HEMODILUTION CAP AND METHODS OF USE IN BLOOD-PROCESSING PROCEDURES

Inventors: Jeffrey H. Burbank, Boxford, MA (US); Martin Stillig, Dransfeld (DE); James M. Brugger, Newburyport, MA (US)

Correspondence Address: PROSKAUER ROSE LLP PATENT DEPARTMENT 1585 BROADWAY NEW YORK, NY 10036 (US)

Assignee: NxStage Medical, Inc.

Appl. No.: 09/904,709

Filed: Jul. 12, 2001

Publication Classification

Int. Cl. A61M 1/34; B01D 61/00; B01D 61/24; B01D 61/28; B01D 61/14; A61M 1/18

U.S. Cl. 210/651; 210/646; 210/321.79; 210/321.8

ABSTRACT

Devices and methods that prevent clotting of blood during blood-processing procedures such as hemofiltration, hemodialysis, hemodiafiltration, and peritoneal dialysis are described. The device comprises a cap and a housing that is shaped to receive a blood filter. The housing has an inlet for blood and may have an outlet for waste and ultrafiltrate. The cap is attached to the housing. The cap has an outlet for blood and a port adjacent the outlet for receiving dilution fluid. Methods of use during blood-processing procedures to provide immediate hemodilution to blood exiting a filter are also described.
HEMODILUTION CAP AND METHODS OF USE IN BLOOD-PROCESSING PROCEDURES

FIELD OF THE INVENTION

[0001] The present invention relates generally to devices and methods useful in preventing coagulation in filtered blood during hemofiltration. More specifically, the devices and methods provide a cap having a port, the cap adapted for attachment to a blood filter housing to provide hemodilution of blood as it enters and/or exits the filter.

BACKGROUND OF THE INVENTION

[0002] Undesired coagulation of blood often complicates blood-processing procedures such as hemofiltration, hemodialysis, and hemodialfiltration, particularly where a filter is used. Blood generally coagulates by transforming soluble fibrinogen into insoluble fibrin by activation of numerous circulating proteins that interact in a cascading series of limited proteolytic reactions. At each step of reaction, a clotting factor undergoes limited proteolysis and becomes an active protease that in turn activates the next clotting factor until finally a solid fibrin clot is formed. Fibrinogen (factor I) is activated by thrombin (factor IIa), which is converted from prothrombin by activated factor X. There are two separate coagulation pathways that activate factor X—the intrinsic system and the extrinsic system. Activation of the extrinsic system requires tissue thromboplastin (factor III), which is released from damaged tissue into the circulating blood to activate clotting. The intrinsic system, on the other hand, has all the factors necessary for coagulation contained in the circulating blood. The intrinsic system is, for example, partially responsible for clotting of blood in a test tube. Aggregation of platelets caused by stagnation of blood also facilitates blood coagulation.

[0003] During hemofiltration, for example, blood is removed from the patient, filtered through a filtering column to remove waste products, and returned to the patient’s circulation. However, during removal of waste products, fluid is also removed, causing concentration of blood leaving the outflow tubing. As a result of hemococoncentration, hematocrit rises, and the intrinsic coagulation pathway and platelets are activated causing clotting of blood around the outlet of the filtering column, thereby compromising the hemofiltration process.

[0004] What is needed are devices and methods that can be used with a filtering column during blood-processing procedures, such as hemofiltration, hemodialysis, hemodialfiltration, and peritoneal dialysis, to prevent clotting. Existing devices are inadequate for this purpose.

SUMMARY OF THE INVENTION

[0005] The present invention provides devices and methods that prevent clotting of blood during blood-processing procedures, such as hemofiltration, hemodialysis, and hemodialfiltration. More particularly, blood is diluted by replacement fluid, such as saline, Ringer’s lactate, or other physiological solutions, is infused into the patient’s outflow. Alternatively, the fluid is infused into the port adjacent the blood inlet of the entry cap to produce hemodilution at the blood outlet. In still another alternative method, fluid is infused into the port adjacent the blood outlet of the entry cap and into the port adjacent the blood outlet of the exit cap to produce hemodilution as blood enters and exits the filter housing. In certain constructions the replacement fluid swirls in a circular pattern in a headspace that is defined by the gap between the filter and the cap. Swirling of the replacement fluid facilitates mixing of the fluid and the blood, thereby preventing hemococoncentration and stasis of blood, and sweeping any particles of thrombus away from the filter.

[0010] The advantages associated with the hemodilution cap described herein include (1) preventing coagulation during blood-processing procedures, (2) manufacturing efficiency, i.e., reducing plastic used in disposable components, (3) eliminating up to two bonds and up to two components, (4) less expense in materials costs and manufacturing costs, (5) more robust system, not subject to tolerances like bonding two rigid parts, and (6) integration of parts saves labor, materials, and precious resources.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1A depicts a filter within a housing for hemofiltration.
FIG. 1B depicts a filter within a housing having a replacement fluid port adjacent the blood outlet port for hemofiltration.

FIG. 1C depicts a filter within a housing having a replacement fluid port adjacent the blood inlet port for hemofiltration.

FIG. 1D depicts a filter within a housing having replacement fluid ports adjacent both the blood inlet port and the blood outlet port for hemofiltration.

FIG. 1E depicts a filter within a housing for hemodialfiltration having dialysate inlet and outlet ports.

FIG. 1F depicts a filter within a housing for hemodialfiltration having a replacement fluid port adjacent the blood outlet port.

FIG. 2 depicts a filter-housing cap having a replacement fluid port adjacent the blood outlet port for hemofiltration.

FIG. 3A depicts a cross-sectional view of a filter housing cap having a replacement fluid port adjacent the blood outlet port for hemofiltration.

FIG. 3B depicts another cross-sectional view of a filter housing cap having a replacement fluid port adjacent the blood outlet port for hemofiltration.

FIG. 3C depicts another cross-sectional view of a filter housing cap having a replacement fluid port adjacent the blood outlet port and a headspace for hemofiltration.

FIG. 4A depicts a fluid bond socket communicating with the blood outlet.

FIG. 4B depicts a fluid bond socket communicating with the replacement fluid port.

FIG. 5 depicts a filter-housing cap removably mounted on a filter housing for hemofiltration.

FIG. 6 depicts a filter-housing cap for hemofiltration, the cap being made of flexible PVC and having ribs for stability.

DETAILED DESCRIPTION

During blood-processing procedures, such as hemofiltration, hemodialysis, and hemodialfiltration, blood has a tendency to clot as it passes through processing equipment, particularly where it exits the outlet of a filter, due to hemocoagulation. In FIG. 1A, the hemofiltration device includes cylindrical housing 10 which contains filter fibers 20 that remove waste from blood passing through the fibers. It will be understood that any other suitable shape can be used for the housing. Housing 10 is equipped with entry cap 13 having blood inlet 11. Waste and ultrafiltrate that are removed from the blood exits the housing through waste outlet 12. Exit cap 30 is mounted on housing 10 opposite blood entry cap 13. Headspace 31 is formed in the gap between filter fibers 20 and cap 30 and between filters 20 and cap 31. Headspace 31 communicates with blood outlet 32. Each of the inlet 11 waste outlet 12 and blood outlet 32 are adapted for attachment to flexible tubing sections that connect with a blood processing system.

In FIG. 1B, cap 30 further includes replacement fluid inlet port 33 that communicates with headspace 31. Replacement fluid is infused through port 33 to effect hemodilution of blood exiting filter 20. The system thereby reconstitutes blood as close as possible to the exit from the filter fibers. In this way hemodilution is accomplished with one port (cap 30) and two bonds (one between tubing and port 32, and another between tubing and port 33).

In FIG. 1C, housing 10 includes cap 13 having blood inlet 11 and dilution fluid inlet port 15 that communicates with headspace 31. Blood is diluted as it enters housing 10, thereby helping to prevent coagulation.

In FIG. 1D, housing 10 includes cap 13 having blood inlet and dilution fluid inlet port 15 that communicates with headspace 31. The housing also includes cap 30 having blood outlet 32 and fluid inlet port 33 that communicates with headspace 31. Dilution fluid is infused through port 33 and port 15 to effect hemodilution of blood entering and exiting filter 20.

FIG. 1E shows a housing 10 designed for hemodialfiltration. Housing 10 includes dialysate inlet 16 and dialysate outlet 12 to establish countercurrent dialysate flow. Filter fiber membrane 20 is mounted within potting material 21 at both ends, where the potting material typically is a polyurethane material. In FIG. 1F, cap 30 further includes replacement fluid inlet port 33 that communicates with headspace 31. Replacement fluid is infused through port 33 to effect hemodilution of blood exiting filter 20 as described for other embodiments above. It will be understood that for hemodialfiltration, a hemodialfiltration cap may be included alternatively on the inlet to effect pre-dilution of blood, and/or on both the inlet and outlet.

FIG. 2 shows a top view of cap 30 having blood outlet 32 and replacement fluid infusion port 33. In use, replacement fluid, such as saline, Ringer’s lactate, sterile filtered dialysate, or other physiological solutions, enters through port 33 and establishes a swirling current within headspace 31. This current has the beneficial effect of sweeping thrombus particles that may have accumulated in the headspace and flushing the particle through outlet 32. Inlet blood flow rate will typically be 50-1000 mL/min, preferably 350-600 mL/min. Infusion of dilution fluid at the exit cap will generally be 1-50% of inlet blood flow, preferably 20-30% in order to establish swirling. The foregoing ranges are set forth solely for the purpose of illustrating typical operating parameters. The actual parameters for operation of a device constructed according to the principles of the present invention may obviously vary outside of the listed ranges without departing from those basic principles.

Infusion port 33 includes bond socket 34, and outlet 32 includes bond socket 35. Each bond socket is adapted to receive flexible tubing. Where the tubing is generally constructed of PVC and the bond socket is constructed of any one of a number of thermoplastic resins including PVC, polycarbonate, ABS, etc., PVC being preferable as it is solvent bonded to the housing, the tubing may be bonded to the bond socket by brief immersion in cyclo-hexanone or other suitable organic solvent before inserting the tubing in the bond socket. Soft PVC is flexible, allowing the cap to have an interference fit when solvent bonded. This makes it less susceptible to tolerance problems.

FIG. 3A depicts a side view of an embodiment of cap 30 with blood outlet 32 and bond socket 35. FIG. 3B...
depicts a side view of another embodiment of cap 30 having blood outlet 32 and bond socket 35. FIG. 3C depicts a side view of still another embodiment of cap 30 having blood outlet 32 and bond socket 35. Filter housing 10 is slidably received within the opening in cap 30 when fully inserted, housing 10 rests against annular ridge 36. Headspace 31 is defined by the gap between filter 20 and cap 30.

[0033] FIG. 4A shows the details of bond socket 35 communicating with the blood outlet designed for interference fit with appropriately sized tubing. Passage 41 has a dimension of approximately 0.185 inches in diameter. Surface 43 is approximately 0.248 inches in diameter. Annular member 42 has a height of approximately 0.35 inches. Surface 45 is approximately 0.252 inches in diameter. Thus, blood outlet 32 communicates with a quarter inch bond socket. Replacement fluid infusion port 33 communicates with bond socket 34 shown in details in FIG. 4B. Passage 41 has a dimension of approximately 0.098 inches in diameter. Surface 43 is approximately 0.142 inches in diameter. Annular member 42 has a height of approximately 0.31 inches. Surface 45 is approximately 0.147 inches in diameter. The foregoing ranges are set forth solely for the purpose of illustrating typical device dimensions. The actual dimensions of a device constructed according to the principles of the present invention may obviously vary outside of the listed ranges without departing from those basic principles.

[0034] FIG. 5 depicts housing 10 inserted within cap 30. Headspace 31 communicates with outlet 32, which in turn communicates with bond socket 35. Headspace 31 ranges from approximately 1.5 mm at the outer edge to approximately 3 mm in the center of the dome-like region. In use, the pressure in headspace 31 can reach 40 PSI (2000 mmHg), resulting in 25 lbs force pushing the cap off. The cap 30 may therefore need to be bonded, threaded, or snapped on, or attached by other suitable means, to withstand pressure. Solvent bonding and use of a threaded cap are two suitable means to accomplish attachment. It will again be understood that the device dimension are merely illustrative as stated above. FIG. 6 depicts a top view of another embodiment of cap 30 having ribs 37.

[0035] Although the foregoing invention has, for the purposes of clarity and understanding, been described in some detail by way of illustration and example, it will be obvious that certain changes and modifications may be practiced which will still fall within the scope of the appended claims. For example, it will be understood that any feature of any device or method disclosed herein can be used with any of the other devices or methods, even though any given figure might depict only a particular combination.

What is claimed is:
1. An extracorporeal filter, comprising:
 a housing having an inlet for blood and an outlet for waste and ultrafiltrate;
 a cap attached to the housing opposite the inlet, the cap having an outlet port for blood and an infusion port, and a filter media received within the housing.
2. The filter of claim 1, wherein the infusion port is radially adjacent the outlet port for blood.
3. The filter of claim 1, wherein the cap is solvent bonded to the housing.
4. The filter of claim 1, wherein the cap is removably attached to the housing.
5. The filter of claim 1, wherein the port is adapted to receive replacement fluid.
6. The filter of claim 1, wherein the housing has a second cap that carries the inlet.
7. The filter of claim 1, further comprising a second port adapted to receive dilution fluid radially adjacent the inlet.
8. The filter of claim 1, wherein a gap between the filter and the cap defines a headspace.
9. The filter of claim 1, wherein the cap is molded of flexible PVC and is solvent bonded to the housing.
10. The filter of claim 1, wherein the blood outlet communicates with a bond socket adapted to receive a flexible tubing.
11. The filter of claim 1, wherein the housing is generally cylindrical.
12. The filter of claim 1, wherein the replacement fluid port communicates with a bond socket adapted to receive a flexible tubing.
13. The filter of claim 1, wherein the blood inlet communicates with a bond socket adapted to receive a flexible tubing.
14. The filter of claim 1, wherein the waste outlet communicates with a bond socket adapted to receive a flexible tubing.
15. The filter of claim 1, further comprising a second outlet for waste and ultrafiltrate.
16. The filter of claim 1, further comprising a second inlet for blood.
17. A method for filtering blood, comprising the steps of:
 providing a housing having a filter, an inlet for blood, an outlet for blood, a headspace between the filter and the outlet, and an infusion port communicating with the headspace;
 passing blood through the inlet;
 passing blood through the filter;
 passing blood through the outlet; and
 infusing dilution fluid into the infusion port to produce hemodilution at the outlet.
18. The method of claim 17, further comprising the step of infusing dilution fluid into a port adjacent the inlet to produce hemodilution at the inlet.
19. The method of claim 17, wherein the housing is cylindrical.
20. The method of claim 17, wherein the dilution fluid swirls in a circular pattern in a gap between the filter and the outlet.
21. The method of claim 17, wherein the housing has an outlet for waste and ultrafiltrate.
22. The method of claim 17, wherein the blood outlet is mounted on a cap that is solvent bonded on the housing.
23. The method of claim 17, wherein the step of passing blood through the filter produces hematocrit concentration at the outlet.
24. The method of claim 17, wherein the step of passing blood through the filter removes waste and ultrafiltrate.
25. The method of claim 17, wherein the dilution fluid is a physiologic replacement fluid.
26. The method of claim 17, wherein the dilution fluid is saline.
27. The method of claim 17, wherein the dilution fluid is sterile filtered dialysate.
28. The method of claim 17, wherein the dilution fluid is Ringer's lactate.
29. A method for filtering blood, comprising the steps of:
 providing a housing having an inlet for blood, an outlet for blood, and an infusion port adjacent the outlet, the housing having a filter;
 passing blood through the inlet;
 passing blood through the filter;
 passing blood through the outlet; and
 infusing dilution fluid into the infusion port adjacent the outlet to produce hemodilution at the outlet.
30. The method of claim 29, further comprising the step of infusing dilution fluid into a port adjacent the inlet to produce hemodilution at the inlet.
31. The method of claim 29, wherein the housing is cylindrical.
32. The method of claim 29, wherein the dilution fluid swirls in a circular pattern in a gap between the filter and the outlet.
33. The method of claim 29, wherein the housing has an outlet for waste and ultrafiltrate.
34. The method of claim 29, wherein the blood outlet is mounted on a cap that is solvent bonded on the housing.
35. The method of claim 29, wherein the step of passing blood through the filter produces hemoconcentration at the outlet.
36. The method of claim 29, wherein the step of passing blood through the filter removes waste and ultrafiltrate.
37. The method of claim 29, wherein the dilution fluid is a physiologic replacement fluid.
38. The method of claim 29, wherein the dilution fluid is saline.
39. The method of claim 29, wherein the dilution fluid is sterile filtered dialysate.
40. The method of claim 29, wherein the dilution fluid is Ringer's lactate.
41. The method of claim 29, wherein there is a headspace between the filter and the outlet.
42. The method of claim 41, wherein the dilution port communicates with the headspace.
43. A blood-processing device, comprising:
 a housing having an inlet for blood and an outlet for waste;
 a fiber membrane received within the housing; and
 a cap attached to the housing opposite the inlet, the cap having an outlet for blood, a headspace between the fiber membrane and the cap, and an infusion port communicating with the headspace.
44. The blood-processing device of claim 43, further comprising an inlet for dialysate.
45. The blood-processing device of claim 43, further comprising a second port adapted to receive dilution fluid radially adjacent the inlet.
46. A blood-processing device, comprising:
 a housing having an outlet for blood and an outlet for waste;
 a fiber membrane received within the housing; and
 a cap attached to the housing opposite the outlet, the cap having an inlet for blood, a headspace between the fiber membrane and the cap, and an infusion port communicating with the headspace.
47. The blood-processing device of claim 46, further comprising an inlet for dialysate.
48. The blood-processing device of claim 46, further comprising a second port adapted to receive dilution fluid radially adjacent the outlet.
49. The blood-processing device of claim 46, wherein the infusion port is radially adjacent the inlet for blood.
50. A method for processing blood, comprising the steps of:
 providing a housing having a fiber membrane, an inlet for blood, an outlet for blood, a headspace between the fiber membrane and the outlet, and an infusion port communicating with the headspace;
 passing blood through the inlet;
 passing blood into contact with the fiber membrane;
 passing blood through the outlet; and
 infusing dilution fluid into the infusion port to produce hemodilution at the outlet.
51. The method of claim 50, wherein the housing further comprises an inlet for dialysate.
52. The method of claim 50, wherein the housing further comprises a second port adapted to receive dilution fluid radially adjacent the inlet.
53. The method of claim 50, wherein the infusion port is radially adjacent the outlet for blood.
54. A method for processing blood, comprising the steps of:
 providing a housing having a fiber membrane, an inlet for blood, an outlet for blood, a headspace between the fiber membrane and the outlet, and an infusion port communicating with the headspace;
 passing blood through the inlet;
 infusing dilution fluid into the infusion port to produce hemodilution at the inlet;
 passing blood into contact with the fiber membrane; and
 passing blood through the outlet.
55. The method of claim 54, wherein the housing further comprises an inlet for dialysate.
56. The method of claim 54, wherein the housing further comprises a second port adapted to receive dilution fluid radially adjacent the outlet.
57. The method of claim 54, wherein the infusion port is radially adjacent the inlet for blood.

* * * * *