(54) 发明名称
发光二极管封装体及其应用

(57) 摘要
本发明公开了倒装式 (100, 100a, 100b, 100c, 100d, 100e)、环形 (200, 200a, 200b, 200c, 200d)、四翼型 (300) 或表面贴装 (400) 形式的 LED 封装体。这些 LED 封装体 (100, 200, 300, 400 等) 具有定义了两个基本平行的彼此分开的接触面 (510, 510a 等) 的接触件 (121, 125, 221, 225 等)。每个面板装配体的内表面均具有一个导电层 (520)，每个导电层 (520) 和 LED 封装体 (100, 200 等) 的与各自相对应的接触件 (121, 125, 221, 225 等) 电接触。一直流电源通过该导电层 (520) 为该 LED 封装体供电。
1. 一种发光二极管（LED）封装体，包括：
 - 发光体及发光体的阳极和阴极接线端；
 - 一壳体，模制模塑至少部分所述发光体，阳极和阴极接线端；以及，
两个由所述壳体支撑的为所述发光体接通电源的接触件，其中，所述两个接触件是两个平的且彼此分开的接触面。
2. 根据权利要求1的LED封装体，其中，所述壳体为磁盘形，磁盘形壳体的两个表面上各形成一个所述的接触件。
3. 根据权利要求1或2的LED封装体，其中，所述接触件彼此分开地置于所述壳体的彼此相对的表面上，两个接触件彼此分开地与所述阳极和阴极接线端对应连接。
4. 根据权利要求2或3的LED封装体，其中，所述磁盘形壳体的外形轮廓为圆形、椭圆形、多边形、星形、花瓣形、字母、数字或者上述形状的任意组合。
5. 根据权利要求2至4中任一项的LED封装体，其中，所述发光体包括多个发光元件，所述多个发光元件沿所述磁盘形壳体的圆周表面设置。
6. 根据权利要求5的LED封装体，其中，所述多个发光元件排为一排或者多排。
7. 根据权利要求1至4中任一项的LED封装体，其中，所述接触件是平的，其中一个所述的接触件包括一孔，以使所述发光体发出的光通过所述孔向外射出。
8. 根据权利要求1至4中任一项的LED封装体，其中，所述接触件是平的，所述发光体包括两个发光元件，每个所述的接触件包括一孔，以使所述的两个发光元件发出的光通过与各自对应的孔向外射出。
9. 根据权利要求1至6中任一项的LED封装体，其中，所述封装体包括一贯穿其厚度形成的孔。
10. 根据权利要求9的LED封装体，其中，所述孔由一插入件提供。
11. 根据权利要求10的LED封装体，其中，所述孔具有贯通的螺纹或者具有两部分螺纹。
12. 根据上述权利要求中任一项的LED封装体，其中，所述接触件是平的，至少其中一个所述的接触件包括一弹性件。
13. 根据权利要求12的LED封装体，其中，所述弹性件为一板簧、弧形弹性件或者螺旋弹簧。
14. 根据权利要求1的LED封装体，其中，所述接触件包括四个或者更多的翼，其中的两个或者更多的翼向上延伸定义一个位于壳体上方的所述接触面；其中的两个或者更多的翼向下延伸定义另一个位于壳体下方的所述的另一接触面。
15. 根据权利要求1的LED封装体，其中，所述接触件是平的，所述两个接触件中的一个接触件围绕所述发光体设置，以至于所述壳体从与之相关联的接触件中伸出。
16. 根据权利要求15的LED封装体，还包括一导电适配件，以使所述的两个平的、且彼此分开的接触面中的一个接触面位于所述壳体的上方。
17. 一种LED照明面板装配体，包括：
 - 两个彼此分开的面对面设置的面板，所述两个面板的内表面均具有透明的导电层；以及，
 - 根据权利要求1至16中任一项的LED封装体，所述LED封装体夹装于所述的两个彼
此分开的面板之间，以使可与所述导电层适配连接的 DC 电源向 LED 封装体输出电能，点亮所述发光体。

18. 根据权利要求 17 的 LED 照明面板装配体，其中，所述 LED 封装体的接触件通过导电胶和与各自相对应的透明的导电层粘接在一起。

19. 一种 LED 照明面板装配体，包括：
两个彼此分开的面对面设置的面板，所述两个面板的内表面均具有透明的导电层；
一根据权利要求 1 至 11 中任一项或者 16 的 LED 封装体，所述 LED 封装体夹装于所述的两个彼此分开的面板之间；以及
一置于至少其中一个接触件和与之相对应的导电层之间的导电环，以使可与所述导电层适配连接的 DC 电源向 LED 封装体输出电能，点亮所述发光体。

20. 一种 LED 照明面板装配体，包括：
两个彼此分开的面对面设置的面板，所述两个面板的内表面均具有透明的导电层；
一根据权利要求 9 至 11 中任一项的 LED 封装体，所述 LED 封装体夹装于所述的两个彼此分开的面板之间；以及
一螺栓，穿入贯穿所述的两个彼此分开的面板形成的孔内，两个面板上的孔与贯穿所述 LED 封装体的孔相互对准，通过螺栓与螺母的配合将所述面板装配体夹紧。

21. 一种 LED 照明面板装配体，包括：
两个彼此分开的面对面设置的面板，所述两个面板的内表面均具有透明的导电层；
一根据权利要求 11 的 LED 封装体，所述 LED 封装体夹装于所述的两个彼此分开的面板之间；以及
两个彼此分开的面板各穿入一个螺钉和 LED 封装体的与各自相对应的螺纹孔螺纹配合连接，将所述面板装配体夹紧。

22. 根据权利要求 17 至 21 中任一项的 LED 照明面板装配体，其中，所述透明的导电层包括一透明的导电氧化层。

23. 根据权利要求 22 的 LED 照明面板装配体，其中，所述面板包括透明玻璃或者塑料。
发光二极管封装体及其应用

技术领域
[0001] 本发明涉及发光二极管（LED）封装体，同样涉及用在照明面板和显示面板上的LED光源。

背景技术
[0002] 半导体发光二极管（LED）相对传统白炽灯和荧光灯而言具有低能耗的优势。LED使用寿命长且结构紧凑，可安装于诸如广告牌等较小或者较薄的发光装置中。随着人们低碳意识的提高，LED光源已越来越受到人们的青睐。
[0003] 传统的LED封装为双引脚式封装或者表面贴装封装。例如，已转让给颇母莱特产品公司（Permlight Products, Inc.）的专利号为6,712,486的美国专利提供了一种光源模组，该光源模组由一连串排列的LED组成。各LED具有一个常规的引脚，二个引脚分别焊接到置于电路板的彼此分开的面的彼此分开的铜板上，这样，可使LED发出的光与该电路板共面。贯穿该电路板形成通孔，铆钉穿过该通孔将电路板固定于热传导构件上。采用该发光模组的发光装置适合安装于一排剧院座椅侧面上，以为较近该剧院座椅的通道提供照明。在另一实施例中，已转让给丰田合成有限责任公司（Toyota Gosei Co., Ltd.）的专利号为7,111,964的美国专利提供了一种透镜型LED封装，其为粘接于接线板顶面上的表面贴装结构。
[0004] 本发明提供的一种作为光源使用的采用LED的照明标记。该LED的朝向为使其向该照明标记的背面发光。该照明标记的背面和侧面是反射面，而其正面是透明的。LED发出的光在背面和侧面的作用下扩散式发射，并通过正面射出。该LED可安装于一诸如基板或者支撑板的表面上，并通过电源线和地线相互连接。
[0005] 本发明的专利号为6,705,033的美国专利提供了一种LED照明户外标记。该标记以面对面的方式安装有前面板、中间面板和后面板。该中间面板是不透明的，而前面板和后面板中至少该前面板是透明的。标记中拼出街道名称的字母，例如是刻在该前面板的内表面上。LED的线性阵列沿着该前面板的上和下边缘设置，使该LED发出的光在前面板的厚度范围内传导至前面板本体内。这样，该字母的刻痕会使一部分光发生折射，使该字母变得可见。
[0006] 图1A为一种已知的用在显示面板照明上的LED双引脚式封装体10的剖视图。图1B为一种已知的用在显示面板照明上的LED表面贴装封装10a的剖视图。该LED封装体10包括一封装LED模组14的壳体12。该LED模组14包括均封装于封装材料内的一阳极、一阴极和一发光元件，该阳极和阴极通过封装材料向外伸出，形成阳极端20和阴极端24。如图1B所示，该LED封装10a包括一具有阳极20和阴极24的发光元件15。如图1A和1B所示，这些接线端20, 24分别与一外部阳极接触件21和一外部阴极接触件25电接触。二个外部接触件21, 25配置于壳体12上，用于将外部电源接入LED封装体10, 10a中。该LED封装体10, 10a以表面贴装的方式安装于绝缘板30上，该绝缘板30具有二条通过间隙
36 彼此分开的导线 32, 34。二个外部接触件 21, 25 分别与二条导线 32, 34 电连接。一直流
电压源（图中未示出）输出的电流经二条导线 32, 34 流入, 点亮 LED 封装体 10, 10a。一前
面板 40 覆盖于该 LED 封装体 10, 10a 上, 与绝缘板 40 相对, 这样, LED 封装体 10, 10a 发出
的光会经前面板 40 发射出去。通过切割或者刻蚀等工艺在绝缘板 30 上印制连续导电层的
方式可形成该导线 32, 34, 但是, 该种切割或者刻蚀工艺是复杂的和高成本的。除此之外, 为
了使导线 32, 34 具有特定的阻值, 该种工艺还需要精确的控制, 这才能确保固定或者并联
在一起的 LED 封装体 10, 10a 具有一致的发光强度。

由此可看出, 现在需要提供一种新的能够克服印制接线板和形成电源线缺陷的
LED 封装体。而且希望这些新的 LED 封装体适合安装于双面显示面板中。

发明内容

以下将简单概括本发明, 以便于他人先基本了解本发明。该概括并没有对本发明
进行扩展性说明, 也并非意在给出本发明的必要技术特征。该概括只是在详细说明本发明
的具体实施方式之前给出本发明的一些发明要点。

在本发明中, 所说明和示出的 LED 封装体的形式可以为钮扣式、环形、翼型或者表
面贴装结构。这些 LED 封装体对于诸如是标牌或者广告牌的平面光源装配体应用是有利
的。该种面板光源也可用于室内和室外装饰, 特别是具有多个不同颜色和出射角度的 LED
的面板光源, 这样, 可更具创造性地利用这些 LED。

在实施方式中, 本发明提供的发光二极管 (LED) 封装体包括: 一发光体及发光体
的阳极和阴极接线端; 壳体, 模塑 (moulding) 至少部分所述发光体, 阳极和阴极接线端
以及, 两个由所述壳体支撑的为所述发光体接通电源的接触件, 其中, 所述两个接触件
定义两个基本平面且彼此分开的接触面。

在 LED 封装体的一实施方式中, 该壳体为磁盘形。该壳体的外形轮廓可为圆形、椭
圆形、多边形、星形、花瓣形、字母、数字或者上述形状的任意组合。在另一实施方式中, 该接
触件包括板簧、弧形弹性件、圆屋顶形弹性件或者螺旋弹簧。

在另一实施方式中, 本发明提供了一种 LED 照明面板装配体, 包括 : 二个彼此分开
的面对面设置的面板, 两个面板的内表面均具有透明的导电层; 以及, 一根据权利要求 1 至
16 中任一项的 LED 封装体, 该 LED 封装体夹装于所述的两个彼此分开的面板之间, 以使可与
所述导电层适配连接的 DC 电源向 LED 封装体输出电能, 点亮所述发光体。

在另一实施方式中, 本发明提供了一种 LED 照明面板装配体, 包括 : 二个彼此分开
的面对面设置的面板, 两个面板的内表面均具有透明的导电层; 一根据权利要求 1 至 11 中
任一项或者 16 的 LED 封装体, 该 LED 封装体夹装于所述的两个彼此分开的面板之间; 以及
一置于至少其中一个接触件和与之相对应的导电层之间的导电环, 以使可与所述导电层适
配连接的 DC 电源向 LED 封装体输出电能, 点亮所述发光体。

在另一实施方式中, 本发明提供了一种 LED 照明面板装配体, 包括 : 二个彼此分开
的面对面设置的面板, 两个面板的内表面均具有透明的导电层; 一根据权利要求 9 至 11 中
任一项的 LED 封装体, 所述 LED 封装体夹装于所述的两个彼此分开的面板之间; 以及一螺
栓, 穿入贯穿所述的两个彼此分开的面板形成的孔内, 两个面板上的孔与贯穿所述 LED 封
装体的孔相对准, 通过螺栓与螺母的配合将所述面板装配体夹紧。
在一实施方式中，该透明的导电层包括一透明的导电氧化层；该面板包括透明玻璃或者塑料。

附图说明
[0016] 以下结合附图说明本发明的非限定性具体实施方式进行说明其中；
[0017] 图 1A 和 1B 示出了两种已知类型的 LEDs 的表面贴装封装体，其中，该封装体安装于一平面显示面板的内部；
[0018] 图 2A 为根据本发明第一种实施方式的 LED 钮扣式封装体的立体图；图 2B 和 2B1 各示出了一种类型的图 2A 所示 LED 钮扣式封装体；
[0019] 图 2C 示出了根据本发明第二种实施方式的具有两个 LEDs 的钮扣式封装体的剖视图；
[0020] 图 2D 示出了根据本发明第三实施方式的具有一板簧的 LED 钮扣式封装体；
[0021] 图 2E 示出了根据本发明第四实施方式的在圆周表面上设置多个 LED 的 LED 钮扣式封装体；
[0022] 图 2F 示出了根据本发明第五种实施方式的具有弧形弹性的 LED 钮扣式封装体，其中，图 2F1 为其剖视图；
[0023] 图 2G 示出了根据本发明第六种实施方式的具有螺旋弹簧的 LED 钮扣式封装体；
[0024] 图 3 示出了根据本发明第七种实施方式的 LED 环形封装体的立体图，其中，图 3A 为其爆炸图，图 3B 为图 3A 所示 LED 壳体的侧视图；
[0025] 图 3C 和 3C1 示出了图 3 所示的 LED 环形封装体的一种类型的剖视图，而图 3C2 为 LED 环形封装体的另一种类型的剖视图；
[0026] 图 3D 示出了根据本发明第八种实施方式的一板簧的 LED 环形封装体；
[0027] 图 3E 示出了根据本发明第九种实施方式的具有两排 LED 的 LED 环形封装体；
[0028] 图 3F 为具有三排 LED 的 LED 环形封装体的侧视图；
[0029] 图 3G 示出了具有—安装螺母的 LED 环形封装体；图 3H 为图 3G 所示 LED 环形封装体的剖视图；
[0030] 图 4A 至 4C 示出了根据本发明第十一种实施方式的四翼型 LED 封装体；
[0031] 图 5 示出了根据本发明第十二种实施方式的表面贴装 LED 封装体；以及，
[0032] 图 6A 至 6C 示出了采用上述附图所示的 LED 封装体的双面显示面板，而图 6D 示出了与一导电环配合使用的 LED 环形封装体，图 6E 示出了利用钮扣式封装体显示字母 A 的结构。

具体实施方式
[0033] 以下将结合附图说明本发明的一种或者多种特定的和可供选择的实施方式。然而，本领域的技术人员应当清楚，本发明在不采用这些特定实施结构的情况下也是可以实施的。在以下的说明中，有些结构可能没有详尽地说明，但这并不会导致本发明不清楚。为了减少附图标记，以下的说明在涉及相同或者相似特征时将采用相同的参考标记或者参考标记序列。
[0034] 图 2A 示出了根据本发明第一种实施方式的 LED 钮扣式封装体 100 的立体图。图
2B示出了配置有双引脚LED14的LED钮扣式封装体100，而图2B1示出了配置有表面粘装LED15的LED钮扣式封装体100。如图2A，2B和2B1所示，该LED钮扣式封装体100包括一封装于壳体112中的LED模组14或者发光元件15。该壳体112为厚度为T的矩盘形，进而，该壳体112具有两个彼此相对的且基本平行的表面。该壳体112可由例如是环氧树脂的树脂模具制作成形。如图2B所示，可在该壳体的位于LED模组14前端的区域，即区域113处去除壳体材料。一平的上环形接触件125设置在壳体112的位于LED模组14或发光元件15发出的光的方向上的表面上，该上环形接触件125具有孔127；该壳体112的另一表面上设置有平的下接触件121。在此，可根据与接触件121，125连接的接线端20，24的极性，将接触件121，125中的任一个配置为阳极或者阴极。

[0035] 在图2A，2B和2B1所示的LED钮扣式封装体的一个实施例中，该下接触件121比上接触件125略大，这样就可预先确定二者的极性。在另一个实施例中，该下和上接触件121，125具有相同的尺寸，但在其中一个接触件上设置用于表明其极性的圆点或者记号（图中未示出）。相应地，本发明提供的LED钮扣式封装体100通过其两个彼此相对的。且基本平行的平的接触件121，125为LED模组14或发光元件15接通电源。在应用中，该LED模组14或发光元件15发出的光通过孔127从壳体112中向外发射。

[0036] 在图2A中，示出的壳体112的表面为圆形。然而，该壳体112的表面可以设计为其它形状或者轮廓，如椭圆形、多边形、星形、花瓣形、字母或者数字等。在接触件125的一个实施例中，该孔127的形状与壳体112表面的形状相同；在另一实施例中，该孔127的形状与壳体112表面的形状不同。在一个实施例中，该壳体112由透光材料制成；在另一实施例中，该壳体112由透明材料制成，但围绕该LED模组14的前端的区域113由透光材料制成。另外，该区域113有助于引导LED模组14发出的光通过孔127射出。

[0037] 图2C示出了根据本发明第二种实施方式的LED钮扣式封装体100a的剖视图。如图2C所示，该LED钮扣式封装体100a和LED钮扣式封装体100b，该LED钮扣式封装体100a除了接触件121a，125之外与上述的实施结构100相同，LED钮扣式封装体100a的每个接触件均具有一孔127。位于彼此相对的接触件121a，125上的孔127具有相同的形状或者不同的形状。在该LED钮扣式封装体100a中，背对背设置两个发光元件15，这样，该发光元件15发出的光就可通过孔127从封装100a的两个表面向外射出。作为另一种实施结构（未示出），该LED钮扣式封装体100a配置LED模组14。

[0038] 图2D示出了根据本发明第三种实施方式的具有板簧的LED钮扣式封装体100b。如图2D所示，该LED的板簧128b与封装体100b相似，只是利用板簧128形成了上环形接触件125a。该板簧128可与接触件125a一体成型，一体成型的方式可为；在接触件125a上切割或者剔出一部分，并使该部分与接触件125a的剩余部分相连，再从由接触件125a的剩余部分构成的平面上向外弯折该部分形成板簧128。由此带来的增益效果为，在该板簧128的作用下，即使将LED钮扣式封装体100b安装于两个基本平行的显示面板510之间，也可使其与设置于两个彼此分开的显示面板内表面上的导电层520（参见图6A）间保持良好的电接触关系。附加地或者可供选择地，在另一种实施方式（图中未示出）中，该板簧128形成于下接触件121上。

[0039] 图2E示出根据本发明第四种实施方式的LED钮扣式封装体100c的立体图。如图2E所示，该LED钮扣式封装体100c在外形上与上述实施结构相似，只是该发光元件15设置在
壳体 112c 的圆柱形表面上，这样，发光元件 15 发出的光就可从该钮扣式封装 100c 中沿径向向外射出。图 2E 显示出了由上接触件 125c 延伸而出的板簧 128。

[0040] 图 2F 为根据本发明第五种实施方式的 LED 钮扣式封装体 100d 的立体图。作为一种实施例，所示的 LED 钮扣式封装 100d 具有正方形外形。图 2F1 为该 LED 钮扣式封装体 100d 的剖视图。该 LED 钮扣式封装体 100d 具有两个上接触件 125d，二者分布在发光元件 15 的两侧，而下接触件 121b 为弧形。该弧形下接触件 121b 是薄且有弹性的，相当于二弹性件，以在将该 LED 钮扣式封装体 100d 安装于两个显示面板 510 之间补偿两个显示面板间的不平行度，防止 LED 钮扣式封装体 100d 脱落。在另一种实施方式（未示出）中，该 LED 钮扣式封装体 100d 具有圆的外形，该上接触件 125d 为环形，而该下接触件为圆屋顶形。

[0041] 图 2G 显示了根据本发明第六种实施方式的 LED 钮扣式封装体 100e。如图 2G 所示，该 LED 钮扣式封装体 100e 与上述的钮扣式封装体 100 相似，只是在该下接触件 121 的下面安装一螺旋弹簧 129。该螺旋弹簧 129 与板簧 128、弧形下接触件 121b 或者圆屋顶形下接触件的作用相似。

[0042] 图 3A 显示了根据本发明第七种实施方式的 LED 环形封装体 200。图 3A 显示了该 LED 环形封装体 200 的剖视图。图 3B 显示了环绕该环形封装体 200 的壳体 212 形成的柔性电路 203 的相接端。如图 3 和 3A 所示，该 LED 环形封装体 200 与上述钮扣式封装体 100c 具有相同的外形形状，只是该 LED 环形封装体具有一贯穿其厚度 T 的中心安装孔 204。该安装孔 204 的形状和尺寸要求可穿入一螺栓或者销钉，以将该 LED 环形封装体 200 可靠地安装在两个显示面板（如图 6B 所示）之间。在这种实施方式中，该发光元件 15 安装于环绕环形封装体 200 的壳体 212 形成的柔性电路 203 上。该发光元件 15 的接线端 20 连接于共同的接线端 226 上，该接线端 226 在 LED 环形封装体 200 组装后与上接触件 225 电连接。相似地，该发光元件 15 的接线端 24 连接于共同的接线端 222（如图 3B 所示）上，该接线端 222 与下接触件 221 电连接。在一个实施例中，该柔性电路 203 具有一个或者多个与发光元件 15 耦合的电阻 16。

[0043] 图 3C 为置有表面贴装 LED 封装体 10a 的 LED 环形封装体 200 的剖视图。如图 3C 所示，通过电线 250、254 将发光元件 15 的电极 21、25 连接至与各自相应的接触件 221、225 上。在一个实施例中，位于上和下接触件 225、221 上的孔 227 比中心孔 204 略大，这确保该上和下接触件 225、221 在安装环形封装体 200 将金属螺栓插入中心孔 204 中时也不会被短路。图 3C1 显示了另一种类型的 LED 环形封装体 200，该种 LED 环形封装体 200 配置有表面贴装 LED 封装体 10a 和匹配电阻 16。

[0044] 图 3C2 为配置有双引脚 LED 模组 14 的 LED 环形封装体 200 的剖视图。如图 3C2 所示，该 LED 模组 14 的电极 20、24 和与各自相应的接触件 221、225 连接。

[0045] 图 3D 显示了根据本发明第八种实施方式的 LED 环形封装体 200a。如图 3D 所示，该 LED 环形封装体 200a 与 LED 环形封装体 200 相似，只是其接触件 225 与一板簧 228 一体成型。该板簧 228 与板簧 128 相似，在此不再进一步说明。

[0046] 图 3E 显示了根据本发明第九种实施方式的 LED 环形封装体 200b。如图 3E 所示，该 LED 环形封装体 200b 与环形封装体 200 相似，只是壳体 212 的圆柱形表面上设置了两排发光元件 15。该发光元件 15 也可以设置为使光从壳体 212 的侧面上以预定的角度径射出。作为其它的实施方式，也可以配置 LED 模组 14。
图 3F 为 LED 环形封装体 200c 的侧视图，其与上述的封装体 200a 相似，只是设置了三排发光元件 15。该发光元件 15 可配置为使光从壳体 212 的环形表面的所有部分径直射出。

图 3G 示出根据本发明第十种实施方式的 LED 环形封装体 200d。该 LED 环形封装体 200d 与上述的环形封装体 200, 200a, 200b, 200c 相似，只是将安装孔 204 设计成了螺纹孔 205。该螺纹安装孔 205 可以形成为通孔，或者如图 3H 所示，仅在两个部分 205a, 205b 形成螺纹。在另一种实施方式中，通过在壳体 212 中嵌入一螺纹环 206 形成该螺纹孔 205。

图 4A 至 4C 显示根据本发明第十一种实施方式的 LED 四翼型封装体 300。如图 4A 至 4C 所示，该 LED 四翼型封装体 300 包括 LED 模组 14 和壳体 312。该壳体 312 模制出 LED 模组 14 的下部，使电极 20, 24（图 4A 至 4C 中未示出，可参见图 2B）嵌入壳体 312 中，并使该 LED 模组的上部位于壳体 312 的上方。该电极 20, 24 穿过壳体 312 的侧面彼此分开地连接于四个翼 350, 354 上。如图 4B 和 4C 所示，两个翼 350 向上延伸，且将两个翼 350 的自由端弯折形成上接触面 351。以类似的方式，另两个翼 354 向下延伸，且将两个翼 354 的自由端弯折形成下接触面 355。在一个实施例中，预先确定该 LED 四翼型封装体 300 的翼 350, 354 中的任一个为阳极或者阴极。在另一实施例中，另外设置一个或者多个虚拟翼，这样，该封装体 300 就可以在是安装期间稳定地站立。该 LED 四翼型封装体 300 与上述实施方式的设计原理相同，都提供了一种具有两个接触面 351, 355 的 LED 封装体。这些接触面 351, 355 与图 6A 和 6B 所示的导电层 520 相对应，电流通过导电层 520，经由四个翼 350, 354 进行传导，进而点亮 LED 模组 14。在另一种实施方式中，该四翼型封装体可配置上述的发光元件 15。

图 5 显示了根据本发明第十二种实施方式的 LED 表面贴装封装体 400。如图 5 所示，该 LED 模组 14 的下部模制于壳体 412 中，电极 20, 24（图 5 中未示出，可参见图 2B）分别与上接触件 425 和下接触件 421 电接触。该下和上接触件 421, 425 的基本是平的，且基本平行。在应用中，这些接触件 421, 425 设置为和与各自的相对的如图 6A 或 6B 所示的导电层 520 电接触。在另一实施例中，设置一中空的包围 LED 模组 14 的导电配件 430，在该导电配件 430 的顶部形成一专为 LED 模组 14 的顶部的上方的接触面。

图 6A 显示了根据本发明第一种实施方式的 LED 钮扣式封装体 100。如图 6A 所示，该 LED 钮扣式封装体 100 夹装于两个面板 510 之间。这些面板 510 可以为玻璃材质或者塑料材质（例如丙烯酸，聚碳酸酯等）。如图 6A 所示，该面板 510 的内表面或者说是彼此相对的表面上具有透明的导电层 520，如常用在液晶显示面板上的透明导电氧化物（TCO）。将覆于其中一个面板 510 上的导电层 520 定义为阳极，并将覆于与之相对的另一面板 510 上的导电层 520 定义为阴极。一直流（DC）电源（图中未示出）与阳极和阴极导电层 520 对应连接。在应用中，该下和/或上接触件 121, 125 通过例如是导电的环氧树脂的导电胶粘接于与各自相对应的导电层 520 上，实现电连接；另外，直流电源可在阳极和阴极导电层 520 之间施加 5V 至 24V 的电压，进而点亮该 LED 模组 14 和/或发光元件 15。该种安装结构同样适用于钮扣式封装体 100a, 100b, 100c, 100d, 100e。采用 LED 钮扣式封装体 100b, 100c 的优点是板簧 128 可使与之相相关的接触件和与各自相对应的导电层 520 之间保持可靠的电接触关系，即使是在面板 510 在尺寸上不平的情况下。以相同的方式，该弧形下接触件 121b 和螺旋弹簧 129 也可使该钮扣式封装体和与各自相对
应的导电层 520 之间保持可靠的电接触关系。

【0052】图 6B 示出了根据本发明第七种实施方式的 LED 环形封装体 200 的安装结构。与上述实施方式相同，该 LED 环形封装体 200 夹装于两个面板 510a 之间。图 6B 所示，该面板 510a 上设置有孔 530，且位于彼此相对的面板上的孔 530 相互对准。一螺栓 540 穿过孔 530 和环形封装 200 的中心孔 204，通过在螺栓穿出的末端旋上螺母 542，使 LED 环形封装 200 的接触件 221, 225 和与各自相对应的导电层 520 电接触。对于具有螺纹孔 206 的 LED 环形封装体 200d，需要通过两个螺栓 540 将 LED 环形封装体 200d 安装于两个面板 510a 之间。

【0053】该种安装结构也适用于 LED 四翼型封装体 300 或者表面贴装封装体 400。对于 LED 表面贴装封装体 400 的安装，中空的导电适配件 430 是非常有用的，若不设置该中空的导电适配件 430，则需要在面板 510 的内表面上设置一凹槽，用于容置向外突出的 LED 模组 14，这样，该上接触件 425 才能与上导电层 520 接触上。

【0054】根据上述的说明，仅需要该显示面板基本是平的，进而仅需要其基本是平行的。为了补偿尺寸误差和偏差，图 6C 示出了 LED 钩扣式封装体 100 的一种安装结构，该种安装结构采用了一导电环 560，该导电环 560 位于接触件 125 和上导电层 520 之间，并与二者均接触。该导电环 560 由柔性材料制成，如由导电颗粒制成而成的聚合物。在应用中，该导电环 560 能够产生不同程度的变形，进而可在不改变其与导电层 520 间的接触电阻的前提下补偿尺寸误差和 / 或偏差。可供选择地或者附加地，可将该导电环 560 设置于下接触件 121 和下导电层 520 之间（图中未示出）。

【0055】图 6D 示出了具有导电环 560 的 LED 环形封装体 200，该导电环 560 设置于上接触件 225 上。安装该种 LED 环形封装体 200 的方式与上述实施方式相似，在此不再进一步说明。

【0056】根据上述说明，本发明提供了一种适于作为标志或者广告牌的平面光源装配体。该种面板光源也可用于室内和室外装饰，特别是具有多个不同颜色和出射角度的 LED 的发光面板，这样，可更具创造性地利用这些 LED。例如，图 6E 示出了一种上述 LED 钩扣式封装体 100 的组装结构，这些 LED 钩扣式封装体 100 排列为显示字母 A 的结构。

【0057】虽然，以上举例说明了本发明的特定实施方式，但应当清楚的是，本发明可在不脱离其保护范围的前提下进行多种变化、改进和变形。例如，该弧形或者圆屋顶形弹性件可包括一孔，这样，就可将该弹性件设置于 LED 钩扣式封装体 100 的上接触件 125 上，因为，发光元件发出的光可通过该孔射出。该种弧形或者圆屋顶形弹性件也可以设置在 LED 环形封装体 200 或者 LED 表面贴装封装体 400 的接触件上。类似地，由于螺旋弹簧不会妨碍光经其射出，因此，可将该螺旋弹簧设置于该 LED 钩扣式封装体 100 的上接触件 125 上，或者设置于 LED 环形封装体 200 或 LED 表面贴装封装体 400 的接触件上。相应地，本发明的保护范围由权利要求书限定，并由以上说明和附图支持。
图 6E