0 03/001339 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

3 January 2003 (03.01.2003) PCT WO 03/001339 A2

(51) International Patent Classification’: GO6F Forest, CA 92630 (US). KASAJIAN, Kenneth; 21261
Calle Horizonte, Lake Forest, CA 92630 (US). MODY,

(21) International Application Number: PCT/US02/20086 Pankaj, H.; 15 Phaedra, Laguna Niguel, CA 92677 (US).

(22) International Filing Date: 24 June 2002 (24.06.2002) (74) Agents: JOY, Mark et al.; Leydig, Voit & Mayer, Ltd.,
Two Prudential Plaza, Suite 4900, 180 North Stetson,

(25) Filing Language: English Chicago, IL 60601-6780 (US).

(26) Publication Language: English (81) Designated State (national): DE.

(30) Priority Data:
60/300,363
60/300,500

Us
Us

22 June 2001 (22.06.2001)
22 June 2001 (22.06.2001)

(71) Applicant: WONDERWARE CORPORATION
[US/US]; 100 Technology Drive, Irvine, CA 92618 (US).

(72) Inventors: MCINTYRE, James, P.; 28 Via Bacchus, Al-
iso Viejo, CA 92656 (US). RESNICK, Robert, M.; 8568
Trinity River Circle, Fountain Valley, CA 92708 (US).
SOWELL, Timothy; 26561 Rancho Parkway South, Lake

(84) Designated States (regional): European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE, TR).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: A SECURITY ARCHITECTURE FOR A PROCESS CONTROL PLATFORM EXECUTING APPLICATIONS

(57) Abstract: A security component within a supervisory process control and manufacturing information system comprising a
set of user roles corresponding to different types of users within the information system, a set of security groups defining a set of
security permissions with regard to a set of objects, wherein each security group includes an access definition relating the security
permissions to at least one of the set of user roles, and a set of user accounts assigned to at least one of the defined roles thereby
indirectly defining access rights with regard to the set of objects having restricted access within the system. The security permissions
within the supervisory process control and manufacturing information system are assigned at an object attribute level.

10

15

20

25

30

35

WO 03/001339 PCT/US02/20086

A SECURITY ARCHITECTURE FOR A PROCESS CONTROL
PLATFORM EXECUTING APPLICATIONS

CROSS REFERENCE TO RELATED APPLICATION

This nonprovisional patent application claims priority to U.S. provisional
application Serial No. 60/300,363 filed on June 22, 2001, entitled "A Hierarchical
Object-based Architecture for Executing Applications On a Process Control Platform"
and to a U.S. provisional patent application Serial No. 60/300,500, McIntyre et al.,
filed on June 22, 2001, entitled " A Security Architecture For A Process Control
Platform Executing Applications." The contents of both of the aforementioned patent
applications are expressly incorporated herein by reference in their entirety including

the contents and teachings of any references contained therein.

FIELD OF THE INVENTION
The present invention generally relates to the field of computerized process
control networks. More particularly, the present invention relates to a security

architecture for a platform executing supervisory process control applications.

BACKGROUND OF THE INVENTION

Significant advances in industrial process control technology have vastly
improved all aspects of factory and plant operation. Before the introduction of today's
modern industrial process control systems, industrial processes were
operated/controlled by humans and rudimentary mechanical controls. As a
consequence, the complexity and degree of control over a process was limited by the
speed with which one or more people could ascertain a present status of various
process state variables, compare the current status to a desired operating level,
calculate a corrective action (if needed), and implement a change to a control point to
affect a change to a state variable.

Improvements to process control technology have enabled vastly larger and
more complex industrial processes to be controlled via programmed control
processors. Control processors execute control programs that read process status
variables, execute control algorithms based upon the status variable data and desired
set point information to render output values for the control points in industrial
processes. Such control processors and programs support a substantially self-running

industrial process (once set points are established).

10

15

20

25

30

WO 03/001339 PCT/US02/20086

Notwithstanding the ability of industrial processes to operate under the control
of programmed process controllers at previously established set points without
intervention, supervisory control and monitoring of control processors and their
associated processes is desirable. Such oversight is provided by both humans and
higher-level control programs at an application/human interface layer of a mulitilevel
process control network. Such oversight is generally desired to verify proper
execution of the controlled process under the lower-level process controllers and to
configure the set points of the controlled process.

Manufacturing/process control systems are modified due to changes in the
process control devices and the processes themselves. Thus, it is important in such
instances to provide a means for quickly configuring/re-configuring without touching
unchanged portions of the system. It is also important to provide a means for making
such changes while minimizing disruptions to the operation-of the industrial process —
e.g., minimizing the time that the process stands idle.

In view of the interest and desirability to continually improve supervisory
process control and manufacturing information systems, there is a strong desire to not
be locked into a single architecture for a supervisory process control and
manufacturing information system. Process control systems change and it is desirable
to have higher-level systems that adapt to such changes regardless of their magnitude.
Furthermore, less flexible supervisory process control and manufacturing information
system offerings require designers of process control installations to take into
consideration the long-term requirements of an application because of the relative
inflexibility of the application to modifications once it is installed.

However, such application inflexibility is undesirable in the conservative
industrial control systems market. The process control industry tends to pilot, and
often the designers are not fully aware of the full extent and form of the automation
that will ultimately be incorporated in a final installation. Later in the life of a plant,
when new functionality is added the new control system components leverage or
merge existing systems. In such instances where the process control system has
changed significantly, there are advantages to incorporating a different architecture

into the installed supervisory process control application.

10

15

20

25

30

WO 03/001339 PCT/US02/20086

SUMMARY OF THE INVENTION

A security component within a supervisory process control and manufacturing
information system comprising a set of user roles corresponding to different types of
users within the information system, a set of security groups defining a set of security
permissions with regard to a set of objects, wherein each security group includes an
access definition relating the security permissions to at least one of the set of user
roles, and a set of user accounts assigned to at least one of the defined roles thereby
indirectly defining access rights with regard to the set of objects having restricted
access within the system. The security permissions within the supervisory process
control and manufacturing information system are assigned at an object attribute

level.

BRIEF DESCRIPTION OF THE DRAWINGS

The appended claims set forth the features of the present invention with
particularity. The invention, together with its objects and advantages, may be best
understood from the following detailed description taken in conjunction with the
accompanying drawings of which:

FIG. 1 is a schematic diagram of an exemplary supervisory process control
network including a multi-layered supervisory process control and manufacturing
information application;

FIG. 2 depicts a multi-tiered object arrangement for an applicatibn;

FIG. 3 depicts a set of fields associated with a common portion for the objects
comprising the application;

FIG. 4 depicts a set of fields associated with a platform-specific portion of a
platform object;

FIG. 5 depicts a set of fields associated with an engine object;

FIG. 6 depicts a set of fields associated with a scheduler object;

' FIG.7 depicts a set of fields associated with an exemplary application object;

FIG. 8 is a sequence diagram summarizing a set of steps performed to start up
a multi-layered application embodying the present invention;

FIG. 9 is a sequence diagram summarizing a set of steps for moving an object
to another engine in a network comprising multiple application engines;

FIG. 10 is a schematic diagram depicting controlled components of a simple

plant process;

10

15

20

25

30

WO 03/001339 PCT/US02/20086

FIG. 11 is a schematic diagram depicting the simple plant process components
logically grouped into areas.

FIG. 12 is a hierarchical tree structure depicting the grouping of areas in the
plant arrangement of FIG. 11;

FIG. 13 is a hierarchical tree structure representing the derivation relationships
of objects of a supervisory process control application associated with the plant
process depicted in FIG. 10;

FIG. 14a is a schematic drawing of a mixer vessel portion of the plant process
depicted in FIG. 10;

FIG. 14b is a hierarchical model view depicting the containment relationship
of a MixerVessel compound application object template corresponding to the mixer
vessel depicted in FIG. 14;

FIG. 15 is a hierarchical tree structure representing a derivation structure for
portions of the application associated with the hardware of a system (e.g., platforms,
engines, and device integration objects);

FIG. 16 is a hierarchical tree structure presenting a model view of application
object arrangement including the areas with which the application objects are
associated,

FIG. 17 is a hierarchical tree structure presenting a deployment view of the
application to a set of computer devices represented by identified platform objects at
the top level of the hierarchy;

FIG. 18 is a sequence diagram depicting one embodiment of a security model;

FIG. 19 is a sequence diagram of the security classification of an attribute;

FIG. 20 is a sequence diagram of a method of writing to an attribute;

FIG. 21 is an security model for a process control platform highlighting user
roles; and

FIG. 22 is a schematic diagram of a method to configure a security model for a

process control platform.

DETAILED DESCRIPTION OF AN ILLUSTRATIVE EMBODIMENT

In view of the shortcomings of known supervisory process control applications
with regard to adapting to changed process control system architectures, an
internationalized supervisory process control and manufacturing information system

application architecture is described that enables the system framework to be easily

10

15

20

25

30

WO 03/001339 PCT/US02/20086

designed and altered for customized use in different languages. In accordance with
the disclosed layered application architecture, an application object is hosted by an
engine. The engine is hosted by a platform that corresponds to, for example, a
personal computer with infrastructure software. The intermediate engine layer
abstracts the application object from the platform architecture. Thus, location within -
a physical system containing the application object need not be addressed by the
application object.

One aspect of the disclosed supervisory process control and manufacturing
information application is an object hierarchy that frees high-level application objects
of design constraints associated with the computing system hardware upon which the
application objects reside. In particular, the objects associated with a supervisory
process control application environment are arranged on physical computing devices
in a hierarchy comprising a plurality of layers. Application objects execute at an
application layer. The application objects are hosted by an engine object at a middle
layer. The engine objects are hosted by a platform object that resides at the lowest of
the three layers. Each platform object is launched by a bootstrap object at yet an even
lower layer. The platform object corresponds a physical computing system (including
an operating system) upon which application and engine objects execute. Thus,
application objects need only establish a proper, standardized, relationship to a
hosting application engine object. Aspects of the supervisory control and
manufacturing information system relating to physical computing devices and their
operating systems are handled by the engine and platform object configuration. The
physical topology of the system and the application's physical location is transparent
to the operation of the application objects.

The disclosed layered hosting arrangement of object enables a supervisory
process control application to be modeled independently of the computing hardware
and supervisory control network topology, upon which the application executes.
Isolating the application model from the physical deployment configuration enables
migrating applications to new/different computing systems as the need arises and to
keep up with underlying hardware changes over the course of the life of the
application. Such capabilities are especially beneficial in the area of process control
and manufacturing information systems where pilot installations are used to provide

proof of concept and then the application grows as, and when, it is justified.

10

15

20

25

30

WO 03/001339 PCT/US02/20086

The application model includes groupings of application objects within logical
containers referred to as "areas.” All application objects within a same area must be
deployed upon a same application engine according to a software deployment scheme.
However, the layered application architecture enables binding an application model to
a particular deployment model at a late stage in development. Thus, an abstract
"area" need not be associated with a particular engine until a developer is ready to
deploy and execute a supervisory-level system.

The security model for a supervisory control and manufacturing information
system is independent of the physical hardware and the logical drgmﬁzation of the
AutomationObject Model, and thus a supervisory process control and manufacturing
information system architect need not bind security to a particular physical system
component until the application modules have been fully developed. The late binding
of security to particular components of a system enables a developer to determine the
authorization of a particular system based upon the configured application objects,
and the developer binds security based upon the functionality of the application
objects deployed upon particular computing nodes.

Furthermore, disassociating the functionality (business logic) provided by the
application objects from the computer systems upon which the execute enables
presenting the defined system/software configuration according to a plurality of
views/models. A “plant centric” application model enables a system developer to
build an application model in a logical way. The system develoﬁer defines the
individual devices and functions as distinct entities within a plant. All associated
functionality is contained in each object. After defining the individual objects within
the plant, the user conﬁgures (assembles) associations between the objects.

The application model is a logical build of the plant relative to physical areas
of the plant and the equipment and functions within the physical areas. The engineer
configures the behavior and association between these plant area entities. The
supervisory process control and manufacturing information system provides a
configuration view of the application model depicting a containment hierarchy with
relation to: the areas and equipment, and the equipment itself.

The application model supports containing objects within objects, and
containment can be specified in a template. Containment facilitates leveraging the
work of different engineers at different levels of development of a supervisory process

control and manufacturing information application. A particular technician can define

10

15

20

25

30

WO 03/001339 PCT/US02/20086

the details for a particular low-level device. Thereafter another engineer defines a
unit or other device in the application that contains one or more instances of the
particular low-level device.

The application model also supports propagating changes through inheritance.
Thus, child objects inherit changes to a referenced parent template definition.

After a developer specifies the functionality of a process control and
manufacturing information application, the application is deployed across potentially
many physical computing systems. In an embodiment of the invention disclosed
herein, a second type of system view, referred to as a deployment model, enables a
user to configure physical PCs and devices with regard to an application. The
deployment model defines: PCs and engine types that run on the platforms, and
external device integration. A user defines the areas that will run on particular
engines, thereby determining where the particular application software will be
physically executed. The supervisory process control and manufacturing information
system provides a configuration view of a deployment model showing the hierarchy
with physical PCs, and the areas and application objects running on the physical PCs.
After a developer designates/confirms the deployment model, the application objects
and engine objects are deployed on the physical computing devices according to the

deployment model.

Having summarized generally the new architecture for a supervisory process
control and manufacturing information system facilitating re-configuring (re-
architecting) the system, attention is directed to FIG. 1, comprising an illustrative
example of a system incorporating an application architecture embodying the present
invention. A first application server personal computer (PC) 100 and a second
application server PC 102 collectively and cooperatively execute a distributed multi-
layered supervisory process control and manufacturing information application
comprising a first portion 104 and second portion 106. The application portions 104
and 106 include device integration application objects PLC1Network and PLC1, and
PLC2Network and PLC2, respectively. The PLCxNetwork device integration objects
facilitate configuration of a data access server (e.g., OPC DAServers 116 and 118).
The PLC1 and PLC2 device integration objects, operating as OPC clients, access data
locations within the buffers of the OPC DAServers 116 and 118. The data access

servers 116 and 118 and the device integration objects cooperatively import and

10

15

20

25

30

WO 03/001339 PCT/US02/20086

buffer data from external process control components such as PLCs or other field
devices. The data buffers are accessed by a variety of application objects 105 and 107
executing upon the personal computers 100 and 102. Examples of application objects
include, by way of example, discrete devices, analog devices, field references, etc.

In accordance with an embodiment of the present invention, application
engines host the application objects (via a logical grouping object referred to herein as
an "area". The engines are in turn hosted by platform objects at the next lower level
of the supervisory process control and manufacturing information application. The
application portions 104 and 106 are, in turn hosted by generic bootstrap components
108 and 110. All of the aforementioned components are described herein below with
reference to FIG. 2.

In the exemplary system embodying the ﬁresent invention, the multi-layered
application comprising portions 104 and 106 is communicatively linked to a
controlled process. In particular, the first application server personal computer 100 is
communicatively coupled to a first programmable logic controller 112, and the second
application server personal computer 102 is communicatively coupled to a second
programmable logic controller 114. It is noted that the depicted connections from the
PCs 100 and 102 to the PLCs 112 and 114 represent logical connections. Such logical
connections correspond to both direct and indirect physical communication links. For
example, in a particular embodiment, the PLC 112 and PLC 114 comprise nodes on
an Ethernet LAN to which the personal computers 100 and 104 are also connected. In
other embodiments, the PLCs 112 and 114 are linked directly to physical
communication ports on the PCs 100 and 102.

In the illustrative embodiment set forth in FIG. 1, the PCs 100 and 102
execute data access servers 116 and 118 respectively. The data access servers 116
and 118 obtain/extract process information rendered by the PLC's 112 and 114 and
provide the process information to application objects (e.g., PLC1Network, PLC1,
PLC2Network, PLC2) of the application comprising portions 104 and 106. The data
access servers 116 and 118 are, by way of example, OPC Servers. However, those
skilled in the art will readily appreciate the wide variety of custom and standardized
data formats/protocols that are potentially carried out by the data access servers 116
and 118. Furthermore, the exemplary application objects, through connections to the
data access servers 116 and 118, represent a PLC network and the operation of the

PLC itself. However, the application objects comprise a virtually limitless spectrum

10

15

20

25

30

WO 03/001339 PCT/US02/20086

of classes of executable objects that perform desired supervisory control and data
acquisition/integration functions in the context of the supervisory process control and
manufacturing information application.

The supervisory process control and management information application is
augmented, for example, by a configuration personal computer 120 that executes a
database (e.g., SQL) server 122 that maintains a supervisory process control and
management information application configuration database 124 for the application
objects and other related information including templates from which the application
objects are rendered. The configuration database 124 also includes a global name
table 125 that facilitates binding location independent object names to location-
derived handles facilitating routing messages between objects within the system
depicted in FIG. 1. The configuration PC 120 and associated database server 122
support: administrative monitoring for a multi-user environment, revision history
management, centralized license management, centralized object deployment
including deployment and installation of new objects and their associated software,
maintenance of the global name table 125, and importing/exporting object templates
and instances.

Actual configuration of the applications is carried out via an Integrated
Development Environment (IDE) 127 that communicates with the database server 122
via distributed component object model (DCOM) protocols. The IDE is a utility from
which application objects are configured and deployed to the application server PCs
100 and 102. Developers of a supervisory process control and manufacturing
information application, through the IDE, carry out a wide variety of system design
functions including: importing new object and template types, configuring new
templates from existing templates, defining new application objects, and deploying
the application objects to the host application engines (AppEnginel or AppEngine2 in
FIG. 1) on the application server PCs 100 and 102.

The exemplary supervisory control network environment depicted in FIG. 1,
also includes a set of operator stations 130, 132, and 134 that provide a view into a
process or portion thereof, monitored/controlled by the supervisory process control
and management information application installed and executing as a set of layered
objects upon the PCs 100 and 102. A RawMaterial PC 130 provides a representative
view enabling monitoring a raw materials area of a supervised industrial process. A

ProductionPC 132 presents a representative view of a production portion of the

10

15

20

25

30

WO 03/001339 PCT/US02/20086

supervised industrial process. A FinishedProductPC 134 provides a representative
view of an area of a production facility associated with finished product. Each one of
the operator stations 130, 132, and 134 includes a bootstrap host for each of the
particular operator station platforms. Each one of the operator stations 130, 132, and
134 includes a view engine that process graphics information to render a graphical
depiction of the observed industrial process or portion thereof.

It is noted that the system depicted in FIG. 1 and described hereinabove is
merely an example of a multi-layered hierarchical architecture for a supervisory
process control and manufacturing information system. The present invention is not
limited to the particular disclosed application/system. For example it is contemplated
that the multi-layered application approach is applicable, at a lower control level, to a
distributed control system (DCS) application or a programmable logic controller
(PLC) application. In these cases specific platform and application engine objects are
developed for the unique computing hardware within the DCS or PLC. It is further

noted that FIG. 1 is presented as a logical view of the interrelations between installed

software and physical computing hardware and is not intended to designate any

particular network topology. Rather the present invention is suitable for a virtually
any network topology. In fact, the present invention is applicable to a control

application running on a single computer system linked to a controlled process.

Turning now to FIG. 2, a class diagram depicts the hierarchical arrangement
of layered software associated with a computer executing at least of portion of a
supervisory process control and manufacturing information application. Each
computer executes an operating system 200, such as MICROSOFT's WINDOWS at a
lowest level of the hierarchy. The operating system 200, hosts a bootstrap object 202.
The bootstrap object 202 is loaded onto a computer and activated in association with
startup procedures executed by the operating system 200. As the host of a platform
class object 204, the bootstrap object 202 must be activated before initiating operation
of the platform class object 204. The bootstrap object 202 starts and stops the
platform class object. The bootstrap object 202 also renders services utilized by the
platform class object 204 to start and stop one or more engine objects 206 hosted by
the platform class object 204.

The platform class object 204 is host to one or more engine objects 206. In an

embodiment of the invention, the platform class object 204 represents, to the one or

10

10

15

20

25

30

WO 03/001339 PCT/US02/20086

more engine objects 206, a computer executing a particular operating system. The
platform class object 204 maintains a list of the engine objects 206 deployed on the
platform class object 204, starts and stops the engine objects 206, and restarts the
engine objects 206 if they crash. The platform class object 204 monitors the running
state of the engine objects 206 and publishes the state information to clients. The
platform class object 204 includes a system management console diagnostic utility
that enables performing diagnostic and administrative tasks on the computer system
executing the platform class object 204. The platform class object 204 also provides
alarms to a distributed alarm subsystem.

The engine objects 206 host a set of application objects 210 that implement
supervisory process control and/or manufacturing information acquisition functions
associated with an application. The engine objects 206 initiate startup of all
application objects 210. The engine objects 206 also schedule execution of the
application objects 210 with regard to one another with the help of a scheduler object.
Engines register application objects with a scheduler for execution. The scheduler
executes the application objects relative to other application objects based upon the
configuration specified by an engine. The engine objects 206 monitor the operation
of the application objects 210 and place malfunctioning ones in a quarantined state.
The engine objects 206 suppdrt check pointing by saving/restoring changes to a
runtime application made by automation objects to a configuration file. The engine
objects 206 maintain a name binding service that bind attribute references (e.g.,
tank 1.value.pv) to a proper one of the application objects 210.

The engine objects 206 ultimately control how execution of application
objects will occur. However, once the engine objects 206 determine execution
scheduling for application objects 210, the real-time scheduling of their execution is
controlled by a scheduler 208. The scheduler supports an interface containing the
methods RegisterAutomationObject() and UnregisterAutomationObject() enabling
engine objects 206 to add/remove particular application objects to/from the schedulers
list of scheduled operations.

The application objects 210 include a wide variety of objects that execute
business logic facilitating carrying out a particular process control operation (e.g.,
turning a pump on, actuating a valve), and/or information gathering/management
function (e.g., raising an alarm based upon a received field device output signal value)

in the context of, for example, an industrial process control system. Examples of

11

10

15

20

25

30

WO 03/001339 PCT/US02/20086

application objects include: analog input, discrete device, and PID loop. A class of
application objects 210, act upon data supplied by process control systems, such as
PLCs, via device integration objects (e.g., OPC DAServer 118). The function of the
integration objects is to provide a bridge between process control/manufacturing
information sources and the supervisory process control and manufacturing
information application.

The application objects 210, in an exemplary embodiment, include an
application interface accessed by engine objects and schedulers. The engine objects
access the application object interface to: initialize an application object, startup an
application object, and shutdown an application object. The schedulers use the

application object interface to initiate a scheduled execution of the application object.

Having described the primary components of the hierarchically arranged
supervisory process control and manufacturing information application, attention is
now directed to FIGs. 3-7 that identify attributes of primitives that make up the
above-described object structures. Turning first to FIG. 3 depicts a common object
primitive definition. The common primitive is incorporated into all the application
objects (i.e., platform, application engine, scheduler, application, etc.). A scripts
attribute 300 is used to keep track of scripts that are associated with an application
object. The scripts attribute 300 includes scripts inherited from templates as well as
scripts created specifically for the particular object type. A UDA (user defined
attribute) attribute 302 references inherited and new user defined attributes for an
object. An alarm mode attribute 304 indicates whether an alarm is enabled and the
extent to which it is enabled. A based on attribute 306 identifies a particular base
template from which an object was derived. Attribute 308 stores a string identifying
attribute names in an object. A contained name attribute 310 identifies the name
assigned to an object within a container. For example, an object may correspond to a
"level" contained within a "reactor” object. A deployed version attribute 312 stores
an integer identifying a version for a deployed object. A derived from attribute 314
identifies the actual template from which an object was derived. The contents of the
derived from attribute 314 differ from the contents of the based on attribute 306. The
based on attribute 306 is the base template from which this object was derived from.
The derived attribute 314 is the immediate template from which this object was

created. For example for a hierarchy of templates as follows:

12

10

15

20

25

30

WO 03/001339 PCT/US02/20086

$DiscreteDevice
$Pump
Pump001
$DiscreteDevice is the base template from which a new template $Pump is derived.
An instance Pump001 is created from the template $Pump. The attribute “derived
from” for object Pump001 will be $Pump. The attribute “based on” for object
Pump001 will be $DiscreteDevice.

A relative execution order attribute 316 identifies another object with which a
present object has a relative execution order relation. In addition to identifying
another object, attribute 316 identifies the relative order of execution of the objects
(e.g., none, before, after, etc.). The relative execution order information is utilized to
schedule execution of application objects. A hierarchical name attribute 318 stores a
full name for an object including any of the containers of the object (e.g.,
Reactorl.level). An IsTemplate attribute 320 indicates whether the object is a
template or an object instantiated from a template. An Alarminhibit attribute 322
within an area or container object provides cutout functionality to inhibit alarms for
all objects within an area or container. An alarm mode attribute 324 specifies the
current alarm mode of an object. The mode is based upon the object's commanded
mode if area and container are enabled. Otherwise, the most disabled state of the
container or parent area applies. Alarm Mode Command attribute 326 specifies the
object's currently commanded alarm mode. .

The illustrative example of the present invention supports an object hierarchy.
Objects specify such hierarchy in the context of a plant/model view in an area
attribute 328 that specifies an area to which an object belongs. A contairer attribute
330 specifies a container that contains the object. As previously explained, a hosting
relationship exists among various deployed objects. In particular, a platform hosts an
engine, and an engine (via an area) hosts application objects. Thus, a host attribute
338 identifies an object's host.

A category attribute 332 specifies a class of objects with which the object is
associated, thereby facilitating organizing objects according to local associations
and/or functionality. The value is one of the categories named in a category
enumeration attribute 334. An error attribute 336 identifies errors generated by the
object. An InAlarm flag 340 stores a Boolean flag indicating whether an alarm exists

in an object. The flag is true only if a Scan State flag 342 is true (the object is on

13

10

15

20

25

30

WO 03/001339 PCT/US02/20086

scan) and the object's alarms are enabled. The scan state of an object is changed
through a Scan State Command 344 that signals whether to take the object on/off
scan.

A security group 346 enables designating a particular security group for the
object to limit access/use of the object to particular classes of users. A description
attribute 348 provides an area to store a short description of an object. A tag name
attribute 350 specifies a unique tag for an object. A warnings attribute 352 lists any

warnings rendered by an object.

Having described the common attributes of all objects described herein, a set
of object type-specific attributes are described herein below beginning with attributes
for a platform primitive with reference to FIG. 4. The attributes identified in FIG. 4
relate to supporting the object/engine/platform hosting hierarchy. While not
identified in FIG. 4, a set of attributes are provided through the platform primitive
enabling platform objects to monitor/report computer device statistics. Other
attributes included in the exemplary platform primitive, but not included in FIG. 4,
concern detecting and reporting alarms associated with computer device statistics and
storing the statistics.

A RegisterEngine attribute 400 stores a command to register a new engine.
The RegisterEngine attribute 400 is used at deployment time to register an engine
with a host platform. A StartEngine attribute 402 stores a command to start a
particular deployed engine on the platform. A StartHostedObjects attribute 404 stores
a command passed to the platform to start all hosted engines that are start auto and
start semi-auto type engines. A StopEngine attribute 406 stores a command to stop a
particular deployed engine on the platform. An UnRegisterEngine attribute 308 stores
a command to un-deploy a previously deployed engine on the platform. An Engines
attribute 410 stores a list of all engines deployed on the platform. An EngineStates
attribute 412 stores a list of the current operational states of all engine objects hosted

by the platform.

FIG. 5 summarizes a set of attributes associated with an engine primitive. An
external name attribute 500 stores a string used for external reference. An internal
name attribute 502 stores a string used for internal reference. A reference count

attribute 504 stores the number of objects referencing the engine object. When the

14

10

15

20

25

30

WO 03/001339 PCT/US02/20086

number of references reaches zero, there are no clients, external to the engine,
referencing any automation object attributes on the engine. This helps operators
determine the impact (how many clients will be affected) of stopping the engine. An
object attribute 506 is an array comprising a set of all objects hosted by the engine
object. A startup type attribute 508 identifies how an engine object will be started
(e.g., automatic, semi-automatic, manual). A CanGoOnscan attribute 510 indicates
whether an engine object can be placed on-scan. A BindReference attribute 512 is a
command used to resolve references (e.g., pump001.inlet.PV) to handles. These
handles are used to locate objects at runtime by the messaging infrastructure. An
AutoRestart attribute 514 stores a Boolean value indicating whether the engine object
should be automatically restarted upon detection of a failure. A

CheckpointFailed Alarm attribute 516 stores a value indicating whether a last attempt
to checkpoint hosted objects had failed during a last attempt. An AlarmThrottleLimit
attribute 518 stores a value, in alarms per second raised by an engine object before
throttling of alarms generated by objects on the engine will occur. An
EngineAlarmRate attribute 520 indicates the number of alarms registered on an
engine during a last complete scan. An AlarmsThrottled attribute 522 indicates that
an engine object throttled alarms during the last scan.

A set of attributes is provided to handle script execution. A
ScriptExecuteTimout attribute 524 stores a time limit for a synchronous script to
complete execution before an alarm is raised by an engine object. A
ScriptStartupTimeout attribute 526 stores a time limit for a synchronous script to
startup before an alarm will be raised. A ScriptShutdownTimout attribute 528 stores a
time limit for a synchronous script to shutdown before an alarm will be raised. A
PublisherHeartbeat attribute 530 stores a value corresponding to the number of
seconds an engine object will wait for a heartbeat message from another engine object
before it assumes the engine has failed. A Process ID 532 identifies a unique
identification assigned to an engine process.

An engine object also contains a set of command attributes associated with
managing application objects. A CreateAutomationObject attribute 534 is a
command attribute for creating an application object. A DeleteAutomationObject
attribute 536 is a command attribute for deleting an application object. A
StartHostedObjects attribute 538 is a command attribute for starting hosted

application objects.

15

10

15

20

25

30

WO 03/001339 PCT/US02/20086

Turning to FIG. 6, a set of attributes is summarized that are contained within a
scheduler primitive and are unique to a scheduler object. Each scheduler object
includes internal and external name attributes 600 and 602. A StatsAvgPeriod 604
stores a value representing the averaging period for the scheduler acquiring statistics
stored within the attributes described herein below. A CheckpointPeriodAvg attribute
606 identifies the current average of times between checkpoints during the current
averaging period. An ExecutionTimeAvg attribute 608 stores a value representing the
amount of time to execute all the objects per scan cycle. A HousekeepingTimeAvg
attribute 610 stores a value corresponding to the average time per cycle to complete
housekeeping operations. A TimeldleAvg attribute 612 stores a value representing
the average idle time per period. A TimeldleMax attribute 614 stores a value
representing the maximum idle time recorded. A TimeldleMin attribute 616 stores a
value representing the minimum idle time recorded. An InputMsgSizeAvg attribute
618 stores an average input message size over the averaging period. An
InputMsgsProcessedAvg attribute 620 stores a value representing the total volume of
messages processed, in bytes, per scan cycle during the averaging period. An
InputMsgsQueuedAvg attribute 622 stores the average number of messages queued
per scan cycle during the averaging period. An InputMsgsQueuedMax attribute 624
stores the maximum average stored in attribute 622 since the last time the statistics
attributes were reset.

An InputQueueSizeMaxAllowed attribute 626 stores the maximum allowed
size of queued messages in a network message exchange input queue. An
InputQueueSizeAvg attribute 628 stores an average size of the input queue in bytes
during the averaging period. An InputQueueSizeMax attribute 630 stores the
maximum average stored in attribute 628 since the last time the statistical attributes
were reset.

A TimelnputAvg attribute 632 stores a value representing the average time
required, during the current period, to process an input message. An ObjectCnt
attribute 634 stores a count value corresponding to the current number of application
objects currently being handled by a scheduler object. An ObjectsOffScanCnt
attribute 636 indicates the number of application objects that are currently off-scan. A
TimeOutputAvg attribute 638 stores an average amount of time required to process

output message during a cycle. A StatsReset attribute 640 indicates an request to

16

10

15

20

25

30

WO 03/001339 PCT/US02/20086

reset the statistical attributes described for the scheduler that are not regularly reset
(e.g., maximum values). A ScanCyclesCnt attribute 642 stores a value indicating the
number of cycles since a last resetting of the attributes through the StatsReset attribute
640. A ScanOverrunsCnt attribute 644 indicates the number of times, since a last
StatsReset, that a scan cycle ended without completing a scan of all objects. A
ScanOverrunsConsecutiveCount 646 stores a current number of consecutive cycles
where an overrun occurs. A ScanOverrunHighLimit attribute 648 stores a high alarm
limit for consecutive overruns to trigger an alarm stored in a ScanOverrunCondition
attribute 650. A ScanPeriod 652 stores a value representing the cycle time for the
scheduler.

It is noted that the attributes associated with particular object types are not
limited to the particular object primitive types. In fact, all object types comprise at
least two of the above-described primitives. All object types utilize the common
object primitivé. In addition, a platform object includes the attributes of the
scheduler, engine and platform primitives described above. An engine object includes
the attributes of the scheduler, and the engine primitives.

Turning to FIG. 7, a set of primitives is associated with an application object.
Each type of application object has its own set of primitives. The primitives contain
the business specific logic and the set of attributes that are unique to the function of
the primitives. These primitives can be reused across different application object
types.

An exemplary set of primitives associated with an analog device application
object is depicted in FIG. 7. A primitive 700 labeled AnalogDevice attributes
contains a set of analog device specific attributes in which clients would be interested.
A PV.Input 701 is a primitive that reads, via a device integration object (e.g., PLC1),
the data from a field device. A PV.Output 702 is a primitive that writes, via a device
integration object, data to the field. A Scaling 703 is a primitive that performs linear
or square root scaling of the data read from the input primitive (PV.Input 701). A
LevelAlarms 704 is a primitive that generates alarms if a process variable in the
AnalogDevice primitive 700 exceeds or is below configured values. A PV.RoC 705
is a primitive that generates alarms if a PV increases or decreases faster than a preset
limit. A SP 706 is a primitive that clients write to when they want to modify the value
to which the PV.Output 702 writes. A PVDev 707 is a primitive that is used to

generate an alarm if a value read in from a field device (via primitive 701) deviates

17

10

15

20

25

30

WO 03/001339 PCT/US02/20086

from a value written to the field device (via primitive 702) by a certain amount. A
CtrlTrack 708 is a primitive that is used to enable the setpoint and PV primitives to
track changes driven from the external device. Having described the basic building
blocks of an supervisory process control and manufacturing information application
embodying the present invention, attention is directed to a set of sequence diagrams
that summarize methods employed to carry out such an application. Turning to FIG.
8, a sequence diagram depicts steps for the starting and stopping an application
embodying a hierarchical hosting relationship. During stage 800, a bootstrap process
on a computer system issues a start platform request to a loaded platform object. In
response, during step 802 the platform process issues a call to the bootstrap interface
requesting the bootstrap to start all the application engines hosted by the platform
object. During stage 804, the bootstrap process creates an application engine object
having the attributes discussed hereinabove.

During stage 806, the application engine process starts all of its hosted
application objects. The application engine also registers the hosted application
objects with a scheduler process during stage 808. Registering an application object
adds that application object to the set of application objects that the scheduler scans
during each scan cycle. At stage 810, the application engine issues a command to the
scheduler to begin executing/scanning the started and registered application objects.
Thereafter, at stage 812 the scheduler executes the registered application objects.
Such execution is performed periodically during each scan cycle. .

The scheduler continues to periodically scan the registered application objects
in accordance with a supervisory process control and manufacturing information
system application until receiving a shutdown command. In particular, the bootstrap
process, during stage 814, issues a shutdown command to the platform process in
response to an operating system shutdown command. During stage 816, the platform
process returns a stop engine command to the bootstrap to commence shutting down
all engines hosted by the platform process. In response, during stage 818 the
bootstrap issues a request to the application engine to stop. The bootstrap will wait
for the application engine to stop. However, after a period, if the application engine
has not stopped, the bootstrap will request the operating system to shut down the
application engine process.

Under normal operating conditions, during stage 820 the application engine

issues a command to the scheduler to un-register the engine's hosted application

18

10

15

20

25

30

WO 03/001339 PCT/US02/20086

objects. Furthermore, in an embodiment of the invention, the engine requests to its
hosted application objects to shut down. However, in alternative embodiments of the
invention the shutdown request is issued by the scheduler in response to the un-
register command.

It is noted that in the above-described exemplary embodiment, the engine
objects and platform objects communicate with the bootstrap process and handle
aspects of the supervisory process control and manufacturing information application
relating to physical computing device configurations upon which the application
executes. However, the application objects themselves only communicate with the
engine and scheduler according to a platform-independent interface. The one or more
engine objects hosting the application objects insulate the application objects from
characteristics of the computer systems upon which the application objects execute.
Thus, the application objects execute independently of the physical computing device
configurations. The application objects, though constrained to execute on a same
engine with other application objects designated within a same area, are not
constrained by any requirement to execute upon a particular one of multiple capable
engines and/or platforms within a system. Thus, moving an area comprising a set of
application objects is performed with minimal interruption to the execution of other

application objects running on the affected engines.

Turning to FIG. 9, a sequence diagram illustrates the operational
independence of an application object with regard to its engine object host, and the
ability to re-deploy an application object upon another host engine. Beginning at
stage 900, an engine A issues a start command to a scheduler A to commence periodic
execution/scanning of an application object A. During stage 902, the scheduler A
periodically activates the application object A to perform its business logic in
association with an application comprising multiple application objects.

Later, an application engineer decides to migrate the application object A to an
engine B on a different computer platform. One reason to make such a change is to
reduce computational load on a computer device as a system grows. The user issues a
request to the engine A to remove application object A during stage 904. In response,
during stage 906 the engine A issues a request to the scheduler A to stop scanning the

application object A. During stage 908, the engine A issues a command to the

19

10

15

20

25

30

WO 03/001339 PCT/US02/20086

application object A to shut down. The operation of the engine A and scheduler A is
otherwise unaffected by the removal of application object A.

In an embodiment of the invention, the application is spread across multiple
computing devices, and each computing device is equipped with the platform, engine
and scheduler objects of the application hierarchy that facilitate executing application -
objects. The replication of lower-level hosting functionality across multiple hardware
platforms provides a degree of platform independence that enables relocating an

application object without affecting the operation of the application. Thus, during

stage 910 the user adds application object A to engine B on a different computer.

During stage 912, the engine B initializes the newly added application object A. The
initialization stage 912 includes, for example, any custom initialization performed by
an application object before starting the application object (e.g., initialization of class
variables, caching interfaces used by the application object, etc.). At stage 914, the
engine B issues a start command to the application object A. At this point, the object
assumes all of its primitives have been initialized and it can perform any initial
calculations based on the attributes maintained in these primitives. Engine B registers
the executing application object A with a scheduler B on the new computing platform
during stage 916. Thereafter, at stage 918 the scheduler B periodically prompts the
application object A to execute its business logic. The results of executing application
object A are rendered both locally and over a network connecting the engines. Thus,
re-locating application object A to engine B does not affect data access concerning

application object A.

INTER-OBJECT COMMUNICATIONS VIA MESSAGE EXCHANGE

In an embodiment of the present invention, the application objects reference
other objects by logical name rather than physical address. Thus, communications
between application objects within a same application, as far as the application
objects are concerned, are insulated from the underlying physical configuration of a
network containing the application object. A component of the application, referred
to as message exchange, embedded within the platform and engine objects enables
application objects to retrieve (get) and send (set) data from/to other objects located
anywhere within a network executing the distributed application. Message exchange
is a peer-to-peer communication infrastructure that enables specifying a target by

logical name rather than physical network address. The application objects are thus

20

10

15

20

25

30

WO 03/001339 PCT/US02/20086

permitted to carry out communications without regard to the physical location of an
intended recipient of a data request. This also enables the application object layer of
an application to be developed without regard to where the application objects are
ultimately deployed. In an embodiment of the invention, the message exchange is
divided between a local message exchange (LMX) carried out by an application
engine and a network message exchange (NMX) carried out by a platform to enable
named requests to be communicated between computing devices connected over a
network for carrying out a distributed application. In yet another embodiment of the
invention, the LMX and NMX functionality is carried out by the engines. This
arrangement avoids extra, inter-process communications required in the event that the
platform object carries out NMX.

The LMX incorporated into the engine objects (e.g., application engine
objects) provides services enabling application objects to access data maintained as
attributes on other objects. When using LMX services to access target data,
application objects specify a string representing a piece of data associated with an
object (e.g., an attribute specified in the form of “ObjectB.AttributeA”). With this
string, LMX locates the data associated with the object (potentially requesting NMX
services provided by the platform to access a target object located on another
computing device in a network). LMX returns the data, associated with the object, to
the application object that requested the data. In addition, the message exchange
guarantees certification of message delivery. Therefore, when application objects send
messages to other application objects they receive confirmation that the target of the
message received or did not receive the message.

The LMX of the application engine includes, by way of example, a set of
interfaces. The set of interfaces comprises: IMxSupervisoryConnection and
IMxUserConnection. The IMxSupervisoryConnection interface defines methods used
by application objects to access information from physical devices in a plant. The
methods used on this interface comprise: SupervisoryRegisterReference,
SupervisoryGetAttribute, and SupervisorySetAttribute. The
SupervisoryRegisterReference method is called by application objects to inform
message exchange that a request to access a value of an attribute is forthcoming. The
SupervisorySetAttribute method is used by application objects to direct message
exchange to modify the value of the attribute specified in a previous

SupervisoryRegisterReference call. The SupervisoryGetAttribute method is used by

21

10

15

20

25

30

WO 03/001339 PCT/US02/20086

application objects to direct message exchange to retrieve the value of the attribute
specified in a previous SupervisoryRegisterReference call.

The IMxUserConnection interface defines methods used by applications to
visualize data retrieved from physical devices in a plant. The methods used on this
interface comprise: UserRegisterReference, UserGetAttribute, and UserSetAttribute.
These methods are very similar to the methods of the IMxSupervisoryConnection
interface described hereinabove. One difference is that the methods of the
IMxUserConnection interface methods cater to user interface clients by allowing data
updates via a callback mechanism instead of a polled mechanism utilized by the
IMxSuperﬁsoryConnection.

A set of structures is utilized to carry out the functionality of the message
exchange. An MxReference structure is a MICROSOFT Component Object Model
(COM) object that implements an interface IMxReference, identifies an attribute of an
object whose value is to be accessed by application objects, and is passed into the
methods SupervisoryRegisterReference, and UserRegisterReference. The
MxReferenceHandle (an integer value) is used by message exchange to provide
application objects a location-transparent means of retrieving a value referred to by an
MxReference. The MxReferenceHandle is returned to application objects by the
message exchange on successful completion of a SupervisoryRegisterReference or
UserRegisterReference call. The MxReferenceHandle is passed in, by application
objects, to method calls for getting and setting attributes such as: UserSetAttribute,
UserGetAttribute, SupervisorySetAttribute and SupervisoryGetAttribute.

An MxHandle structure identifies a property of an object's attribute. The
MxHandle identifies a platform and an engine to which the object belongs. The
MxHandle comprises two structures: an MxAutomationObjectHandle and an
MxAttributeHandle. The MxAutomationObjectHandle is the data structure used to
represent the location of the object within the overall system. The
MxAttributeHandle data structure is used to identify the property of an attribute
within the object. The MxAttributeHandle structure is used, internally, by message
exchange to quickly locate an attribute of an object.

The MxAutomationObjectHandle data structure includes five fields: galaxy,
platform, engine, object, and signature. The galaxy field identifies the general system
to which the referenced object belongs. A platform field identifies the platform object

with which the referenced object is associated. An engine field identifies the object's

22

10

15

20

25

30

WO 03/001339 PCT/US02/20086

engine. An object field identifies an object. A signature field stores a value derived
from the object's name and prevents configuration mismatches that can occur when an
object is relocated.

The MxAttributeHandle data structure includes seven fields: primitivelD,
attributelD, propertyID, index1, index2, index3 and signature. The primitivelD field
identifies a primitive within an automation obj ect. A primitive is a helper object that
performs a specific operation in, for example, an application object. The attributeID
identifies a particular attribute within an identified primitive. A propertyID identifies
a property of an attribute. Index fields 1, 2 and 3 provide indexes into up to a three-
dimensional array. A signature field stores a checksum value derived from the
content of the MxAttributeHandle to prevent configuration mismatches.

~ It is noted that the message exchange, in an embodiment of the present
invention, includes additional data structures and interfaces. Such additional
interfaces and structures will be known to those skilled in the art. It is further noted
that the present invention is not limited to systems that utilize message exchange to
provide a hardware/deployment independent messaging service for inter-object
communications for a set of application objects within a supervisory process control

and manufacturing information application.

MULTIPLE VIEWS/LATE BINDING OF A MODEL TO A DEPLOYMENT

Another aspect of the proposed application architecture is the spéciﬁcation of
associations within objects. The associations, discussed herein below, enable a
configuration component, referred to herein as the Integrated Development
Environment (IDE) to filter and display a set of related objects in a variety of views
including at least a (logical) model view and a (physical computing) deployment
view. The IDE, through its displayed views of an application configuration, enables a
user to design and deploy an application in a computer network comprising multiple
computing devices.

The application configurations are stored as "packages" within the
configuration database 124. A package framework subsystem provides an interface
enabling the IDE to store and rétrieve the objects of the packages. The package
framework employs a relational database to store package data and knowledge
regarding the objects’ associations/relationships with other objects. The IDE queries

the package framework to deliver a list of objects based on a designated association

23

10

15

20

25

30

WO 03/001339 PCT/US02/20086

with regard to an object. For example, the IDE can request the package framework to
retrieve from a package the objects hosted by a named engine.

A developer builds the aforementioned associations (or "relationships")
between objects via the IDE and package manager. Such associations include, by
way of example, the following pre-defined assignment relationships: host, area,
container, engine and platform. Each of these relationships is discussed herein below.

A host relationship is used at runtime to indicate where an object executes.
Furthermore, an object may not be deployed unless its host is deployed. An
application object is hosted by an area object, an area object is hosted by an engine
object, and an engine object is hosted by a platform object. An area relationship
establishes a logical grouping of objects and provides a means for collecting events
and alarms raised by objects grouped under the area. A container relatibnship
specifies a loose coupling between two objects and is only meaningful in the context
of the application logic. Example: a Valve object contained inside of a Tank object.
Contained objects are allowed to acquire hierarchical names within the context of the
objects' container. By way of example, a valve that acts as an inlet is assigned the
alias "inlet" and receives the hierarchical name of "Tank.Inlet." An object’s engine is
the actual engine that executes the object. An object’s platform is the one and only
platform object running on a computer device upon which the object is deployed. An
object may have all five of these relationships, but only one object may be associated
to any one of these relationships. For example, an application object can be assigned

to one and only one area.

A model view depicts the application in terms of logical associations between
plant/process equipment within a controlled plant process — e.g., a representation of a
physical plant layout. A deployment view depicts the physical computer devices and
assignment of instantiated objects identified in the model view to the computer
devices and engines executing upon the computer devices. A derivation view depicts
the sources (inherited préperty relationships from base template to instance) of objects
instantiated from templates to carry out the functionality of the model view elements.

FIG. 1 shows, by way of example, an application physically deployed to two
application server computers 100 and 102. Alternatively, an application is presented
to users by visually depicting the role of application objects in carrying out

supervisory process control and/or extracting manufacturing information according to

24

10

15

20

25

30

WO 03/001339

PCT/US02/20086

the application. Turning now to FIG. 10 a plant process application is depicted, in a
plant model, according to the roles of application objects in the plant process. This
illustrative example is scaled down for purposes of illustratively depicting an
exemplary embodiment of the invention. As those skilled in the art will readily
appreciate, the present invention is applicable to a wide variety of industrial/plant
monitoring/control applications that are far more complex than this example.

A hopper H1 1000 having a controlled outlet valve delivers raw product to a
conveyor C1 1002 that is controllable to travel left, right, or be disabled. The raw
product is dumped by the conveyor C1 1002 into a mixer M1 1004 and a mixer M2
1006. The raw product is allowed to pass into the mixers by opening valve V1 1012
and V2 1014 of mixer M1 1004 and mixer M2 1006, respectively. The mixer M1
1004 and mixer M2 1006 include a controllable agitator A1 1008 and A21010
respectively. The mixed product drops into hoppers H2 1016 and H3 1018. The
hoppers H2 1016 and H3 1018 are selectively opened to allow the mixed product to
fall upon a conveyor C2 1020 that either travels right or is disabled. When enabled,
the conveyer C2 1020 drops the mixed product onto an elevator E1 1022. The
elevator E1 1022 deposits the mixed product onto a conveyer C3 1024 that travels
right. The conveyor C3 1024 deposits the material onto a distribution conveyor C4
1026 that is capable of traveling both left and right thereby distributing the mixed
product between a first bi-state door D1 1028 and a second bi-state door D2 1030.
The door D1 1028 is controllable to direct finished product into either bin B1 1032 or
B2 1034. The door D2 1030 is controllable to direct finished product into either bin
B3 1036 or bin B4 1038.

While the above-described process line depicted in FIG. 10 is simple, and thus
relatively easy to follow, in most cases processes are very complex and include
hundreds and even thousands of distinct, sensors and controlled components. In such
instances, the application objects corresponding to the sensors and controlled
components are logically grouped within areas. The logical grouping of application
objects is exploited during runtime to provide a uniform treatment of particular
application objects for alarm and event management. For example, all alarms in a
particular area can be disabled by a single attribute designation within the area object.
The compatibility of the host area and hosted objects is determined by checking the
"required host features" of the hosted object and the "supported features" specified by

the hosting area object. These object attributes are established when the objects are

25

10

15

20

25

30

WO 03/001339 PCT/US02/20086

built. If the "required host features" are met by the "supported features," then the host
assignment is completed by assigning appropriate values to hosted objects. An object
is placed within an area by designating the area name in the area attribute 328 of the
common primitive of an application or area object.

Areas themselves can be grouped within other areas in a hierarchical
arrangement. Assigning an area to another "host" area is accomplished, by way of
example, by designating thel name of the host area in the area attribute 328 of the
hosted area object. The relationship between areas and sub-areas are not constrained
to execute on a same engine. Thus, sub-areas within an area can be assigned to
different application engines when the application objects of a supervisory process
control and manufacturing information application are deployed within a system
comprising multiple platform objects (corresponding to multiple computer devices).
and engine objects. However, in an embodiment of the invention, application objects
specified within a sub-area are restricted to deployment on a same application engine.
This restriction ensures that processing of all application objects in an area occurs
without inter-node communication delays.

Area objects, by Way of example, include the following attributes that
facilitate the above-described functionality: alarm information, disable all alarms,
disable the display of all alarms, sub-area list.

Turning to FIG. 11, logical grouping of related process components of FIG.
10 into areas is demonstrated. The revised process illustration depicts the system as a
series of areas comprising logically grouped controlled process components. A raw
material store area 1100 includes the hopper H1 1000. A production area 1102
includes the conveyor C1 1002, a linel area 1104 including the mixer M1 1004, valve
V1 1012, and hopper H2 1016, and a line2 area 1106 including the mixer M2 1006,
valve V2 1014, and hopper H3 1018. A distribution area 1108 includes the conveyor
C2 1020, the elevator E1 1022, the conveyer C3 1024, conveyor C4 1026, bi-state
door D1 1028 and bi-state door D2 1030. A finished product store area 1110 includes
bins B1 1032, B2 1034, B3 1036 and bin B4 1038. The set of sub-areas are grouped

under a single process plant area 1120.

Having described an exemplary plant process and two alternative ways in
which to view an application relating to the plant process (i.e., plant model and

application object deployment views), a configuration utility interface is described

26

10

15

20

25

30

WO 03/001339 PCT/US02/20086

that displays the application components according to these two alternative views.
Turning briefly to FIG. 12, a partially completed model view user interface generated
by a configuration utility depicts an area hierarchy represented in the form of a tree.
The tree structure presents a high-level model view of the areas designated in a
process plant depicted in FIG. 11. This model view is incomplete since it does not
identify the application objects grouped within the identified areas and containment
relationships for application objects.

With reference to the exemplary tree structure, a process plant node 1200
corresponding to the process plant area 1120 is designated at the highest level of the
hierarchical area representation. A set of secondary nodes, corresponding to sub-
areas grouped within the process plant area 1120, branch from the process plant node
1200. RawMaterialStore node 1202, Production node 1204, Distribution node 1206.
and FinishedProductStore node 1208 correspond to the raw material store area 1100,
the production area 1102, a distribution area 1108 and a finished product store area
1110 respectively. A line 1 node 1210 and a line 2 node 1212 branching from
Production node 1204 correspond to the linel area 1104 and line2 area 1106 grouped
within the production area 1102 in FIG. 11. This view enables a technician to
quickly identify and specify logical groupings for defining policies governing
application objects such as alarming behaviors, etc.

Before describing an expanded version of the model view of FIG. 12

identifying application objects and compounds within the identified areas, derivation

of objects from templates is discussed. Each of the components identified in FIG. 10
corresponds to an application object. In an embodiment of the invention, application
objects are instantiated from object templates. A derivation view represents all the
types of templates from which application objects specified by a current model for an
application are derived.

The set of candidate templates from which application objects are derived is
extensible. Users are provided toolkits including base templates and editors to define
customized new templates from which a user builds application objects. Examples of
base templates (where $ denotes a template) are: $DiscreteDevice — a state machine
that is configurable to create an application object representing the main conveyors
and valves depicted in FIG. 10, and $UserDefined — a simple object template that

contains only the common primitive, and from which the user builds extensions

27

10

15

20

25

30

WO 03/001339 PCT/US02/20086

within the configuration environment by adding scripts and attributes to model the

application objects corresponding to the bins and hoppers.

Turning to FIG. 13, an exemplary derivation view rendered by a derivation
view generated is illustratively depicted. With reference to FIG. 13, in the case of the
example set forth in FIG. 10, the user derives from a $DiscreteDevice base template a
$Valve, a $SliceGate, a $Agitator, and a $Conveyor custom application object
template type. Under the $Conveyor template, the user further defines a
$SingleDirectionConveyor, a $BiDirectionalConveyor, and an $Elevator template
type. Under a $UserDefined base template the user derived a $Vessel application
object template. The $Vessel template is further refined to derive a $Hopper and a
$Bin application object. With reference to FIG. 13, the base templates occupy the
highest levels of the hierarchical derivation tree that is rendered by a configuration
view generator based upon a user's designation of particular templates. Object
templates derived from the base templates are identified by branches leading from the
base template nodes. As depicted in FIG. 13, it is possible to derive objects from
other derived objects. In such cases, the children inherit the designated characteristics
of their parent templates. The derivation relationship between a child and its parent
template is registered in the derived from attribute 314 of the template object.

Application object containment (specified in container attribute 330 of an
application object), and the creation of compound object templates from a set of
previously defined object templates is another aspect of the template architecture
disclosed herein. In an embodiment of the invention, containment is limited to same
object types. Thus, area objects can only contain area objects and application objects
can only contain other application objects. Objects containing other objects are
referred to herein as "compounds." Objects that exist solely to contain other objects
are referred to as "composites."

Turning briefly to FIGs. 14a and 14b, an example is provided of a compound
application object template — in this case a $MixerVessel compound object template
that includes a valve object that is assigned the tag name "inlet", an agitator that
continues to carry the tag name of "agitator,” and a mixer that has been assigned the
tag name "vessel." The contained name attribute 310 of the templates corresponding
to each of these three contained objects. The full hierarchical tag name (e.g.,

MixerVessel.Inlet) is stored in the hierarchical name attribute 318 for each of the

28

10

15

20

25

30

WO 03/001339 PCT/US02/20086

three contained objects. The container attribute 330 for each contained object is
assigned the string "MixerVessel." FIG. 14a schematically depicts a portion of the
process plant depicted in FIG. 10 that contains a mixer vessel arrangement. A model
view of the compound template showing the containment relationship between the
$MixerVessel application object template and its contained (renamed) application
objects is depicted in FIG. 14b. In an embodiment of the invention, when
instantiated within an actual application, all application objects contained within a
compound application object designate a same host in attribute 338 (and by
requirement a same area in attribute 328. This containment hierarchy, applicable to
other objects as well (subject to any deployment restrictions), assists system
developers in developing systems by supporting the creation of logical building
blocks (comprising many smaller application objects) from which applications can be
built. ‘

A "contain" function supported by the IDE, in an embodiment of the present
invention, facilitates establishing containment relationships between objects via a
graphical user interface "drag and drop" operation. To establish a containment
relationship between a source and target (container) application object, a developer
selects the source application object displayed on a user interface, drags the source
application object on top of the target (container) object, and then drops the source
application object on the target application object. After the IDE confirms the
compatibility between the two objects (i.e., they are both application objects), the IDE
(through the package manager utility) sets the host, area and container attributes in the
source object. In particular, the area attribute 328 is set to the target object's area, the
host attribute 338 is set to the target's host, and the container attribute 330 is set to the
target object's name. At this point the contained name attribute 310 and the
hierarchical name attribute 318 of the source are also filled in with names provided by
the developer.

Returning to FIG. 13, the $MixerVessel compound application object
template is assigned a branch under the $UserDefined base template node and
specifies the contained relationships between the application object template elements
of the compound. Furthermore, a $MixerVessel.Inlet template derived from $Valve is
placed under the $Valve template node. A $MixerVessel.Vessel template derived
from $Vessel is placed under the $Valve template node. A $MixerVessel. Agitator
template derived from $Agitator is placed under the $Agitator template node. The

29

10

15

20

25

30

WO 03/001339 PCT/US02/20086

containment relationship is registered by specifying the $MixerVessel template object
in the container attribute 330 in each of the compound elements. The containment
relationship is indicated in the derivation view tree of FIG. 13 by a "$MixerVessel"
preamble in the $MixerVessel.Inlet, $MixerVessel. Agitator, and $MixerVessel.Vessel
object template representations within the derivation view tree.

Attribute locking and its effect upon change propagation in templates are yet
other aspects of the derivation architecture of the exemplary configuration utilities
disclosed herein. The derivation architecture enables information within an object
template to be propagated to derived objects or alternatively a default value is
specified for a derived template that can be overridden by a developer. In an
embodiment of the invention, propagation is affected automatically by storing a
reference to a parent's copy of a locked attribute.

An attribute in a template or instance can be unlocked, locked in parent, or
locked in me. Both templates and instances can have unlocked attributes. An
unlocked attribute is read-write, and the object has its own copy of the attribute value
—1.e., it is not shared by derived objects. A template, but not an instance can have a
locked in me attribute status. In the case of a locked in me attribute, the value is read-
write. Derived objects do not get their own copy of the attribute value, but instead
share the locked value by reference to an ancestor where the attribute is locked. The
status of the attribute in the children of a locked in me attribute is "locked in parent.”
Thus, changes to the value of a locked in me template attribute propagate to all
children. Both templates and instances can have a locked in parent attribute. A
locked in parent attribute is read-only.

The interface for getting and setting a locked status of an attribute is exposed
to configuration clients. The client obtains a reference to the attribute and sets its
locked status. Whether a change to an attribute is permitted and/or propagated to
derived children is based upon whether a particular attribute in a template is locked.
Locking an attribute has two consequences. First, a locked in parent attribute cannot
be modified in a derived template or instance. Second, a locked in me attribute in a
template can be changed, and the change is cascaded down through all templates and
instances derived from the template containing the locked attribute. On the other
hand, if an attribute is not locked, then the attribute specifies a default value that can
be overridden in a derived template. Furthermore, if the value of a non-locked

attribute is changed, then the change is not cascaded to derived templates.

30

10

15

20

25

30

WO 03/001339 PCT/US02/20086

After establishing a set of templates that are to be used for the application
objects identified in FIG. 10, the application object instances are created from the
templates according to the proposed supervisory process control and manufacturing
information application. Using the templates defined in FIG. 13 and the exemplary
process plant depicted in FIG. 10 the following application objects are rendered:

$MixerVessel is used for Mixer M1 and M2;

$Hopper is used for Hopper H1, H2 and H2;

$SingleDirectionConveyor is used for conveyors C2 and C3;

$BiDirectionalConveyor is used for conveyors C1 and C4;

$SlideGate is used for Door D1 and D2; and

$Bin is used for Bins B1, B2, B3 and B4

Turning to FIG. 15, a hardware derivation view depicts the sources of engine
and platform objects from object templates. Sﬁch a view is beneficial when deciding
where to distribute or re-locate areas that have particular engine and/or platform
requirements. Node 1500 corresponds to a WINDOWS operating system-based
platform template. A set of platform instances, corresponding to platform objects
derived from the WINDOWS operating system-based platform template, branch from
node 1500 and correspond to each of the personal computers identified in FIG. 1.
Node 1510 corresponds to an application engine template. A set of application engine
instances, derived from the application engine template, branch from node 1510 and
correspond to the application engines depicted in FIG. 1. Node 1520 corresponds to a
view engine template. A set of view engine instances branch from node 1520 and
correspond to the view engines depicted in FIG. 1. Node 1530 corresponds to a
PLCNetwork device integration object template. A set of instances branching from
node 1530 correspond to device integration objects identified in FIG. 1 that support
configuring the OPC servers 116 and 118. Finally, node 1540 corresponds to a
PLCObject device integration object template. A set of instances branching from

node 1540 corresponds to device integration objects identified in FIG. 1.

FIG. 16 represents a model view of the process application depicted in FIGs.
10 and 11. The model view displays area hosting and containment relationships
specified by objects (including application objects and areas). The model view

identifies the objects that are logically grouped together for purposes of describing the

31

10

15

20

25

30

WO 03/001339 PCT/US02/20086

plant layout. The model view enables a user to quickly designate objects that will be
treated uniformly under a particular policy (e.g., alarming, etc.). The model view
includes, by way of example, nodes corresponding to the areas designated in FIG. 11
and depicted in the area tree structure of FIG. 12. The leaves of the tree 1600 identify
the application objects and their assignments to the identified areas. Furthermore, the
model view tree depicts compound containers such as a set of compound container
objects MV 1 and MV?2 instantiated from the $MixerVessel compound template
(discussed above with reference to FIG. 13).

The model view is rendered by a model view generator based upon the area
and container attributes of the objects specified under a particular application. In an
embodiment of the invention, the compatibility of an area/container with a
grouped/contained object is determined when a user seeks to create the association. .
This compatibility is determined by comparing the support features of the parent
object to the needs of the grouped/contained child object. Furthermore, in an
embodiment of the invention all objects within a container are required to designate a
same area.

Areas can be hierarchical. Thus, an area can include an area, and a parent area
collects alarm statistics for all objects in its sub-areas. In a model view hierarchical
tree structure depicted in FIG. 16, starting at the highest level of the tree structure, if
no area is designated for an area object, then the area object (e.g., ProcessPlant 1602)
is connected directly to the root node (the highest level of the tree). At a next level,
sub-areas of the ProcessPlant 1602 (i.e., RawMaterialStore 1604, Production 1606,
Distribution 1608 and FinishedProductStore 1610) are connected as branches under
the ProcessPlant 1602 node. In the exemplary application model tree 1600, the
branches from the sub-areas contain application objects (i.e., hopper H1, conveyors
C1-C4, doors D1-D2, elevator E1, and bins B1-B4), and additional sub-areas (i.e.,
Linel and Line 2 in the Production 1606 sub-area). The Linel and Line2 sub-areas
both include compounds (i.e., mixer vessels MV1 and MV2). The leaves of the
compounds MV1 and MV2 identify the objects contained by the compound objects.
In the particular example, the MixerVessel compound MV1 includes an agitator Al, a
vessel M1 and an inlet valve V1. The MixerVessel compound MV2 includes an

agitator A2, a vessel M1 and an inlet valve V1.

32

10

15

20

25

30

WO 03/001339 PCT/US02/20086

FIG. 17 represents an exemplary deployment view of the application model's
areas to the hardware and platform depicted in FIG. 1. The deployment view visually
depicts where the various objects of an application execute. A deployment view is
therefore rendered based upon the hosting (attribute 338) and the containment
(attribute 330) relationships designated by objects. A child area object is not
constrained to execute upon the same application engine as a specified parent area (in
attribute 328), and the area relationships designated by objects are not applied when
rendering the deployment view. ApplicationObjects are Hosted (attribute 338) by
their area, therefore the deployment view shows the ApplicationObject relationship to
its area. Thus, the deployment view (and the actual deployment of nested area
objects) does not reflect alarm/event concentration and propagation associated with
the hierarchical area model relationships designated between area objects.

The application objects are not displayed in FIG. 17. However, a deployment
view generator arranges the application objects under appropriate areas based upon
the host/container designations within those objects. In an embodiment of the
invention, an application object's designated host and area are, by requirement, the
same. Therefore, all application objects referencing an area object are executed upon
a same engine object identified in the host attribute 338 of the area object. This
requirement ensures that alarms and data maintained for application objects under a
particular area are maintained locally on a same computer device. If an application
object specifies a container (compound application object) in attribute 3 30, then the
named container overrides the named area host when generating a deployment view
tree (i.e., an application object within a compound (container) is placed under its
designated compound name). However, in an embodiment of the invention all
application objects contained within a compound are constrained to execute upon a
same host (i.e., all contained application objects acquire the compound/container's
designated area).

The deployment view set forth in FIG. 17 is especially appropriately classified
as exemplary since the areas and their associated objects are capable of running on
any suitable platform/application engine combination. The multi-layered
platform/engine/area/application object hosting arrangement renders the various areas
(and their associated application objects) capable of installation at any suitable
hosting engine branch in the graphical representation of the deployment of application
components depicted in FIG. 17. The highest level of the deployment tree hierarchy

33

10

15

20

25

30

WO 03/001339 PCT/US02/20086

identifies a set of platforms corresponding to the personal computers depicted in FIG.
1. The set of platforms represented by nodes include: a RawMaterialPC node 1700, a
Production PC node 1702, a FinishedProductPC node 1704, a ConfigurationPC node

1706, an ApplicationServer1 PC node 1708, and an ApplicationServer2PC node 1710.

A set of engines is deployed to the platform hosts. The set of deployed engine
object nodes corresponding to engine objects hosted by the indicated platform objects
includes: a RawMaterial View engine node 1712, a ProductionView engine node
1714, a FinishedProductView engine node 1716, an AppEnginel node 1718, and an
AppEngine2 node 1720.

The engines host device integration and area groupings of application objects
that are represented in the deployment view as nodes. The set of device integration
object nodes corresponding to deployed device integration objects includes
PLC1Ethernet node 1722 and PLC1 node 1724, and PLC2Ethernet node 1726 and
PLC2 node 1728. The set of area object nodes corresponding to deployed areas
comprising groups of application objects and/or other areas includes a ProcessPlant
node 1730, a RawMaterialStore node 1732, a Production node 1734, a Linel node
1736, a Line2 node 1738, a Distribution node 1740 and a FinishedProductStore node
1742. The branches connecting the above-identified area nodes to their associated
engines corresponds to the engines designated in the host attribute 338 in the area
objects and their associated application objects that, for the sake of avoiding undue

clutter, are omitted from the deployment view set forth in FIG. 17.

A SECURITY ARCHITECTURE FOR A PLATFORM EXECUTING
SUPERVISORY PROCESS CONTROL APPLICATIONS

Another aspect of this invention is a security model for the supervisory control
and manufacturing information system. The security model is designed to prevent
users of the information system from performing unauthorized activities. This security
model is independent of the logical or physical configuration of the application and
thus a supervisory process control and manufacturing information system architect
need not bind security to a particular application component until the application
modules have been fully developed. The late binding of security to particular
components of a system enables a developer to determine the authorization of a

particular system based upon the application objects, and the developer binds security

34

10

15

20

25

30

WO 03/001339 PCT/US02/20086

based upon the functionality of the application objects deployed upon particular
computing nodes.

The security model of the present invention is contained within a supervisory
process control and manufacturing information system comprising a set of user roles
corresponding to different types of users within the information system, a set of
security groups defining a set of security permissions with regard to a set of objects,
wherein each security group includes an access definition relating the security
permissions to at least one of the set of user roles, set of user accounts assigned to at
least one of the defined roles thereby indirectly defining access rights with regard to
the set of objects having restricted access within the system, wherein the security
permissions are assigned at an object attribute level.

The security model provides users with the ability to define functional-based
groups independent of the physical area model. Application objects can be applied to
these functional-based groups. The security model further provides for designation of
permissions at an object attribute level, thereby facilitating a high degree of
granularity with regard to user access to object functionality. The security model also
provides the user with the ability to define roles within the plant and define security
levels for each role within the security groups. Users have the ability to create other
users and associate these other users to roles. A user may have many roles, providing
a very powerful and flexible abstraction of the user profiles from the physical plant
model. The security model can be generated using a single logical environment that
enables a user to define the security model. Particular devices and application objects
reside within the security model that is abstracted from the physical area model to
facilitate functional-based security.

Turning to FIG. 18, the security model 1800 is displayed. Operators, each
with a User Profile 1902, that contains security-related information as well as other
unique information about each used, inherit a set of user roles 1804 (e.g., Intake
Operator or Dispatcher). The user roles attempt to generalize a users function and
correspond to different types of users within the information system. The roles are
granted permissions 1806 onto a number of security groups 1808. For example, if a
user inherits a role with Tuning access permission to a Security Group, then the role
will have write permission to all attributes with a security classification of Tuning

(but no other attributes).

35

10

15

20

25

30

WO 03/001339 PCT/US02/20086

Roles are also granted the utility function-based permissions such as Deploy
or Set Scan State. Thus, if a role of a Security Engineer has full permissions to
modify the object model, the role has permissions to deploy as well. Based on the
roles granted access to the Security Groups, the user is allowed to or refrained from
writing to the attribute.

The information included within a user profile, 1912, as shown in FIG. 19,
includes the user’s logon information and a set of roles 1910 that the user assumes.
Each role 1910 grants permissions 1908 to perform specific activities. When a user
obtains and assumes multiple roles, the permissions attached to such a user increase
accordingly. Operation permissions are granted to perform an activity on smaller
groups of objects known as security groups 1906. These operation permissions relate
to the normal activities or a deployed system and allow operators to open Windows,
interact with deployed objects, etc. The roles 1910 for a user specify a unique set of
operation permissions for each Security Group 1906. A security group is a set of
automation objects and each automation object belongs to exactly one security group.

Runtime objects 1904 are deployed automation objects.

The Security Groups 1808 comprise Objects 1810. Each object comprises
attributes, each of which has a security classification. The security classification 1914
of an attribute, as shown in FIG. 19, provides the ability to define the users that can
write to the attributes of an object. The attributes 1902 are designed to be accessed by
multiple users, however, to individually provide access and permission to each user
would be very time-consuming and repetitive.

Operators interact with automation objects by accessing their attributes.
Examples of security classifications within attributes are “FreeAccess”, “Operate”,
“SecuredWrite”, “VerifiedWrite”, “Tune” and “Configure”. Any user can write to a
FreeAccess attribute to perform safefy or time-critical tasks that could be hampered
by an untimely logon request. Access to a FreeAccess attribute does not require any
privileges.

Operators write to “Operate” attributes during normal operations. Examples
of Operate attributes are Setpoint, Output and Control Mode for a PID Object. A user
is required to logged into the application from which the write is taking place. A
“SecuredWrite” attribute allows interaction with a highly secured object. Accessto a
“SecuredWrite” attribute requires re-authentication of identification credentials every

time the operator wishes to write to the attribute. Operators write to a

36

10

15

20

25

30

WO 03/001339 PCT/US02/20086

“VerifiedWrite” attribute for interaction with a very highly secured object. Entrance
to a “VerifiedWrite” attribute is similar to that of a “SecuredWrite” attribute (i.e.,
requiring re-authentication of user credentials every time the operator wishes to write
to the attribute), however, a “VerifiedWrite” attribute requires a second user to
authenticate..

Turning now to FIG. 20, a method for writing to an attribute is displayed.
Initially, the user writes the changes to the attribute 2002. The message is validated
2004 and the target object checks the permissions 2006 of the user to determine if the
user has permissions to write to this attribute. If the user is determined to have access
to the SecurityGroup, the attribute is written 2008. If the user does not possess
permissions to write to this attribute, a message is returned to the user 2010 indicating
that an access failure has occurred and the attempted write is aborted 2012.

If, when the target object is checking permissions of the user, it is determined
that the attribute has SecuredWrite or VerifiedWrite classification requiring re-
authentication of user credentials, a return message 2014 is displayed indicating that a
secured/validated authentication is required. The Client Utility displays a message to
the user to re-login 2016 and the login object is called 2018 to verify the current login.
If the attribute is of the SecuredWrite classificiation 2020, the write is reattempted
with the Secure Write bit set 2022 and the message is delivered. 2024.

If the attribute is of the VerifiedWrite classification, the client Utility prompts
the user for the third party login information 2026. The login object is recalled to
verify the third party login information 2028. If successful, the attribute is written
2030 and a message confirming the same 2024 is displayed. If either the third party
login or the second login attempt by the original user fails, a message is displayed
indicating the write failure 2032 and the write attempt is abandoned 2034.

Writing'to a Tune attribute is considered a tune activity. Examples of tuning
activities are adjusting alarm limits, adjust PID sensitivity, etc. Access to write Tune
attributes requires the logged in user to have been given the “Tune” operational
permission to the SecurityGroup to which the object belongs. Writing to a Configure
attribute is considered a significant configuration change. Access to write a
Configure attribute requires the requisite permission and further requires that the
object is offscan.

Client utilities (e.g, IDE, SMC and View) generally requires their users to b¢

authenticated to confirm the appropriate permissions. An authenticated user is

37

10

15

20

25

30

WO 03/001339 PCT/US02/20086

granted the sum of all permissions within their assumed Roles. If security is enabled
within the Galaxy (application configuration), the client utility logon dialog will be
displayed. The system will provide a standard logon dialog that will provide the
necessary calls to the LoginObject. It is contemplated, however, that the client utility
can create a custom logon dialog that is specific to the needs of that client utility.

The Galaxy can be configured to support several authentication modes,
including ““None”, “Galaxy”, “OS User” and “OS Group”. A Galaxy authentication
mode requires the user to logon to a system utility each time that a utility is
initialized. Within the OS User authentication mode, the system will check whether
the user previously authenticated by the OS has a matching User Profile. Ifa
matching User Profile exists, the user is automatically logged on. If no matching
profile can be located, the login dialog will be presented and they will be requested to
Login, the entered credentials are then authenticated against the OS. Within an OS
Group authentication mode, the system maps OS User groups to the Roles configured
within the security model. The system will match the OS Groups of the current OS
User to that of the roles within the Galaxy, upon finding a match it will authorize the
user with all privileges granted to the matching roles. If none are found then it will
ask the user to re-authenticate using a User ID and password or similar items. When a
user is authenticated using the OS Group mode the UserProfile is automatically
created by the system so that their personal preferences can still be stored within the
Galaxy. All other attempted user logons are rejected and no system authentication is
allowed. The various authentication modes are controlled by the LoginObject.

Turning now to FIG. 21, the overall security model 2100 with a highlight on
the user roles is displayed. As noted above, User Roles define all different types of
users of the system from the perspective of security. Several examples of User Roles
are control-engineer, system-technician, quality-manager, production-line-1-operator,
shift-supevisor. Two generic user roles, UserRole-1 and UserRole-2, are shown in
FIG. 21 as 2104 and 2106, respectively. The security model 2100 also includes
Security Permissions defined for each user role. A plurality of types of security
permissions are supported, for example, Integrated Developed Environment (IDE)
Permissions, System Management Console (SMC) Permissions and Runtime
Permissions.

IDE Permissions specify the operations 2108 that each user is allowed to

perform using the IDE. Generally, IDE Permissions relate to configuration and

38

10

15

20

25

30

WO 03/001339 PCT/US02/20086

deployment related tasks. Sample IDE permissions include importing new templates,
creating/modifying or deleting user profiles or objects. SMC Permissions specify the
type of system management functions 2110 the user can perform using the SMC.
Typical SMC tasks are system maintenance and administration related. Example
SMC permissions are tuning the network parameters, performing database back-ups
and performing license administration. Runtime Permissions specify explicitly, for
each Security Group, the runtime operations 2112 that each user is allowed to perform
on Automation Objects belonging to that Security Group. Typical runtime tasks
include monitoring and normal operations related tasks.

UserRole-1, as displayed in FIG. 21, have separate IDE Permissions, SMC
Permissions and Runtime Permissions. The Runtime Permissions are separated into
the different permissions associated with each security group (SecGrp).

The automation objects are organized so that Runtime permissions defined in
the Security model can be appropriately applied. To accomplish this, each automation
object is configured to be associated with one Security Group. This causes all
runtime permissions defined for a security group to be applicable to all automation
objects in that security group. Operations on the automation objects are performed by
accessing their attributes. The runtime security permissions are based on the types of
attributes a user may access. These attributes are discussed above in relation to FIG.
19.

At runtime, access to Object attributes and Windows is granted to or revoked
from user. Access is based on an Access Key/Lock scheme. The user has the Access
Key (i.e., the User Profile authentication information) and the Object attribute or
Window has the Access Lock. The Access Key is the users operational permissions
on the security group the object belongs to and the Access Lock is the
SecurityClassification of the target attribute.

Turning to FIG. 22, depicting the method to configure the security model, the
system engineer 2202, who has appropriate permissions to configure the security
model, launches the IDE 2204. The system engineer 2202 also launches the Galaxy
object editor, the security page and the security mode 2206. After creation of a new
role which, by default, has no permissions initially assigned, the system engineer
2202 selects the new role 2208 and specifies the configuration functional permissions,
for example Configuration permissions (IDE), system administration (SMC) and

operation permissions 2208 desired for the role.

39

10

15

20

WO 03/001339 PCT/US02/20086

[llustrative embodiments of the present invention and certain variations
thereof have been provided in the Figures and accompanying written description. The
present invention is not intended to be limited to these embodiments. It will be
appreciated by those skilled in the art that a new and useful method and application
has been described for configuring and carrying out supervisory process control and
manufacturing information applications including the security model for the target
application. In view of the many possible environments to which the principles of
this invention may be applied and the flexibility of designing and carrying out
software-based systems, it should be recognized that the embodiments described
herein are meant to be illustrative and should not be taken as limiting the scope of the
invention. Those skilled in the art to which the present invention applies.will
appreciate that the illustrated embodiments can be modified in arrangement and detail
without departing from the spirit of the invention. The present invention is intended to
cover the disclosed embodiments as well as others falling within the scope and spirit
of the invention to the fullest extent permitted in view of this disclosure and the
inventions defined by the claims appended herein below. Therefore, the invention as
described herein contemplates all such embodiments as may come within the scope of

the following claims and equivalents thereof.

40

10

15

20

25

30

WO 03/001339 PCT/US02/20086

WHAT IS CLAIMED IS:

1. A security component within a supervisory process control and
manufacturing information system comprising:

a set of user roles corresponding to different types of users within the
information system;

a set of security groups defining a set of security permissions with regard to a
set of objects, wherein each security group includes an access definition relating the
security permissions to at least one of the set of user roles; and

a set of user accounts assigned to at least one of the defined roles thereby
indirectly defining access rights with regard to the set of objects having restricted
access within the system;

wherein the security permissions are assigned at an object attribute level.

2. The security component of claim 1, wherein the information system is

distributable to a plurality of networked computer devices.

3. The security component of claim 1, wherein the information system

has a layered architecture.

4. The security component of claim 3, wherein the layered architecture
comprises application objects that model entities within a process control system,
engine objects that host execution of the applications in a runtime environment, and
platform objects corresponding to a physical computer system component for
executing the engine objects and associated application objects and wherein the

platform objects host at least one of the engine objects.

5. The security component of claim 4, wherein the engine objects and
platform objects address aspects of the application relating to the physical computing
device configurations upon which the application executes, and wherein the
application objects execute independently of the physical computing device

configurations.

6. The security component of claim 4, wherein the application objects

communicate on the same computing device through engine objects and

41

10

15

20

25

30

WO 03/001339 PCT/US02/20086

communications across a network of computing devices are supported by the platform
objects thereby insulating communications between application objects from the

topology of a computer system within which the application objects execute.

7. The security component of claim 1, wherein each user has a user

profile.

8. The security component of claim 7, wherein the user profile contains

security-related information and at least one role.

9. The security component of claim 8, wherein the at least one role grants

permissions to the user to perform specific activities.

10. The security component of claim 9, wherein the permissions are

operation permissions.

11. The security component of claim 10, wherein the operation

permissions comprise security groups.

12. The security component of claim 11, wherein the security groups

comprise objects.

13. The security component of claim 12, wherein the objects comprise at

least one attribute and each attribute has a security classification.

14. The security component of claim 13, wherein the security classification

of each attribute defines the users that may write to the attribute.

15. The security component of claim 13, wherein the at least one attribute

are designed to be accessed by multiple users.

16. A method of editing an attribute of a security component within a
supervisory process control and manufacturing information system, the method

comprising:

42

WO 03/001339 PCT/US02/20086

receiving the authentication materials from a user;
obtaining the proposed changes to the attribute;
checking the permissions of the u;er inputting the proposed changes;
5 accepting the proposed changes in the event that the permissions of the user
are validated; and
denying the proposed changes in the event that the permissions of the user are

invalidated.

10 17. The method of editing an attribute of claim 16, further comprising the

step of requesting a second authentication.
18. The method of editing an attribute of claim 17, further comprising the

step of requesting the authentication of a third party.
15

43

PCT/US02/20086

WO 03/001339

1/16

L0l

201 // ¢O1d 001 1071d
: 4 / 4
Od Zienesuonedlddy e Od 1enaguonesyddy ﬁ
(] 801 4
/h densjoog desjsjoog U Jansgya
.. 2dO
m uuogeldOdzieneguonesddy ULofeldOd L ianeguoneoddy oLl
ﬁ Zaulbugddy 1auibugzddy
| (swefag ‘ddv Y zo1d) womeNzold 5102[q0 ‘ddy Y 1 91d Y HOMSNLOd
A A
“— Od 1Pnpoidpaysiul4 Od uononpoid Od leusiepymey Od uogeinbyuod
dejsjoog densjoog densjooqg dessjooqg JonBs 10S 3q|
wuoneldod uuopeld wuoge|dod 02l (wiopeiddd 30EL
1oNpoId paysiuly 0duondnpold [eusjeymey CO_HEDUECOO sweN NN —. 12l
(_Buaman) \ ocl GgL—7| eseqmeq
uoneinbyuo)
vel cel oct

m\U\,
vel

WO 03/001339

2/16

<<abstract>>
Windows OS

(from Microsoft)

K

<<CoClass>>
BootstrapObiject
(from Bootstrap manager)

|

Platform

(from StateDiagrams)

o

PCT/US02/20086

206
Engine -

(from StateDiagrams)

210

_ on

Application Object

Execute business logic

208

-

0..n

FIG. 2

Scheduler

WO 03/001339

3/16

FIG. 3

[Common Fields]

PCT/US02/20086

Scripts

UDA

Alarm Mode

Based On

AttributeNames

t Contained Name

Deployed version

= Derived from

Relative Execution Order

Hierarchial Name

IsTemplate

Alarm Inhibit

Alarm Mode

Alarm Mode Command

Area

Container

Category

Category Enum

Errors

Host

InAlarm

ScanState

ScanStateCommand

Security Group

Description

TagName

Warnings

WO 03/001339

4/16

FIG. 4

[Platform Object Fields]

PCT/US02/20086

4007

RegisterEngine

4027

StartEngine

4047

StartHostedObjects

406"

StopEngine

4087

UnregisterEngine

4107

Engines

4127

EngineStates

FIG. 5

5007

External Name

502 T~

Internal Name

504 T

Reference Count

506

Objects

508 7

Startup Type

510 7

CanGoOnscan

512 —~

BindReference

514 ——

AutoRestart

516

CheckPointFailed

518 7

AlarmThrottleLimit

5207

EngineAlarmRate

5227

AlarmsThrottled

524 7T

ScriptExecuteTimeout

526 T~

ScriptStartupTimeout

528 T

ScriptShutdownTimeout

530 ——

PublisherHeartbeat

532 T

Processld

534 7~

CreateAutomationObiject

536

DeleteAutomationObject

538 7

StartHostedObjects

WO 03/001339

FIG. 6

FIG. 7

[Analog Device
Application
Object Fields]

5/16

PCT/US02/20086

600 —)

External Name

602 —

Intemal Name

604 —

StatsAvgPeriod

606—)

CheckpointPeriodAvg

608 —

ExecutionTimeAvg

610 —)

HousekeepingTimeAvg

612 —

TimeldleAvg

614 —)

TimeldleMax

616 —

TimeldleMin

618 —

InputMsgSizeAvg

620 —)

InputMsgsProcessedAvg

622—)

InputMsgsQueuedAvg

624—

InputMsgsQueuedMax

626 —

InputQueueSizeAllowed

628)

InputQueueSizeAvg

630 —)

InputQueueSizeMax

632 —)

TimelnputAvg

634 —

ObjectCnt

636 —

ObjectsOffScanCnt

638 —

TimeOutputAvg

640 —

StatsReset

642—

ScanCyclesCnt

644 —

ScanOverrunsCnt

646—)

648—

ScanOverrunsConsecutiveCnt

ScanOverrunHighLimit

650—)

ScanOverrunCondition

652—)

ScanPeriod

700—)

AnalogDevice Attributes

701—)

PV.Input

702—)

PV. Output

703"

Scaling

704 —)

LevelAlarms

705—)

PV.Roc

706 —)

SP

707 —

PVDev

708—

CtriTrack

WO 03/001339 PCT/US02/20086
6/16
WinPlatform . Application
Bootstrap 71 Engine 1 Scheduler Object 1
"start platform”
\\~soo
802 'start engine"
et
"create engine process'j B start / 806
804 "register" T:]
808
"start
L1 | executing
L | objects Execute()
T
LJ 812
stop platfor%:___ 814

816

"stop engine”

—

'inform engine to stop"

)

818

unregister +— 820
) .

822

"shutdown

]

WO 03/001339 PCT/US02/20086
7116
Engine A Scheduleron | | Application Endine B Scheduler on
» Engine A Object A 9 Engine B
Application 900
Engineer
"Start }
executing
business logic" "execute
business logic"
remov: object "scheduler \ 902 >H
from engine" stops
> executing
) business logic"
906
("shutdown object” >H
L1908
"add object A to engine” 1
\ | 912
910 "Initialize
T object A" :/' 914
"start object”| | "register obj?Et
916

[r 918j

|

"execute business object"

WO 03/001339 PCT/US02/20086

8/16

e

FIG. 10

1000

WO 03/001339 PCT/US02/20086

9/16

1120
T
C .
Bl
< ™ | Finished ProductStore 1110
<] N
FIG. 11

Area Model

)

—>
RIGHT
1108

Xw
1»
=D,
[|
&l
1104 110
Distributi

RawMaterialStore

ProcessPlant

WO 03/001339 PCT/US02/20086

10/16

FIG. 12 FIG. 13

1200
EiProcessPIant/ —H$Area
& RawMateriaIStore/1202 ——i $DiscreteDevice
H:$Valve
. on— 1204 il
£ Production 1 $MixerVessel.Inlet
+ Linet — 1210 L :$SliceGate
2 fi$Conveyor
L& tnea— 121

43 $SingleDirectionConveyor

— Distribution —1206 4 $BiDirectionalConveyor

i $Elevator
i $Agitator
4 $MixerVessel.Agitator

L—1:$UserDefined
Area (Model) F$Vessel

Ltk FinishedProductStore — 1208

$MixerVessel.Vessel
R $MixerVessel

Derivation (App. Objects)

FIG. 14a
“w

M 1400

A1l

FIG. 14b

#:i$MixerVessel

& Inlet
H Vessel
1 Agitator

Model (Compound Containment)

WO 03/001339 PCT/US02/20086

11/16
FIG. 16

1602

S

#ProcessPlant 1604
FIG . 1 5 ——EEiaerMateriaIStore/
H1
1500 % Production — 1606 1600
—:i”fﬁ$\MnPIatform/ ﬂ (L:i:1e1
—:RawMaterialPC & H2
—#:ProductionPC & MV
—H:‘FlnishedPrOdUCtPC 4 Al (Agltator)
—E=ApplicationServer1PC £ M1 (Vessel)
—E:ApplicationServer2PC — V1 (Inlet)
L ConfigurationPC . # Line2
—#:$ApplicationEngine —1510 ——# H3
—+ AppEngine1 H MV2 .
——*a’-JAppEngine2/1520 _'—*' :AZZ((Q/%?stglr))
—i$ViewEngine — L5 V2 (Inlet)
—HRawMaterialView = Distribution
- ProductionView o C2 \
L_FinishedProductView ——5 C3 1608
—pSPLCNetwork —___ — C4
—#PLC1Ethernet 1530 — D1
L—#PLC2Ethernet —# D2
;:1‘;$PLCObject\ — E1
4 PLCH 1540 Fl?lstéidproductStore\
#HPLC2 8 1610
- B2
—n B3
L B4
Application Model View

Physical Hardware Derivation View

1700

FIG. 17 /
#: RawMaterialPC / 1712
RawMaterialView 1702

f ProductionPC 1714
i ProductionView//1704

t# FinishedProductPC _— 1716
FinishedProductView

— ConfigurationPC

—?[ipplicationServeﬂ PC—1708
& AppEnginel— 1718

#1 PLC1Ethernet 1722
4 PLCA1 1724
— ProcessPlant 1730

— RawMaterialStore
—E Production— 4734 1732

—H Line1—1736

—EI%?‘pplicationServerzPC/1710
& AppEngine2 1720

—f[-i—prCZEthernet — 1726
#HPLC2 ————1728

——B Distribution —————1740
— FinishedProductStore~__ 742

>

Deployment View

WO 03/001339

User
Profile

1800//

PCT/US02/20086
12/16
—1802
| Roles — 1804
Access | 1806
Permissions
Security |
Groups 1808

Objects |~ 1810

WO 03/001339 PCT/US02/20086
13/16
User Profile ~ 1912
Role —~— 1910
View (Operation)
Permissions —+—1908
(Operate, Tune, Configure,
AlarmAck)
Yy
Security Group | 1906
Runtime Object |~ 1904
Security Classifications
Operate
Tune .
Attributes —~— 1
Configure 902
VerifiedWrite
SecuredWrite 1914

FreeAccess

WO 03/001339 PCT/US02/20086
14/16
F I G . 2 O User Writes to Attribute —2002
A 4
MessageExchange does
SetAttribute withthe |
Secured and Validate 2004
write Bits Clear
A
Target Object Checks Permissions
2006
2014
Y g Y
Attribute Written \ Return Message Indicating
(Return Message Secur.edN alidate Write
2008 Indicating SecurityGroup Required
Access Failure
|
2012 2010 ¥
(/ 2016— Client Utility
Write Failure Prompts Fhe user
for login info
2018 /
LoginObject called to
Verify current login
2?22 /
I V‘l'd ti
SetAttribuee is No sRe:lih:(;gn — 2020
re-attempted /
with Secure Yes
Write Bit Set !
Client Utility Prompts User for 3 | 2026 Fail
Party to Enter login Information
2030 l
g Login Object Called to Verify Fail
SetAttribute is Current Login >
re-attempted "
with Secure Success (y
—| Write Bit Set 2028 2032— Indicate Secured/Verified
Write Failure
2(224 l
\ 4 . .
— Write Failure
Message Exchange Write will 2034 e Falid
complete is delivered

PCT/US02/20086

WO 03/001339

15/16

N.N “%Mm ﬁw& TN FMMWM n.mu.« ! c-210d 7— d[ogmws
SUOISSTULO SUMUY | SUOISSTUIOg oumuny | 3 Lot Hed DS | 0] SUOISSTULS] HAT
[- 9]0y 10} [- 910y 10}
- - [910y 1-910¥ 3
¢ d1p23g 103 1-diDdg 10§ I0J SU OISSTULId] DINS 10J SUOISSTULIS (] [= S10Y3s1]
SUOISSILLLIS { SUITJUITY SUOISSTULIS SUWITURTY : o
7-dinoag 1-d1noag
,_ suogeisd(swmuny suopesad DS \ suonesadO AL .
ST UONEZIeNSTA OIS woy aqr woy S
sy woy pautiopiad syse POULIOHIa] SYSEL POULIOPIA SYseL /
alz ! \ \
oLle 80l¢ cole

N

——

0[0] 74

l¢ Old

WO 03/001339

16/16

FIG. 22

PCT/US02/20086

2202
DDE Galaxy Security Package Server
Object Editor Editor Command
System
Engineer
. Launch IDE
22304 I‘]
Load Galaxy Object Editor
»r Load Security Page
3 > Load Security Mode
2206 >

Edit Security Page

1

Seléct New Role

22S08 1]

Set Permissions

A 4

 —

22810 [

A 4

U

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

