 140d.

[0051] Referring now to FIG. 4, a hopper/agitator HM is shown, wherein apparatus 100 is shown preparatory to installation while still in collapsed form on ground G. Opening 130 of apparatus 100 will preferably be installed either under clean-out CO or on outlet O of hopper/agitator HM, such that concrete emitting from outlet O or clean-out CO, after opening door D via handle L, will preferably fall into opening 130 and preferably be contained within apparatus 100.

[0052] FIG. 5 shows apparatus 100 now raised, expanded and preferably installed under clean-out CO of hopper/agitator HM, after opening door D via handle L, wherein straps 140a, 140b, 140c and 140d of apparatus 100 are preferably attached over posts P of hopper/agitator HM in order to preferably suspend apparatus 100 under hopper/agitator HM such that concrete, either residual or mixed with wash water, will preferably fall through outlet O and into apparatus 100 via opening 130 in top 120.

[0053] Apparatus 100 is preferably attached and held in place via support mounts 175*a*, 175*b*, 175*c* and 175*d*, wherein support mounts 175*a*, 175*b*, 175*c* and 175*d* preferably include loops 177*a*, 177*b*, 177*c* (occluded in drawing) and 177*d*, respectively formed therein. Support mounts 175*a*,

175b, 175c and 175d are preferably attached to straps 140a, 140b, 140c and 140d of apparatus 100, preferably via carabiners or clevises 165a, 165b, 165c and 165d, respectively, or the like. Having been so attached, support mounts 175a, 175b, 175c and 175d are then preferably installed over posts P of hopper/agitator HM preferably by sliding loops 177a, 177b, 177c (occluded in drawing) and 177d over posts P. In such a fashion, apparatus 100 is preferably expanded and held in place below outlet O so that concrete and/or water will fall into apparatus 100 and be contained therein. Alternatively, loops 177 may be attached directly to posts P via carabiners, clevises, or the like.

[0054] FIG. 6 shows apparatus 100 preferably installed over the tip hose H of a boom pump truck BT, such that when residual concrete is pumped out of hose H, it preferably passes through tube 105 into apparatus 100, which is placed on ground G in a suitable location. Tube 105 is held in place on tip hose H by removable fastening means 107, such as, for exemplary purposes only, hook-and-loop fasteners.

[0055] During the discharge of concrete into apparatus 100, excess pressure will be vented through holes 108 in top 120. Apparatus 100 may be supported and/or transported by means of straps 140a, 140b, 140c and 140d.

[0056] FIG. 7 depicts an alternate embodiment of apparatus 100 installed under chute S of a ready mix truck RT, such that residual concrete material will fall into apparatus 100 via opening 130 in top 120, wherein opening 130 is offset from the center of top 120, and wherein chute S of ready mix truck RT is located to the side of the centerline of ready mix truck RT. Apparatus 100 is secured under chute S of ready mix truck RT by use of straps 140a, 140b, 140c and 140d, wherein straps 140a, 140b, 140c and 140d include carbiners 195a, 195b, 195c and 195d located thereon, and wherein carabiners 195a, 195b, 195c and 195d attach to hooks or rings K on spout S of ready mix truck RT.

[0057] Referring now to FIG. 8A, in an alternate embodiment of apparatus 100, tube 105 of apparatus 100 exits top 120 and can be conformed to generally fit over a hose H, while apparatus rests on ground G. Tube 105 may be secured by fastening means 107, such as, for exemplary purposes only hook-and-loop fasteners. Straps 140a, 140b, 140c and 140d may be used to support apparatus 100 and may be used for lifting for transport. During the discharge of concrete into apparatus 100, excess pressure will be vented through holes 108 in top 120.

[0058] In an alternate embodiment shown in FIG. 8B, for use in locations having inadequate vertical space above apparatus 100, tube 105 of apparatus 100 exits side 180d, and can be conformed to generally fit over a hose H, while apparatus rests on ground G. Tube 105 may be secured by fastening means 107, such as, for exemplary purposes only hook-and-loop fasteners. Straps 140a, 140b, 140c and 140d may be used to support apparatus 100 and may be used for lifting for transport. During the discharge of concrete into apparatus 100, excess pressure will be vented through holes 108 in top 120.

[0059] Referring now to FIG. 9, in an alternate embodiment, apparatus 100 has formed therein opening 130 in top 120, where reinforcing strips 310a, 310b, 310c and 310d are located between the corners 192a, 192b, 192c and 192d of top 120 and the corners 193a, 193b, 193c and 193d of opening 130, so as to strengthen opening 130 to permit retention of its shape once concrete has entered apparatus 100 and place tension on walls 180a, 180b, 180c and 180d thereof. More

specifically, corner 192a is located at the juncture of top edges 150a and 150b of sides 180a and 180b, respectively. Corner 192b is located at the juncture of top edges 150b and 150c of sides 180b and 180c, respectively. Corner 192c is located at the juncture of top edges 150c and 150d of sides 180c and 180d, respectively. Corner 192d is located at the juncture of top edges 150d and 150a of sides 180d and 180a, respectively. Corner 193a is located at the juncture of reinforcing strip 190a with reinforcing strip 190b. Corner 193b is located at the juncture of reinforcing strip 190c. Corner 193c is located at the juncture of reinforcing strip 190c. Corner 193c is located at the juncture of reinforcing strip 190c and reinforcing strip 190d. Corner 193d is located at the juncture of reinforcing strip 190d and reinforcing strip 190d.

[0060] While resting on ground G, apparatus 100 may be held in place under a discharge clean-out or chute via belts 197a, 197b, 197c and 197d. Belts 197a, 197b, 197c and 197d are attached to top 120 of apparatus 100 at corners 193a, 193b, 193c and 193d, respectively. Belts 197a, 197b, 197c and 197d pass through retainers 198a, 198b, 198c and 198b, then through straps 140a, 140b, 140c and 140d. Belts 197a, 197b, 197c and 197d may be secured via belt loops 199a, 199b, 199c and 199b to attachment points on a suitable apparatus. Lifting of apparatus 100 may be accomplished by means of straps 140a, 140b, 140c and 140d. Alternately apparatus 100 may be lifted by means of attachment belts 197a, 197b, 197c and 197d via belt loops 199a, 199b, 199c and 199d.

[0061] As shown in FIG. 10, in an alternative embodiment, apparatus 200 sits on ground G and includes side walls 280a, **280***b*, **280***c* and **280***d* formed therein. Side walls **280***a*, **280***b*, 280c and 280d form an upper enclosure 250. Lower enclosure 230 is formed by base walls 290a, 290b, 290c, 290d and bottom 210, wherein base walls 290a, 290b, 290c and 290d of lower enclosure 230 preferably are double-walled and may be inflated with air. Following inflation, side walls 280a, 280b. **280**c and **280**d may be manipulated to extend upward from base walls 290a, 290b, 290c and 290d, thus forming an open container having opening 220 therein. In this fashion, base walls 290a, 290b, 290c and 290d serve to contain any residual concrete and/or water therein, while side walls 280a, 280b, **280**c and **280**d help to contain the residual concrete and/or water by directing the residual concrete and/or water into base walls **290***a*, **290***b*, **290***c* and **290***d*. Upon setting and/or hardening of the concrete, base walls 290a, 290b, 290c and 290d may be deflated for further transportation. Apparatus 200 may be constructed of any suitable material, such as, for exemplary purposes only, woven or film polypropylene. In such an embodiment, apparatus 200 is particularly suited for installation under vehicles or mixing/conveying apparatuses as is more fully described below, wherein apparatus 200 provides containment for any spillage that might occur during normal operation. Apparatus 200 may be suspended from a vehicle or mixing/conveying apparatus via straps 240a, 240b, 240c and **240***d*, wherein straps **240***a*, **240***b*, **240***c* and **240***d* are located at the tops of the junctures of side walls 280a, 280b, 280c and 280d.

[0062] Apparatus 200 also may provide anti-sag webs 260a and 260b, wherein anti-sag webs 260a and 260b are attached to base walls 290a and 290c. More specifically, anti-sag web 260a attaches to base wall 290a at attachment point 270a and to base wall 290c at attachment point 270d. Anti-sag web 260b attaches to base wall 290a at attachment point 270b and to base wall 290c at attachment point 270c.

[0063] FIG. 11 shows apparatus 200 installed under hopper/agitator HM, or similar truck. Concrete that may spill from hopper/agitator or truck HM, or residual concrete that is removed from hopper/agitator or truck HM through clean-out CO, will be contained by apparatus 200, thereby preventing environmental contamination. Apparatus 200 is placed on ground G in the area where the hopper/agitator or truck HM will be stationed. The hopper/agitator or truck HM will then drive onto floor 212 of apparatus 200, such that the discharge area of hopper/agitator HM will be over apparatus 200. Wall 214 is then inflated to contain any material flow preventing it from exiting apparatus 200. Upon completion of operations, wall 214 may be partially deflated and hopper/agitator or truck HM may then drive away, leaving waste contained within apparatus 200. Straps 240a, 240b, 240c and 240d (occluded in drawing) may be used to transport apparatus once it is full and solidified, or otherwise no longer needed.

[0064] Turning now to FIG. 12, an alternate embodiment of apparatus 100 is shown, wherein top 122 is open. This embodiment is suitable for areas needing a larger entrance for concrete discharge.

[0065] FIG. 13 depicts an alternate embodiment of apparatus 100 installed over chute S of a ready mix truck RT, such that residual concrete material will fall into apparatus 100 via opening 130 in top 120, wherein tube 105 is extends from the center of top 120 and covers chute S, wherein chute S of ready mix truck RT discharges from rear of ready mix truck RT. Apparatus 100 is secured over chute S of ready mix truck RT by fastening means 107, such as, for exemplary purposes only, hook-and-loop fasteners. Apparatus may be transported via use of straps 140a, 140b, 140c and 140d.

[0066] It is envisioned in an alternative embodiment that apparatus 100, 200 may be fabricated from any porous material that would permit water to seep or weep therethrough, yet be strong and puncture resistent enough to function for the uses and purposes provided herein.

[0067] It is further envisioned in alternate embodiments that apparatus 100, 200 of the present invention may be made from a water impermeable material; or, may be lined, internally or externally, with a water impermeable material; or, may be chemically treated in order to obtain water impermeable characteristics. This would facilitate the capture of priming agent and the first concrete material to pass out of a pump in areas where it would be undesirable for liquid, including water, to exit the bag.

[0068] In still further an alternate embodiment, it is envisioned that apparatus 100 could be attached to a support frame, wherein the frame has attachment points for straps 140a, 140b, 140c and 140d of apparatus 100, and wherein the support frame is independent of any other equipment. In such fashion, apparatus 100 would be expanded from its collapsed configuration and straps 140a, 140b, 140c and 140d would be attached to the support frame, thereby retaining apparatus 100 open and ready to receive discharge of concrete. The supporting frame could be made from any suitable structural material, such as, for exemplary purposes only, metal, plastic, or wood, and could further include webbing supports. Such an embodiment may have application, for example, when used as a bulk ready mix equipment clean-out receiving station, or the like.

[0069] It is also conceived that in an alternate embodiment, straps 140a, 140b, 140c and 140d may be bungee-type cords, springs, resilient rubber cords, or the like.

[0070] It is further conceived that straps 140a, 140b, 140c and 140d could be made of webbing material.

[0071] It is still further conceived in an alternate embodiment that apparatus 100 could be generally of round cross-section.

[0072] It is still further conceived in an alternate embodiment that apparatus 100 could be of any round-bottomed or generally circular shape, as in, for example, a parachute-like configuration.

[0073] It is yet further contemplated in an alternate embodiment that apparatus 100 could be of generally prismatic shape or of generally polygonal cross section.

[0074] As has been described with regard to the various embodiments of FIGS. 2-13, the present invention is suitable for use in collection of concrete. Accordingly, in use and operation, a source of concrete to be collected is provided. At least one apparatus 100, 200 for containing concrete to be collected is attached to the source. Apparatus 100, 200 may be supported by the source of concrete to be collected, as by hook-and-loop fasteners, clips, clamps, or the like, or may otherwise be oriented under, proximate, or adjacent to the source of concrete to be collected then is allowed or made to flow into apparatus 100, 200 through an opening therewithin.

[0075] Having thus described exemplary embodiments of the present invention, it should be noted by those skilled in the art that the within disclosures are exemplary only, and that various other alternatives, adaptations, and modifications may be made within the scope of the present invention. Many modifications and other embodiments of the invention will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawing Figures. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

[0076] Accordingly, the present invention is not limited to the specific embodiments illustrated herein, but is limited only by the following claims.

What is claimed is:

- 1. A containment apparatus for collecting and disposing of a mixture of excess wet concrete and wash water from a discharge port of concrete-handling equipment, the apparatus comprising:
 - a container including a bottom panel and at least one side panel, and defining at least one inlet, wherein the side panel is made of a flexible material so that the container is reconfigurable between a collapsed state and an expanded state; and
 - at least one strap or belt extending from the container and adapted to hang from the concrete-handling equipment, wherein a length of the at least one strap or belt is selected so that when the at least one strap or belt is hung from the concrete-handling equipment the container is expanded to the expanded state, wherein in the expanded state the container is at least partially supported in suspension from above by the at least one strap or belt and thereby retained in the expanded state and at the same time the container is at least partially supported from below by an underlying surface on which the bottom panel rests,

- wherein in use the container is positioned with the inlet in communication with the concrete-handling equipment discharge port, the at least one strap or belt is hung from the concrete-handling equipment to expand the container from the collapsed state to the expanded state, the mixture of excess wet concrete and wash water is delivered from the concrete-handling equipment to the container while the container is in the expanded state, and the mixture of excess wet concrete and wash water is contained within the container for disposal.
- 2. The containment apparatus of claim 1, further comprising a delivery tube coupled to the inlet that can be positioned in communication with the discharge port of the concrete-handling equipment.
- 3. The containment apparatus of claim 1, wherein the container is made of a water impermeable material.
- 4. The containment apparatus of claim 1, wherein the container has at least a portion that is made of a water permeable material so that the wash water can drain from the container while the concrete is retained in the container.
- 5. The containment apparatus of claim 1, wherein the at least one side panel comprises four side panels and wherein the at least one strap or belt comprises four straps or belts.
- **6**. The containment apparatus of claim **1**, wherein the underlying surface is the ground.
- 7. The containment apparatus of claim 1, wherein the container includes a top panel that extends inward from the at least one side panel and defines the inlet.
- **8**. The containment apparatus of claim **7**, wherein the inlet is positioned off-center in the top panel.
- 9. The containment apparatus of claim 7, wherein the container has a periphery at the junction of the at least one side panel and the top panel, wherein the at least one strap or belt extends from the top panel adjacent the inlet, and further comprising at least one second looped strap extending from the container at the periphery, wherein the at least one belt or strap extends through the at least one looped strap.
- 10. The containment apparatus of claim 7, wherein the container has a periphery at the junction of the at least one side panel and the top panel, and wherein the at least one belt or strap extends from the container at the periphery.
- 11. The containment apparatus of claim $\overline{7}$, wherein the container has a periphery at the junction of the at least one side panel and the top panel, and further comprising reinforcing strips at the periphery.
- 12. The containment apparatus of claim 1, wherein the at least one side panel includes at least one fold line about which the at least one side panel unfolds when expanding the container from the collapsed state to the expanded state.
- 13. The containment apparatus of claim 1, wherein the at least one strap or belt is adapted to be strong enough that it can be engaged to lift and transport the container holding the cured concrete.
- 14. The containment apparatus of claim 1, wherein a height of the container in the expanded state is selected so that the container fits under the discharge port of the concrete-handling equipment.
- 15. A containment apparatus for collecting and disposing of a mixture of excess wet concrete and wash water from a discharge port of concrete-handling equipment, the apparatus comprising:
 - a container including a bottom panel, a top panel, and four side panels extending therebetween, wherein the top panel extends inward from the side panels and defines an

- inlet, wherein the side panels are made of a flexible material so that the container is configurable between a collapsed state and an expanded state, and wherein a height of the container in the expanded state is selected so that the container fits under the discharge port of the concrete-handling equipment; and
- four straps or belts extending from the container and adapted to hang from the concrete-handling equipment, wherein the straps or belts are adapted to be strong enough that they can be engaged to lift and transport the container when holding the mixture of excess wet concrete and wash water after curing, wherein the straps or belts each have a length selected so that when they are hung from the concrete-handling equipment the container is expanded to the expanded state, wherein in the expanded state the container is at least partially supported in suspension from above by the straps or belts and thereby retained in the expanded state and at the same time the container is at least partially supported from below by ground on which the bottom panel rests,
- wherein in use the container is positioned with the inlet in communication with the discharge port of the concretehandling equipment, the straps or belts are hung from the concrete-handling equipment to expand the container from the collapsed state to the expanded state with the container at least partially supported in suspension from above by the straps or belts and at least partially supported from below by the ground on which it rests, the excess wet concrete is flushed from the concrete-handling equipment with the wash water thereby forming the mixture of excess wet concrete and wash water, the mixture of excess wet concrete and wash water is delivered from the discharge port of the concrete-handling equipment to the inlet of the container while the container is supported in the expanded state by the straps or belts hung from the concrete-handling equipment, and the mixture of excess wet concrete and wash water is retained within the container to cure to a solidified state for disposal.
- 16. A containment apparatus for collecting and disposing of a mixture of excess wet concrete and wash water from a discharge port of concrete-handling equipment, the apparatus comprising:
 - a container including a bottom panel and at least one side panel, and defining at least one inlet, wherein the side panel is made of a flexible material and includes a double-walled inflatable portion, wherein the container is reconfigurable from a collapsed state to an expanded state by at least partially inflating the inflatable portion, wherein in the collapsed state the container is compacted for transport, wherein in the expanded state the container is expanded for receiving therein through the inlet the mixture of excess wet concrete and wash water and retaining therein at least the excess wet concrete, wherein the container is retained in the expanded state by the inflated portion of the at least one side panel, and wherein a height of the container in the expanded state is selected so that the container fits under the discharge port of the concrete-handling equipment; and
 - at least one strap extending from the container and adapted to be strong enough that it can be engaged to lift and transport the container holding the mixture of excess wet concrete and wash water after curing,

- wherein in use the container is positioned with the inlet in communication with the concrete-handling equipment discharge port, the inflatable portion is inflated to expand the container from the collapsed state to the expanded state and support the container in the expanded state, the mixture of excess wet concrete and wash water is delivered from the concrete-handling equipment to the container while the container is in the expanded state, and the mixture of excess wet concrete and wash water is disposed of.
- 17. The containment apparatus of claim 16, wherein the bottom panel and the at least one side panel are made of a polypropylene material, and further comprising a water impermeable liner that contains therein the mixture of excess wet concrete and wash water.
- 18. The containment apparatus of claim 16, wherein the inflatable portion of the container is inflatable with air, and

- wherein the container is reconfigurable from the expanded state to the collapsed state by at least partially deflating the inflatable portion.
- 19. The containment apparatus of claim 16, wherein the at least one side panel including the inflatable portion forms an upper enclosure of the container, and further comprising at least one base wall that cooperates with the bottom panel to form a lower enclosure of the container.
- 20. The containment apparatus of claim 16, wherein the at least one strap or belt has a length selected so that when the at least one strap or belt is hung from the concrete-handling equipment with the container in the expanded state, the container is at least partially supported in suspension from above by the at least one strap or belt and at least partially supported from below by an underlying surface on which the bottom panel rests.

* * * * *