一种飞机 CFDS 数据分析器及其实现方法

本发明涉及一种飞机 CFDS 数据分析器及其实现方法，首先在转场实验模拟运行中可更换部件在飞机上的 CFDS 监控状态，然后在场测试中完成 LRU 的性能测试，再将测试数据进行分析和验证后移植入由 ARINC429 数据分析器和工控机构成的飞机 CFDS 数据分析器中。经所述 ARINC429 通信、分散 I/O 通信和被测机载系统通信，从而实现飞机 CFDS 数据分析器的二次开发接口，方便技术人员自主升级，大大降低了软件升级的成本，符合现代 ATS 设计标准，可以方便的移植入不同的自动测试系统，节约维修资源，打破国外的技术垄断，有效降低原来需要返厂维修的成本和航材周转时间，降低飞机部分组件的外送维修率，提高企业竞争力。
1. 一种飞机CFDS数据融合器的实现方法，其特征在于：首先在机位间模拟航线可更换部件LRU在飞机上的CFDS监控状态，然后在机位测试中完成LRU的机件级测试，为LRU的故障诊断和深度维修提供指引；将测试数据进行解码分析和验证后移植入由ARINC429数据融合器和工控机结构的飞机CFDS数据融合器中，建立LRU维护信息数据库；飞机CFDS数据融合器包括ARINC429通道、离散I/O通道、LRU维护信息数据存储单元和分析解码单元，经所述ARINC429通道、离散I/O通道和被测机载系统通信，从而实现飞机CFDS数据融合器所述方法包括以下次序的步骤：

(1) CFDS数据的提取和解码，根据飞机维护手册AMM、故障隔离手册FIM、故障定位手册TSM以及被测部件的CMM手册，ARINC429标准，ARINC604规范，ARINC624规范，分析CFDS系统的测试数据，并通过实际测试典型组件的维护数据进行解码分析和验证；

(2) 将机载系统按其硬件智能化程度高低程度划分为1型、2型和3型机载系统；机载系统的划分依据空客飞机维护手册AMM和ARINC604规范，ARINC624规范；

(3) CFDS数据融合器硬件的实现，所述CFDS数据融合器硬件采用ARINC429数据融合器和工控机实现，ARINC429数据融合器采用嵌入式系统集成，或通过PXI测试总线，集成到PXI测试系统中；CFDS数据融合器包括ARINC429通信协议通道和离散I/O通道，并由统一的主控制单元控制，以实现1型、2型和3型机载系统之间的数据交换；对于硬件智能化程度高的1型的机载系统，CFDS数据融合器对其发出多状态的维护请求和交联数据，并接收其返回的维护数据字；对于硬件智能化程度一般的2型的机载系统，CFDS数据融合器可按接收命令对其提出维护请求，并接收返回的维护数据字；对于硬件智能化程度较低的3型的机载系统，CFDS数据融合器通过离散命令对其提出维护请求，并接收返回的自检状态离散量。CFDS数据包由分析解码单元解码后，在LRU维护信息数据存储单元中寻址得到对应的状态数据；ARINC429通道和离散I/O通道均采用PXI测试系统实现，分析解码和维护数据存储在存储器的存储与寻址由工控机实现，PXI测试系统与工控机通过传输速率为78MB/s的高速总线连接；

(4) CFDS仿真模拟方式和分析解码方式的实现，仿真模拟方式模拟机载MCDU的CFDS工作页面，实现顶视图模式normal mode和交互模式interactive mode，用以在机位中还原LRU组件在飞机上的工作状态；分析解码方式包括初始设置、LRU标识、用户标识、普通模式normal mode和交互模式interactive mode具体数据的解码和总线数据的时序分析和存储；

(5) CFDS维护信息数据库的建立，维护信息数据库符合基本数据库标准，并通过分析CMM手册和实际维护数据的测试和分析实现；该部分采用分级开放式结构，在基本数据库的基础上，可通过统一的数据库配置页面方便地添加数据，数据库由数据字标识Label和设备识别号ID索引，根据设备字类型分类处理；根据不同LRU组件进行测试方案的设计和测试数据的分析程序，根据适用指令AD，服务通告SB，CMM手册改版REV及时对数据库进行更新的程序；

2. 一种飞机CFDS数据融合器，其特征在于：所述CFDS数据融合器包括主控制单元、ARINC429通信协议通道、离散I/O通道、LRU维护信息数据存储单元、分析解码单元、ATS接口和人机接口；主控制单元由工控机构成，ARINC429通道主要包括ARINC429数据发送器，ARINC429数据融合器，存储单元，ARINC429通信接口；所述ARINC429通道集成于一块板卡上通过插槽与主控制单元由工控机连接；所述离散I/O通道由PXI总线32通道1/0
模块构成，包括数字 I/O 单元及电平转换单元；所述离散 I/O 通道集成于一块板卡上，通过插槽与主控制单元由工控机连接，离散 I/O 通道主要完成，离散数据的收发；所述 LRU 维护信息数据库存储单元由工控机的存储硬件和数据库程序构成，分析解码单元主要由存储模块，解码器和输入输出模块构成；所述 ARINC429 通道的功能是接收和发送 ARINC429 格式信息，完成多状态的维护请求和交联数据的发送，接收该通道的返回维护数据字；所述离散 I/O 通道的功能是执行离散命令对机载系统提出维护请求，并接收返回的维护数据字；所述 LRU 维护信息数据库存储单元主要是存储维护信息，并对信息进行分类；所述分析解码单元主要完成对接收的 CFDS 数据包进行解码分析。
说明

一种飞机 CFDS 数据分析器及其实现方法

技术领域
[0001] 本发明涉及用于飞机维修的自动测试设备技术领域，特别是一种飞机 CFDS 数据分析器及其实现方法。

背景技术
[0002] 现代飞机多采用集中故障显示系统（CFDS）作为各机载系统工作的管理中枢，CFDS 通过监控系统可更换部件（LRU）的状态实现对飞机系统的故障隔离处理，它为维护人员提供了准确的故障方法，帮助维护人员了解飞机故障状态，快速查找故障原因，及时排除故障。现代机载电子设备大多集成了 CFDS 功能，理论上讲，这些设备智能化程度很高，维修本应更加简单。但是，由于国内民航空域维修领域自主测试设备主要依赖进口，CFDS 核心技术由国外掌握，随着维护的更新，测试设备却无法自主升级而丧失维修能力，造成了机载设备国外送修比例居高不下，送修总量随着机队数量扩大而逐年攀升。
[0003] CFDS 典型构型是，其核心为集中故障显示接口组件（CFDIU）。当航线可更换部件（LRU）发生故障送往车间维修时，自动测试设备（ATE）应可担当 CFDIU 的功能，实现对 LRU 的测试及故障信息提取。
[0004] CFDS 在国外发展较为成熟，如空客 A320 等现代机型上都配备了比较完善的集中故障显示系统。BITE（机内测试设备）是 CFDS 的基础，也是 ATE（自动测试设备）的重要支撑。在现阶段，我国 CFDS 系统的研究尚处于起步阶段，研究基础比较薄弱，而国外对我国进行了严密的技术封锁，研究资料极为缺乏。这种情况造成了我国机载电子系统及相应 ATE 技术发展的瓶颈。
[0005] 对于航空维修企业的生产而言，由于现代机载电子设备的 BITE（内建自检设备）功能越来越完善，从表面上来看，大大降低了故障定位和维修的难度，但从维修实践来看，如果不掌握 ATE 的核心技术 - 集中故障显示系统（CFDS）功能测试及信息提取，大量航线可更换部件（LRU）将会因更新换代而无法实现深度维修，维修工作变成了简单的电路板更换操作。同时，因为放在采用落后的维修技术，对新型电子设备的 CFDS 维护数据无法获取，不能满足适航取证的严格要求，相当一部分曾经具有维修能力的 LRU 组件被迫重新送往国外维修，大大的提高了成本和航材的周转时间，给航空企业造成了沉重的负担。
[0006] 为了解决维修能力问题，国内维修企业目前的做法是购买原厂专用维修设备并跟踪升级。但是，普遍存在以下几个问题：
[0007] 1）原厂专用维修设备价格昂贵，一般维修企业难以承受，即使如维修工作中最为常见的 T1200A 总线控制器，其价格也以数十万元计，而较先进的 ATE 往往达到数百万元。如果达不到一定的维修规模，LRU 故障组件只能被迫送往国外维修。即使可以一次性投资购买原厂专用维修设备，其软件更新也是价格不菲。例如原厂的一次简单维护数据的更新也会收取昂贵的升级费用，而这一部分数据信息在相应的部件维护手册（CMM）的改版中应该是提供的，因为维修企业不掌握自主的知识产权，无法自主升级，只能接受高昂升级费用，造成不断追赶，却步步落后的局面。
发明内容

为了解决上述问题，本发明的目的在于提供飞机 CFDS 数据分析器的实现方法和根据此方法设计的飞机 CFDS 数据分析器的技术方案，通过理论分析和实际的测试对比，可以完成较为完备的 CFDS 维护数据库。

研制的飞机 CFDS 数据分析器，具有灵活的人机接口和自动测试系统接口，满足不同的测试需求，并能够提供自主的升级途径，降低维修成本，使企业能够合理配置资源，提高维修效率。

本发明是通过这样的技术方案实现的：一种飞机 CFDS 数据分析器的实现方法，其特征在于：首先在本场车间模拟航线可更换部件（LRU）在飞机上的 CFDS 监控状态，然后在本场测试中完成 LRU 的车间级测试，为 LRU 的故障诊断和正确维修提供指引；将测试数据进行编码分析和验证后移植入由 ARINC429 数据分析器和工控机构成的飞机 CFDS 数据分析器中，建立 LRU 维护信息数据库；飞机 CFDS 数据分析器包括 ARINC429 通道和离散 I/O 通道、LRU 维护信息数据库存储单元和分析解码单元，经所述 ARINC429 通道、离散 I/O 通道和被测机载系统通信，从而实现飞机 CFDS 数据分析；所述方法包括以下步骤：

（1）CFDS 数据的提取和解码：根据飞机维护手册（AMM）、故障隔离手册（FIM）、故障定位手册（TSM）以及被测部件的 CMR 手册、ARINC429 标准、ARINC604 规范、ARINC624 规范，分析 CFDS 系统的测试数据，并通过实际测试典型组件的维护数据进行解码分析和验证；

（2）将机载系统按其硬件智能化程度高低程度划分为 I 型、II 型和 III 型机载系统；机载系统的划分依据出自空客飞机维护手册（AMM）和 ARINC624 规范 ARINC624 规范（机载系统的设计指南）。

（3）CFDS 数据分析器硬件的实现，所述 CFDS 数据分析器硬件采用 ARINC429 数据分析器和工控机实现；ARINC429 数据分析器采用嵌入式系统集成，或通过 PXI 测试总线，集成到 PXI 测试系统中；CFDS 数据分析器包括 ARINC429 通信协议通道和离散 I/O 通道，并由统一的主控制单元控制，以实现与 I 型、II 型和 III 型机载系统之间的数据的交换；

正常状态下，对于硬件智能化程度的 I 型的机载系统，CFDS 数据分析器对于发出多状态的维护请求和联机数据，并接收其返回的维护数据字；

对于硬件智能化程度一般的 II 型的机载系统，CFDS 数据分析器可通过对离散命令对其进行维护请求，并接收返回的维护数据字；

对于硬件智能化程度低的 III 型的机载系统，CFDS 数据分析器通过离散命令对其提出维护请求，并接收返回的自检状态离散量；

CFDS 数据包由分析解码单元解码后，在 LRU 维护信息数据库存储单元中寻址得到的响应数据字；

ARINC429 通道和离散 I/O 通道均采用 PXI 测试系统实现，分析解码和维护数据库的存储与寻址由工控机实现，PXI 测试系统与工控机通过传输速率为 78MB/s 的高速总线连接。
[0020] (4) CFDS 仿真模拟方式和分析解码方式的实现，仿真模拟方式模拟机载 MCDU 的 CFDS 工作页面，实现顶层模式 (normal mode) 和交互模式 (interactive mode)，由以在车间中还原 LRU 组件在飞机上的工作状态；

[0021] 分析解码方式包括初始设置、LRU 标识、用户标识、普通模式 (normal mode) 和交互模式 (interactive mode) 具体数据的解码，总线数据的时序分析和存储；

[0022] (5) CFDS 维护数据库的建立，维护数据库符合基本数据库标准，并通过分析 CMM 手册和实际维护数据的测试和分析，实现；该部分采用分层开放式结构，在基本数据库的基础上，可通过对接的数据库配置文件方便地添加数据，数据库由数据字标识 (Label) 和设备识别号 (ID) 索引，根据数据字类型分类处理，根据不同 LRU 组件进行测试方案的设计和测试数据的分析程序，根据适航指令 (AD)、服务通告 (SB)、CMM 手册改版 (REV) 及时对数据库进行更新的程序。

[0023] 一种根据上述方法实现的飞机 CFDS 数据分析器，所述 CFDS 数据分析器包括主控制单元 ARINC429 通信协议通道，离散 I/O 通道，LRU 维护信息数据库存储单元、分析解码单元，ATS 接口和人机接口，主控制单元由工控机构成；ARINC429 通道主要包括 ARINC429 数据发生器，ARINC429 数据分析器，存储单元，ARINC429 通信接口。

[0024] 所述 ARINC429 通道集成于一块板卡上，通过插槽与主控制单元由工控机连接；

[0025] 所述离散 I/O 通道由 PXI 总线 32 通道 I/O 模块构成，包括数字 I/O 单元及电平转换单元，所述离散 I/O 通道集成于一块板卡上，通过插槽与主控制单元由工控机连接，离散 I/O 通道主要完成离散数据的收发。

[0026] 所述 LRU 维护信息数据库存储单元由工控机的存储硬件和数据库程序构成，分析解码单元主要由存储模块，解码器和输入输出模块构成；

[0027] 所述 ARINC429 通道的功能是接收和发送 ARINC429 格式信息，完成多状态的维护请求和交联数据的发送，接收该通道的返回维护数据字；

[0028] 所述离散 I/O 通道的功能是执行离散命令对机载系统提出维护请求，接收返回的维护数据字；

[0029] 所述 LRU 维护信息数据库存储单元主要是存储文件信息，并对信息进行分类；

[0030] 所述分析解码单元主要完成对接收的 CFDS 数据包进行解码分析；

[0031] 本发明的有益效果是：1) CFDS 测试分析系统价格低廉，CFDS 方面的功能更为强大 2) 具有二次开发接口，方便技术人员自主升级，大大降低了软件升级的成本。3) 符合现代 ATS (自动测试系统) 的设计标准，可以方便地移植入不同的自动测试系统，节约维修资源。4) 打破国外的技术垄断，并在其基础上自主创新，结合不同厂商的 CFDS 功能为一体，有效降低原来需要返厂维修的成本和航材周转时间，降低飞机部分组件国外送修率，提高企业竞争力。

附图说明

[0032] 图 1 为 CFDS 数据分析器结构框图；

[0033] 图 2 为 CFDS 分析解码方式结构框图；

[0034] 图 3 为维护数据库结构框图；

[0035] 图 4 为 CFDS 典型构造示意图。
具体实施方式

[0036] 下面结合附图和具体实施方式对本发明进行详细描述。

[0037] 如图 1 至图 4 所示，CFDS 功能测试及信息提取技术是提高深度维修能力的基础，是民用机载设备 ATE 技术的重要支撑。本方法的主要目的就是通过对这一技术，按照新一代自动测试系统 (ATS) 的设计标准，具有自主知识产权的 CFDS 数据分析器，建立符合测试要求的基础维护信息数据库，为构建通用的 ATE 平台提供技术支持。

[0038] 技术方案：本方法的总体思路是借鉴现代机载集中故障显示系统 (CFDS)，分析其设计理念、系统构成和工作方式，研究其功能测试和信息提取方法等核心技术，具体揭示其数据格式和电气标准；根据航空维修企业构内测试的需求，按照现代自动测试系统的设计标准，完成具有自主知识产权的 CFDS 数据分析器的研制。

[0039] CFDS 数据分析器主要实现：在板区间模拟 LRU 在飞机上的 CFDS 监控状态，以减小 LRU 在航线与车间测试环境的差异，降低航线上 LRU 的误报率和零飞行小时返修率；在内场测试中完成 LRU 的车间级测试，为 LRU 的故障诊断和深度维修提供指引；系统具有灵活的接口和良好的可移植性，可以为研制我国民机载电子设备新一代自动测试系统提供技术支持，建立较为完备的 CFDS 维护数据库。

[0040] 具体采用以下技术措施：

[0041] 1. CFDS 数据的提取和解码：

[0042] 根据现代飞机（如 A320）的机载维护手册 (AMM)、故障隔离手册 (FIM)、故障定位手册 (TSM) 及其被测部件的 CMM 手册，ARINC429 标准，ARINC604 规范（机内测试设备的设计和使用指南），ARINC624 规范（机载维修系统的设计指南），分析 CFDS 系统的测试数据，并通过实际测试典型组件的维护数据进行解码分析和验证。

[0043] 该部分资料较为完善，但需要在维修现场进行多次的数据提取，前期研制费用较高。多家航空维修企业对该项目均表示关注，如北京飞机维修工程有限公司 (AMECO)、天津航大雄英航空工程有限公司等，均可提供测试条件和技术支持。

[0044] 2. CFDS 测试分析系统硬件的实现：

[0045] 采用 ARINC429 数据分析器和工控机实现。ARINC429 数据分析器可采用嵌入式系统集成，或通过 PXI 测试总线，集成到 PXI 测试系统中。

[0046] CFDS 测试分析系统实现方案如图 1 所示。CFDS 数据分析器包括 ARINC429 通道和高速 I/O 通道，并由统一的主控制单元控制，以实现与机载 1 型、2 型、3 型系统之间的维护数据的交换。正常状态下，

[0047] 对于较为复杂的机载 1 型的系统，CFDS 数据分析器对其发出多状态的维护请求和交联数据，并接收其返回的维护数据字；

[0048] 对于一般的机载 2 型的系统，CFDS 数据分析器可通过离散命令对其维护请求，并接收返回的维护数据字；

[0049] 对于智能化较低的机载 3 型的系统，CFDS 数据分析器通过离散命令对其提出维护请求，并接收返回的自检状态离散量。CFDS 数据包由分析解码单元解码后，传 LRU 维护信息数据库存储单元中寻址得到对应的系统数据。

[0050] CFDS 数据分析器可以集成到现代自动测试系统中，采用 PXI 测试总线，图 1 中，“
ARINC429 通道和离散 I/O 通道均采用 PXI 测试系统实现，分析解码和维护数据库的存储与
寻址由工控机实现，PXI 测试系统与工控机通过高速总线连接。此外，还可通过嵌入式系统
技术实现便携式 CFDS 数据分析仪的应用该部分项目组成员有扎实的硬件开发基础，并在
PXI 测试系统集成、ARINC429 总线板卡设计和嵌入式系统开发方面具有丰富的项目开发经
验，有信心完成该任务。

3. CFDS 仿真模拟方式和分析解码方式的实现：CFDS 工作方式参照机载 MCDU 的工
作方式和具体部件的车间级测试要求。仿真模拟方式模拟机载 MCDU 的 CFDS 工作页面，实现
顶层普通模式（normal mode）和交互模式（interactive mode），以在车间中还原 LRU 组件
在飞机上的工作状态。分析解码方式包括初始设置、LRU 标识、用户标识、普通模式（normal
mode）和交互模式（interactive mode）具体数据的解码、总线数据的时序分析和存储等。

4. CFDS 分析解码方式结构如图 2 所示，图中二级结构仅给出了普通模式（normal
mode）下的部分三级结构的设置。该部分可在 Windows 环境下，采用 C++ 语言编程实现，便
携式分析系统可在 Linux 环境下实现，主要难点在于 CFDS 数据参数的选择和解码方式的具
体实现，应避免遗漏和功能缺失，并应具备二次开发接口，供航空维修企业技术人员开发使
用。

4. CFDS 维护数据库的建立：维护数据库符合基本数据库标准，并通过分析 CMM 手
册和实际维护数据库的测试和分析实现，如图 3 所示。

该部分采用分层开放式结构，在基本数据库的基础上，工程管理人员可通过统
一的数据库配置页面方便地添加数据，而不需要专业的编程知识。数据库由数据字标识
（Label）和设备识别号（ID）索引，根据数据字类型分类处理。根据不同 LRU 组件进行测试
方案的设计和测试数据的分析，根据适航指令（AD）、服务通告（SB）、CMM 手册改版（REV）等
及时对数据库进行更新操作。

根据上述方法实现的 CFDS 数据分析器，包括：两类数据通道，分别接收处理机载 1
型、2 型、3 型系统的数据；由于机载 1 型系统发送的数据类型较为复杂，主要是 ARINC429 格
式信息，因此该类数据通道主要用于完成多状态的维护请求和交联数据的发送，接收器该通道
的返回维护数据字，由 ARINC429 通道完成，对机载 2 型系统，CFDS 数据分析器主要
通过离散 I/O 通道对其发送维护请求，并接收返回的维护数据字，该通道的数据信息也要
通过 ARINC429 通道进行发送与数据分析器的主控制单元通信；对于机载 3 型系统 CFDS 数据
分析器主要通过离散 I/O 通道对其发送离散命令，并接收返回的自检状态离散量。同时
还要求 ARINC429 通道能够对数据进行打包处理。ARINC429 通道主要包括 ARINC429 数据
发生器，ARINC429 数据分析器，存储单元，ARINC429 通信接口构成，具体传输速度要求接收
模式下：字速率实现 0.5～0.0 字 / 秒；发送模式下，低速发射位速率实现 8.1 到 20.4Kbps，
精度 ±1us；字速率实现 5.0ms～32000ms，1.0ms 步进，精度 ±0.5ms，最大字速率 300 字 / 秒；
发送模式下，高速发射位速率实现 801/100/125Kbps，精度 ±1us；字速率实现 5.0ms～
32000ms，1.0ms 步进，精度 ±0.5ms，最大字速率 1500 字 / 秒。离散 I/O 通道主要完成，离
散数据的收发，由数字 I/O 单元及电平转换单元组成。

控制单元对两类数据通道接收的数据进行处理，分析及显示的功能，主要包括
LRU 维护信息数据库存储单元、分析解码单元、自动测试设备接口单元、人机接口单元。其
中 LRU 维护信息数据库存储单元主要是存储维护信息，并对信息进行分类；分析解码单元
主要完成对接收的 CFDS 数据包进行解码分析；自动测试设备接口单元主要完成数据分析器与自动测试设备的连接；人机接口单元则是为使用者提供一个良好的人机交互环境，实现数据分析器的操作。

[0057] 根据上述说明，结合本技术领域专业知识即可再现本发明的技术方案。
图 3

图 4