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SYSTEM AND METHOD FOR EFFICIENT VIRTUALIZATION IN LOSSLESS NETWORKS

COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains
material which is subject to copyright protection. The copyright
owner has no objection to the facsimile reproduction by anyone
of the patent document or the patent disclosure, as it appears in
the Patent and Trademark Office patent file or records, but

otherwise reserves all copyright rights whatsoever.

Field of Invention:

[0001] The present invention is generally related to computer systems, and is particularly
related to supporting computer system virtualization and live migration using SR-IOV vSwitch

architecture.

Background:
[0002] As larger cloud computing architectures are introduced, the performance and

administrative bottlenecks associated with the traditional network and storage have become a
significant problem. There has been an increased interest in using high performance lossless
interconnects such as InfiniBand (IB) technology as the foundation for a cloud computing

fabric. This is the general area that embodiments of the invention are intended to address.

Summary:
[0003] Described herein are systems and methods for supporting virtual machine

migration in a subnet. An exemplary method can provide, at one or more computers, including
one or more Microprocessors, one or more switches, the one or more switches comprising at
least a leaf switch, wherein each of the one or more switches comprise a plurality of ports, a
plurality of host channel adapters, wherein each of the host channel adapters comprise at least
one virtual function, at least one virtual switch, and at least one physical function, and wherein
the plurality of host channel adapters are interconnected via the one or more switches, a
plurality of hypervisors, wherein each of the plurality of hypervisors is associated with at least
one host channel adapter of the plurality of host channel adapters, and a plurality of virtual
machines, wherein each of the plurality of virtual machines is associated with at least one
virtual function. The method can arrange the plurality of host channel adapters with one or

more of a virtual switch with prepopulated local identifiers (LIDs) architecture or a virtual switch
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with dynamic LID assignment architecture. The method can assign each virtual switch with a
LID, the assigned LID corresponding to a LID of an associated physical function. The method
can calculate one or more linear forwarding tables based (LFTs) at least upon the LIDs
assigned to each of the virtual switches, each of the one or more LFTs being associated with
a switch of the one or more switches.

[0004] In accordance with an embodiment, a method can provide at one or more
computers, including one or more microprocessors, one or more microprocessors; one or more
switches, the one or more switches comprising at least a leaf switch, wherein each of the one
or more switches comprise a plurality of ports; a plurality of host channel adapters, wherein
each of the host channel adapters comprise at least one virtual function, at least one virtual
switch, and at least one physical function, and wherein the plurality of host channel adapters
are interconnected via the one or more switches; a plurality of hypervisors, wherein each of
the plurality of hypervisors is associated with at least one host channel adapter of the plurality
of host channel adapters, and a plurality of virtual machines, wherein each of the plurality of
virtual machines is associated with at least one virtual function. The method can arrange the
plurality of host channel adapters with one or more of a virtual switch with prepopulated local
identifiers (LIDs) architecture or a virtual switch with dynamic LID assignment architecture.
The method can assign each of the virtual switches a physical LID (pLID) pLID of a plurality of
pLIDs, the assigned pLID corresponding to a pLID of an associated physical function. The
method can also assign each of the plurality of virtual machines a virtual LID of a plurality of
vLIDs, wherein an LID space comprises the plurality of pLIDs and the plurality of vLIDs.
[0005] In accordance with an embodiment, each pLID value can be represented using
standard SLID and DLID fields in a Local Route Header of an InfiniBand packet. As well, each
vLID value can be represented using a combination of the standard SLID and DLID fields in

combination with two or more additional bits representing an extension.

Brief Description of the Figures:

[0006] Figure 1 shows an illustration of an InfiniBand environment, in accordance with an
embodiment.

[0007] Figure 2 shows an illustration of a tree topology in a network environment, in
accordance with an embodiment.

[0008] Figure 3 shows an exemplary shared port architecture, in accordance with an
embodiment.

[0009] Figure 4 shows an exemplary vSwitch architecture, in accordance with an
embodiment.

[00010] Figure 5 shows an exemplary vPort architecture, in accordance with an

embodiment.
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[00011] Figure 6 shows an exemplary vSwitch architecture with prepopulated LIDs, in
accordance with an embodiment.

[00012] Figure 7 shows an exemplary vSwitch architecture with dynamic LID assignment,
in accordance with an embodiment.

[00013] Figure 8 shows an exemplary vSwitch architecture with vSwitch with dynamic LID
assignment and prepopulated LIDs, in accordance with an embodiment.

[00014] Figure 9 shows an extended local route header, in accordance with an
embodiment.

[00015] Figure 10 shows two exemplary linear forwarding tables, in accordance with an
embodiment.

[00016] Figure 11 shows an illustration of supporting efficient virtualization in a lossless
interconnection network, in accordance with an embodiment.

[00017] Figure 12 shows an illustration of supporting efficient virtualization in a lossless
interconnection network, in accordance with an embodiment.

[00018] Figure 13 shows an illustration of supporting efficient virtualization in a lossless
interconnection network, in accordance with an embodiment.

[00019] Figure 14 shows an illustration of supporting efficient virtualization in a lossless
interconnection network, in accordance with an embodiment.

[00020] Figure 15 illustrates a potential virtual machine migration, in accordance with an
embodiment.

[00021] Figure 16 illustrates switch tuples, in accordance with an embodiment.

[00022] Figure 17 illustrates a reconfiguration process, in accordance with an embodiment.
[00023] Figure 18 is a flow chart of a method for supporting efficient virtualization in a
lossless interconnection network, in accordance with an embodiment.

[00024] Figure 19 is a flow chart of a method for supporting efficient virtualization in a

lossless interconnection network, in accordance with an embodiment.

Detailed Description:

[00025] The invention is illustrated, by way of example and not by way of limitation, in the
figures of the accompanying drawings in which like references indicate similar elements. It
should be noted that references to “an” or “one” or “some” embodiment(s) in this disclosure
are not necessarily to the same embodiment, and such references mean at least one. While
specific implementations are discussed, it is understood that the specific implementations are
provided for illustrative purposes only. A person skilled in the relevant art will recognize that
other components and configurations may be used without departing from the scope and spirit
of the invention.

[00026] Common reference numerals can be used to indicate like elements throughout the

-3-
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drawings and detailed description; therefore, reference numerals used in a figure may or may
not be referenced in the detailed description specific to such figure if the element is described
elsewhere.

[00027] Described herein are systems and methods to support efficient virtualization in
lossless interconnection networks.

[00028] The following description of the invention uses an InfiniBand™ (IB) network as an
example for a high performance network. It will be apparent to those skilled in the art that other
types of high performance networks can be used without limitation. The following description
also uses the fat-tree topology as an example for a fabric topology. It will be apparent to those
skilled in the art that other types of fabric topologies can be used without limitation.

[00029] To meet the demands of the cloud in the current era (e.g., Exascale era), it is
desirable for virtual machines to be able to utilize low overhead network communication
paradigms such as Remote Direct Memory Access (RDMA). RDMA bypasses the OS stack
and communicates directly with the hardware, thus, passthrough technology like Single-Root
I/0 Virtualization (SR-I0OV) network adapters can be used. In accordance with an embodiment,
a virtual switch (vSwitch) SR-IOV architecture can be provided for applicability in high
performance lossless interconnection networks. As network reconfiguration time is critical to
make live-migration a practical option, in addition to network architecture, a scalable and
topology-agnostic dynamic reconfiguration mechanism can be provided.

[00030] In accordance with an embodiment, and furthermore, routing strategies for
virtualized environments using vSwitches can be provided, and an efficient routing algorithm
for network topologies (e.g., Fat-Tree topologies) can be provided. The dynamic
reconfiguration mechanism can be further tuned to minimize imposed overhead in Fat-Trees.
[00031] In accordance with an embodiment of the invention, virtualization can be beneficial
to efficient resource utilization and elastic resource allocation in cloud computing. Live
migration makes it possible to optimize resource usage by moving virtual machines (VMs)
between physical servers in an application transparent manner. Thus, virtualization can enable

consolidation, on-demand provisioning of resources, and elasticity through live migration.

InfiniBand™

[00032] InfiniBand™ (IB) is an open standard lossless network technology developed by
the InfiniBand™ Trade Association. The technology is based on a serial point-to-point full-
duplex interconnect that offers high throughput and low latency communication, geared
particularly towards high-performance computing (HPC) applications and datacenters.
[00033] The InfiniBand™ Architecture (IBA) supports a two-layer topological division. At the
lower layer, IB networks are referred to as subnets, where a subnet can include a set of hosts

interconnected using switches and point-to-point links. At the higher level, an IB fabric
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constitutes one or more subnets, which can be interconnected using routers.

[00034] Within a subnet, hosts can be connected using switches and point-to-point links.
Additionally, there can be a master management entity, the subnet manager (SM), which
resides on a designated device in the subnet. The subnet manager is responsible for
configuring, activating and maintaining the IB subnet. Additionally, the subnet manager (SM)
can be responsible for performing routing table calculations in an IB fabric. Here, for example,
the routing of the IB network aims at proper load balancing between all source and destination
pairs in the local subnet.

[00035] Through the subnet managementinterface, the subnet manager exchanges control
packets, which are referred to as subnet management packets (SMPs), with subnet
management agents (SMAs). The subnet management agents reside on every IB subnet
device. By using SMPs, the subnet manager is able to discover the fabric, configure end nodes
and switches, and receive notifications from SMAs.

[00036] In accordance with an embodiment, intra-subnet routing in an IB network can be
based on LFTs stored in the switches. The LFTs are calculated by the SM according to the
routing mechanism in use. In a subnet, Host Channel Adapter (HCA) ports on the end nodes
and switches are addressed using local identifiers (LIDs). Each entry in an LFT consists of a
destination LID (DLID) and an output port. Only one entry per LID in the table is supported.
When a packet arrives at a switch, its output port is determined by looking up the DLID in the
forwarding table of the switch. The routing is deterministic as packets take the same path in
the network between a given source-destination pair (LID pair).

[00037] Generally, all other subnet managers, excepting the master subnet manager, actin
standby mode for fault-tolerance. In a situation where a master subnet manager fails, however,
a new master subnet manager is negotiated by the standby subnet managers. The master
subnet manager also performs periodic sweeps of the subnet to detect any topology changes
and reconfigure the network accordingly.

[00038] Furthermore, hosts and switches within a subnet can be addressed using local
identifiers (LIDs), and a single subnet can be limited to 49151 unicast LIDs. Besides the LIDs,
which are the local addresses that are valid within a subnet, each IB device can have a 64-bit
global unique identifier (GUID). A GUID can be used to form a global identifier (GID), which is
an IB layer three (L3) address.

[00039] The SM can calculate routing tables (i.e., the connections/routes between each pair
of nodes within the subnet) at network initialization time. Furthermore, the routing tables can
be updated whenever the topology changes, in order to ensure connectivity and optimal
performance. During normal operations, the SM can perform periodic light sweeps of the
network to check for topology changes. If a change is discovered during a light sweep or if a

message (trap) signaling a network change is received by the SM, the SM can reconfigure the
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network according to the discovered changes.

[00040] For example, the SM can reconfigure the network when the network topology
changes, such as when a link goes down, when a device is added, or when a link is removed.
The reconfiguration steps can include the steps performed during the network initialization.
Furthermore, the reconfigurations can have a local scope that is limited to the subnets, in which
the network changes occurred. Also, the segmenting of a large fabric with routers may limit the
reconfiguration scope.

[00041] In accordance with an embodiment, IB networks can support partitioning as a
security mechanism to provide for isolation of logical groups of systems sharing a network
fabric. Each HCA port on a node in the fabric can be a member of one or more partitions.
Partition memberships are managed by a centralized partition manager, which can be part of
the SM. The SM can configure partition membership information on each port as a table of 16-
bit partition keys (P_Keys). The SM can also configure switch and router ports with the partition
enforcement tables containing P_Key information associated with the end-nodes that send or
receive data traffic through these ports. Additionally, in a general case, partition membership
of a switch port can represent a union of all membership indirectly associated with LIDs routed
via the port in an egress (towards the link) direction.

[00042] In accordance with an embodiment, for the communication between nodes, Queue
Pairs (QPs) and End-to-End contexts (EECs) can be assigned to a particular partition, except
for the management Queue Pairs (QP0 and QP1). The P_Key information can then be added
to every IB transport packet sent. When a packet arrives at an HCA port or a switch, its P_Key
value can be validated against a table configured by the SM. If an invalid P_Key value is found,
the packet is discarded immediately. In this way, communication is allowed only between ports
sharing a partition.

[00043] An example InfiniBand fabric is shown in Figure 1, which shows an illustration of
an InfiniBand environment 100, in accordance with an embodiment. In the example shown in
Figure 1, nodes A-E, 101-105, use the InfiniBand fabric, 120, to communicate, via the
respective host channel adapters 111-115. In accordance with an embodiment, the various
nodes, e.g., nodes A-E, 101-105, can be represented by various physical devices. In
accordance with an embodiment, the various nodes, e.g., nodes A-E, 101-105, can be

represented by various virtual devices, such as virtual machines.

Virtual Machines in InfiniBand

[00044] During the last decade, the prospect of virtualized High Performance Computing
(HPC) environments has improved considerably as CPU overhead has been practically
removed through hardware virtualization support; memory overhead has been significantly

reduced by virtualizing the Memory Management Unit; storage overhead has been reduced by
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the use of fast SAN storages or distributed networked file systems; and network 1/0O overhead
has been reduced by the use of device passthrough techniques like Single Root Input/Output
Virtualization (SR-IOV). It is now possible for clouds to accommodate virtual HPC (vHPC)
clusters using high performance interconnect solutions and deliver the necessary
performance.

[00045] However, when coupled with lossless networks, such as InfiniBand (IB), certain
cloud functionality, such as live migration of virtual machines (VMs), still remains an issue due
to the complicated addressing and routing schemes used in these solutions. IB is an
interconnection network technology offering high bandwidth and low latency, thus, is very well
suited for HPC and other communication intensive workloads.

[00046] The traditional approach for connecting IB devices to VMs is by utilizing SR-IOV
with direct assignment. However, achieving live migration of VMs assigned with IB Host
Channel Adapters (HCAs) using SR-IOV has proved to be challenging. Each IB connected
node has three different addresses: LID, GUID, and GID. When a live migration happens, one
or more of these addresses change. Other nodes communicating with the VM-in-migration can
lose connectivity. When this happens, the lost connection can be attempted to be renewed by
locating the virtual machine’s new address to reconnect to by sending Subnet Administration
(SA) path record queries to the IB Subnet Manager (SM).

[00047] IB uses three different types of addresses. A first type of address is the 16 bits Local
Identifier (LID). At least one unique LID is assigned to each HCA port and each switch by the
SM. The LIDs are used to route traffic within a subnet. Since the LID is 16 bits long, 65536
unique address combinations can be made, of which only 49151 (0x0001-OxBFFF) can be
used as unicast addresses. Consequently, the number of available unicast addresses defines
the maximum size of an IB subnet. A second type of address is the 64 bits Global Unique
Identifier (GUID) assigned by the manufacturer to each device (e.g. HCAs and switches) and
each HCA port. The SM may assign additional subnet unique GUIDs to an HCA port, which is
useful when SR-I0V is used. A third type of address is the 128 bits Global Identifier (GID). The
GID is a valid IPv6 unicast address, and at least one is assigned to each HCA port. The GID
is formed by combining a globally unique 64 bits prefix assigned by the fabric administrator,
and the GUID address of each HCA port.

Fat-Tree (FTree) Topologies and Routing

[00048] In accordance with an embodiment, some of the IB based HPC systems employ a
fat-tree topology to take advantage of the useful properties fat-trees offer. These properties
include full bisection-bandwidth and inherent fault-tolerance due to the availability of multiple
paths between each source destination pair. The initial idea behind fat-trees was to employ

fatter links between nodes, with more available bandwidth, as the tree moves towards the roots
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of the topology. The fatter links can help to avoid congestion in the upper-level switches and
the bisection-bandwidth is maintained.

[00049] Figure 2 shows an illustration of a tree topology in a network environment, in
accordance with an embodiment. As shown in Figure 2, one or more end nodes 201-204 can
be connected in a network fabric 200. The network fabric 200 can be based on a fat-tree
topology, which includes a plurality of leaf switches 211-214, and multiple spine switches or
root switches 231-234. Additionally, the network fabric 200 can include one or more
intermediate switches, such as switches 221-224.

[00050] Also as shown in Figure 2, each of the end nodes 201-204 can be a multi-homed
node, i.e., a single node that is connected to two or more parts of the network fabric 200
through multiple ports. For example, the node 201 can include the ports H1 and H2, the node
202 can include the ports H3 and H4, the node 203 can include the ports H5 and H6, and the
node 204 can include the ports H7 and H8.

[00051] Additionally, each switch can have multiple switch ports. For example, the root
switch 231 can have the switch ports 1-2, the root switch 232 can have the switch ports 3-4,
the root switch 233 can have the switch ports 5-6, and the root switch 234 can have the switch
ports 7-8.

[00052] In accordance with an embodiment, the fat-tree routing mechanism is one of the
most popular routing algorithm for IB based fat-tree topologies. The fat-tree routing mechanism
is also implemented in the OFED (Open Fabric Enterprise Distribution — a standard software
stack for building and deploying IB based applications) subnet manager, OpenSM.

[000563] The fat-tree routing mechanism aims to generate LFTs that evenly spread shortest-
path routes across the links in the network fabric. The mechanism traverses the fabric in the
indexing order and assigns target LIDs of the end nodes, and thus the corresponding routes,
to each switch port. For the end nodes connected to the same leaf switch, the indexing order
can depend on the switch port to which the end node is connected (i.e., port numbering
sequence). For each port, the mechanism can maintain a port usage counter, and can use this
port usage counter to select a least-used port each time a new route is added.

[00054] In accordance with an embodiment, in a partitioned subnet, nodes that are not
members of a common partition are not allowed to communicate. Practically, this means that
some of the routes assigned by the fat-tree routing algorithm are not used for the user traffic.
The problem arises when the fat tree routing mechanism generates LFTs for those routes the
same way it does for the other functional paths. This behavior can result in degraded balancing
on the links, as nodes are routed in the order of indexing. As routing can be performed oblivious
to the partitions, fat-tree routed subnets, in general, provide poor isolation among partitions.
[000565] In accordance with an embodiment, a Fat-Tree is a hierarchical network topology

that can scale with the available network resources. Moreover, Fat-Trees are easy to build
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using commodity switches placed on different levels of the hierarchy. Different variations of
Fat-Trees are commonly available, including k-ary-n-trees, Extended Generalized Fat-Trees
(XGFTs), Parallel Ports Generalized Fat-Trees (PGFTs) and Real Life Fat-Trees (RLFTSs).

[00056] A k-ary-n-tree is an n level Fat-Tree with k" end nodes and n - k™" switches, each
with 2k ports. Each switch has an equal number of up and down connections in the tree. XGFT
Fat-Tree extends k-ary-n-trees by allowing both different number of up and down connections
for the switches, and different number of connections at each level in the tree. The PGFT
definition further broadens the XGFT topologies and permits multiple connections between
switches. A large variety of topologies can be defined using XGFTs and PGFTs. However, for
practical purposes, RLFT, which is a restricted version of PGFT, is introduced to define Fat-
Trees commonly found in today’s HPC clusters. An RLFT uses the same port-count switches

at all levels in the Fat-Tree.

Input/Output (I/0O) virtualization

[00057] In accordance with an embodiment, I/O Virtualization (IOV) can provide availability
of I/O by allowing virtual machines (VMs) to access the underlying physical resources. The
combination of storage traffic and inter-server communication impose an increased load that
may overwhelm the 1/O resources of a single server, leading to backlogs and idle processors
as they are waiting for data. With the increase in number of I/O requests, IOV can provide
availability; and can improve performance, scalability and flexibility of the (virtualized) 1/0
resources to match the level of performance seen in modern CPU virtualization.

[000568] In accordance with an embodiment, IOV is desired as it can allow sharing of 1/0
resources and provide protected access to the resources from the VMs. IOV decouples a
logical device, which is exposed to a VM, from its physical implementation. Currently, there
can be different types of IOV technologies, such as emulation, paravirtualization, direct
assignment (DA), and single root-1/O virtualization (SR-I10V).

[00059] In accordance with an embodiment, one type of IOV technology is software
emulation. Software emulation can allow for a decoupled front-end/back-end software
architecture. The front-end can be a device driver placed in the VM, communicating with the
back-end implemented by a hypervisor to provide I/O access. The physical device sharing ratio
is high and live migrations of VMs are possible with just a few milliseconds of network
downtime. However, software emulation introduces additional, undesired computational
overhead.

[00060] In accordance with an embodiment, another type of IOV technology is direct device
assignment. Direct device assignment involves a coupling of I/O devices to VMs, with no
device sharing between VMs. Direct assignment, or device passthrough, provides near to

native performance with minimum overhead. The physical device bypasses the hypervisor
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and is directly attached to the VM. However, a downside of such direct device assignment is
limited scalability, as there is no sharing among virtual machines — one physical network card
is coupled with one VM.

[00061] Inaccordance with an embodiment, Single Root IOV (SR-I0V) can allow a physical
device to appear through hardware virtualization as multiple independent lightweight instances
of the same device. These instances can be assigned to VMs as passthrough devices, and
accessed as Virtual Functions (VFs). The hypervisor accesses the device through a unique
(per device), fully featured Physical Function (PF). SR-IOV eases the scalability issue of pure
direct assignment. However, a problem presented by SR-IOV is that it can impair VM
migration. Among these IOV technologies, SR-IOV can extend the PCI Express (PCle)
specification with the means to allow direct access to a single physical device from multiple
VMs while maintaining near to native performance. Thus, SR-IOV can provide good
performance and scalability.

[00062] SR-IOV allows a PCle device to expose multiple virtual devices that can be shared
between multiple guests by allocating one virtual device to each guest. Each SR-IOV device
has at least one physical function (PF) and one or more associated virtual functions (VF). A
PF is a normal PCle function controlled by the virtual machine monitor (VMM), or hypervisor,
whereas a VF is a light-weight PCle function. Each VF has its own base address (BAR) and is
assigned with a unique requester ID that enables I/O memory management unit IOMMU) to
differentiate between the traffic streams to/from different VFs. The IOMMU also apply memory
and interrupt translations between the PF and the VFs.

[00063] Unfortunately, however, direct device assignment techniques pose a barrier for
cloud providers in situations where transparent live migration of virtual machines is desired for
data center optimization. The essence of live migration is that the memory contents of a VM
are copied to a remote hypervisor. Then the VM is paused at the source hypervisor, and the
VM’s operation is resumed at the destination. When using software emulation methods, the
network interfaces are virtual so their internal states are stored into the memory and get copied
as well. Thus the downtime could be brought down to a few milliseconds.

[00064] However, migration becomes more difficult when direct device assignment
techniques, such as SR-IOV, are used. In such situations, a complete internal state of the
network interface cannot be copied as it is tied to the hardware. The SR-IOV VFs assigned to
a VM are instead detached, the live migration will run, and a new VF will be attached at the
destination. In the case of InfiniBand and SR-IOV, this process can introduce downtime in the
order of seconds. Moreover, in an SR-IOV shared port model the addresses of the VM will
change after the migration, causing additional overhead in the SM and a negative impact on

the performance of the underlying network fabric.
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InfiniBand SR-IOV Architecture — Shared Port
[00065] There can be different types of SR-IOV models, e.g. a shared port model, a virtual

switch model, and a virtual port model.

[00066] Figure 3 shows an exemplary shared port architecture, in accordance with an
embodiment. As depicted in the figure, a host 300 (e.g., a host channel adapter) can interact
with a hypervisor 310, which can assign the various virtual functions 330, 340, 350, to a number
of virtual machines. As well, the physical function can be handled by the hypervisor 310.
[00067] In accordance with an embodiment, when using a shared port architecture, such
as that depicted in Figure 3, the host, e.g., HCA, appears as a single port in the network with
a single shared LID and shared Queue Pair (QP) space between the physical function 320 and
the virtual functions 330, 350, 350. However, each function (i.e., physical function and virtual
functions) can have their own GID.

[00068] As shown in Figure 3, in accordance with an embodiment, different GIDs can be
assigned to the virtual functions and the physical function, and the special queue pairs, QPO
and QP1 (i.e., special purpose queue pairs that are used for InfiniBand management packets),
are owned by the physical function. These QPs are exposed to the VFs as well, but the VFs
are not allowed to use QPO (all SMPs coming from VFs towards QPO are discarded), and QP1
can act as a proxy of the actual QP1 owned by the PF.

[00069] In accordance with an embodiment, the shared port architecture can allow for highly
scalable data centers that are not limited by the number of VMs (which attach to the network
by being assigned to the virtual functions), as the LID space is only consumed by physical
machines and switches in the network.

[00070] However, a shortcoming of the shared port architecture is the inability to provide
transparent live migration, hindering the potential for flexible VM placement. As each LID is
associated with a specific hypervisor, and shared among all VMs residing on the hypervisor, a
migrating VM (i.e., a virtual machine migrating to a destination hypervisor) has to have its LID
changed to the LID of the destination hypervisor. Furthermore, as a consequence of the

restricted QPO access, a subnet manager cannot run inside a VM.

InfiniBand SR-IOV Architecture Models — Virtual Switch (vSwitch)

[00071] Figure 4 shows an exemplary vSwitch architecture, in accordance with an

embodiment. As depicted in the figure, a host 400 (e.g., a host channel adapter) can interact
with a hypervisor 410, which can assign the various virtual functions 430, 440, 450, to a number
of virtual machines. As well, the physical function can be handled by the hypervisor 410. A
virtual switch 415 can also be handled by the hypervisor 401.

[00072] In accordance with an embodiment, in a vSwitch architecture each virtual function
430, 440, 450 is a complete virtual Host Channel Adapter (vHCA), meaning that the VM
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assigned to a VF is assigned a complete set of IB addresses (e.g., GID, GUID, LID) and a
dedicated QP space in the hardware. For the rest of the network and the SM, the HCA 400
looks like a switch, via the virtual switch 415, with additional nodes connected to it. The
hypervisor 410 can use the PF 420, and the VMs (attached to the virtual functions) use the
VFs.

[00073] In accordance with an embodiment, a vSwitch architecture provide transparent
virtualization. However, because each virtual function is assigned a unique LID, the number
of available LIDs gets consumed rapidly. As well, with many LID addresses in use (i.e., one
each for each physical function and each virtual function), more communication paths have to
be computed by the SM and more Subnet Management Packets (SMPs) have to be sent to
the switches in order to update their LFTs. For example, the computation of the communication
paths might take several minutes in large networks. Because LID space is limited to 49151
unicast LIDs, and as each VM (via a VF), physical node, and switch occupies one LID each,
the number of physical nodes and switches in the network limits the number of active VMs,

and vice versa.

InfiniBand SR-IOV Architecture Models — Virtual Port (vPort)

[00074] Figure 5 shows an exemplary vPort concept, in accordance with an embodiment.

As depicted in the figure, a host 300 (e.g., a host channel adapter) can interact with a
hypervisor 410, which can assign the various virtual functions 330, 340, 350, to a number of
virtual machines. As well, the physical function can be handled by the hypervisor 310.
[00075] In accordance with an embodiment, the vPort concept is loosely defined in order to
give freedom of implementation to vendors (e.g. the definition does not rule that the
implementation has to be SRIOV specific), and a goal of the vPort is to standardize the way
VMs are handled in subnets. With the vPort concept, both SR-IOV Shared-Port-like and
vSwitch-like architectures or a combination of both, that can be more scalable in both the space
and performance domains, can be defined. A vPort supports optional LIDs, and unlike the
Shared-Port, the SM is aware of all the vPorts available in a subnet even if a vPort is not using
a dedicated LID.

InfiniBand SR-IOV Architecture Models — vSwitch with Prepopulated LIDs

[00076] In accordance with an embodiment, the present disclosure provides a system and
method for providing a vSwitch architecture with prepopulated LIDs.

[00077] Figure 6 shows an exemplary vSwitch architecture with prepopulated LIDs, in
accordance with an embodiment. As depicted in the figure, a number of switches 501-504 can
provide communication within the network switched environment 600 (e.g., an IB subnet)

between members of a fabric, such as an InfiniBand fabric. The fabric can include a number

-12-



10

15

20

25

30

35

WO 2017/091465 PCT/US2016/062795

of hardware devices, such as host channel adapters 510, 520, 530. Each of the host channel
adapters 510, 520, 530, can in turn interact with a hypervisor 511, 521, and 531, respectively.
Each hypervisor can, in turn, in conjunction with the host channel adapter it interacts with,
setup and assign a number of virtual functions 514, 515, 516, 524, 525, 526, 534, 535, 536, to
a number of virtual machines. For example, virtual machine 1 550 can be assigned by the
hypervisor 511 to virtual function 1 514. Hypervisor 511 can additionally assign virtual machine
2 551 to virtual function 2 515, and virtual machine 3 552 to virtual function 3 516. Hypervisor
531 can, in turn, assign virtual machine 4 553 to virtual function 1 534. The hypervisors can
access the host channel adapters through a fully featured physical function 513, 523, 533, on
each of the host channel adapters.

[00078] In accordance with an embodiment, each of the switches 501-504 can comprise a
number of ports (not shown), which are used in setting a linear forwarding table in order to
direct traffic within the network switched environment 600.

[00079] In accordance with an embodiment, the virtual switches 512, 522, and 532, can be
handled by their respective hypervisors 511, 521, 531. In such a vSwitch architecture each
virtual function is a complete virtual Host Channel Adapter (vHCA), meaning that the VM
assigned to a VF is assigned a complete set of IB addresses (e.g., GID, GUID, LID) and a
dedicated QP space in the hardware. For the rest of the network and the SM (not shown), the
HCAs 510, 520, and 530 look like a switch, via the virtual switches, with additional nodes
connected to them.

[00080] In accordance with an embodiment, the present disclosure provides a system and
method for providing a vSwitch architecture with prepopulated LIDs. Referring to Figure 5, the
LIDs are prepopulated to the various physical functions 513, 523, 533, as well as the virtual
functions 514-516, 524-526, 534-536 (even those virtual functions not currently associated
with an active virtual machine). For example, physical function 513 is prepopulated with LID
1, while virtual function 1 534 is prepopulated with LID 10. The LIDs are prepopulated in an
SR-10V vSwitch-enabled subnet when the network is booted. Even when not all of the VFs are
occupied by VMs in the network, the populated VFs are assigned with a LID as shown in Figure
5.

[00081] In accordance with an embodiment, much like physical host channel adapters can
have more than one port (two ports are common for redundancy), virtual HCAs can also be
represented with two ports and be connected via one, two or more virtual switches to the
external IB subnet.

[00082] In accordance with an embodiment, in a vSwitch architecture with prepopulated
LIDs, each hypervisor can consume one LID for itself through the PF and one more LID for
each additional VF. The sum of all the VFs available in all hypervisors in an IB subnet, gives

the maximum amount of VMs that are allowed to run in the subnet. For example, in an IB
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subnet with 16 virtual functions per hypervisor in the subnet, then each hypervisor consumes
17 LIDs (one LID for each of the 16 virtual functions plus one LID for the physical function) in
the subnet. In such an IB subnet, the theoretical hypervisor limit for a single subnet is ruled by
the number of available unicast LIDs and is: 2891 (49151 available LIDs divided by 17 LIDs
per hypervisor), and the total number of VMs (i.e., the limit) is 46256 (2891 hypervisors times
16 VFs per hypervisor). (In actuality, these numbers are actually smaller since each switch,
router, or dedicated SM node in the IB subnet consumes a LID as well). Note that the vSwitch
does not need to occupy an additional LID as it can share the LID with the PF.

[00083] In accordance with an embodiment, in a vSwitch architecture with prepopulated
LIDs, communication paths are computed for all the LIDs the first time the network is booted.
When a new VM needs to be started the system does not have to add a new LID in the subnet,
an action that would otherwise cause a complete reconfiguration of the network, including path
recalculation, which is the most time consuming part. Instead, an available port for a VM is
located (i.e., an available virtual function) in one of the hypervisors and the virtual machine is
attached to the available virtual function.

[00084] In accordance with an embodiment, a vSwitch architecture with prepopulated LIDs
also allows for the ability to calculate and use different paths to reach different VMs hosted by
the same hypervisor. Essentially, this allows for such subnets and networks to use a LID Mask
Control (LMC) like feature to provide alternative paths towards one physical machine, without
being bound by the limitation of the LMC that requires the LIDs to be sequential. The freedom
to use non-sequential LIDs is particularly useful when a VM needs to be migrated and carry its
associated LID to the destination.

[00085] In accordance with an embodiment, along with the benefits shown above of a
vSwitch architecture with prepopulated LIDs, certain considerations can be taken into account.
For example, because the LIDs are prepopulated in an SR-IOV vSwitch-enabled subnet when
the network is booted, the initial path computation (e.g., on boot-up) can take longer than if the

LIDs were not pre-populated.

InfiniBand SR-IOV Architecture Models — vSwitch with Dynamic LID Assignment

[00086] In accordance with an embodiment, the present disclosure provides a system and
method for providing a vSwitch architecture with dynamic LID assignment.

[00087] Figure 7 shows an exemplary vSwitch architecture with dynamic LID assignment,
in accordance with an embodiment. As depicted in the figure, a number of switches 501-504
can provide communication within the network switched environment 700 (e.g., an IB subnet)
between members of a fabric, such as an InfiniBand fabric. The fabric can include a number
of hardware devices, such as host channel adapters 510, 520, 530. Each of the host channel

adapters 510, 520, 530, can in turn interact with a hypervisor 511, 521, 531, respectively. Each

-14-



10

15

20

25

30

35

WO 2017/091465 PCT/US2016/062795

hypervisor can, in turn, in conjunction with the host channel adapter it interacts with, setup and
assign a number of virtual functions 514, 515, 516, 524, 525, 526, 534, 535, 536, to a number
of virtual machines. For example, virtual machine 1 550 can be assigned by the hypervisor
511 to virtual function 1 514. Hypervisor 511 can additionally assign virtual machine 2 551 to
virtual function 2 515, and virtual machine 3 552 to virtual function 3 516. Hypervisor 531 can,
in turn, assign virtual machine 4 553 to virtual function 1 534. The hypervisors can access the
host channel adapters through a fully featured physical function 513, 523, 533, on each of the
host channel adapters.

[00088] In accordance with an embodiment, each of the switches 501-504 can comprise a
number of ports (not shown), which are used in setting a linear forwarding table in order to
direct traffic within the network switched environment 700.

[00089] In accordance with an embodiment, the virtual switches 512, 522, and 532, can be
handled by their respective hypervisors 511, 521, 531. In such a vSwitch architecture each
virtual function is a complete virtual Host Channel Adapter (vHCA), meaning that the VM
assigned to a VF is assigned a complete set of IB addresses (e.g., GID, GUID, LID) and a
dedicated QP space in the hardware. For the rest of the network and the SM (not shown), the
HCAs 510, 520, and 530 look like a switch, via the virtual switches, with additional nodes
connected to them.

[00090] In accordance with an embodiment, the present disclosure provides a system and
method for providing a vSwitch architecture with dynamic LID assignment. Referring to Figure
7, the LIDs are dynamically assigned to the various physical functions 513, 523, 533, with
physical function 513 receiving LID 1, physical function 523 receiving LID 2, and physical
function 533 receiving LID 3. Those virtual functions that are associated with an active virtual
machine can also receive a dynamically assigned LID. For example, because virtual machine
1 550 is active and associated with virtual function 1 514, virtual function 514 can be assigned
LID 5. Likewise, virtual function 2 515, virtual function 3 516, and virtual function 1 534 are
each associated with an active virtual function. Because of this, these virtual functions are
assigned LIDs, with LID 7 being assigned to virtual function 2 515, LID 11 being assigned to
virtual function 3 516, and LID 9 being assigned to virtual function 1 534. Unlike vSwitch with
prepopulated LIDs, those virtual functions not currently associated with an active virtual
machine do not receive a LID assignment.

[00091] In accordance with an embodiment, with the dynamic LID assignment, the initial
path computation can be substantially reduced. When the network is booting for the first time
and no VMs are present then a relatively small number of LIDs can be used for the initial path
calculation and LFT distribution.

[00092] In accordance with an embodiment, much like physical host channel adapters can

have more than one port (two ports are common for redundancy), virtual HCAs can also be
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represented with two ports and be connected via one, two or more virtual switches to the
external IB subnet.

[00093] In accordance with an embodiment, when a new VM is created in a system utilizing
vSwitch with dynamic LID assignment, a free VM slot is found in order to decide on which
hypervisor to boot the newly added VM, and a unique non-used unicast LID is found as well.
However, there are no known paths in the network and the LFTs of the switches for handling
the newly added LID. Computing a new set of paths in order to handle the newly added VM is
not desirable in a dynamic environment where several VMs may be booted every minute. In
large IB subnets, computing a new set of routes can take several minutes, and this procedure
would have to repeat each time a new VM is booted.

[00094] Advantageously, in accordance with an embodiment, because all the VFs in a
hypervisor share the same uplink with the PF, there is no need to compute a new set of routes.
It is only needed to iterate through the LFTs of all the physical switches in the network, copy
the forwarding port from the LID entry that belongs to the PF of the hypervisor —where the VM
is created— to the newly added LID, and send a single SMP to update the corresponding LFT
block of the particular switch. Thus the system and method avoids the need to compute a new
set of routes.

[00095] In accordance with an embodiment, the LIDs assigned in the vSwitch with dynamic
LID assignment architecture do not have to be sequential. When comparing the LIDs assigned
on VMs on each hypervisor in vSwitch with prepopulated LIDs versus vSwitch with dynamic
LID assignment, it is notable that the LIDs assigned in the dynamic LID assignment
architecture are non-sequential, while those prepopulated in are sequential in nature. In the
vSwitch dynamic LID assignment architecture, when a new VM is created, the next available
LID is used throughout the lifetime of the VM. Conversely, in a vSwitch with prepopulated LIDs,
each VM inherits the LID that is already assigned to the corresponding VF, and in a network
without live migrations, VMs consecutively attached to a given VF get the same LID.

[00096] In accordance with an embodiment, the vSwitch with dynamic LID assignment
architecture can resolve the drawbacks of the vSwitch with prepopulated LIDs architecture
model at a cost of some additional network and runtime SM overhead. Each time a VM is
created, the LFTs of the physical switches in the subnet are updated with the newly added LID
associated with the created VM. One subnet management packet (SMP) per switch is needed
to be sent for this operation. The LMC-like functionality is also not available, because each VM
is using the same path as its host hypervisor. However, there is no limitation on the total amount
of VFs present in all hypervisors, and the number of VFs may exceed that of the unicast LID
limit. Of course, not all of the VFs are allowed to be attached on active VMs simultaneously if

this is the case, but having more spare hypervisors and VFs adds flexibility for disaster
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recovery and optimization of fragmented networks when operating close to the unicast LID

limit.

InfiniBand SR-IOV Architecture Models — vSwitch with Dynamic LID Assignment and

Prepopulated LIDs

[00097] Figure 8 shows an exemplary vSwitch architecture with vSwitch with dynamic LID
assignment and prepopulated LIDs, in accordance with an embodiment. As depicted in the
figure, a number of switches 501-504 can provide communication within the network switched
environment 800 (e.g., an IB subnet) between members of a fabric, such as an InfiniBand
fabric. The fabric can include a number of hardware devices, such as host channel adapters
510, 520, 530. Each of the host channel adapters 510, 520, 530, can in turn interact with a
hypervisor 511, 521, and 531, respectively. Each hypervisor can, in turn, in conjunction with
the host channel adapter it interacts with, setup and assign a number of virtual functions 514,
515, 516, 524, 525, 526, 534, 535, 536, to a number of virtual machines. For example, virtual
machine 1 550 can be assigned by the hypervisor 511 to virtual function 1 514. Hypervisor
511 can additionally assign virtual machine 2 551 to virtual function 2 515. Hypervisor 521 can
assign virtual machine 3 552 to virtual function 3 526. Hypervisor 531 can, in turn, assign
virtual machine 4 553 to virtual function 2 535. The hypervisors can access the host channel
adapters through a fully featured physical function 513, 523, 533, on each of the host channel
adapters.

[00098] In accordance with an embodiment, each of the switches 501-504 can comprise a
number of ports (not shown), which are used in setting a linear forwarding table in order to
direct traffic within the network switched environment 800.

[00099] In accordance with an embodiment, the virtual switches 512, 522, and 532, can be
handled by their respective hypervisors 511, 521, 531. In such a vSwitch architecture each
virtual function is a complete virtual Host Channel Adapter (vHCA), meaning that the VM
assigned to a VF is assigned a complete set of IB addresses (e.g., GID, GUID, LID) and a
dedicated QP space in the hardware. For the rest of the network and the SM (not shown), the
HCAs 510, 520, and 530 look like a switch, via the virtual switches, with additional nodes
connected to them.

[000100] In accordance with an embodiment, the present disclosure provides a system and
method for providing a hybrid vSwitch architecture with dynamic LID assignment and
prepopulated LIDs. Referring to Figure 7, hypervisor 511 can be arranged with vSwitch with
prepopulated LIDs architecture, while hypervisor 521 can be arranged with vSwitch with
prepopulated LIDs and dynamic LID assignment. Hypervisor 531 can be arranged with
vSwitch with dynamic LID assignment. Thus, the physical function 513 and virtual functions

514-516 have their LIDs prepopulated (i.e., even those virtual functions not attached to an
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active virtual machine are assigned a LID). Physical function 523 and virtual function 1 524
can have their LIDs prepopulated, while virtual function 2 and 3, 525 and 526, have their LIDs
dynamically assigned (i.e., virtual function 2 525 is available for dynamic LID assignment, and
virtual function 3 526 has a LID of 11 dynamically assigned as virtual machine 3 552 is
attached). Finally, the functions (physical function and virtual functions) associated with
hypervisor 3 531 can have their LIDs dynamically assigned. This results in virtual functions 1
and 3, 534 and 536, are available for dynamic LID assignment, while virtual function 2 535 has
LID of 9 dynamically assigned as virtual machine 4 553 is attached there.

[000101] In accordance with an embodiment, such as that depicted in Figure 8, where both
vSwitch with prepopulated LIDs and vSwitch with dynamic LID assignment are utilized
(independently or in combination within any given hypervisor), the number of prepopulated
LIDs per host channel adapter can be defined by a fabric administrator and can be in the range
of 0 <= prepopulated VFs <= Total VFs (per host channel adapter) , and the VFs available for
dynamic LID assignment can be found by subtracting the number of prepopulated VFs from
the total number of VFs (per host channel adapter).

[000102] In accordance with an embodiment, much like physical host channel adapters can
have more than one port (two ports are common for redundancy), virtual HCAs can also be
represented with two ports and be connected via one, two or more virtual switches to the

external 1B subnet.

vSwitch Scalability

[000103] In accordance with an embodiment, a concern when using the vSwitch architecture

is the limited LID space. To overcome the scalability issues related to the LID space, the
following three alternatives (each discussed in further detail below) can be used independently
or combined: use multiple subnets, introduce a backwards compatible LID space extension,
and combine the vPort and vSwitch architecture to form a lightweight-vSwitch.

[000104] In accordance with an embodiment multiple IB subnets can be used. The LID is a
layer-2 address, and has to be unique within a subnet. When the IB topology spans on multiple
subnets, the LID is not a limitation anymore, but if a VM needs to be migrated to a different
subnet, its LID address can change since the address may already be in use in the new subnet.
Spanning on multiple subnets can solve the LID limitation of a single subnet topology, but it
also means that the layer-3 GID address must be used for inter-subnet routing, adding
additional overhead and latency to the routing process since the layer-2 headers have to be
altered by the router that is located at the edge of the subnet. Also, under the current hardware,
software implementations, and loose IBA (InfiniBand Architecture) specifications, the SM of an
individual subnet cannot be aware of the global topology in order to provide optimized routing

paths for clusters that span on multiple subnets.
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[000105] In accordance with an embodiment, a backwards compatible LID space extension
in IBA can be introduced. Increasing the scarce LID space by increasing the number of LID
bits to e.g. 24-bits or 32-bits can be problematic. Increasing the LID space by such an amount
can result in a break with backwards compatibility as the IB Local Route Header (LRH) will
have to be overhauled, and legacy hardware will not be able to work with the new standard. In
accordance with an embodiment, the LID space can be extended in such a way where
backwards compatibility is maintained, but still allowing new hardware to take advantage of
the enhancements. The LRH has seven reserved bits that are transmitted as zero, and ignored
by the receiver. By utilizing two of these reserved bits in the LRH for the Source LID (SLID)
and two bits for the Destination LID (DLID), the LID space can be extended to 18 bits
(quadrupling the LID space) and creating a scheme with physical LIDs (pLID) that are assigned
to the physical equipment, and virtual LIDs (vLID) that are assigned to VMs.

[000106] In accordance with an embodiment, when the two additional bits are transmitted as
zero, the LID is used as defined currently in IBA (48K unicast LIDs and 16K multicast LIDs),
and the switches can look up their primary LFT for the forwarding of the packets. Otherwise,
the LID is a vLID and it can be forwarded based on a secondary LFT that has a size of 192K.
Since the vLIDs belong to VMs and VMs share the uplink with a physical node that has a pLID,
the vLIDs can be excluded from the path computation phase when configuring (e.g., initial
configuration) or reconfiguring (e.g., after a topology change) the network, but the secondary
LFT table in the switches can be updated as described earlier above. When the SM boots and
discovers the network, the SM can identify if all of the hardware supports the extended LID
space. If not, the SM can fallback in a legacy compatibility mode and VMs should occupy LIDs
from the pLID space.

[000107] Figure 9 shows an extended local route header, in accordance with an
embodiment. As shown in the figure, within a local route header, a virtual lane (VL) 900
comprising 4 bits, a link version (Lver) 901 comprising 4 bits, a service level (SL) 902
comprising 4 bits, a LID extension flag (LEXTF) 903 comprising 1 bit, a first reserved bit (R1)
904 comprising 1 bit, a link next header (LNH) 905 comprising 2 bits, a destination local 1D
(DLID) 906 comprising 16 bits, a DLID prefix extension (DPF) 907 comprising 2 bits, a SLID
prefix extension (SPF) 908 comprising 2 bits, a second reserve bit (R2) 909 comprising 1 bit,
a packet length (PktLen) 910 comprising 11 bits, and a source local ID (SLID) 911 comprising
16 bits. In accordance with an embodiment, both reserved bits 904 and 909 can be set to
zZero.

[000108] In accordance with an embodiment, as described above, the LRH shown in Figure
9 utilizes four of the seven (original) reserved bits as prefix extensions for the destination local
ID 906 and the source local ID 908. When utilized, in connection with the LID extension flag,

this signals that that LRH is used in connection with a vLID, which can be routed via the
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secondary LFT in the switches. Alternatively, when the extensions 907 and 908 are
transmitted as zero (and then ignored by the receiver), then the LID is associated with the pLID
and is used as currently defined in the IBA.

[000109] Figure 10 shows two exemplary linear forwarding tables, in accordance with an
embodiment. As shown in Figure 10, linear forwarding table 916 is a forwarding table
associated with the pLIDs. The LFT spans entries 912 (entry O, indexed by DLID = 0) to entry
913 (entry 48K-1, indexed by DLID = 48K-1), where each entry in the LFT is indexed by the
standard 16 bit DLID, and contains a standard IB port number. In contrast, linear forwarding
table 917 is a secondary forwarding table associated with the vLIDs. The LFT spans entries
914 (entry 0, indexed by 18 bit DPF + DLID = 0) to entry 915 (entry 256K-1, indexed by 18 bit
DPF + DLID = 256K-1), where each entry is indexed by the expanded 18 bit DPF + DLID, and
contains a standard IB port number.

[000110] In accordance with an embodiment, a hybrid architecture can be used to form a
lightweight-vSwitch architecture. A vSwitch architecture that is able to migrate the LID together
with the migrated VMs scales well with respect to the subnet management, as there is no
requirement for additional signaling in order to re-establish connectivity with the peers after the
migration as opposed to a shared-LID scheme where the LID will change. On the other hand,
the shared-LID schemes scale well with respect to the LID space. A hybrid vSwitch+Shared-
vPort model can be implemented where the SM is aware of the available SR-IOV virtual
functions in the subnet, but certain VFs can receive a dedicated LID while others are routed in
a shared-LID fashion based on their GID. With some knowledge of the VM-node role, popular
VMs with many peers (e.g., servers) can be assigned dedicated LIDs (e.g. in order to be
considered separately while calculating routes and performing load balancing in the network),
while other VMs that are not interacting with many peers or run stateless services (and do not

need to be migrated, but can be re-spawned) can share the LID.

Routing Strategies for vSwitch-based Subnets

[000111] In accordance with an embodiment, to obtain greater performance, a routing
algorithm can consider the vSwitch architecture when calculating routes. In a Fat-Tree,
vSwitches can be identified in the topology discovery process by the distinct property that the
vSwitches have only one upward link to the corresponding leaf switch. Once the vSwitches
have been identified, a routing function can generate LFTs for all the switches such that the
traffic from each VM can find its path towards all other VMs in the network. Each VM has its
own address, thus, each VM can be routed independently of other VMs attached to the same
vSwitch. This results in a routing function that generates independent multiple paths towards

vSwitches in the topology, each carrying traffic to a specific VM. One drawback of this
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approach is that when the VM distribution is not uniform among vSwitches, the vSwitches with
more VMs are potentially assigned greater network resources. However, the single upward
link from the vSwitch to the corresponding leaf switch still remains the bottleneck link shared
by all the VMs attached to a particular vSwitch. As a result, sub-optimal network utilization
might be obtained. The simplest and fastest routing strategy is to generate paths between all
vSwitch-vSwitch pairs, and route VMs with the same paths as assigned to the corresponding
vSwitches. With both prepopulated and dynamic LID assignment schemes, each vSwitch has
a LID defined by the PF in the SR-IOV architecture. These PF LIDs for the vSwitches can be
used to generate LFTs in the first phase of the routing, while in the second phase the LIDs of
the VMs can be added to the generated LFTs. In the prepopulated LIDs scheme, the entries
to the VF LIDs can be added by copying the output port of the corresponding vSwitch. Similarly,
in the case of dynamic LID assignment when a new VM is booted, a new entry with the LID of
the VM and the output port determined by the corresponding vSwitch is added in all LFTs. An
issue with this strategy is that VMs belonging to different tenants that happen to share a
vSwitch can have intrinsic interference among them, due to the sharing of the same complete
path in the network. To solve this issue while still keeping high network utilization, a weighted
routing scheme for virtualized subnets can be used.

[000112] In accordance with an embodiment, a weighted routing scheme for vSwitch-based
virtualized subnets can be utilized. In such a mechanism, each VM on a vSwitch is assigned
a parameter weight that can be considered for balancing when calculating routes. The value
of the weight parameter reflects the proportion of the vSwitch to leaf switch link capacity
allocated to a VM in its vSwitch. For example, a simple configuration could assign each VM a
weight equals to 1/num_vms, where num_vms is the number of booted VMs on the
corresponding vSwitch hypervisor. Another possible implementation could be to assign higher
proportion of the vSwitch capacity to most critical VMs for prioritizing the traffic flowing towards
them. However, the cumulative weight of VMs per vSwitch will be equal on all vSwitches, so
the links in the topology can be balanced without being affected by the actual VM distribution.
At the same time, the scheme enables multipath routing where each VM can be independently
routed in the network, eliminating interference between same vSwitch VMs at the intermediate
links in the topology. The scheme can be combined with per VM rate limits enforcement on
each vSwitch to ensure that a VM is not allowed to exceed its allocated capacity. In addition,
in the presence of multiple tenant groups in the network, techniques like tenant-aware routing
can be integrated with the proposed routing scheme to provide network-wide isolation among
tenants.

[000113] In accordance with an embodiment, the below is a weighted routing for IB-based
Fat-Tree topologies. As the Fat-Tree routing algorithm, vSwitchFatTree recursively traverses

the Fat-Tree topology to set up LFTs in all switches for the LIDs associated with each VM in
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the subnet. The mechanism is deterministic and supports destination-based routing in which

all routes are calculated backwards starting at the destination nodes.

Weighted Fat-Tree routing algorithm for wvirtualized subnets

1l: procedure ROUTEVIRTUALIZEDNODES

2: for all s € leafSwitches[] do

3: sort vswitches in the increasing order of connected virtual
machines

4: for all v € vSwitches[] do

5: num vms <« GETTOTALVMS (V)

6: vin weight « 1/num vms

7 for all vm € vSwitches[] do

8: vm.weight « vm weight

9: s.LFT[vm.LID] « v.port

10: ROUTEDOWNGOINGBYGOINGUP (s, vm)

11: end for

12: end for

13: end for

14: end procedure

15: procedure ROUTEDOWNGOINGBYGOINGUP (s, vimn)

16: p <« GETLEASTLOADEDPORT (s.UpGroups|[])
17: rSwitch « p.Switch

18: rSwitch.LFT[vm.LID] « p

19: p.Dwn += vm.weight

20: ROUTEUPGOINGBYGOINGDOWN (s, vim)

21: ROUTEDOWNGOINGBYGOINGUP (rSwitch,vm)

22: end procedure

23: procedure ROUTEUPGOINGBYGOINGDOWN (s, vm)

24: for all g € s.DownGroups|[] do

25: skip g if the LFT(vm.LID) is part of this group
26: p <« GETLEASTLOADEDPORT (g)

27: rSwitch <« p.Switch

28: rSwitch.LFT[vm.LID] « p

29: p-Up += vm.weight
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30: ROUTEUPGOINGBYGOINGDOWN (rSwitch, wm)
31: end for

32: end procedure

[000114] In accordance with an embodiment, the vSwitchFatTree routing mechanism shown
above works as follows. Each VM is assigned a proportional weight that is calculated by
dividing the weight of a vSwitch node (e.g., taken as constant 1) with the total number of
running VMs on it. Different weighting schemes can also be implemented. For instance, an
implementation can choose to assign weights based on VM types. However, for the sake of
simplicity, this discussion focuses on a proportional weighting scheme. For each leaf switch,
the routing mechanism sorts the connected vSwitches in decreasing order based on the
connected VMs (line 3). The order is to ensure that VMs with higher weights are routed first,
so that the routes assigned to the links can be balanced. The routing mechanism passes
through all the leaf switches and their corresponding vSwitches, traversing up in the tree from
each VM to allocate the path towards the VM in the tree recursively, by calling
ROUTEDOWNGOINGBYGOINGUP (line 10). The down-going port at each switch is selected
based on the least-accumulated downward weight among all of the available up-going port
groups (ROUTEDOWNGOINGBYGOINGUP, line 16). When a down-going port is selected,
the mechanism can increase the accumulated downward weight for the corresponding port by
the weight of the VM being routed (ROUTEDOWNGOINGBYGOINGUP, line 19). After a down-
going port is set, the routing mechanism can assign upward ports for routes towards the VM
(and updates the corresponding upward weights for the ports) on all the connected downward
switches by descending down the tree (ROUTEUPGOINGBYGOINGDOWN, line 20). The
process is then repeated by moving up to the next level in the tree. When all VMs have been
routed, the algorithm also routes the physical LIDs of the vSwitches the same way as the VMs,
albeit with equal weights to balance vSwitch to vSwitch paths in the topology (not shown in the
pseudo-code). This is desirable to provide improved balancing when a minimum
reconfiguration method is used in the context of live migrations. Also, the routing path on the
base physical LIDs of the vSwitches can be used as a pre-determined path to deploy new VMs
quickly without the need for a reconfiguration. However, over a period of time overall routing
performance will be slightly decreased over original vSwitchFatTree routing. To limit
performance degradation, a reconfiguration based on vSwitchFatTree could take place offline
when a certain performance threshold is crossed.

[000115] In accordance with an embodiment, the above routing mechanism can provide
various improvements over regular/legacy routing mechanisms. Unlike the original Fat-Tree
routing algorithm which does not consider the vSwitches or VMs in the topology,

vSwitchFatTree marks vSwitches, and route each VM independently of the other VMs
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connected to a vSwitch. As well, to cater non-uniform VM distribution among the vSwitches,
each VM is assigned a weight that corresponds to the proportion of the link it is allocated on
the vSwitch. The weight is used in maintaining port counters for balancing path distribution in
the Fat-Tree. The scheme also enables generalized weighted Fat-Tree routing where each VM
can be assigned a weight based on its traffic profile or role priority in the network.

[000116] Figures 11-14 show illustrations of supporting efficient virtualization in a lossless
interconnection network, in accordance with an embodiment. Specifically, Figure 11 shows a
2-level fat-tree topology with four switches, root switches 925-926, and leaf switches 920-921,
four virtual switches, VS1 931, VS2 941, VS3 951, and VS4 961, associated with four
hosts/hypervisors, 930, 940, 950, 960, where the four virtual switches provide connectivity for
eight virtual machines, VM1 932, VM2, 933, VM3 942, VM4 943, VM5 952, VM6 953, VM7
954, and VM8 962.

[000117] To further elaborate on the vSwitchFatTree routing, consider a simple virtualized
Fat-Tree topology with four end nodes (vSwitches), as shown in Figure 11. Each of the
vSwitches connected to the leaf switch 920, VS1 and VS2, have two running VMs (VM1 and
VM2 for VS1, and VM3 and VM4 for VS2). The second leaf switch 921, has VS3 with three
VMs (VM5, VM6, VM7), while one VM is running on the host vSwitch VS4. Each leaf switch is
connected to both root switches, 925 and 926, so there are two alternative paths available to
set up routes towards each VM through the roots. Routing for the VMs connected to VS1 is
shown in Figure 12 using circles showing the selected downward path from the root switches.
VM 1 is routed using 925 — 920, while VM 2 is routed from 926 — 920. The corresponding
downward load counters are updated on the selected links, adding 0.5 for each VM. Similarly,
as shown in Figure 13, after adding routes for VS2, VMs 3 and 4 are routed through links 925
— 920 and 926 — 920, respectively. Note that after routing all the VMs connected to leaf
switch 920, the total downward load on both links is equal, even though the VMs are routed
individually. The VM distribution on the vSwitches connected to the leaf switch 921 is different,
so the vSwitch with one VM, VS4, will be routed first. The route 925 — 921 will be allocated to
VM 8, while all three VMs connected to VS3 will be routed from 926 — 921 to keep the
accumulated load on both downgoing links balanced. The final routing, shown in Figure 14,
has balanced load on each of the links together with independent routes towards VMs

wherever possible, given the VM distribution in the topology.

Minimum Overhead Reconfiguration on Virtual Machine Live Migration

[000118] In accordance with an embodiment, a dynamic reconfiguration mechanism, which
can be abbreviated as ItRC (Iterative Reconfiguration), iterates through all of the switches and
updates the routes if necessary when a VM is migrated. However, depending on the existing

LFTs (i.e., those LFTs already calculated and existing in each switch within the subnet) in the
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subnet, only a subset of the switches actually needs to be updated.

[000119] Figure 15 illustrates a potential virtual machine migration, in accordance with an
embodiment. More specifically, Figure 15 illustrates a special case of the migration of a VM
within a leaf switch where regardless of the network topology, only the corresponding leaf
switch needs an LFT update.

[000120] As shown in Figure 15, a subnet can comprise a number of switches, switch 1 —
switch 12, 1301-1312. Some of these switches can comprise leaf switches, such as switch 1
1301, switch 2 1302, Switch 11 1311, and switch 12 1312. The subnet can additionally
comprise a number of host/hypervisors 1330, 1340, 1350, and 1360, a number of virtual
switches VS 1 1331, VS 2 1341, VS 3 1351, and VS 4 1361. The various host/hypervisors
can, via virtual functions, host virtual machines within the subnet, such as VM1 1332, VM2
1333, VM3 1334, VM4 1342, VM5 1343, and VM6 1352.

[000121] In accordance with an embodiment, when VM3 migrates (as shown by the bold
arrow) from hypervisor 1330 to attach to the free virtual function at hypervisor 1340, only the
LFT at leaf switch 1 1301 needs to be updated because both hypervisors are connected to the
same leaf switch, and the local changes will not affect the rest of the network. For example, an
initial routing algorithm determines that the traffic from hypervisor 1360 towards hypervisor
1330 follows a first path marked by the solid lines (i.e., 12 -9 —» 5— 3 — 1). As well, traffic
from hypervisor 1360 towards hypervisor 1340 follows a second path marked by dashed lines
(e, 12 - 10 - 6 —» 4 — 1). When VM3 is migrated and ItRC is used to reconfigure the
network, traffic towards VM3 follows the first path towards hypervisor 1330 before the
migration, and would follow the second path towards hypervisor 1340 after the migration. In
this situation, the ItRC method will update half of the total switches (6/12) given that the Fat-
Tree routing algorithm was used for the initial routing, however, only the single leaf switch
needs to be updated to keep the migrated VM connected.

[000122] In accordance with an embodiment, by limiting the number of switch updates after
a VM migration, the network can be reconfigured quicker and the time and overhead needed
over a traditional routing update can be reduced. This can be achieved via a topology-aware
fast reconfiguration method for supporting VM migrations on Fat-Trees, called FTreeMinRC,

based on a topology-agnostic skyline technique.

Sub-Trees and Switch Tuples in Fat-Trees

[000123] In accordance with an embodiment, the following description utilizes a minimum
overhead network reconfiguration method, FTreeMinRC, using XGFTs as an exemplary Fat-
Tree network. However, the concepts presented here are also valid for PGFTs and RLFT. An
XGFT(n;my, ....mpwy, ...,Wy) is a Fat-Tree with n + 1 level of nodes. Levels are denoted from 0

to n, with compute nodes at level n, and switches at all other levels. Except for the compute
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nodes which do not have children, all nodes af level i 0 < i< n - 1, have m; child nodes.
Similarly, except for the root switches which do not have parents, all other nodes at level j, 1<
i < n, have w;+71 parent nodes.

[000124] An XGFT(n+ 1,my, ...,Mps1; Wy, ...,Wa+1) is constructed recursively by connecting m,
distinct copies of the XGFT(n + 1,my, ...,mywy, ..., w,) with [[*} w; additional switches at the
new top level. By using this definition, the following properties apply: Forn > 0, each XGFT
with n + 71 levels is made up of m, sub-trees (i.e., for each sub-tree with n levels in an XGFT
of | levels, | > n, there is one immediate super-tree with n + 1 levels, that connects m, n-level
sub-trees). As well, from a network connectivity perspective, each sub-tree in an XGFT can
be considered as a distinct XGFT, and the top-level switches in the sub-tree defines its skyline
towards its immediate super-tree.

[000125] In accordance with an embodiment, each switch in an XGFT with n + 1 levels can
be denoted by a unique n-tuple, (/, x1, X2, ..., X»). The left most tuple value, /, denotes the level
at which the tree is located, while the rest of the values, x4, Xz, ..., X, represent the location of
the switch in the tree corresponding to the other switches. In particular, a switch A at level /, (],
ais, ..., a, ..., an), is connected to a switch B atlevel / + 1, (I + 1, by, ..., by, bi1..., by) if and only
if a; = b; for all the values except fori=/+ 1.

[000126] Figure 16 illustrates switch tuples, in accordance with an embodiment. More
specifically, the figure illustrates switch tuples as allocated by the OpenSM’s Fat-Tree routing
algorithm implemented for an example Fat-Tree, XGFT(4; 2, 2, 2, 2; 2, 2, 2, 1). The Fat-Tree
1400 can comprise switches 1401-1408, 1411-1418, 1421-1428, and 1431-1438. As the Fat-
Tree has n = 4 switch levels (marked as row 0 at the root level, until row 3 at the leaf level),
the Fat-Tree is composed of m, = 2 first-level sub-trees with n’ = n - 7 = 3 switch levels each.
This is shown in the figure by two boxes defined by a dashed line that enclose the switches
from levels 1 to 3, each first-level sub-tree receiving an identifier of 0 or 1. Each of those first-
level sub-trees is composed of m; = 2 second-level sub-trees with n” = n’— 1 = 2 switch levels
each above the leaf switches. This is shown in the figure by four boxes defined by a dotted
line that enclose the switches from levels 2 to 3, each second-level sub-tree receiving an
identifier of O or 1. Similarly, each of the leaf switches can also be considered as a sub-tree,
shown in the figure by eight boxes defined by a dash-dot line, and each of these sub trees
receiving an identifier of O or 1.

[000127] In accordance with an embodiment, and as exemplified din the figure, tuples, such
as four-number tuples, can be assigned to the various switches, each number of the tuple
indicating a specific sub-tree correspondence for the position of each value in the tuple. For
example, switch 1413 (which can be referred to as Switch 1_3) can be assigned with tuple

1.0.1.1, representing its location at level 1 and Oth first-level sub-tree.
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Fat-Tree Aware Minimum Reconfiguration with FTreeMinRC in the Context of Live

Migration
[000128] In accordance with an embodiment, switch tuples encode information about the

location of the switch in correspondence to the sub-trees in the topology. FTreeMinRC can use
this information to enable quick reconfiguration in the case of live VM migration. The tuple
information can be used to find the skyline with the least number of switches that needs to be
reconfigured by the SM when a VM is migrated. In particular, when a VM is migrated between
two hypervisors in a Fat-Tree topology, the skyline representing the minimum number of
switches that needs to be updated, is formed by all top-level switches of all the sub-trees that
are involved in the migration.

[000129] In accordance with an embodiment, when a VM is live migrated, a switch-marking
mechanism can start from both leaf switches where the source and the destination hypervisors
are connected, and compares the tuples of the switches. If the tuples match then the
mechanism can determine that the VM is being migrated within the leaf switch. Thus, only the
corresponding leaf switch is marked for reconfiguration. However, when tuples do not match,
the upward links from both the source and the destination leaf switches are traced. The
switches that are located one level up are the top-level switches of the immediate super-tree
that the leaf-level sub-trees are connected to, and the only possible hops before reaching the
leaf-switches when traversing the tree downwards. The mechanism can then compare the
source and destination leaf switches tuple with the newly traced switches, after adjusting the
tuple value to reflect the current level and the values that correspond to the sub-tree(s) of the
current tree are wild-carded. Again, the traced switches (that are top-level switches for a
corresponding sub-tree) are marked for updating, and if the comparisons from both the source
and destination switch tuples match the tuples of all the traced switches, the tracing stops.
Otherwise, the same procedure is repeated until the mechanism locates common ancestor
switches from both ends. In the worst case, the mechanism can stop after reaching the root
switches of the Fat-Tree topology. Since all the upward-paths are traced starting from the leaf
level, and the skyline switches of the consecutive sub-trees are marked, when the mechanism
reaches the topmost sub-tree that is affected by the migration, the mechanism has already
selected on the way all of the switches that are potential traffic gateways towards the lower
level switches, and the hypervisors that participate in the live migration. Thus, the mechanism
has marked all the switches that form the skyline of the affected part of the network due to the
live migration.

[000130] In accordance with an embodiment, the switch marking mechanism finds the
minimum number of switches that needs to be updated from a physical connectivity
perspective. However, it can occur that not all of these switches contain active paths calculated

by the routing algorithm towards the LIDs affected by the reconfiguration. Thus, the switches
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that contain the active routes are prioritized in the updating procedure, while the rest of the
switches that have the secondary routes can be updated later.

[000131] In accordance with an embodiment, a Fat-Tree routing mechanism always routes
traffic to a given destination through the same root switch. As only a single path between a
root switch and an end node exists in the topology, once the root switch is located that has
been selected to represent the given end node, the intermediate switches can be found that
are used to route traffic to the end node. In order to find the active routes, a path can be traced
from the source to the destination LID of the participating hypervisors and vice versa. Switches
can be marked that are a subset of the switches already selected for reconfiguration, and
prioritize the LFT updates of those switches. Later, to keep all the LFTs valid, the remaining
selected switches can be updated.

[000132] Figure 17 illustrates a reconfiguration process, in accordance with an embodiment.
The Fat-Tree 1400 can comprise switches 1401-1408, 1411-1418, 1421-1428, and 1431-
1438. As the Fat-Tree has n = 4 switch levels (marked as row 0 at the root level, until row 3 at
the leaf level), the Fat-Tree is composed of my = 2 first-level sub-trees with n’=n - 7 = 3 switch
levels each. Each of those first-level sub-trees is composed of m, = 2 second-level sub-trees
with n” = n’ - 1 = 2 switch levels each above the leaf switches. Similarly, each of the leaf
switches can also be considered as a sub-tree.

[000133] In accordance with an embodiment, Figure 17 illustrates a situation where a VM is
migrated between two hypervisors that are connected to the leaf switches with tuples 3.0.0.0
and 3.0.1.1. These two tuples are used as the basis for the comparison as the mechanism
traces the paths upwards from the selected leaf switches. In this example, the common
ancestor switches are found on level 1. Level 0 is the root level, and level 3 is the leaf level.
The links between those switches that have the tuple information displayed are the links that
can be traced throughout the execution of the mechanism, and those same switches can all
be marked for update. The five of the switches highlighted (switches 1431, 1421, 1411, 1423,
and 1434) and the links between them, represent the active routes and their LFT updates can
be prioritized.

[000134] In accordance with an embodiment, FTreeMinRC minimizes the number of LFT
updates that need to be sent to the switches, in order to provide rapid connectivity with a
minimum overhead in a virtualized data center that supports live migrations.

[000135] Figure 18 is a flow chart of a method for supporting efficient virtualization in a
lossless interconnection network, in accordance with an embodiment. At step 1810, the
method can provide, at one or more computers, including one or more microprocessors, one
or more switches, the one or more switches comprising at least a leaf switch, wherein each of
the one or more switches comprise a plurality of ports, a plurality of host channel adapters,

wherein each of the host channel adapters comprise at least one virtual function, at least one
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virtual switch, and at least one physical function, and wherein the plurality of host channel
adapters are interconnected via the one or more switches, a plurality of hypervisors, wherein
each of the plurality of hypervisors is associated with at least one host channel adapter of the
plurality of host channel adapters, and a plurality of virtual machines, wherein each of the
plurality of virtual machines is associated with at least one virtual function.

[000136] At step 1820, the method can arrange the plurality of host channel adapters with
one or more of a virtual switch with prepopulated local identifiers (LIDs) architecture or a virtual
switch with dynamic LID assignment architecture.

[000137] At step 1830, the method can assign each virtual switch with a LID, the assigned
LID corresponding to a LID of an associated physical function.

[000138] At step 1840, the method can calculate one or more linear forwarding tables based
at least upon the LIDs assigned to each of the virtual switches, each of the one or more LFTs
being associated with a switch of the one or more switches.

[000139] Figure 19 is a flow chart of a method for supporting efficient virtualization in a
lossless interconnection network, in accordance with an embodiment. At step 1910, the
method can provide, at one or more computers, including one or more microprocessors, one
or more microprocessors; one or more switches, the one or more switches comprising at least
a leaf switch, wherein each of the one or more switches comprise a plurality of ports; a plurality
of host channel adapters, wherein each of the host channel adapters comprise at least one
virtual function, at least one virtual switch, and at least one physical function, and wherein the
plurality of host channel adapters are interconnected via the one or more switches; a plurality
of hypervisors, wherein each of the plurality of hypervisors is associated with at least one host
channel adapter of the plurality of host channel adapters, and a plurality of virtual machines,
wherein each of the plurality of virtual machines is associated with at least one virtual function.
[000140] At step 1920, the method can arrange the plurality of host channel adapters with
one or more of a virtual switch with prepopulated local identifiers (LIDs) architecture or a virtual
switch with dynamic LID assignment architecture.

[000141] At step 1930, the method can assign each of the virtual switches a pLID of a plurality
of pLIDs, the assigned pLID corresponding to a pLID of an associated physical function.
[000142] At step 1940, the method can assign each of the plurality of virtual machines a vLID
of a plurality of vLIDs, wherein an LID space comprises the plurality of pLIDs and the plurality
of vLIDs.

[000143] Many features of the present invention can be performed in, using, or with the
assistance of hardware, software, firmware, or combinations thereof. Consequently, features
of the present invention may be implemented using a processing system (e.g., including one
Or more processors).

[000144] Features of the present invention can be implemented in, using, or with the
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assistance of a computer program product which is a storage medium (media) or computer
readable medium (media) having instructions stored thereon/in which can be used to program
a processing system to perform any of the features presented herein. The storage medium
can include, but is not limited to, any type of disk including floppy disks, optical discs, DVD,
CD-ROMs, microdrive, and magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs,
DRAMs, VRAMSs, flash memory devices, magnetic or optical cards, nanosystems (including
molecular memory ICs), or any type of media or device suitable for storing instructions and/or
data.

[000145] Stored on any one of the machine readable medium (media), features of the
present invention can be incorporated in software and/or firmware for controlling the hardware
of a processing system, and for enabling a processing system to interact with other mechanism
utilizing the results of the present invention. Such software or firmware may include, but is not
limited to, application code, device drivers, operating systems and execution
environments/containers.

[000146] Features of the invention may also be implemented in hardware using, for example,
hardware components such as application specific integrated circuits (ASICs). Implementation
of the hardware state machine so as to perform the functions described herein will be apparent
to persons skilled in the relevant art.

[000147] Additionally, the present invention may be conveniently implemented using one or
more conventional general purpose or specialized digital computer, computing device,
machine, or microprocessor, including one or more processors, memory and/or computer
readable storage media programmed according to the teachings of the present disclosure.
Appropriate software coding can readily be prepared by skilled programmers based on the
teachings of the present disclosure, as will be apparent to those skilled in the software art.
[000148] While various embodiments of the present invention have been described above, it
should be understood that they have been presented by way of example, and not limitation. It
will be apparent to persons skilled in the relevant art that various changes in form and detail
can be made therein without departing from the spirit and scope of the invention.

[000149] The present invention has been described above with the aid of functional building
blocks illustrating the performance of specified functions and relationships thereof. The
boundaries of these functional building blocks have often been arbitrarily defined herein for the
convenience of the description. Alternate boundaries can be defined so long as the specified
functions and relationships thereof are appropriately performed. Any such alternate
boundaries are thus within the scope and spirit of the invention.

[000150] The foregoing description of the present invention has been provided for the
purposes of illustration and description. It is not intended to be exhaustive or to limit the

invention to the precise forms disclosed. The breadth and scope of the present invention
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should not be limited by any of the above-described exemplary embodiments. Many
modifications and variations will be apparent to the practitioner skilled in the art. The
modifications and variations include any relevant combination of the disclosed features. The
embodiments were chosen and described in order to best explain the principles of the invention
and its practical application, thereby enabling others skilled in the art to understand the
invention for various embodiments and with various modifications that are suited to the
particular use contemplated. It is intended that the scope of the invention be defined by the

following claims and their equivalents.
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Claims:

What is claimed is:

1. A system for supporting efficient virtualization in a lossless interconnection network,
comprising:

one or more Microprocessors;

one or more switches, wherein each of the one or more switches comprises a plurality
of ports;

a plurality of host channel adapters, wherein each of the host channel adapters
comprises at least one virtual function, at least one virtual switch, and at least one physical
function, and wherein the plurality of host channel adapters are interconnected via the one or
more switches;

a plurality of hypervisors, wherein each of the plurality of hypervisors is associated with
at least one host channel adapter of the plurality of host channel adapters; and

a plurality of virtual machines, wherein each of the plurality of virtual machines is
associated with at least one virtual function;

wherein the plurality of host channel adapters is arranged with one or more of a virtual
switch with prepopulated local identifiers (LIDs) architecture or a virtual switch with dynamic
LID assignment architecture;

wherein each of the virtual switches is assigned a LID corresponding to a LID of an
associated physical function;

wherein one or more linear forwarding tables (LFTs) are calculated based at least upon
the LIDs assigned to each of the virtual switches, each of the one or more of LFTs being

associated with a switch of the one or more switches.

2. The system of Claim 1, wherein each of the virtual machines is assigned a weight
parameter, and
wherein each of the weight parameters is used in calculating the one or more linear

forwarding tables.

3. The system of Claim 2, wherein the one or more switches comprises at least a leaf
switch, and each of the weight parameters reflects a proportion of the traffic of each link

between a virtual switch and a leaf switch.

4. The system of Claim 2 or 3, wherein calculating the one or more linear forwarding tables

comprises:
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for a virtual machine, selecting a down-going port at a switch based on a least-
accumulated downward weight among available up-going port groups; and
increasing an accumulated downward weight for the selected port by the assigned

weight parameter of the virtual machine.

5. The system of any preceding Claim, wherein each of the one or more linear forwarding

tables is calculated starting at destination nodes.

6. The system of any preceding Claim,

wherein a first virtual machine of the plurality of virtual machines, running on a first
hypervisor of the plurality of hypervisors, operates to perform a live migration to a second
hypervisor of the plurality of hypervisors;

wherein, after the first virtual machine performs a live migration from the first hypervisor

to the second hypervisor, at least one LFT is recalculated.

7. The system of Claim 6, wherein recalculating the at least one LFT is limited to a least
number of LFTs, the minimum number of LFTs being determined based at least on switch
tuples, the switch tuples being used to find a skyline with the least number of LFTs that need

to be recalculated.

8. A method for supporting efficient virtualization in a lossless interconnection network,
comprising:
providing, at one or more computers, including one or more microprocessors:

one or more switches, wherein each of the one or more switches comprises a
plurality of ports,

a plurality of host channel adapters, wherein each of the host channel adapters
comprises at least one virtual function, at least one virtual switch, and at least one
physical function, and wherein the plurality of host channel adapters are interconnected
via the one or more switches,

a plurality of hypervisors, wherein each of the plurality of hypervisors is
associated with at least one host channel adapter of the plurality of host channel
adapters, and

a plurality of virtual machines, wherein each of the plurality of virtual machines
is associated with at least one virtual function;
arranging the plurality of host channel adapters with one or more of a virtual switch with

prepopulated local identifiers (LIDs) architecture or a virtual switch with dynamic LID

assignment architecture;
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assigning each virtual switch with a LID, the assigned LID corresponding to a LID of an
associated physical function; and

calculating one or more linear forwarding tables based at least upon the LIDs assigned
to each of the virtual switches, each of the one or more LFTs being associated with a switch of

the one or more switches.

9. The method of Claim 8, wherein each of the virtual machines is assigned a weight
parameter, and
wherein each of the weight parameters is used in calculating the one or more linear

forwarding tables.

10. The method of Claim 9, wherein the one or more switches comprises at least a leaf
switch, and each of the weight parameters reflects a proportion of the traffic of each link

between a virtual switch and a leaf switch.

1. The method of Claim 9 or 10, wherein calculating the one or more linear forwarding
tables comprises:

for a virtual machine, selecting a down-going port at a switch based on a least-
accumulated downward weight among available up-going port groups; and

increasing an accumulated downward weight for the selected port by the assigned

weight parameter of the virtual machine.

12. The method of any of Claims 9 to 11, wherein each of the one or more linear forwarding

tables is calculated starting at destination nodes.

13. The method of any of Claims 8 to 12,

wherein a first virtual machine of the plurality of virtual machines, running on a first
hypervisor of the plurality of hypervisors, operates to perform a live migration to a second
hypervisor of the plurality of hypervisors;

and after the first virtual machine performs a live migration from the first hypervisor to

the second hypervisor, at least one LFT is recalculated.

14. The method of Claim 13, wherein recalculating the at least one LFT is limited to a least
number of LFTs, the minimum number of LFTs being determined based at least on switch
tuples, the switch tuples being used to find a skyline with the least number of LFTs that need

to be recalculated.
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15. A non-transitory computer readable storage medium, including instructions stored
thereon for supporting efficient virtualization in a lossless interconnection network which when
read and executed by one or more computers cause the one or more computers to perform

the method of any preceding Claim.

16. A non-transitory computer readable storage medium, including instructions stored
thereon for supporting efficient virtualization in a lossless interconnection network which when
read and executed by one or more computers cause the one or more computers to perform
steps comprising:

providing, at one or more computers, including one or more microprocessors:
one or more switches, wherein each of the one or more switches comprises a
plurality of ports,
a plurality of host channel adapters, wherein each of the host channel adapters
comprises at least one virtual function, at least one virtual switch, and at least one
physical function, and wherein the plurality of host channel adapters are interconnected
via the one or more switches,
a plurality of hypervisors, wherein each of the plurality of hypervisors is
associated with at least one host channel adapter of the plurality of host channel
adapters, and
a plurality of virtual machines, wherein each of the plurality of virtual machines
is associated with at least one virtual function;
arranging the plurality of host channel adapters with one or more of a virtual switch with
prepopulated local identifiers (LIDs) architecture or a virtual switch with dynamic LID
assignment architecture;

assigning each virtual switch with a LID, the assigned LID corresponding to a LID of an
associated physical function; and

calculating one or more linear forwarding tables based at least upon the LIDs assigned
to each of the virtual switches, each of the one or more LFTs being associated with a switch of

the one or more switches.

17. The non-transitory computer readable storage medium of Claim 16, wherein each of
the virtual machines is assigned a weight parameter, and
wherein each of the weight parameters is used in calculating the one or more linear

forwarding tables.

18. The non-transitory computer readable storage medium of Claim 17, wherein the one or

more switches comprises at least a leaf switch, and each of the weight parameters reflects a
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proportion of the traffic of each link between a virtual switch and a leaf switch.

19. The non-transitory computer readable storage medium of Claim 17 or 18, wherein
calculating the one or more linear forwarding tables comprises:

for a virtual machine, selecting a down-going port at a switch based on a least-
accumulated downward weight among available up-going port groups; and

increasing an accumulated downward weight for the selected port by the assigned

weight parameter of the virtual machine.

20. The non-transitory computer readable storage medium of any of Claims 16 to 19,
wherein each of the one or more linear forwarding tables is calculated starting at destination

nodes.

21. The non-transitory computer readable storage medium of any of Claims 16 to 20,

wherein a first virtual machine of the plurality of virtual machines, running on a first
hypervisor of the plurality of hypervisors, operates to perform a live migration to a second
hypervisor of the plurality of hypervisors;

wherein, after the first virtual machine performs a live migration from the first hypervisor
to the second hypervisor, at least one LFT is recalculated; and

wherein recalculating the at least one LFT is limited to a least number of LFTs, the
minimum number of LFTs being determined based at least on switch tuples, the switch tuples

being used to find a skyline with the least number of LFTs that need to be recalculated.
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900 Virtual Lane (VL) — 4 bits

901 Link Version (Lver) — 4 bits
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903 LID Extension Flag (LEXTF) — 1 bit
904 Reserved (R1) — 1 bit - zero

905 Link Next Header (LNH) — 2 bits
906  Destination Local ID (DLID) — 16 bits
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Providing, at one or more computers, including one or more microprocessors, one or
more switches, the one or more switches comprising at least a leaf switch, wherein each
of the one or more switches comprise a plurality of ports, a plurality of host channel
adapters, wherein each of the host channel adapters comprise at least one virtual
function, at least one virtual switch, and at least one physical function, and wherein the
plurality of host channel adapters are interconnected via the one or more switches, a
plurality of hypervisors, wherein each of the plurality of hypervisors are associated with
at least one host channel adapter of the plurality of host channel adapters, and a
plurality of virtual machines, wherein each of the plurality of virtual machines are
associated with at least one virtual function.

L\ 1810

!

Arranging the plurality of host channel adapters with one or more of a virtual switch with
prepopulated local identifiers (LIDs) architecture or a virtual switch with dynamic LID

1820

C

assignment architecture.

Assigning each virtual switch with a LID, the assigned LID corresponding to a LID of an

1830

0

associated physical function.

Calculating one or more linear forwarding tables based at least upon the LIDs assigned
to each of the virtual switches, each of the one or more LFTs being associated with a
switch of the one or more switches

"\ _1840
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Providing, at one or more computers, including one or more microprocessors, one or
more microprocessors; one or more switches, the one or more switches comprising at
least a leaf switch, wherein each of the one or more switches comprise a plurality of
ports; a plurality of host channel adapters, wherein each of the host channel adapters
comprise at least one virtual function, at least one virtual switch, and at least one
physical function, and wherein the plurality of host channel adapters are interconnected
via the one or more switches; a plurality of hypervisors, wherein each of the plurality of
hypervisors are associated with at least one host channel adapter of the plurality of host
channel adapters, and a plurality of virtual machines, wherein each of the plurality of
virtual machines are associated with at least one virtual function.

L\ 1o

!

Arranging the plurality of host channel adapters with one or more of a virtual switch with
prepopulated local identifiers (LIDs) architecture or a virtual switch with dynamic LID

L\ o0

assignment architecture.

Assigning each of the virtual switches a pLID of a plurality of pLIDs, the assigned pLID
corresponding to a pLID of an associated physical function.

1930

0

!

Assigning each of the plurality of virtual machines a vLID of a plurality of vLIDs; wherein
an LID space comprises the plurality of pLIDs and the plurality of vLIDs.

"\ _1940

FIGURE 19
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