Abstract: An apparatus and method is described for seeding cells on a sample or specimen. The cells may be selectively and locally seeded on an upper and lower surface of a planar sample or specimen or on either or both of an interior luminal surface and exterior surface of a hollow sample or specimen. The apparatus includes a chamber suitable for cell seeding, cell growth, and cell conditioning.
CELL SEEDING MODULE

Cross-Reference To Related Applications:

[0001] Not Applicable

Federal Sponsorship:

[0002] Not Applicable

Joint Research Agreement:

[0003] Not Applicable

TECHNICAL FIELD

[0004] This invention pertains generally to a method and apparatus to deposit cells within a chamber. This invention also pertains to a portable chamber for cell growth capable of maintaining a sterile system closed to an external environment.

BACKGROUND

[0005] Generally, growth of cells on tissue, vascular grafts, biomedical prosthesis, substrate, and other medical devices (hereinafter referred to simply as a sample or specimen) has previously been described. Prior devices capable of depositing and growing cells typically submerge the sample with a cell suspended media, attempting to deposit cells uniformly on the entire sample. Often, pressure or other forces are used to influence adhesion of the cells on the sample. Many of these devices are designed for depositing cells onto a particularly shaped sample. By way of example, prior devices describe seeding cells on one surface of a biological vascular graft.

[0006] Other prior devices describe techniques for depositing a complex arrangement of an array of cells onto relatively planar substrates. For example, a multi step approach to deposit cells has been utilized to thereby build layers of proteins and cells utilizing masks to control the location of deposition and exposure of the cells on an exterior surface of the substrate.
Other printing methods have been contemplated to, in essence, print cells onto an exterior surface of a Petri dish, glass, paper, plastic or other relatively planar substrate.

SUMMARY

[0007] Embodiments of the invention include an apparatus and method for a localized deposition of cells in a predefined pattern onto either a planar or three dimensional specimen or sample, including a tissue construct, vascular graft, biomedical prosthesis, or other medical device. The sample may be rotated while the cells are deposited onto the sample. Alternatively, the sample may be actuated linearly to deposit a row of cells in a straight line on the sample. In an embodiment of the invention, a tubular specimen or sample having a lumen may have cells deposited on one or both of an inner luminal surface and an exterior surface of the sample. Further, the tubular sample may be rotated or linearly actuated to thereby deposit cells locally on the sample to create a ring or linear pattern on either or both of the interior and exterior of the tubular sample. Alternatively, the sample may be both rotated and linearly actuated while depositing localized cells on the sample to create multiple variations of curvilinear patterns on the three dimensional sample.

[0008] Also described herein is an interchangeable, portable, chamber system that is capable of holding and rotating the sample within the chamber. The cells may be deposited on the sample contained within a sealed or pressurized chamber. The chamber provides for multiple ports to facilitate the delivery of nutrients, fluids, or gases within the chamber. Further, the chamber is suitable for use with other instrumented and servo controlled devices to allow for conditioning the sample and is particularly well suited for use with the bioreactors described in US Patent No. 7,410,792 and U.S. Patent No. 7,348,175.

[0009] The accompanying drawings, which are incorporated in and constitute a portion of this specification, illustrate embodiments of the invention and, together with the detailed description, serve to further explain the invention. The embodiments illustrated herein are presently preferred; however, it should be understood, that the invention is not limited to the precise
arrangements and instrumentalities shown. For a fuller understanding of the
nature and advantages of the invention, reference should be made to the
detailed description in conjunction with the accompanying drawings.

DESCRIPTION OF THE DRAWINGS

5

[0010] In the various figures, which are not necessarily drawn to scale, like

numerals throughout the figures identify substantially similar components.

[0011] FIG. 1 is a perspective view of a cell seeding module in accordance

with an embodiment of the invention;

10

[0012] FIG. 2 is a partial sectional view of the cell seeding module of the type

shown in FIG. 1;

[0013] FIG. 3 is a top plan view of the cell seeding module of the type shown

in FIG. 1;

[0014] FIG. 4 is a perspective view of a linear actuator system suitable for use

in the cell seeding module of the type shown in FIG. 1;

15

[0015] FIG. 5 is an exploded perspective view of a linear actuator system of

the type shown in FIG. 4;

[0016] FIG. 6 is a perspective view of a chamber grip actuator suitable for use

in the cell seeding module of the type shown in FIG. 1;

20

[0017] FIG. 7 is an exploded perspective view of a chamber grip actuator of

the type shown in FIG. 6;

[0018] FIG. 8 is a perspective view of an interchangeable, portable, bioreactor

chamber suitable for use with a chamber grip actuator of the type shown in

FIG. 6;

25

[0019] FIG. 9 is an exploded perspective view of a bioreactor chamber of the

type shown in FIG. 8;

[0020] FIG. 10 is a perspective view of a delivery system suitable for use in

the cell seeding module of the type shown in FIG. 1;

[0021] FIG. 11 is an exploded perspective view of a delivery system of the

type shown in FIG. 10;

30

[0022] Fig. 12 is a schematic of preparation and division of a tubular sample;

[0023] Fig. 13 is a fluorescence microphotograph of a cell seeded sample

showing cell distribution uniformity;
Fig. 14 is a fluorescence microphotograph of a cell seeded sample showing cell distribution uniformity;

Fig. 15 is a fluorescence microphotograph of a cell seeded sample showing cell distribution uniformity; and

Fig. 16 is a fluorescence microphotograph of a cell seeded sample showing cell distribution uniformity.

DETAILED DESCRIPTION

The following description provides detail of various embodiments of the invention, one or more examples of which are set forth below. Each of these embodiments are provided by way of explanation of the invention, and not intended to be a limitation of the invention. Further, those skilled in the art will appreciate that various modifications and variations may be made in the present invention without departing from the scope or spirit of the invention. By way of example, those skilled in the art will recognize that features illustrated or described as part of one embodiment, may be used in another embodiment to yield a still further embodiment. Thus, it is intended that the present invention also cover such modifications and variations that come within the scope of the appended claims and their equivalents.

The cell seeding and growing apparatus of the present invention include a chamber having one or more grips rotatable along a longitudinal axis of the chamber and grips. The grips may be contained within the chamber and rotated independently or in unison within the chamber without rotating the chamber itself. Also included are one or more delivery systems, each delivery system including a delivery conduit having a portion aligned within the chamber. Further included are one or more linear actuators that linearly displace the grips relative to the delivery conduits and one or more rotary actuators that rotate the grips within said chamber relative to the delivery conduits. The linear actuator system may interlock with the chamber and, additionally, may interlock with the rotary actuator.

Alternatively, the cell seeding and growing apparatus may include one or more grips (independent and without being enclosed in a chamber system). The grips may be rotated independently or in unison about an approximately
longitudinal axis. Also included is a delivery systems that has an approximately longitudinal axis and includes one or more delivery conduits aligned in linear relation with the longitudinal axis of the grips. The delivery conduits may further be aligned between grips. An actuator system may be included that interlinks the grips and rotates the grips either independently or in unison along a longitudinal axis of the grips. Another actuator system may be included to increase or decrease a distance between the grips and the delivery system. As the distance is increased or decreased, at least one of the grips and delivery system are displaced along a longitudinal axis of the same. Further the actuator systems may interlock and may be interchanged with other systems.

Alternatively, the system for seeding cells on a sample may include a chamber including at least two opposing grips for holding a sample, a rotary system coupled to the opposing grips (to rotate the grips about a longitudinal axis of the grips), one or more delivery systems (to deliver a media between the grips), and a linear actuator that linearly displaces at least one of the opposing grips and the delivery systems to thereby increase or decrease a distance between the grips and the delivery systems. The delivery systems may include a delivery conduit having at least a portion of the delivery conduit positioned within the chamber between the grips. The chamber may include one or more ports suitable for receiving at least one of a fluid delivery, a gas delivery, a temperature transducer, a flow transducer, a pressure transducer, or a linear displacement transducer. Further, the rotary system may interlock with the chamber and may also interlock with the linear actuator.

A user of the apparatus may use the apparatus to deliver or otherwise deposit media to a localized site on the sample. The media may include cells suspended in a solution, nutrients, fluids, gases or other substance. The sample may be secured to the grips in a manner suitable to rotate the sample around an axis of the sample, where the axis of the sample may be aligned approximately parallel with a surface of the sample to which the media is to be delivered. After selecting a sample and securing the sample to grips, the user may selectively rotate or linearly displace the sample along the sample axis. One or more delivery conduits may be used to deliver selected media to the sample. An embodiment of the invention includes aligning a first delivery end
of a first delivery conduit of a delivery system with the sample. Additionally, a
second delivery conduit, coupled to the same or separate delivery system,
may be aligned with the sample. A site of the sample may be displaced
relative to an end of the delivery conduit by rotating the sample, linearly
displacing the sample along the axis of the sample or linearly displacing the
conduit, while simultaneously or intermittently delivering media to the sample.
Those skilled in the art will appreciate that it may be desired to deliver or
deposit media on a tubular sample having a lumen extending through at least
a portion of the sample. The user may align a second delivery conduit to
either an exterior surface of the sample or to a surface within a lumen of the
sample.

[0032] Turning attention now to the Figures, embodiments of the cell seeding
module or system 10 of the present invention will now be described in more
detail and are generally shown in Figures 1-3. Cell seeding module 10
includes a linear actuator system 20, a chamber grip actuator 30, an
interchangeable chamber 40, cell delivery systems or modules 50, and
controller 60. The cell delivery systems 50 are shown electrically coupled in
parallel to controller 60 through electric leads 62-66. Although not shown, the
linear actuator system 20 and chamber grip actuator 30 may also be
electrically coupled to controller 60 or alternatively may be coupled to
independent controllers.

[0033] Figures 4 and 5 show generally an embodiment of the linear actuator
system 20. Base plate 202 includes foot pads 212 attached to a bottom of the
base plate 202. The foot pads 212 are slightly compressible so that when the
cell seeding system 10 rests on an uneven surface, compression of the foot
pads 212 compensate for the uneven surface and may be adjusted to keep
the cell seeding system 10 level. Linear stage 204 is attached to base plate
202 and includes a worm 206 and worm gear base 208. Stepper motor 210 is
coupled to worm 206. When stepper motor 210 is activated, the worm gear
base 208 is actuated along worm 206 in either direction, depending upon the
direction the worm 206 is turned by stepper motor 210. A mover base plate
214 is attached to the worm gear base 208, and includes guide pegs 216
attached to an upper surface of the mover base plate 214. The guide pegs
216 interlock with a mover top plate 302 of the chamber grip actuator system
30 (see also Figures 6 and 7). The interlocking of the linear actuator 20 and chamber grip actuator 30, provides for a quick interconnect and removal of the chamber system.

[0034] Figures 6 and 7 show an embodiment of the chamber grip actuator 30. Mover top plate 302 includes drive bar guide standoffs 306, drive bar guide 314 and motor plate 316 attached thereto. Drive bar 304 is positioned through apertures of the drive bar guide standoffs 306, drive bar guide 314 and motor plate 316 and an end of the drive bar 304 is coupled to rotary stepper motor 318. Drive gears 310 may be press fit or otherwise affixed to the drive bar 304. Bearings 308 are positioned within the apertures of drive bar guide standoffs 306 and drive bar guide 314. Drive bar guide 304 extends through bearings 308 which provides for a stable rotation of drive bar 304. Shims 312 are positioned between drive gear 310 and bearings 308 to ensure a space between drive gear 310, drive bar guide standoffs 306, and drive bar guide 314, and to reduce wear or rubbing of the drive gear 310 against the same. Chamber holder 320 is attached to a top portion of drive bar guide standoffs 306. Knurled nuts 430 are sized to fit within apertures extending through a top portion of chamber holder 320 and interlock or engage interchangeable chamber 40 with chamber grip actuator 30 (see also Figures 8 and 9). The interlock of the chamber grip actuator 30 and interchangeable chamber 40 provides for a quick interconnect of the chamber system. Activating rotary stepper motor 318 rotates drive bar 304 which consequently rotates drive gear 310.

[0035] Figures 8 and 9 show an embodiment of the interchangeable, portable, autoclavable, bioreactor chamber 40. First sealing plate 402, chamber body 404, and second sealing plate 406 are held together by knurled nuts 430 and threaded rods 428 which extend through first sealing plate 402, chamber body 404, and second sealing plate 406. Knurled nuts 430 are positioned on each end of threaded rod 428 and may be turned to tighten the first sealing plate 402 and second sealing plate 406 against the chamber body 404. A seal may be positioned between the first sealing plate 402 and chamber body 404 and between the chamber body 404 and second sealing plate 406 to provide a seal between the respective same. The first and second sealing plates 402
and 406 may be of a suitable construction and one or both may be made of a transparent material.

[0036] A gear holder 414 is engaged to each end of the chamber body 404. Grip holder 418 is positioned through apertures of the gear holder 414 and chamber body 404. A follower gear 412 may be press fit or otherwise affixed to the grip holder 418. Bearings 408 are positioned within the apertures of gear holder 414. Grip holder 418 extends through bearings 408 which provides for a stable rotation of grip holder 418. Shims 410 are positioned between follower gear 412 and bearings 408 to ensure a space between follower gear 412, bearings 408 and gear holder 414 to reduce wear or rubbing of the follower gear 412 against the same. Likewise, grip holder 420 is positioned through apertures of another gear holder 414 and an opposite end of chamber body 404. A follower gear 412 may be press fit or otherwise affixed to the grip holder 420. Bearings 408 are positioned within the apertures of gear holder 414. Grip holder 420 extends through bearings 408 which provides for a stable rotation of grip holder 420. Shims 410 are positioned between follower gear 412 and bearings 408 to ensure a space between follower gear 412, bearings 408 and gear holder 414 to reduce wear or rubbing of the follower gear 412 against the same. Those skilled in the art will appreciate that the gear holders 414 may be attached instead to the chamber holder 320 and modified to interlock with chamber body 404.

[0037] Hollow grip holder 418 and 420 includes a grip 416 coupled to a first end of the respective grip holders 418 and 420 (first and second grips) and includes a Luer fitting 422 attached to an opposite end of each respective grip holder 418 and 420. Grip 416 may be a suitable construction adapted for holding a tissue, vascular grafts, biomedical prosthesis, medical devices or other desired specimen or sample. A tubular sample may slip over an end of the grip 416 and a relatively planar sample may, by way of example and without limitation, be sutured to an end of the grip 416. Also, grip 416 may include an aperture extending though a center axis of the grip to provide a passage between an interior lumen of the sample and the opposite end of the hollow grip holder 418 or 420. The grip ends of the grip holder 418 and 420 are positioned within an interior cavity of the chamber body 404 and may extend further or less within the cavity of chamber body 404 to accommodate
samples of varying lengths. The grip holders 418 and 420 and grips 416 rotate within the cavity about a longitudinal axis of the chamber 30 or grip 416, without rotating the chamber 30 or chamber body 404.

[0038] Gear holder 414 further includes a gear lock pin 424 that may be actuated to engage within aperture 426 of follower gear 412. By engaging the lock pin 424 within the aperture 426 of follower gear 412, the grip holders may be restricted from rotating. Additional Luer fittings may be coupled to the chamber body and may be capped or may be utilized as ports suitable for receiving at least one of a fluid delivery, a gas delivery, a temperature transducer, a flow transducer, a pressure transducer, or linear displacement transducers. When first sealing plate 402 is engaged with chamber holder 320, drive gear 310 and follower gear 412 align and engage. Thus, when rotary stepper motor 318 rotates drive gear 310, follower gear 412 rotates which in turn rotates grip holders 418 and 420 and grips 416 in unison.

Ultimately, the rotary or chamber actuation system rotates the sample coupled to grips 416 about a longitudinal axis of the chamber.

[0039] Figures 10 and 11 show an embodiment of the cell delivery module 50. A standoff 502 of each cell delivery module 50 is attached to the base plate 202 of the linear actuator 20 (shown in Figures 1 and 2). A base plate 504 is attached to the standoff 502 and stepper motor 506 or a manual linear stage (not shown) is attached thereto. A mover plate 522 is attached to stepper motor 506 via a worm drive (not shown) that linearly actuates the mover plate 522 back and forth in a longitudinal direction relative to the stepper motor 506. A syringe holder front plate 508 is attached to an end of the stepper motor 506. A syringe base plate 510 is fixed to the syringe holder front plate 508 and a syringe top plate 512 is attached to the base plate 510 with a hinge 516. A top plate catch 514 is positioned between the top plate 512 and base plate 510 to engage the top plate to the base plate. A top plate catch 514 may, for example without limitation, be a magnetic catch of known suitable construction. A push block plate 520 and syringe push block 518 are attached to mover plate 522. A syringe 524 of known suitable construction may be positioned between the top plate 512 and base plate 510, wherein a hollow needle or delivery conduit 530 and coupling 528 are attached in fluid communication to an end of the syringe 524. The hollow needle 530 may be
made of a known suitable material, with a hollow stainless steel tube being preferred. The opposite end of syringe 524 includes a plunger 526 that draws fluid or gas into and pushes fluid or gas out of the opposite end of the syringe 524. Syringe push block 518 is actuated by stepper motor 506 and engages with an end of the plunger 526.

[0040] Having described the constructional features of embodiments of the invention, the mode of use will next be described. A user selects a desired sample or specimen and affixes the sample or specimen to the grip 416. For purposes of illustration and without limitation, a tubular sample will be described having each end attached to grips 416. A first delivery conduit 530 extends through Luer fitting 422, grip holder 420 and grip 416. An end of the delivery conduit 530 aligns within the chamber 30 and extends into the lumen of the sample. Those skilled in the art will appreciate that a nozzle may be attached to the end of the delivery conduit to control the flow and shape of the stream of fluid emitted from the end of the delivery conduit 530. A second delivery conduit may be aligned or positioned above and adjacent an exterior surface of the sample. Once the first and second delivery conduits are aligned in the desired position stepper motor 506 may be activated to push the syringe plunger 526, causing the contents of the syringe 524 to pass through the delivery conduit 530 and exit the open end of the delivery conduit 530. In this manner, cells suspended in drops of fluid, contained with the syringe 524, may be delivered to a selected and localized point on both the inner luminal surface of the sample and on an exterior of the sample.

[0041] Stepper motor 210 may be selectively activated to linearly displace grips 416 relative to delivery conduit 530 of delivery systems 50. Thus, this linear actuator or actuator system linearly displaces the grips relative to the delivery system along a longitudinal axis of the grip, chamber, and delivery system, thereby increasing or decreasing a distance between the grip and delivery system. Chamber grip actuator 30 and interchangeable chamber 40 together provide a rotary system or actuator system that rotates the grip 416 within the chamber around a longitudinal axis of the grip or chamber.

[0042] Stepper motor 210 may be activated in conjunction with activating stepper motor 506. In this manner drops of fluid are deposited on the exterior and interior of the sample in a straight line or row. Alternatively, rotary motor
318 may be activated in conjunction with activating stepper motor 506. In this manner drops of fluid are deposited on the exterior and interior of the sample to forms rings around the exterior and interior of the sample. In yet another embodiment both stepper motor 210 and rotary motor 318 may be activated in conjunction with activating stepper motor 506. In this manner, drops of fluid are deposited on the exterior and interior of the sample to create multiple variations of curvilinear patterns on the interior and exterior of the sample. Those skilled in the art will appreciate that altering the speeds of motors 210, 318, and 506, viscosity of the fluid, size of the cells, and size of the opening at the end of the delivery conduit 530 will all affect the amount of cells deposited at any given point on the sample. Further, motor 506 may be switched on or off while one or both of the other motors 210 and 318 remain activated to create row segments or curvilinear segments of cells on both the interior and exterior of the sample. Still further, the motors 506 on the first and second delivery systems may be switch on and off to vary the deposition of cells on the exterior of the sample in relation to the deposition of cells on the interior of the sample.

[0043] Those skilled in the art will further appreciate that different fluid suspended cells, fluid, pressurized air, gases or other media may be included in each delivery system syringe 524. For example, each delivery system may include a different cell type. Further, the size of the delivery conduit 530 may be selected to accommodate the size of the chosen specimen and cells to be delivered.

[0044] Although not required, cells can typically be contained within a cell composition or liquid carrier for the cells. The cell composition can be in the form of a suspension, solution, or any suitable form. Examples of suitable liquid carriers include, but are not limited to, water, ionic buffer solutions, and so forth. The use of a liquid carrier in the cell composition can ensure adequate hydration after depositing.

[0045] Figures 12-16 illustrate a histological analysis of cell seeding cell distribution uniformity on a sample. As shown in Figure 12, sample 70
includes a tubular scaffold divided into 5 serial rings (the rings are further identified as R1-R5), and each ring is further divided into circumferential rectangular segments (each ring's rectangular segments are further identified as C1-C4). To demonstrate the performance of the seeding module, two different cell types were used; human aorta smooth muscle cells (AoSMC) and endothelial cells (AoEC). Both cell types were obtained from PromoCell (Heidelberg, Germany).

Both cell types were seeded on tissue culture dishes and grown until they reached about 80% confluence. The cells were used between passages 3-7. Both the AoSMC and AoEC cell types were trypsinized, spun down, and resuspended in media at a density of 3x10⁶/ml. Then each of the AoEC and AoSMC cells were respectively deposited in the luminal and abluminal surface of separate non-woven porous tubular scaffold using the cell seeding system.

The uniformity of the AoEC and AoSMC cells seeded on the tubular scaffold was confirmed by immunostaining. Further, cells seeded on the scaffold segments were fixed with ice-cold methanol, then washed and permeabilized. After rinsing, the AoEC cells were incubated with Ulex Europeaus lectin (1:50). After rinsing, the AoSMC cells were incubated with anti-human α-smooth muscle actin (α-SMA; 1:10 dilution, from R&D Systems, Minneapolis, MN, USA) and then exposed to goat anti-mouse Alexa Fluor 568 (1:500 dilution). Both the AoEC and AoSMC cells were rinsed twice and incubated with 2 μg/ml HOECHST (Invitrogen) to stain cell nuclei, and then the cells were covered with DAKO mounting media and placed on glass slides. Microphotographs of the cells attached to the scaffold segments.
were obtained using a fluorescent microscope (Olympus 1X81). The microphotograph images were captured using a digital video camera (Olympus U-CMT) with a magnification of 10x and analyzed with Image-Pro software.

Figures 13 and 14 are representative fluorescence images of one of a segment 78 of the luminal surface of tubular scaffold 70 seeded with AoEC. The image in Figure 13 reveals a Ulex Europeaus lectin (green) and HOECHST (blue) staining of AoEC after 28 hours of static culture. The image in Figure 14 reveals a Ulex Europeaus lectin (green) and HOECHST (blue) staining of AoEC after 52 hours of static culture.

Figures 15 and 16 are representative fluorescence images of one of the abluminal sides of a segment 78 seeded with AoSMC. The image in Figure 15 reveals an \(\alpha \)-SMA staining (red) and HOECHST (blue) of AoSMC after 4 hours of static incubation. The image in Figure 16 reveals an \(\alpha \)-SMA staining (red) and HOECHST (blue) of AoSMC after 6 days of static incubation.

These and various other aspects and features of the invention are described with the intent to be illustrative, and not restrictive. This invention has been described herein with detail in order to comply with the patent statutes and to provide those skilled in the art with information needed to apply the novel principles and to construct and use such specialized components as are required. It is to be understood, however, that the invention can be carried out by specifically different constructions, and that various modifications, both as to the construction and operating procedures, can be accomplished without departing from the scope of the invention. Further, in the appended claims, the transitional terms comprising and including are used in the open ended sense in that elements in addition to those enumerated may also be present. Other examples will be apparent to those of skill in the art upon reviewing this document.

What is claimed is:
Claims

1. An apparatus for the deposit and growth of cells, comprising:
 a first grip rotatable about an approximately longitudinal axis;
 a delivery system having an approximately longitudinal axis;
 a first actuator system to rotate said first grip along said longitudinal axis of said first grip; and
 a second actuator system to increase or decrease a distance between said first grip and said delivery system, while displacing at least one of said first grip and said delivery system along a respective longitudinal axis.

2. The apparatus as recited in claim 1, wherein said delivery system further comprises a first and second conduit aligned in linear relation with said longitudinal axis of said first grip.

3. The apparatus as recited in claim 1, further comprising a second grip coupled to said first actuator system, wherein said first actuator system rotates said second grip about an approximately longitudinal axis of said second grip.

4. The apparatus as recited in claim 3, wherein said first actuator system interlinks said first and second grip to thereby rotate said first and second grip in unison.

5. The apparatus as recited in claim 1, wherein said second actuator system interlocks with said first actuator system.

6. The apparatus as recited in claim 2, further comprising a second grip coupled to said first actuator system, wherein said first actuator system rotates said second grip about an approximately longitudinal axis of said second grip.
7. The apparatus as recited in claim 6, wherein said first and second conduits are aligned between said first and second grip.

8. An apparatus for seeding cells on a sample, comprising:
 a chamber including at least two opposing grips for holding a sample;
 a rotary system coupled to said opposing grips to rotate said grips about a longitudinal axis of said grips;
 a first delivery system to deliver a media between said grips; and
 a linear actuator that linearly displaces at least one of said opposing grips and said delivery system to thereby increase or decrease a distance between said grips and said delivery system.

9. The apparatus as recited in claim 8, further comprising a second delivery system including a delivery conduit and having at least a portion of the delivery conduit positioned within said chamber between said grips.

10. The apparatus as recited in claim 9, wherein said linear actuator also displaces at least one of said opposing grips relative to said second delivery system.

11. The apparatus as recited in claim 8, wherein said chamber further includes a plurality of ports suitable for receiving at least one of a fluid delivery, a gas delivery, a temperature transducer, a flow transducer, a pressure transducer, and a linear displacement transducer.

12. The apparatus as recited in claim 8, wherein said rotary system interlocks with said chamber.
13. The apparatus as recited in claim 12, wherein said linear actuator interlocks with said rotary system.

14. A method of seeding cells onto a sample, comprising the steps of:
 selecting a sample;
 securing a sample within an apparatus suitable to rotate the sample around an axis of the sample aligned approximately parallel with a surface of the sample;
 aligning a delivery end of a first delivery conduit of a delivery system with the sample;
 displacing a site on the sample relative to said delivery conduit; and
 delivering cells through said delivery end of said first delivery conduit to the sample.

15. The method as recited in claim 14, wherein the sample is linearly displaced approximately along the axis of the sample.

16. The method as recited in claim 14, wherein the sample is rotary displaced approximately along the axis of the sample.

17. The method as recited in claim 14, wherein the sample is at least one of linearly displaced and rotated simultaneously, and linearly displaced and rotated alternatively.

18. The method as recited in claim 14, wherein the sample includes a lumen extending through at least a portion of the sample.

19. The method as recited in claim 18, further comprising the steps of aligning a delivery end of a second delivery conduit of a delivery system with the sample, and delivering cells through said delivery end of said second delivery conduit to the sample.
20. The method as recited in claim 19, wherein said first delivery conduit is aligned to an exterior surface of the sample and said second delivery conduit is aligned within a lumen of said sample.
INTERNATIONAL SEARCH REPORT

International application No
PCT/US2010/027032

A CLASSIFICATION OF SUBJECT MATTER
IPC(8) - A01N 1/02 (2010 01)
USPC - 427/2.24

According to International Patent Classification (IPC) or to both national classification and IPC

B FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC(8) - A01N 1/02 (2010 01)
USPC - 118/669, 427/24, 2 25, 435/284 1, 266 4, 291 7, 623/1 4 1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PatBas β Google Patent

C DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 5,441,539 A (ALCHAS et al) 15 August 1995 (15 08 1995) entire document</td>
<td>20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

- Special categories of cited documents
 - ‘A’ document defining the general state of the art which is not considered to be of particular relevance
 - ‘E’ earlier application or patent but published on or after the international filing date
 - ‘L’ document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - ‘O’ document referring to an oral disclosure, use, exhibition or other means
 - ‘P’ document published prior to the international filing date but later than the priority date claimed
 - ‘T’ later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - ‘X’ document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - ‘Y’ document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents such combination being obvious to a person skilled in the art
 - ‘G’ member of the same patent family

Date of the actual completion of the international search
22 April 2010

Date of mailing of the international search report
05 NIAY 2010

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No 571-273-3201

Authorized officer
Blame R. Copenhaver

Form PCT/ISA/210 (second sheet) (July 2009)