

(No Model.)

V. A. THOMAS.
INSULATOR BRACKET.

No. 463,587.

Patented Nov. 17, 1891.

WITNESSES.

Charles H. Harnigan.
H. E. Carpenter.

INVENTOR.

V. A. Thomas.
by Remington D. Henton
Attnys.

UNITED STATES PATENT OFFICE.

VAN A. THOMAS, OF PROVIDENCE, RHODE ISLAND, ASSIGNOR OF ONE-HALF
TO ANDREW D. ROSS, OF SAME PLACE.

INSULATOR-BRACKET.

SPECIFICATION forming part of Letters Patent No. 463,587, dated November 17, 1891.

Application filed May 21, 1891. Serial No. 393,545. (No model.)

To all whom it may concern:

Be it known that I, VAN A. THOMAS, a citizen of the United States, residing at Providence, in the county of Providence and State of Rhode Island, have invented certain new and useful Improvements in Insulator-Brackets; and I do hereby declare the following to be a full, clear, and exact description of the invention, such as will enable others skilled in the art to which it appertains to make and use the same, reference being had to the accompanying drawings, and to letters of reference marked thereon, which form a part of this specification.

My present invention relates to brackets for neatly and safely supporting electric-light wires or other electric cables from the corner of a building, or such other application as desired, and also for surmounting an obstruction on the face of any structure—such as 15 projections, columns, water-conductors, &c.—usually encountered during a system of wiring for lighting or for power purposes; and it consists, essentially, of a cast-iron bracket composed of a base portion having projecting 20 bent sides or legs and an insulator-carrying piece having upwardly-turned arms secured thereto, all as will be hereinafter set forth and claimed.

To fully illustrate my invention I have prepared the annexed sheet of drawings, where-
in—

Figure 1 represents a side elevation of my complete bracket as secured to the surface of a building, pole, or other structure. Fig. 2 is a front elevation. Fig. 3 is a plan view showing an inclosed column or water-conductor. Fig. 4 is a cross-section of the insulator-arm and the bracket that is secured to the building or other structure, taken on line xx of Fig. 1; and Fig. 5 represents also a plan view of my improved bracket, but as applied to the corner of any structure.

To more definitely describe my improved bracket a , I would again refer to Fig. 1, where e represents the bent or curved sides or legs of the base portion connected together by the vertical tie a' . The bracket is directly secured to the face of a building or other desired surface through the medium of the feet f cast thereon, the latter being provided with

holes h , adapted to receive holding-down bolts or screws.

b indicates the holder portion secured to the base-tie a' by means of screws s passing transversely through the adjacent parts. Upon removing the screws the bracket may be packed for shipment more readily. I prefer to cast the holder in T-section, as shown by Fig. 4. The holder is provided with two bent upturned arms c , having the ends screw-threaded, as at c' , to receive insulators i , the latter being made of glass, porcelain, or other suitable non-conducting insulating material, as common. The insulator-arms I also prefer to make in T-section, such form possessing greater strength with less cost. The projecting arms c also serve as a guard to prevent the wire from dropping down into the street or coming in contact with other objectionable surfaces should it by accident become loose from the insulator, or in case the insulator itself becomes disconnected from the arm, as I prefer to have the electric wire located on the inside, or between the center of the insulator and the face of the building.

It is evident that by this method of constructing and applying brackets for electric wires a very neat system of construction may be inaugurated at a minimum cost, and thus made applicable to any building and at any desired angle, and also to safely cross any obstruction encountered in the face of a wall—such as columns, pilasters, water-conductors, &c.—and still maintain safely a continuous and unobstructed electric current in the suspended cable.

To more minutely describe the application of my improved bracket a , I would say that I first drill holes into the surface of the wall—if of brick, stone, or iron—and into which I insert, through the feet of the bracket, bolts or screws, and thus safely secure the same to the corner or side of the structure. I then secure the insulator-carrying arm by means of screws to the outer face a' of the base portion, and thus the bracket as a whole is in readiness to receive the insulators for retaining the wire in perfect condition, the special advantages of this form of bracket being that I can safely convey an electric wire around the corner of a building at any desired angle, or pass any

projecting surface on the face of a wall or other structure without any danger of the wire coming in contact with such objectionable surface, and thus impair or render dangerous 5 the value of the electric surface.

I claim as my invention—

1. The insulator-bracket hereinbefore described, consisting of a base portion having bent laterally-separated projecting sides or 10 legs, and an insulator-carrying portion secured to said base portion, substantially as set forth.

2. The insulator-bracket *a* hereinbefore described, consisting of the upper and lower bent sides or legs *e*, united together and provided 15 each with a base or foot *f*, and an arm *b*, secured to the leg portions arranged to carry insulators *i*, as set forth.

In testimony whereof I have affixed my signature in presence of two witnesses.

VAN A. THOMAS.

Witnesses:

CHARLES HANNIGAN,
GEO. H. REMINGTON.