wO 2016/200649 A1 I 01N OO OO 0 O A A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/200649 A1l

15 December 2016 (15.12.2016) WIPO | PCT
(51) International Patent Classification: (72) Inventors: FRANK, Steven; 1804 Walnut Hollow Lane,
GO6F 9/45 (2006.01) HO04L 12/771 (2013.01) Boulder, Colorado 80302 (US). REBACK, Larry; 1807
GO6F 17/30 (2006.01) HO04L 12/851 (2013.01) Brooktrail Court, Vienna, Virginia 22182 (US).
HO4L 12/721 (2013.01) HO4L 12/933 (2013.01) (74) Agents: SWEHLA, Aaron R. et al.; Two Embarcadero
(21) International Application Number: Center, Eighth Floor, San Francisco, California 94111
PCT/US2016/035203 (US).

(22) International Filing Date: (81) Designated States (uniess otherwise indicated, for every
1 June 2016 (01.06.2016) kind of national protection available): AE, AG, AL, AM,
25) Filing L . Enalish AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(25) Filing Language: nglis BZ, CA. CH. CL, CN, CO. CR, CU, CZ, DE, DK, DM,
(26) Publication Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
L. HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(30) Priority Data: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
62/173,037 9 June 2015 (09.06.2015) us MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
15/168,965 31 May 2016 (31.05.2016) us PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
(71) Applicant: ULTRATA LLC [US/US]; 1934 Old Gallows SD, SE, 8G, SK, SL, SM, ST, SV, 8Y, TH, TJ, TM, TN,

Road, Suite 350, Vienna, Virginia 22182 (US). TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (uniess otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

[Continued on next page]

(54) Title: INFINITE MEMORY FABRIC STREAMS AND APIS

(57) Abstract: Embodiments of the invention provide systems and
methods for managing processing, memory, storage, network, and

200
-~

Diatasasg
218

FIG. 2

cloud computing to significantly improve the efficiency and perform-
ance of processing nodes. More specifically, embodiments of the
present invention are directed to object memory fabric streams and
application programming interfaces (APIs) that correspond to a meth-
od to implement a distributed object memory and to support hard-
ware, software, and mixed implementations. The stream API may be
defined from any point as two one-way streams in opposite directions.
Advantageously, the stream API can be implemented with a variety
topologies. The stream API may handle object coherency so that any
device can then move or remotely execute arbitrary functions, since
functions are within object meta-data, which is part of a coherent ob-
ject address space.

WO 2016/200649 A1 |00V AT 000 AR o

TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, Declarations under Rule 4.17:
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, Published:
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

— as to the identity of the inventor (Rule 4.17(i))

— with international search report (Art. 21(3))

10

15

20

25

WO 2016/200649 PCT/US2016/035203

INFINITE MEMORY FABRIC STREAMS AND APIS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims priority to U.S. Non-provisional Application No.
15/168,965, filed on May 31, 2016, by Frank et al. and entitled “Infinite Memory Fabric Streams
and APIs” which claims benefit under 35 USC 119(e) of U.S. Provisional Application No.
62/173,037, filed on June 9, 2015, by Frank et al. and entitled “Infinite Memory Fabric

Architecture,” of which the entire disclosures are incorporated herein by reference for all purposes.

[0002] The present application is also related to the following co-pending and commonly

assigned U.S. Patent Applications:

[0003] U.S. Patent Application No. 15/001,320, filed on January 20, 2016, by Frank et al. and
entitled “Object Based Memory Fabric;”

[0004] U.S. Patent Application No. 15/001,332, filed on January 20, 2016, by Frank et al. and
entitled “Trans-Cloud Object Based Memory;”

[0005] U.S. Patent Application No. 15/001,340, filed on January 20, 2016, by Frank et al. and
entitled “Universal Single Level Object Memory Address Space;”

[0006] U.S. Patent Application No. 15/001,343, filed on January 20, 2016, by Frank et al. and

entitled “Object Memory Fabric Performance Acceleration;”

[0007] U.S. Patent Application No. 15/001,451, filed on January 20, 2016, by Frank et al. and
entitled “Distributed Index for Fault Tolerant Object Memory Fabric;”

[0008] U.S. Patent Application No. 15/001,494, filed on January 20, 2016, by Frank et al. and

entitled “Implementation of an Object Memory Centric Cloud;”

[0009] U.S. Patent Application No. 15/001,524, filed on January 20, 2016, by Frank et al. and
entitled “Managing Metadata in an Object Memory Fabric;”

[0010] U.S. Patent Application No. 15/001,652, filed on January 20, 2016, by Frank et al. and
entitled “Utilization of a Distributed Index to Provide Object Memory Fabric Coherency;”

10

15

20

25

WO 2016/200649 PCT/US2016/035203

[0011] U.S. Patent Application No. 15/001,366, filed on January 20, 2016, by Frank et al. and

entitled “Object Memory Data Flow Instruction Execution;”

[0012] U.S. Patent Application No. 15/001,490, filed on January 20, 2016, by Frank et al. and
entitled “Object Memory Data Flow Triggers;”

[0013] U.S. Patent Application No. 15/001,526, filed on January 20, 2016, by Frank et al. and
entitled “Object Memory Instruction Set;”

[0014] U.S. Patent Application No. 15/169,580 filed on May 31, 2016, by Frank et al. and

entitled “Infinite Memory Fabric Hardware Implementation with Memory;” and

[0015] U.S. Patent Application No. 15/169,585 filed on May 31, 2016, by Frank et al. and
entitled “Infinite Memory Fabric Hardware Implementation with Router,” of which the entire

disclosure of each is incorporated herein by reference for all purposes.

BACKGROUND OF THE INVENTION

[0016] Embodiments of the present invention relate generally to methods and systems for
improving performance of processing nodes in a fabric and more particularly to changing the way
in which processing, memory, storage, network, and cloud computing, are managed to

significantly improve the efficiency and performance of commodity hardware.

[0017] As the size and complexity of data and the processes performed thereon continually
increases, computer hardware is challenged to meet these demands. Current commodity hardware
and software solutions from established server, network and storage providers are unable to meet
the demands of Cloud Computing and Big Data environments. This is due, at least in part, to the
way in which processing, memory, and storage are managed by those systems. Specifically,
processing is separated from memory which is turn is separated from storage in current systems
and each of processing, memory, and storage is managed separately by software. Each server and
other computing device (referred to herein as a node) is in turn separated from other nodes by a
physical computer network, managed separately by software and in turn the separate processing,

memory, and storage associated with each node are managed by software on that node.

[0018] FIG. 1 is a block diagram illustrating an example of the separation data storage, memory,

and processing within prior art commodity servers and network components. This example
2

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

illustrates a system 100 in which commodity servers 105 and 110 are communicatively coupled
with each other via a physical network 115 and network software 155 as known in the art. Also as
known in the art, the servers can each execute any number of one or more applications 120a, 120b,
120c of any variety. As known in the art, each application 120a, 120b, 120c executes on a
processor (not shown) and memory (not shown) of the server 105 and 110 using data stored in
physical storage 150. Each server 105 and 110 maintains a directory 125 mapping the location of
the data used by the applications 120a, 120b, 120c. Additionally, each server implements for each
executing application 120a, 120b, 120c a software stack which includes an application
representation 130 of the data, a database representation 135, a file system representation 140, and

a storage representation 145,

[0019] While effective, there are three reasons that such implementations on current commodity
hardware and software solutions from established server, network and storage providers are unable
to meet the increasing demands of Cloud Computing and Big Data environments. One reason for
the shortcomings of these implementations is their complexity. The software stack must be in
place and every application must manage the separation of storage, memory, and processing as
well as applying parallel server resources. Each application must trade-off algorithm parallelism,
data organization and data movement which is extremely challenging to get correct, let alone
considerations of performance and economics. This tends to lead to implementation of more batch
oriented solutions in the applications, rather than the integrated real-time solutions preferred by
most businesses. Additionally, separation of storage, memory, and processing, in such
implementations also creates significant inefficiency for each layer of the software stack to find,
move, and access a block of data due to the required instruction execution and latencies of each
layer of the software stack and between the layers. Furthermore, this inefficiency limits the
economic scaling possible and limits the data-size for all but the most extremely parallel
algorithms. The reason for the latter is that the efficiency with which servers (processors or
threads) can interact limits the amount of parallelism due to Amdahl's law. Hence, there is a need
for improved methods and systems for managing processing, memory, and storage to significantly

improve the performance of processing nodes.
BRIEF SUMMARY OF THE INVENTION

[0020] Embodiments of the invention provide systems and methods for managing processing,
memory, storage, network, and cloud computing to significantly improve the efficiency and
performance of processing nodes. More specifically, embodiments of the present invention are

directed to object memory fabric streams and application programming interfaces (APIs) that
3

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

correspond to a method to implement a distributed object memory and to support hardware,
software, and mixed implementations. The stream API may be defined from any point as two one-
way streams in opposite directions. Advantageously, the stream API can be implemented with a
variety topologies. The stream API may handle object coherency so that any device can then
move or remotely execute arbitrary functions, since functions are within object meta-data, which is

part of a coherent object address space.

[0021] In one aspect, a hardware-based processing node of an object memory fabric is disclosed.
The hardware-based processing node may include a memory module storing and managing one or
more memory objects. Each memory object may be created natively within the memory module.
Each memory object may be accessed using a single memory reference instruction without
Input/Output (I/O) instructions. The hardware-based processing node may be configured to utilize
a stream application programming interface (API) to communicate with one or more additional
nodes to operate as a set of nodes of the object memory fabric. The set of nodes may operate so
that all memory objects of the set of nodes are accessible based at least in part on the stream API
when the set of nodes are implemented with any one topology of a plurality of different topologies.
The stream API may define communications from any node of the set of nodes as two one-way
streams including a first one-way stream in a first direction and a second one-way stream in a

second direction that is opposite with respect to the first direction.

[0022] In another aspect, a method for facilitating communications among nodes of an object
memory fabric is disclosed. One or more memory objects may be created natively within a
memory module of a hardware-based processing node of the object memory fabric. Each memory
object of the one or more memory objects may be accessed using a single memory reference
instruction without Input/Output (I/O) instructions. A stream application programming interface
(API) may be utilized by the hardware-based processing node to communicate with one or more
additional nodes to operate as a set of nodes of the object memory fabric. The set of nodes may
operates so that all memory objects of the set of nodes are accessible based at least in part on the
stream API when the set of nodes are implemented with any one topology of a plurality of
different topologies. The stream API may define communications from any node of the set of
nodes as two one-way streams including a first one-way stream in a first direction and a second

one-way stream in a second direction that is opposite with respect to the first direction.

[0023] In various embodiments, the communications defined by the stream API may correspond to
ring streams according to a unidirectional ring organization between multiple nodes of the set of

nodes. In various embodiments, the one-way streams each may include instruction packages. At

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

least one instruction package of the instruction packages may include an extended instruction and
associated data. In various embodiments, the at least one instruction package may correspond to an
instruction package that includes a pull instruction, or an acknowledge instruction with object

information.

[0024] In various embodiments, physical address of memory and storage may be managed with
each of the one or more memory objects based at least in part on an object address space that is
allocated on a per-object basis with an object addressing scheme so that object addresses are
allocated to the one or more memory objects according to the object addressing scheme. The
instruction package may include one or more fields for specifying: an object ID that corresponds to
an object start point in a respective object address of the object addresses for the respective
memory object; an object offset to address a specific portion of the respective memory object;

and/or an object size of the respective memory object.

[0025] In various embodiments, the instruction package may include one or more fields for
specifying a hierarchical node identification for a requesting node corresponding to a requesting
hardware-based processing node of the plurality of hardware-based processing nodes and/or
requesting software-based node. At least one node of the set of nodes may be configured to route

a response to the requesting node based at least in part on the hierarchical node identification.

[0026] In various embodiments, physical address of memory and storage may be managed with
each of the one or more memory objects based at least in part on an object address space that is
allocated on a per-object basis with an object addressing scheme so that block object addresses are
allocated to the one or more memory objects according to the object addressing scheme. The at
least one instruction package may correspond to an object data package that includes a push
instruction, object information, and a single block specified by a particular block object address of

the block object addresses.

[0027] In various embodiments, at least one node of the set of nodes may be configured to route
the at least one instruction package based at least in part on a location of the single block, a stream
API request, and the push instruction. In various embodiments, at least one node of the set of
nodes may be configured to route the at least one instruction package based at least in part on a

location of the single block, a stream API request, and the push instruction.

[0028] In yet another aspect, an object memory fabric is disclosed. The object memory fabric may
include a plurality of hardware-based processing nodes. Each hardware-based processing node
may include one or more memory modules storing and managing one or more memory objects.

Each memory object may be created natively within the memory module. Each memory object
5

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

may be accessed using a single memory reference instruction without Input/Output (I/O)
instructions. Each hardware-based processing node of the plurality of hardware-based processing
nodes may be configured to utilize a stream application programming interface (API) to
communicate with other hardware-based processing nodes of the plurality of hardware-based
processing nodes to operate as a set of nodes of the object memory fabric. The set of nodes
operates so that any hardware-based processing node of the plurality of hardware-based processing
nodes may be configured to move the one or more memory objects and/or remotely execute
functions on other hardware-based processing nodes of the plurality of hardware-based processing

nodes based at least in part on the stream APIL

[0029] In still another aspect, a method for facilitating communications among nodes of an object
memory fabric is disclosed. One or more memory objects may be created natively within one or
more memory modules of one or more hardware-based processing nodes of a plurality of
hardware-based processing nodes. Each memory object may be accessed using a single memory
reference instruction without Input/Output (I/O) instructions. A stream application programming
interface (API) may be utilized, by each hardware-based processing node of the plurality of
hardware-based processing nodes, to communicate with other hardware-based processing nodes of
the plurality of hardware-based processing nodes to operate as a set of nodes of the object memory
fabric. The set of nodes may operate so that any hardware-based processing node of the plurality
of hardware-based processing nodes is configured to move the one or more memory objects and/or
remotely execute functions on other hardware-based processing nodes of the plurality of hardware-

based processing nodes based at least in part on the stream APIL

[0030] In various embodiments, the moving the one or more memory objects and/or the remotely
executing functions on the other hardware-based processing nodes of the plurality of hardware-
based processing nodes may be responsive to a stream API request from a requesting node of the
plurality of hardware-based processing nodes and/or from a software layer interfacing with the
object memory fabric. In various embodiments, each hardware-based processing node of the
plurality of hardware-based processing nodes may be further configured to utilize the stream API
to initiate requests from within the object memory fabric. In various embodiments, each hardware-
based processing node of the plurality of hardware-based processing nodes may be further
configured to utilize the stream API to propagate and/or initiate operations responsive to the

requests.

[0031] In various embodiments, the object memory fabric may include a component that uses

software to emulate at least one hardware node of the plurality of hardware-based processing

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

nodes. In various embodiments, the functions may include one or more cache coherency functions
used to determine whether a local object cache state is sufficient for an intended operation
corresponding to a stream API request from a requesting node, and, consequent to the determining,
to forward a response toward the requesting node or forward the stream API request to another

node.

[0032] In various embodiments, the moving the one or more memory objects and/or the remotely
executing functions on other hardware-based processing nodes of the plurality of hardware-based
processing nodes based at least in part on the stream API may include pulling and/or pushing at
least a portion of the one or more memory objects between at least two hardware-based processing
nodes of the plurality of hardware-based processing nodes. The pulling may include at least one
hardware-based processing node requesting at least the portion of the one or more memory objects
to move to a location corresponding to the at least one hardware-based processing node. The
pushing may include at least one hardware-based processing node requesting at least the portion of
the one or more memory objects to move to a remote location that is remote from the at least one

hardware-based processing node.

[0033] In various embodiments, at least the portion of the one or more memory objects may
include memory object data and memory object metadata. The memory object metadata may
include one or more triggers that specify additional one or more operations to be executed by any
object memory module of the plurality of hardware-based processing nodes when at least the
portion of the one or more memory objects is located at the respective object memory module and
accessed as part of the respective object memory module responding to the pulling and/or the

pushing.
BRIEF DESCRIPTION OF THE DRAWINGS
[0034] FIG. 1 is a block diagram illustrating an example of the separation data storage, memory,

processing, network, and cloud computing within prior art commodity servers and network

components.

[0035] FIG. 2 is a block diagram illustrating components of an exemplary distributed system in

which various embodiments of the present invention may be implemented.

[0036] FIG. 3 is a block diagram illustrating an exemplary computer system in which

embodiments of the present invention may be implemented.

10

15

20

25

WO 2016/200649 PCT/US2016/035203

[0037] FIG. 4 is a block diagram illustrating an exemplary object memory fabric architecture

according to one embodiment of the present invention.

[0038] FIG. 5 is a block diagram illustrating an exemplary memory fabric object memory

according to one embodiment of the present invention.

[0039] FIG. 6 1is a block diagram illustrating an exemplary object memory dynamics and

physical organization according to one embodiment of the present invention.

[0040] FIG. 7 is a block diagram illustrating aspects of object memory fabric hierarchy of object
memory, which localizes working sets and allows for virtually unlimited scalability, according to

one embodiment of the present invention.

[0041] FIG. 8 is a block diagram illustrating aspects of an example relationship between object
address space, virtual address, and physical address, according to one embodiment of the present

invention.

[0042] FIG. 9is a block diagram illustrating aspects of an example relationship between object

sizes and object address space pointers, according to one embodiment of the present invention.

[0043] FIG. 10 is a block diagram illustrating aspects of an example object memory fabric
distributed object memory and index structure, according to one embodiment of the present

invention.

[0044] FIG. 11 illustrates aspects of an object memory hit case that executes completely within

the object memory, according to one embodiment of the present invention.

[0045] FIG. 12 illustrates aspects of an object memory miss case and the distributed nature of

the object memory and object index, according to one embodiment of the present invention.

[0046] FIG. 13 is a block diagram illustrating aspects of an example of leaf level object memory
in view of the object memory fabric distributed object memory and index structure, according to

one embodiment of the present invention.

[0047] FIG. 14 is a block diagram illustrating aspects of an example of object memory fabric
router object index structure, according to one embodiment of the present invention.

8

10

15

20

WO 2016/200649 PCT/US2016/035203

[0048] FIGS. 15A and 15B are block diagrams illustrating aspects of example index tree
structures, including node index tree structure and leaf index tree, according to one embodiment of

the present invention.

[0049] FIG. 16 is a block diagram illustrating aspects of an example physical memory

organization, according to one embodiment of the present invention.

[0050] FIG. 17A is a block diagram illustrating aspects of example object addressing, according

to one embodiment of the present invention.

[0051] FIG. 17B is a block diagram illustrating aspects of example object memory fabric pointer

and block addressing, according to one embodiment of the present invention.

[0052] FIG. 18 is a block diagram illustrating aspects of example object metadata, according to

one embodiment of the present invention.

[0053] FIG. 19 is a block diagram illustrating aspects of an example micro-thread model,

according to one embodiment of the present invention.

[0054] FIG. 20 is a block diagram illustrating aspects of an example relationship of code, frame,

and object, according to one embodiment of the present invention.

[0055] FIG. 21 is a block diagram illustrating aspects of an example of micro-thread

concurrency, according to one embodiment of the present invention.

[0056] FIG. 22A is a block diagram illustrating an example of streams present on a node with a
hardware-based object memory fabric inter-node object router, in accordance with certain

embodiments of the present disclosure.

[0057] FIG. 22B is a block diagram illustrating an example of software emulation of object

memory and router on the node, in accordance with certain embodiments of the present disclosure.

[0058] FIG. 23 is a block diagram illustrating an example of streams within an object memory

fabric node object router, in accordance with certain embodiments of the present disclosure.

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203
DETAILED DESCRIPTION OF THE INVENTION

[0059] In the following description, for the purposes of explanation, numerous specific details
are set forth in order to provide a thorough understanding of various embodiments of the present
invention. It will be apparent, however, to one skilled in the art that embodiments of the present
invention may be practiced without some of these specific details. In other instances, well-known

structures and devices are shown in block diagram form.

[0060] The ensuing description provides exemplary embodiments only, and is not intended to
limit the scope, applicability, or configuration of the disclosure. Rather, the ensuing description of
the exemplary embodiments will provide those skilled in the art with an enabling description for
implementing an exemplary embodiment. It should be understood that various changes may be
made in the function and arrangement of elements without departing from the spirit and scope of

the invention as set forth in the appended claims.

[0061] Specific details are given in the following description to provide a thorough
understanding of the embodiments. However, it will be understood by one of ordinary skill in the
art that the embodiments may be practiced without these specific details. For example, circuits,
systems, networks, processes, and other components may be shown as components in block
diagram form in order not to obscure the embodiments in unnecessary detail. In other instances,
well-known circuits, processes, algorithms, structures, and techniques may be shown without

unnecessary detail in order to avoid obscuring the embodiments.

[0062] Also, it is noted that individual embodiments may be described as a process which is
depicted as a flowchart, a flow diagram, a data flow diagram, a structure diagram, or a block
diagram. Although a flowchart may describe the operations as a sequential process, many of the
operations can be performed in parallel or concurrently. In addition, the order of the operations
may be re-arranged. A process is terminated when its operations are completed, but could have
additional steps not included in a figure. A process may correspond to a method, a function, a
procedure, a subroutine, a subprogram, etc. When a process corresponds to a function, its

termination can correspond to a return of the function to the calling function or the main function.

[0063] The term “machine-readable medium” includes, but is not limited to portable or fixed
storage devices, optical storage devices, wireless channels and various other mediums capable of
storing, containing or carrying instruction(s) and/or data. A code segment or machine-executable
instructions may represent a procedure, a function, a subprogram, a program, a routine, a

subroutine, a module, a software package, a class, or any combination of instructions, data
10

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

structures, or program statements. A code segment may be coupled to another code segment or a
hardware circuit by passing and/or receiving information, data, arguments, parameters, or memory
contents. Information, arguments, parameters, data, etc. may be passed, forwarded, or transmitted
via any suitable means including memory sharing, message passing, token passing, network

transmission, etc. Various other terms used herein are now defined for the sake of clarity.

[0064] Virtual memory is a memory management technique that gives the illusion to each
software process that memory is as large as the virtual address space. The operating system in
conjunction with differing degrees of hardware manages the physical memory as a cache of the
virtual address space, which is placed in secondary storage and accessible through Input/Output

instructions. Virtual memory is separate from, but can interact with, a file system.

[0065] A single level store is an extension of virtual memory in which there are no files, only
persistent objects or segments which are mapped into a processes’ address space using virtual
memory techniques. The entire storage of the computing system is thought of as a segment and
address within a segment. Thus at least three separate address spaces, 1.e., physical memory
address/node, virtual address/process, and secondary storage address/disk, are managed by

software.

[0066] Object storage refers to the way units of storage called objects are organized. Every
object consists of a container that holds three things: actual data; expandable metadata; and a
globally unique identifier referred to herein as the object address. The metadata of the object is
used to define contextual information about the data and how it should be used and managed

including relationship to other objects.

[0067] The object address space is managed by software over storage devices, nodes, and
network to find an object without knowing its physical location. Object storage is separate from

virtual memory and single level store, but can certainly inter-operate through software.

[0068] Block storage consists of evenly sized blocks of data with an address based on a physical

location and without metadata.

[0069] A network address is a physical address of a node within an IP network that is associated

with a physical location.

[0070] A node or processing node is a physical unit of computing delineated by a shared

physical memory that be addressed by any processor within the node.

11

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

[0071] Object memory is an object store directly accessible as memory by processor memory
reference instructions and without implicit or explicit software or Input/Output instructions
required. Object capabilities are directly provided within the object memory to processing through

memory reference instructions.

[0072] An object memory fabric connects object memory modules and nodes into a single object
memory where any object is local to any object memory module by direct management, in

hardware, of object data, meta-data and object address.

[0073] An object router routes objects or portions of objects in an object memory fabric based on
an object address. This is distinct from a conventional router which forwards data packets to

appropriate part of a network based on a network address.

[0074] Embodiments may be implemented by hardware, software, firmware, middleware,
microcode, hardware description languages, or any combination thereof. When implemented in
software, firmware, middleware or microcode, the program code or code segments to perform the
necessary tasks may be stored in a machine readable medium. A processor(s) may perform the

necessary tasks.

[0075] Embodiments of the invention provide systems and methods for managing processing,
memory, storage, network, and cloud computing to significantly improve the efficiency and
performance of processing nodes. Embodiments described herein can be implemented in a set of
hardware components that, in essence, change the way in which processing, memory, and storage,
network, and cloud computing are managed by breaking down the artificial distinctions between
processing, memory, storage and networking in today’s commodity solutions to significantly
improve the efficiency and performance of commodity hardware. For example, the hardware
elements can include a standard format memory module, such as a (DIMM) and a set of one or
more object routers. The memory module can be added to commodity or “off-the-shelf” hardware
such a server node and acts as a big data accelerator within that node. Object routers can be used
to interconnect two or more servers or other nodes adapted with the memory modules and help to
manage processing, memory, and storage across these different servers. Nodes can be physically
close or far apart. Together, these hardware components can be used with commodity servers or
other types of computing nodes in any combination to implement the embodiments described

herein.

[0076] According to one embodiment, such hardware components can implement an object-

based memory which manages the objects within the memory and at the memory layer rather than
12

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

in the application layer. That is, the objects and associated properties are implemented and
managed natively in memory enabling the object memory system to provide increased
functionality without any software and increasing performance by dynamically managing object
characteristics including, but not limited to persistence, location and processing. Object properties

can also propagate up to higher application levels.

[0077] Such hardware components can also eliminate the distinction between memory
(temporary) and storage (persistent) by implementing and managing both within the objects. These
components can eliminate the distinction between local and remote memory by transparently
managing the location of objects (or portions of objects) so all objects appear simultaneously local
to all nodes. These components can also eliminate the distinction between processing and memory

through methods of the objects to place the processing within the memory itself.

[0078] According to one embodiment, such hardware components can eliminate typical size
constraints on memory space of the commodity servers imposed by address sizes. Rather, physical
addressing can be managed within the memory objects themselves and the objects can in turn be

accessed and managed through the object name space.

[0079] Embodiment described herein can provide transparent and dynamic performance
acceleration, especially with big data or other memory intensive applications by reducing or
eliminating overhead typically associated with memory management, storage management,
networking and data directories. Rather, management of the memory objects at the memory level
can significantly shorten the pathways between storage and memory and between memory and
processing, thereby eliminating the associated overhead between each. Various additional details

of embodiments of the present invention will be described below with reference to the figures.

[0080] FIG. 2 is a block diagram illustrating components of an exemplary distributed system in
which various embodiments of the present invention may be implemented. In the illustrated
embodiment, distributed system 200 includes one or more client computing devices 202, 204, 206,
and 208, which are configured to execute and operate a client application such as a web browser,
proprietary client, or the like over one or more network(s) 210. Server 212 may be
communicatively coupled with remote client computing devices 202, 204, 206, and 208 via

network 210.

[0081] In various embodiments, server 212 may be adapted to run one or more services or
software applications provided by one or more of the components of the system. In some

embodiments, these services may be offered as web-based or cloud services or under a Software as
13

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

a Service (SaaS) model to the users of client computing devices 202, 204, 206, and/or 208. Users
operating client computing devices 202, 204, 206, and/or 208 may in turn utilize one or more
client applications to interact with server 212 to utilize the services provided by these components.
For the sake of clarity, it should be noted that server 212 and database 214, 216 can correspond to
server 105 described above with reference to FIG. 1. Network 210 can be part of or an extension
to physical network 115. It should also be understood that there can be any number of client

computing devices 202, 204, 206, 208 and servers 212, each with one or more databases 214, 216.

[0082] In the configuration depicted in the figure, the software components 218, 220 and 222 of
system 200 are shown as being implemented on server 212. In other embodiments, one or more of
the components of system 200 and/or the services provided by these components may also be
implemented by one or more of the client computing devices 202, 204, 206, and/or 208. Users
operating the client computing devices may then utilize one or more client applications to use the
services provided by these components. These components may be implemented in hardware,
firmware, software, or combinations thereof. It should be appreciated that various different system
configurations are possible, which may be different from distributed system 200. The embodiment
shown in the figure is thus one example of a distributed system for implementing an embodiment

system and is not intended to be limiting.

[0083] Client computing devices 202, 204, 206, and/or 208 may be portable handheld devices
(e.g., an iPhone®, cellular telephone, an iPad®, computing tablet, a personal digital assistant
(PDA)) or wearable devices (e.g., a Google Glass® head mounted display), running software such
as Microsoft Windows Mobile®, and/or a variety of mobile operating systems such as 108,
Windows Phone, Android, BlackBerry 10, Palm OS, and the like, and being Internet, e-mail, short
message service (SMS), Blackberry®, or other communication protocol enabled. The client
computing devices can be general purpose personal computers including, by way of example,
personal computers and/or laptop computers running various versions of Microsoft Windows®,
Apple Macintosh®, and/or Linux operating systems. The client computing devices can be
workstation computers running any of a variety of commercially-available UNIX® or UNIX-like
operating systems, including without limitation the variety of GNU/Linux operating systems, such
as for example, Google Chrome OS. Alternatively, or in addition, client computing devices 202,
204, 206, and 208 may be any other electronic device, such as a thin-client computer, an Internet-
enabled gaming system (e.g., a Microsoft Xbox gaming console with or without a Kinect® gesture

input device), and/or a personal messaging device, capable of communicating over network(s) 210.

14

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

[0084] Although exemplary distributed system 200 is shown with four client computing devices,
any number of client computing devices may be supported. Other devices, such as devices with

sensors, etc., may interact with server 212.

[0085] Network(s) 210 in distributed system 200 may be any type of network familiar to those
skilled in the art that can support data communications using any of a variety of commercially-
available protocols, including without limitation TCP/IP (Transmission Control Protocol/Internet
Protocol), SNA (Systems Network Architecture), IPX (Internet Packet Exchange), AppleTalk, and
the like. Merely by way of example, network(s) 210 can be a Local Area Network (LAN), such as
one based on Ethernet, Token-Ring and/or the like. Network(s) 210 can be a wide-area network
and the Internet. It can include a virtual network, including without limitation a Virtual Private
Network (VPN), an intranet, an extranet, a Public Switched Telephone Network (PSTN), an infra-
red network, a wireless network (e.g., a network operating under any of the Institute of Electrical
and Electronics (IEEE) 802.11 suite of protocols, Bluetooth®, and/or any other wireless protocol);
and/or any combination of these and/or other networks. Elements of such networks can have an
arbitrary distance, i.e., can be remote or co-located. Software Defined Networks (SDNs) can be

implemented with a combination of dumb routers and software running on servers.

[0086] Server 212 may be composed of one or more general purpose computers, specialized
server computers (including, by way of example, Personal Computer (PC) servers, UNIX®
servers, mid-range servers, mainframe computers, rack-mounted servers, etc.), server farms, server
clusters, or any other appropriate arrangement and/or combination. In various embodiments,
server 212 may be adapted to run one or more services or software applications described in the
foregoing disclosure. For example, server 212 may correspond to a server for performing

processing described above according to an embodiment of the present disclosure.

[0087] Server 212 may run an operating system including any of those discussed above, as well
as any commercially available server operating system. Server 212 may also run any of a variety
of additional server applications and/or mid-tier applications, including HyperText Transport
Protocol (HTTP) servers, File Transfer Protocol (FTP) servers, Common Gateway Interface (CGI)
servers, JAVA® servers, database servers, and the like. Exemplary database servers include
without limitation those commercially available from Oracle, Microsoft, Sybase, International

Business Machines (IBM), and the like.

[0088] In some implementations, server 212 may include one or more applications to analyze

and consolidate data feeds and/or event updates received from users of client computing devices

15

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

202, 204, 206, and 208. As an example, data feeds and/or event updates may include, but are not
limited to, Twitter® feeds, Facebook® updates or real-time updates received from one or more
third party information sources and continuous data streams, which may include real-time events
related to sensor data applications, financial tickers, network performance measuring tools (e.g.,
network monitoring and traffic management applications), clickstream analysis tools, automobile
traffic monitoring, and the like. Server 212 may also include one or more applications to display
the data feeds and/or real-time events via one or more display devices of client computing devices

202, 204, 206, and 208.

[0089] Distributed system 200 may also include one or more databases 214 and 216. Databases
214 and 216 may reside in a variety of locations. By way of example, one or more of databases
214 and 216 may reside on a non-transitory storage medium local to (and/or resident in) server
212. Alternatively, databases 214 and 216 may be remote from server 212 and in communication
with server 212 via a network-based or dedicated connection. In one set of embodiments,
databases 214 and 216 may reside in a Storage-Area Network (SAN). Similarly, any necessary
files for performing the functions attributed to server 212 may be stored locally on server 212
and/or remotely, as appropriate. In one set of embodiments, databases 214 and 216 may include
relational databases that are adapted to store, update, and retrieve data in response to commands,
e.g., MySQL-formatted commands. Additionally or alternatively, server 212 can provide and
support big data processing on unstructured data including but not limited to Hadoop processing,
NoSQL databases, graph databases etc. In yet other implementations, server 212 may perform

non-database types of bog data applications including but not limited to machine learning.

[0090] FIG. 3 is a block diagram illustrating an exemplary computer system in which
embodiments of the present invention may be implemented. The system 300 may be used to
implement any of the computer systems described above. As shown in the figure, computer
system 300 includes a processing unit 304 that communicates with a number of peripheral
subsystems via a bus subsystem 302. These peripheral subsystems may include a processing
acceleration unit 306, an I/O subsystem 308, a storage subsystem 318 and a communications
subsystem 324. Storage subsystem 318 includes tangible computer-readable storage media 322

and a system memory 310.

[0091] Bus subsystem 302 provides a mechanism for letting the various components and
subsystems of computer system 300 communicate with each other as intended. Although bus
subsystem 302 is shown schematically as a single bus, alternative embodiments of the bus
subsystem may utilize multiple buses. Bus subsystem 302 may be any of several types of bus

16

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

structures including a memory bus or memory controller, a peripheral bus, and a local bus using
any of a variety of bus architectures. For example, such architectures may include an Industry
Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA)
bus, Video Electronics Standards Association (VESA) local bus, Peripheral Component
Interconnect (PCI) bus, which can be implemented as a Mezzanine bus manufactured to the IEEE

P1386.1 standard, or PCI enhanced (PCle) bus.

[0092] Processing unit 304, which can be implemented as one or more integrated circuits (e.g., a
conventional microprocessor or microcontroller), controls the operation of computer system 300.
One or more processors may be included in processing unit 304. These processors may include
single core or multicore processors. In certain embodiments, processing unit 304 may be
implemented as one or more independent processing units 332 and/or 334 with single or multicore
processors included in each processing unit. In other embodiments, processing unit 304 may also
be implemented as a quad-core processing unit formed by integrating two dual-core processors

into a single chip.

[0093] In various embodiments, processing unit 304 can execute a variety of programs in
response to program code and can maintain multiple concurrently executing programs or
processes. At any given time, some or all of the program code to be executed can be resident in
processor(s) 304 and/or in storage subsystem 318. Through suitable programming, processor(s)
304 can provide various functionalities described above. Computer system 300 may additionally
include a processing acceleration unit 306, which can include a Digital Signal Processor (DSP), a

special-purpose processor, and/or the like.

[0094] 1/O subsystem 308 may include user interface input devices and user interface output
devices. User interface input devices may include a keyboard, pointing devices such as a mouse or
trackball, a touchpad or touch screen incorporated into a display, a scroll wheel, a click wheel, a
dial, a button, a switch, a keypad, audio input devices with voice command recognition systems,
microphones, and other types of input devices. User interface input devices may include, for
example, motion sensing and/or gesture recognition devices such as the Microsoft Kinect® motion
sensor that enables users to control and interact with an input device, such as the Microsoft Xbox®
360 game controller, through a natural user interface using gestures and spoken commands. User
interface input devices may also include eye gesture recognition devices such as the Google
Glass® blink detector that detects eye activity (e.g., ‘blinking’ while taking pictures and/or making
a menu selection) from users and transforms the eye gestures as input into an input device (e.g.,
Google Glass®). Additionally, user interface input devices may include voice recognition sensing

17

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

devices that enable users to interact with voice recognition systems (e.g., Siri® navigator), through

voice commands.

[0095] User interface input devices may also include, without limitation, three dimensional (3D)
mice, joysticks or pointing sticks, gamepads and graphic tablets, and audio/visual devices such as
speakers, digital cameras, digital camcorders, portable media players, webcams, image scanners,
fingerprint scanners, barcode reader 3D scanners, 3D printers, laser rangefinders, and eye gaze
tracking devices. Additionally, user interface input devices may include, for example, medical
imaging input devices such as computed tomography, magnetic resonance imaging, position
emission tomography, medical ultrasonography devices. User interface input devices may also
include, for example, audio input devices such as MIDI keyboards, digital musical instruments and

the like.

[0096] User interface output devices may include a display subsystem, indicator lights, or non-
visual displays such as audio output devices, etc. The display subsystem may be a Cathode Ray
Tube (CRT), a flat-panel device, such as that using a Liquid Crystal Display (LCD) or plasma
display, a projection device, a touch screen, and the like. In general, use of the term "output
device" is intended to include all possible types of devices and mechanisms for outputting
information from computer system 300 to a user or other computer. For example, user interface
output devices may include, without limitation, a variety of display devices that visually convey
text, graphics and audio/video information such as monitors, printers, speakers, headphones,

automotive navigation systems, plotters, voice output devices, and modems.

[0097] Computer system 300 may comprise a storage subsystem 318 that comprises software
elements, shown as being currently located within a system memory 310. System memory 310
may store program instructions that are loadable and executable on processing unit 304, as well as

data generated during the execution of these programs.

[0098] Depending on the configuration and type of computer system 300, system memory 310
may be volatile (such as Random Access Memory (RAM)) and/or non-volatile (such as Read-Only
Memory (ROM), flash memory, etc.) The RAM typically contains data and/or program modules
that are immediately accessible to and/or presently being operated and executed by processing unit
304. In some cases, system memory 310 can comprise one or more Double Data Rate fourth
generation (DDR4) Dual Inline Memory Modules (DIMMs). In some implementations, system
memory 310 may include multiple different types of memory, such as Static Random Access

Memory (SRAM) or Dynamic Random Access Memory (DRAM). In some implementations, a

18

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

Basic Input/Output System (BIOS), containing the basic routines that help to transfer information
between elements within computer system 300, such as during start-up, may typically be stored in
the ROM. By way of example, and not limitation, system memory 310 also illustrates application
programs 312, which may include client applications, Web browsers, mid-tier applications,
Relational Database Management Systems (RDBMS), etc., program data 314, and an operating
system 316. By way of example, operating system 316 may include various versions of Microsoft
Windows®, Apple Macintosh®, and/or Linux operating systems, a variety of commercially-
available UNIX® or UNIX-like operating systems (including without limitation the variety of
GNU/Linux operating systems, the Google Chrome® OS, and the like) and/or mobile operating
systems such as 10S, Windows® Phone, Android® OS, BlackBerry® 10 OS, and Palm® OS

operating systems.

[0099] Storage subsystem 318 may also provide a tangible computer-readable storage medium
for storing the basic programming and data constructs that provide the functionality of some
embodiments. Software (programs, code modules, instructions) that when executed by a processor
provide the functionality described above may be stored in storage subsystem 318. These software
modules or instructions may be executed by processing unit 304. Storage subsystem 318 may also

provide a repository for storing data used in accordance with the present invention.

[0100] Storage subsystem 300 may also include a computer-readable storage media reader 320
that can further be connected to computer-readable storage media 322. Together and, optionally,
in combination with system memory 310, computer-readable storage media 322 may
comprehensively represent remote, local, fixed, and/or removable storage devices plus storage
media for temporarily and/or more permanently containing, storing, transmitting, and retrieving

computer-readable information.

[0101] Computer-readable storage media 322 containing code, or portions of code, can also
include any appropriate media known or used in the art, including storage media and
communication media, such as but not limited to, volatile and non-volatile, removable and non-
removable media implemented in any method or technology for storage and/or transmission of
information. This can include tangible computer-readable storage media such as RAM, ROM,
Electronically Erasable Programmable ROM (EEPROM), flash memory or other memory
technology, CD-ROM, Digital Versatile Disk (DVD), or other optical storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic storage devices, or other tangible computer

readable media. This can also include nontangible computer-readable media, such as data signals,

19

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

data transmissions, or any other medium which can be used to transmit the desired information and

which can be accessed by computing system 300.

[0102] By way of example, computer-readable storage media 322 may include a hard disk drive
that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk drive that
reads from or writes to a removable, nonvolatile magnetic disk, and an optical disk drive that reads
from or writes to a removable, nonvolatile optical disk such as a CD ROM, DVD, and Blu-Ray®
disk, or other optical media. Computer-readable storage media 322 may include, but is not limited
to, Zip® drives, flash memory cards, Universal Serial Bus (USB) flash drives, Secure Digital (SD)
cards, DVD disks, digital video tape, and the like. Computer-readable storage media 322 may also
include, Solid-State Drives (SSD) based on non-volatile memory such as flash-memory based
SSDs, enterprise flash drives, solid state ROM, and the like, SSDs based on volatile memory such
as solid state RAM, dynamic RAM, static RAM, DRAM-based SSDs, Magnetoresistive RAM
(MRAM) SSDs, and hybrid SSDs that use a combination of DRAM and flash memory based
SSDs. The disk drives and their associated computer-readable media may provide non-volatile
storage of computer-readable instructions, data structures, program modules, and other data for

computer system 300.

[0103] Communications subsystem 324 provides an interface to other computer systems and
networks. Communications subsystem 324 serves as an interface for receiving data from and
transmitting data to other systems from computer system 300. For example, communications
subsystem 324 may enable computer system 300 to connect to one or more devices via the
Internet. In some embodiments communications subsystem 324 can include Radio Frequency
(RF) transceiver components for accessing wireless voice and/or data networks (e.g., using cellular
telephone technology, advanced data network technology, such as 3G, 4G or Enhanced Data rates
for Global Evolution (EDGE), WiFi (IEEE 802.11 family standards, or other mobile
communication technologies, or any combination thereof), Global Positioning System (GPS)
receiver components, and/or other components. In some embodiments communications subsystem
324 can provide wired network connectivity (e.g., Ethernet) in addition to or instead of a wireless
interface. In some cases, communications subsystem 324 can be implemented in whole or in part

as one or more PCle cards.

[0104] In some embodiments, communications subsystem 324 may also receive input
communication in the form of structured and/or unstructured data feeds 326, event streams 328,

event updates 330, and the like on behalf of one or more users who may use computer system 300.

20

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

[0105] By way of example, communications subsystem 324 may be configured to receive data
feeds 326 in real-time from users of social networks and/or other communication services such as
Twitter® feeds, Facebook® updates, web feeds such as Rich Site Summary (RSS) feeds, and/or

real-time updates from one or more third party information sources.

[0106] Additionally, communications subsystem 324 may also be configured to receive data in
the form of continuous data streams, which may include event streams 328 of real-time events
and/or event updates 330, that may be continuous or unbounded in nature with no explicit end.
Examples of applications that generate continuous data may include, for example, sensor data
applications, financial tickers, network performance measuring tools (e.g. network monitoring and
traffic management applications), clickstream analysis tools, automobile traffic monitoring, and
the like.

[0107] Communications subsystem 324 may also be configured to output the structured and/or
unstructured data feeds 326, event streams 328, event updates 330, and the like to one or more
databases that may be in communication with one or more streaming data source computers

coupled to computer system 300.

[0108] Computer system 300 can be one of various types, including a handheld portable device
(e.g., an iPhone® cellular phone, an iPad® computing tablet, a PDA), a wearable device (e.g., a
Google Glass® head mounted display), a PC, a workstation, a mainframe, a kiosk, a server rack, or

any other data processing system.

[0109] Due to the ever-changing nature of computers and networks, the description of computer
system 300 depicted in the figure is intended only as a specific example. Many other
configurations having more or fewer components than the system depicted in the figure are
possible. For example, customized hardware might also be used and/or particular elements might
be implemented in hardware, firmware, software (including applets), or a combination. Further,
connection to other computing devices, such as network input/output devices, may be employed.
Based on the disclosure and teachings provided herein, a person of ordinary skill in the art will

appreciate other ways and/or methods to implement the various embodiments.

[0110] As introduced above, embodiments of the invention provide systems and methods for
managing processing, memory, storage, network, and cloud computing to significantly improve
the efficiency and performance of processing nodes such as any of the servers or other computers
or computing devices described above. Embodiments described herein can be implemented in a

set of hardware components that, in essence, change the way in which processing, memory,
21

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

storage, network, and cloud are managed by breaking down the artificial distinctions between
processing, memory, storage and networking in today’s commodity solutions to significantly
improve the performance of commodity hardware. For example, the hardware elements can
include a standard format memory module, such as a Dual Inline Memory Module (DIMM), which
can be added to any of the computer systems described above. For example, the memory module
can be added to commodity or “off-the-shelf” hardware such a server node and acts as a big data
accelerator within that node. The components can also include one or more object routers. Object
routers can include, for example, a PCI express card added to the server node along with the
memory module and one or more external object routers such as rack mounted routers, for
example. Object routers can be used to interconnect two or more servers or other nodes adapted
with the memory modules and help to manage processing, memory, and storage across these
different servers Object routers can forward objects or portions of objects based on object
addresses and participate in operation of the object memory fabric. Together, these hardware
components can be used with commodity servers or other types of computing nodes in any

combination to implement an object memory fabric architecture.

[0111] FIG. 4 is a block diagram illustrating an exemplary object memory fabric architecture
according to one embodiment of the present invention. As illustrated here, the architecture 400
comprises an object memory fabric 405 supporting any number of applications 410a-g. As will be
described in greater detail below, this object memory fabric 405 can comprise any number of
processing nodes such as one or more servers having installed one or more memory modules as
described herein. These nodes can be interconnected by one or more internal and/or external
object routers as described herein. While described as comprising one or more servers, it should
be noted that the processing nodes of the object memory fabric 405 can comprise any of a variety
of different computers and/or computing devices adapted to operate within the object memory

fabric 405 as described herein.

[0112] According to one embodiment, the object memory fabric 405 provides an object-based
memory which manages memory objects within the memory of the nodes of the object memory
fabric 405 and at the memory layer rather than in the application layer. That is, the objects and
associated properties can be implemented and managed natively in the nodes of the object memory
fabric 405 to provide increased functionality without any software and increasing efficiency and
performance by dynamically managing object characteristics including, but not limited to
persistence, location and processing. Object properties can also propagate to the applications

410a-g. The memory objects of the object memory fabric 405 can be used to eliminate typical size

22

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

constraints on memory space of the commodity servers or other nodes imposed by address sizes.
Rather, physical addressing can be managed within the memory objects themselves and the objects
can in turn be accessed and managed through the object name space. The memory objects of the
object memory fabric 405 can also be used to eliminate the distinction between memory
(temporary) and storage (persistent) by implementing and managing both within the objects. The
object memory fabric 405 can also eliminate the distinction between local and remote memory by
transparently managing the location of objects (or portions of objects) so all objects appear
simultaneously local to all nodes. The memory objects can also eliminate the distinction between
processing and memory through methods of the objects to place the processing within the memory
itself. In other words, embodiments of the present invention provide a single-level memory that
puts the computes with the storage and the storage with the computes, directly and thereby
eliminating numerous levels of software overhead communicating across these levels and the

artificial overhead of moving data to be processed.

[0113] In these ways, embodiments of the object memory fabric 405 and components thereof as
described herein can provide transparent and dynamic performance acceleration, especially with
big data or other memory intensive applications by reducing or eliminating overhead typically
associated with memory management, storage management, networking, data directories, and data
buffers at both the system and application software layers. Rather, management of the memory
objects at the memory level can significantly shorten the pathways between storage and memory

and between memory and processing, thereby eliminating the associated overhead between each.

[0114] Embodiments provide coherent, hardware-based, infinite memory managed as memory
objects with performance accelerated in-memory, spanning all nodes, and scalable across all
nodes. This enables transparent dynamic performance acceleration based on the object and end
application. Using an architecture according to embodiments of the present invention, applications
and system software can be treated the same and as simple as a single, standard server but
additionally allowing memory fabric objects to capture heuristics. Embodiments provide multiple
dimensions of accelerated performance including locality acceleration. According to one
embodiment, object memory fabric metadata associated with the memory objects can include
triggers which enable the object memory fabric architecture to localize and move data to fast dram
memory ahead of use. Triggers can be a fundamental generalization that enables the memory
system to execute arbitrary functions based on memory access. Various embodiments can also
include an instruction set which can provide a unique instruction model for the object memory

fabric based on the triggers defined in the metadata associated with each memory object and that

23

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

supports core operations and optimizations and allows the memory intensive portion of

applications to be more efficiently executed in a highly parallel manner within IMF.

[0115] Embodiments can also decrease software path-length by substituting a small number of
memory references for a complex application, storage and network stack. This can be
accomplished when memory and storage is directly addressable as memory under embodiments of
the present invention. Embodiments can additionally provide accelerated performance of high
level memory operations. For many cases, embodiments of the object memory fabric architecture
can eliminate the need to move data to the processor and back to memory, which is extremely

inefficient for today’s modern processors with three or more levels of caches.

[0116] FIG. 5 is a block diagram illustrating an exemplary memory fabric object memory
according to one embodiment of the present invention. More specifically, this example illustrates
an application view of how memory fabric object memory can be organized. Memory fabric
object address space 500 can be a 128 bit linear address space where the object ID corresponds to
the start of the addressable object. Objects 510 can be variable size from 2'* to 2°* bytes. The
address space 500 can efficiently be utilized sparsely within and across objects as object storage is
allocated on a per block basis. The size of the object space 500 is meant to be large enough that

garbage collection is not necessary and to enable disjoint systems to be easily combined.

[0117] Object metadata 505 associated with each object 510 can be transparent with respect to
the object address space 500 and can utilize the object memory fabric to manage objects and
blocks within objects and can be accessible at appropriate privilege by applications 515a-g through
Application Program Interfaces (APIs) of the object memory fabric. This API provides functions
for applications to set up and maintain the object memory fabric, for example by using modified
Linux libc. With a small amount of additional effort applications such as a SQL database or graph
database can utilize the API to create memory objects and provide and/or augment object metadata
to allow the object memory fabric to better manage objects. Object metadata 505 can include
object methods, which enable performance optimization through dynamic object-based processing,
distribution, and parallelization. Metadata can enable each object to have a definable security

policy and access encapsulation within an object.

[0118] According to embodiments of the present invention, applications 515a-g can now access
a single object that captures it’s working and/or persistent data (such as AppO 515a) or multiple
objects for finer granularity (such as App1 515b). Applications can also share objects. Object

memory 500 according to these embodiments can physically achieves this powerfully simple

24

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

application view with a combination of physical organization, which will be described in greater
detail below with reference to FIG. 6, and object memory dynamics. Generally speaking, the
object memory 500 can be organized as a distributed hierarchy that creates hierarchical
neighborhoods for object storage and applications S15a-g. Object memory dynamics interact and
leverage the hierarchal organization to dynamically create locals of objects and applications
(object methods) that operate on objects. Since object methods can be associated with memory
objects, as objects migrate and replicate on the memory fabric, object methods naturally gain
increased parallelism as object size warrants. The hierarchy in conjunction with object dynamics
can further create neighborhoods of neighborhoods based on the size and dynamics of the object

methods.

[0119] FIG. 6 is a block diagram illustrating an exemplary object memory dynamics and
physical organization according to one embodiment of the present invention. As illustrated in this
example, an object memory fabric 600 as described above can include any number of processing
nodes 605 and 610 communicatively coupled via one or more external object routers 615. Each
node 605 and 610 can also include an internal object router 620 and one or more memory modules.
Each memory module 625 can include a node object memory 635 supporting any number of
applications 515a-g. Generally speaking, the memory module 625, node object router 620 and
inter-node object router 615 can all share a common functionality with respect to the object
memory 635 and index thereof. In other words, the underlying design objects can be reused in all
three providing a common design adaptable to hardware of any of a variety of different form

factors and types in addition to those implementations described here by way of example.

[0120] More specifically, a node can comprise a single node object router 620 and one or more
memory modules 625 and 630. According to one embodiment, a node 605 can comprise a
commodity or “off-the-shelf” server, the memory module 625 can comprise a standard format
memory card such as a Dual-Inline Memory Module (DIMM) card, and the node object router 620
can similarly comprise a standard format card such as a Peripheral Component Interconnect
express (PCle) card. The node object router 620 can implement an object index covering the
objects/blocks held within the object memory(s) 635 of the memory modules 625 and 630 within
the same node 605. Each memory module 625 and 630 can hold the actual objects and blocks
within objects, corresponding object meta-data, and object index covering objects currently stored
local to that memory module. Each memory module 625 and 630 can independently manage both
dram memory (fast and relatively expensive) and flash memory (not as fast, but much less

expensive) in a manner that the processor (not shown) of the node 605 thinks that there is the flash

25

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

amount of fast dram. The memory modules 625 and 630 and the node object router 620 can both
manage free storage through a free storage index implemented in the same manner as for other
indexes. Memory modules 625 and 630 can be directly accessed over the standard DDR memory
bus by processor caches and processor memory reference instructions. In this way, the memory
objects of the memory modules 625 and 630 can be accessed using only conventional memory

reference instructions and without implicit or explicit Input/Output (I/O) instructions.

[0121] Objects within the object memory 635 of each node 625 can be created and maintained
through an object memory fabric API (not shown). The node object router 620 can communicate
with the API through a modified object memory fabric version of libc and an object memory fabric
driver (not shown). The node object router 620 can then update a local object index, send
commands toward a root, i.e., towards the inter-node object router 615, as required and
communicate with the appropriate memory module 625 or 630 to complete the API command
locally. The memory module 625 or 630 can communicate administrative requests back to the

node object router 620 which can handle them appropriately.

[0122] According to one embodiment, the internal architecture of the node object router 620 can
be very similar to the memory module 625 with the differences related to routing functionality
such as managing a node memory object index and routing appropriate packets to and from the
memory moduels 625 and 630 and the inter-node object router 615. That is, the node object router

620 can have additional routing functionality but does not need to actually store memory objects.

[0123] The inter-node object router 615 can be considered analogous to an IP router. However,
the first difference is the addressing model used. IP routers utilize a fixed static address per each
node and routes based on the destination IP address to a fixed physical node. However, the inter-
node object router 615 of the object memory fabric 600 utilizes a memory fabric object address
(OA) which specifies the object and specific block of the object. Objects and blocks can
dynamically reside at any node. The inter-node object router 615 can route OA packages based on
the dynamic location(s) of objects and blocks and track object/block location dynamically in real
time. The second difference is that the object router can implement the object memory fabric
distributed protocol which provides the dynamic nature of object/block location and object
functions, for example including, but not limited, to triggers. The inter-node object router 615 can
be implemented as a scaled up version of node object router 620 with increased object index
storage capacity, processing rate and overall routing bandwidth. Also, instead of connecting to a
single PCle or other bus or channel to connect to memory modules, inter-node object router 615
can connect to multiple node object routers and/or multiple other inter-node object routers.

26

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

According to one embodiment, a node object router 620 can communicate with the memory
modules 625 and 630 with direct memory access over PCle and the memory bus (not shown) of
the node 605. Node object routers of different nodes 605 and 610 can in turn connect with one or
more inter-node object routers 615 over a high-speed network (not shown) such as 25/100GE fiber
that uses several layers of Gigabit Ethernet protocol or object memory fabric protocol tunneled
through standard IP, for example. Multiple inter-node object routers can connect with the same

network.

[0124] In operation, the memory fabric object memory can physically achieve its powerfully
simple application view described above with reference to FIGs. 4 and 5 with a combination of
physical organization and object memory dynamics. According to one embodiment and as
introduced above with reference to FIG. 5, the memory fabric object memory can be organized as
a distributed hierarchy that creates hierarchical neighborhoods for object storage and applications
515a-g. The node object routers can keep track of which objects and portions of objects are local
to a neighborhood. The actual object memory can be located on nodes 605 or 610 close to

applications 515a-g and memory fabric object methods.

[0125] Also as introduced above, object memory dynamics can interact and leverage the
hierarchal organization to dynamically create locals of objects and applications (object methods)
that operate on objects. Since object methods can be associated with objects as objects migrate
and replicate across nodes, object methods naturally gain increased parallelism as object size
warrants. This object hierarchy, in conjunction with object dynamics, can in turn create

neighborhoods of neighborhoods based on the size and dynamics of the object methods.

[0126] For example, AppO 515a spans multiple memory modules 625 and 630 within a single
level object memory fabric neighborhood, in this case node 605. Object movement can stay within
that neighborhood and its node object router 620 without requiring any other communication links
or routers. The self-organizing nature along the hierarchy defined neighborhoods provides
efficiency from a performance and minimum bandwidth perspective. In another example, Appl
(A1) 515b can have the same characteristic but in a different neighborhood, i.e., in node 610.

App2 (A2) 515c can be a parallel application across a two-level hierarchy neighborhood, i.e.,

nodes 605 and 610. Interactions can be self-contained in the respective neighborhood.

[0127] As noted above, certain embodiments may include a data types and metadata architecture
certain embodiments can also include a data types and metadata architecture that facilitate multiple

advantages of the present invention. With respect to the architecture, the following description

27

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

discloses various aspects of: object memory fabric address spaces; an object memory fabric
coherent object address space; an object memory fabric distributed object memory and index; an
object memory fabric index; object memory fabric objects; and an extended instruction execution

model. Various embodiments may include any one or combination of such aspects.

[0128] FIG. 7 is a block diagram illustrating an aspect of object memory fabric hierarchy of
object memory, which localizes working sets and allows for virtually unlimited scalability,
according to one embodiment of the present invention. As disclosed herein, certain embodiments
may include core organization and data types that enable the object memory fabric to dynamically
operate to provide the object memory application view. The core organization and data types
facilitate the fractal-like characteristics of the system which allow the system to behave identically
in a scale-independent fashion. In the depicted example, an object memory fabric 700 as disclosed
herein can include any number of processing nodes 705 and 710 communicatively coupled at
higher levels via one or more external object routers, such as object router 715, which may in turn

be coupled to one or more higher level object routers.

[0129] Specifically, the system may be a fat-tree built from nodes, from leaf nodes to root
node(s). According to certain embodiments, each node may just understand whether its scope
encompasses an object and based on that whether to route a request/response toward the root or
leaf. Putting these nodes together enables a system to dynamically scale to any capacity, without
impacting the operation or perspective of any node. In some embodiments, the leaf node may be a
DIMM built from standard memory chips, plus object memory fabric 700 implemented within an
FPGA. In some embodiments, standard memory chips could have object memory fabric 700
imbedded. In various embodiments, implementations may have remote nodes such as mobile

phones, drones, cars, internet of things components, and/or the like.

[0130] To facilitate various advantageous properties of object memory fabric 700, certain
embodiments may employ coherent object memory fabric address spaces. Table 1 below identifies
non-limiting examples of various aspects of address spaces, in accordance with certain
embodiments of the present disclosure. All nodes that are connected to a single object memory
fabric 700, local or distributed, can be considered part of a single system environment according to
certain embodiments. As indicated in Table 1, object memory fabric 700 can provide a coherent
object address space. In some embodiments, a 128-bit object address space may be provided.
However, other embodiments are possible. There are several reasons for a large object address
space, including the following. The object address space is to directly uniquely address and
manage all memory, storage across all nodes within an object memory fabric system, and provide

28

10

WO 2016/200649 PCT/US2016/035203

a unique address for conventional storage outside of an object memory fabric system. The object
address space can allow an address to be used once and never garbage collect, which is a major
efficiency. The object address space can allow a distinction between allocating address space and
allocating storage. In other words, the object address space can be used sparsely as an effective

technique for simplicity, performance, and flexibility.

[0131] As further indicated in Table 1, the object memory fabric 700 can directly support per-
process virtual address spaces and physical address spaces. With some embodiments, the per-
process virtual address spaces and physical address spaces may be compatible with x86-64
architecture. In certain embodiments, the span of a single virtual address space may be within a
single instance of Linux OS, and may be usually coincident with a single node. The object
memory fabric 700 may enable the same virtual address space to span more than a single node.
The physical address space may be the actual physical memory addressing (e.g., within an x86-64

node in some embodiments).

Table 1. Address Spaces

Parameter Object memory Virtual Address Physical Address
fabric Object
Address Space

Description Object memory fabric | Process address handle| Cache of object
address to object memory memory fabric
fabric address

Scope Global Per process, can be Per node
shared
Size 2128 264 (248 Haswell) | 240 (Haswell)
Object Support Yes, object memory | Yes, page tables Yes, object memory
fabric object index tree fabric metadata
and per object index
tree
Object Sizes ,{12121]30]39 |48 |57 | 64}
Address Space Sparse - with or Sparse - with or Sparse - page
Allocation without storage, object | without storage, object
units units
Storage Allocation | Object or block (page) | Based on object Page

memory fabric

29

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

Security (Access) Through virtual Operating system Operating system/
address, operating object memory fabric
system, and file system

[0132] FIG. 8 is a block diagram illustrating an example relationship 800 between object address
space 805, virtual addresses 810, and physical addresses 815, in accordance with certain
embodiments of the present disclosure. With object address space 805, a single object can range in
size. By way of example without limitation, a single object can range in size from 2 megabytes
(2*") to 16 petabytes (2°%). Other ranges are possible. Within the object memory fabric 700, object
address space 805 may be allocated on an object granularity basis in some embodiments. In some
embodiments, storage may be allocated on a 4k byte block basis (e.g., blocks 806, 807). Thus, the
object address space block 806, 807 in some embodiments may correspond to the 4k byte page
size within x86-64 architecture. When the object address space 805 is created, only the address
space and object metadata may exist. When storage is allocated on a per block basis, there can be
data stored in the corresponding block of the object. Block storage can be allocated in a sparse or
non-sparse manner and pre and/or demand allocated. For example, in some embodiments,
software can use an object as a hash function and only allocate physical storage for the valid

hashes.

[0133] Referring to the example of FIG. 8, within a node 820, 825, which could be a
conventional server in some embodiments, physical pages corresponding to physical addresses 815
may be allocated on a dynamic basis corresponding to the virtual addresses 810. Since object
memory fabric 700 actually provides the physical memory within a node 820, 825 by way of the
object memory fabric DIMM, when a virtual address segment 811, 812, 813, 814 is allocated, an
object address space 805 object which corresponds to the particular segment 811, 812, 813, 814
can also be created. This enables the same or a different virtual address 810 across nodes 820, 825
to address and access the same object. The actual physical address 815 at which a block/page
within an object resides within a node 820, 825 can vary over time within or across nodes 820,

825, transparently to application software.

[0134] Certain embodiments of the object memory fabric 700 may provide key advantages:
embodiments of object memory fabric 700 may provide integrated addressing, objects with
transparent invariant pointers (no swizzling required), and methods to access a large address space
across nodes—a with certain embodiments being compatible with x84-64, Linux, and applications.
Normally, systems have numerous different addresses (e.g., for memory address with separate

address space, sectors, cylinders, physical disks, database systems, file systems, etc.), which

30

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

requires significant software overhead for converting, buffering, and moving objects and blocks
between different layers of addresses. Using integrated addressing to address objects, and blocks
within objects, and using the object namespace eliminates layers of software by having single-level
addressing invariant across all nodes/systems. With a sufficiently large address space, one address

system is not invariant with particular database application and all these systems working together.

[0135] Thus, a node may include a memory module may store and manage one or more memory
objects, where physical address of memory and storage is managed with each of the one or more
memory objects based at least in part on an object address space that is allocated on a per-object
basis with a single-level object addressing scheme. The node may be configured to utilize the
object addressing scheme to operatively couple to one or more additional nodes to operate as a set
of nodes of an object memory fabric, where the set of nodes operates so that all memory objects of
the set of nodes are accessible based at least in part on the object addressing scheme, the object
addressing scheme defining invariant object addresses for the one or more memory objects that are
invariant with respect to physical memory storage locations and storage location changes of the
one or more memory objects within the memory module and across all modules interfacing the
object memory fabric. Accordingly, the object addresses are invariant within a module and across
all modules that interface to object memory fabric, regardless of whether the objects are in a single
server or not. Even though the objects can be stored on any or all modules, the object addresses
are still invariant no matter at which physical memory locations the objects are currently or will be
stored. The following provides details of certain embodiments that may provide such advantages

through the object address space and object address space pointers.

[0136] Certain embodiments of object memory fabric 700 may support multiple, various pointer
formats. FIG. 9 is a block diagram illustrating an example relationship 900 between object sizes
905 and object address space pointers 910, in accordance with certain embodiments of the present
disclosure. Table 2 below identifies non-limiting examples of aspects of the object address space
pointer 910, in accordance with certain embodiments of the present disclosure. As indicated by
Table 2, some example embodiments can support three pointer formats. The object address space
format may be an object memory fabric native 128 bit format and can provide a single pointer with
full addressability for any object and offset within object. Object memory fabric 700 can support
additional formats, for example, two additional formats in 64 bit format to enable direct
compatibility with x86-64 virtual memory and virtual address. Once a relationship between an
object memory fabric object and a virtual address segment is established by object memory fabric

API (which can be handled transparently to the application in Linux libc, in some embodiments),

31

10

15

20

WO 2016/200649 PCT/US2016/035203

standard x86 linux programs can directly reference data within an object (x86 segment) efficiently

and transparently utilizing the x86-64 addressing mechanisms.

Table 2. Object Address Space Pointer Formats
Object Object .
Pointer memory Address Tral}sformatlon Virtual
Type fabric Space to Virtual Address
Pointer Generation Address Format
Object 128 bit Storage | Direct None None
memory fabric
Address
Object Offset (64 bit) Obj Start + None virtual address
Relative ObjOffset base + offset
address mode
Object Virtual | Offset (64 bit) Obj Start + Add virtual address 48 bit virtual
Address ObjOffset base to offset address with 64
bit data type

[0137] Table 3 below identifies non-limiting examples of aspects of the object address space
pointers in relation to object sizes, in accordance with certain embodiments of the present
disclosure. Embodiments of object address space can supports multiple segment sizes, for
example, six segment sizes from 2*! to 2° as illustrated in Table 3 below. The object sizes
correspond to the x86-64 virtual memory segment and large page sizes. Objects can start on a
modulo 0 object size boundary. Object address space pointers 910 may be broken into ObjStart
and ObjOffset fields, the sizes of which are dependent on the object size as shown in the example
below. The ObjStart field corresponds to the object address space start of the object and also the
ObjectID. The ObjOffset is an unsigned value in a range from zero to (ObjectSize-1) with
specifies the offset within an object. Object metadata can specify the object size and object
memory fabric interpretation of the object address space pointer 910. Objects of arbitrary size and

sparseness can be specified by only allocating storage for blocks of interest within an object.

[0138] Because of the nature of most applications and object nature of object memory fabric
700, most addressing can be relative to an object. In some embodiments, all the object memory
fabric address pointer formats can be natively stored and loaded by the processor. Object Relative
and Object Virtual Address can work directly with x86-64 addressing modes in some
embodiments. Object Virtual Address pointer can be or include a process virtual address that

works within the x86-64 segment and corresponding object memory fabric object. Object memory
32

10

15

20

WO 2016/200649 PCT/US2016/035203

fabric object address space can be calculated by using the Object Virtual Address as an object
offset. Object Relative pointer can be or include an offset into an x86-64 virtual address segment,
thus base plus index addressing mode works perfectly. Object memory fabric object address space
can be calculated by using the Object Relative as an object offset. Table 3 below identifies non-
limiting examples of details of generating a 128 bit object address space from an Object Virtual
Address or Object Relative pointer as a function of object size, in accordance with certain

embodiments of the present disclosure.

Table 3. Object Address Space Generation

Object Object Address Space

Size Generation from Object

Relative and Object Virtual
Address Pointers

221 IA[127:00]=(0ObjBase[127:21],zero[20:0]) + (zero[127:21],0bjOffset[20,0])

230 IA[127:00]=(0ObjBase[127:30],zero[29:0]) + (zero[127:30],0bjOffset[29,0])

239 IA[127:00]=(0ObjBase[127:39],zero[38:0]) + (zero[127:39],0bjOffset[38,0])

248 IA[127:00]=(0ObjBase[127:48],zero[47:0]) + (zero[127:48],0bjOffset[47,0])

237 IA[127:00]=(0ObjBase[127:57],zero[56:0]) + (zero[127:57],0bjOffset[56,0])

264 IA[127:00]=(0ObjBase[127:21],zero[20:0]) + (zero[127:21],0bjOffset[20,0])

[0139] As disclosed herein, certain embodiments may include an object memory fabric
distributed object memory and index. With the distributed index, individual nodes may index
local objects and blocks of objects on a per-object basis. Certain embodiments of object memory
fabric distributed object memory and index may be based at least in part on an intersection concept
of cellular automata and fat trees. Prior distributed hardware and software systems with real-time
dynamic indices used two approaches: a centralized index or a distributed single conceptual index.
Embodiments of object memory fabric may use a new approach which overlays an independent

local index function on top of a fat-tree hierarchical network.

[0140] FIG. 10 is a block diagram illustrating an example object memory fabric distributed
object memory and index structure 1000, in accordance with certain embodiments of the present
disclosure. At leaves of the structure 1000 are any number of processing nodes 1005 and 1010
object memories 1035. These object memories 1035 may each have an object index that describes

the objects and portions of objects currently stored locally in the object memories 1035. A number

33

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

of object memories 1035, which in some embodiments may be DDR4-DIMM interface compatible
cards within a single node are logically connected with an object memory fabric node object index
1040. The object memory fabric node object indices 1040 may each have an object index that
describes the objects and portions of objects currently stored locally and/or currently stored in the
object memories 1035. In some embodiments, the object memory fabric node object index 1040
can be instantiated as a PCle card. With some embodiments, the object memory fabric object
memory DDR4-DIMM and object memory fabric node object index PCle card can communicate

over PClIe and memory bus.

[0141] In some embodiments, the object memory fabric node object index 1040 works
identically to the object index within the object memory 1035, except that the object memory
fabric node object index 1040 tracks all objects and portions of objects that are within any of the
connected object memories 1035 and maps the objects and portions of objects to particular object
memory 1035. The next level up in the tree is an node object router object index 1020 that may be
provided by an object memory fabric router that performs the same object index function for all
the object memory fabric node object indices 1040 to which it is connected. The node object
router object indices 1020 may each have an object index that describes the objects and portions of
objects currently stored locally in lower levels (e.g., at 1040, 1035). Thus, according to some
embodiments, router modules may have directory and router functions, whereas memory modules
may have directory and router functions, as well as memory functions to store memory objects.
However, other embodiments are possible, and, in alternative embodiments, the router modules

may additionally have memory functions to store memory objects.

[0142] The pattern may illustrated by the structure 1000 may continue to another higher level
inter-node object router object index 1015 that may be provided by an object memory fabric router
that performs the same object index function for all the object memory fabric node object indices
to which it is connected, and so on to the root of the tree. Thus, in certain embodiments, each
object index and each level may perform the same function, independently, but, the aggregate of
object indices and levels as a tree network may provide a real time dynamic distributed index, with
great scalability properties, that efficiently tracks and localizes memory objects and blocks. An
additional property may be that the combination of tree, distributed indices, and caching enable a
significant reduction in bandwidth requirements. This may be illustrated by the hierarchically
indicated neighborhoods that are delineated by object memory fabric router to leafs (down in this

case). As the level of the defined hierarchy increases, so does the aggregate object memory

34

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

caching capacity. So, as an application working set fits within the aggregate capacity of a given

level, the bandwidth requirement at the level toward the root may go to zero.

[0143] As disclosed herein, each processing node is configured to utilize a set of algorithms to
operatively couple to one or more additional processing nodes to operate as a set of processing
nodes independently of a scale of the set of processing nodes. The set of nodes may operate so
that all memory objects of the set of nodes are accessible by any node of the processing set of
nodes. At the processing nodes, object memory modules may store and manage memory objects,
each instantiated natively therein and managed at a memory layer, and object directories that index
the memory objects and blocks thereof on a per-object basis. A memory module may process
requests based at least in part on the one or more object directories, which requests may be
received from an application layer. In some case, the requests may be received from one or more
additional processing nodes. Responsive to the requests, a given memory module may process an
object identifier corresponding to a given request and may determine whether the memory module
has requested object data. If the memory module has the requested object data, the memory
module may generate a response to the request based at least in part on the requested object data.
If the memory module does not have the requested object data, an object routing module may
routes the first request to another node in the tree. The routing of the request may be based at least
in part on the object routing module making a determination about a location of object data
responsive to the request. If the object routing module identifies the location based at least in part
on the object routing module’s directory function, the object routing module may rout the request
down toward the location (i.e., a lower level node possessing the requested object data).

However, if the object routing module determines that the location is unknown, the object routing
module may rout the request toward a root node (i.e., to one or more higher level object routers—
inter-node object routers) for further determinations at each level until the requested object is

located, accessed, and returned to the original memory module.

[0144] In addition, as disclosed herein, triggers may be defined for objects and/or blocks within
objects in object metadata. The object-based triggers may predict what operations will be needed
and may provide acceleration by performing the operations ahead of time. When a node receives a
request that specifies an object (e.g., with a 128-bit object address), the node uses an object
directory to determine if the node has any part of the object. If so, the object directory points to a
per-object tree (a separate one, where the size is based on the size of the object) which may be
used to locate local the blocks of interest. There could be additional trigger metadata that

indicates, for the particular blocks of interest, to interpret the particular addresses in a predefined

35

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

manner as the blocks are transferred to/through the memory module. The triggers may specify one
or more pre-defined hardware and/or software actions on a per-block basis with respect to one or
more data blocks within an object (e.g., fetch a particular address, run a more complicated trigger
program, perform pre-fetching, calculate these other three blocks and send signal to software, etc.).
Triggers may correspond to a hardware way to dynamically move data and/or perform other
actions ahead of when such actions are needed as objects flow through any memory module of the
object memory fabric. Accordingly, such actions may be effected when a particular memory
object having one or more trigger is located at a respective memory module and accessed as part of

the respective memory module processing one or more other requests.

[0145] FIGS. 11 and 12 are block diagrams illustrating examples at a logical level of how the
distributed nature of the object index operates and interoperates with the object memory fabric
protocol layering, in accordance with certain embodiments of the present disclosure. Certain
embodiments of object memory fabric protocol layering may be similar to, but have important
differences from, a conventional layered communication protocol. A communications protocol
may be essentially stateless, but embodiments of the object memory fabric protocol may maintain
object state and directly enable distributed and parallel execution—all without any centralized

coordination.

[0146] FIG. 11 illustrates an object memory hit case 1100 that executes completely within the
object memory 1135, in accordance with certain embodiments of the present disclosure. Object
memory 1135 may receive a processor request 1105 or background trigger activity 1106. The
object memory 1135 may manage the local DRAM memory as a cache 1130, based on processor
physical address. The most frequent case may be that the requested physical address is present and
it gets immediately returned to the processor, as indicated at 1110. The object memory 1135 may
use triggers to transparently move data from slower flash memory into the fast DRAM memory, as

indicated at 1115.

[0147] For the case of a miss 1115 or background trigger activity 1106, some embodiments may
include one or a combination of the following. In some embodiments, an object memory fabric
object address may be generated from the physical address, as indicated by block 1140. The object
index may generate the location in local flash memory from the object address space, as indicated
by block 1145. Object index lookup can be accelerated by two methods: (1) a hardware-based
assist for index lookup; and (2) results of the object index lookup being locally cached. Object
memory fabric cache coherency may be used to determine whether the local state is sufficient of
the intended operation, as indicated by block 1150. Based on the index, a lookup may be

36

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

performed to determine whether the object and/or block within object are local, as indicated by
block 1155. In the case of a hit 1160, the data corresponding to request 1105 or trigger activity
1106 may be transferred, as indicated by 1165. And, in some embodiments, when the cache state

is sufficient, a decision may be made to cache the block into DRAM.

[0148] FIG. 12 illustrates an object memory miss case 1200 and the distributed nature of the
object memory and object index, in accordance with certain embodiments of the present
disclosure. The object memory 1235 may go through steps described previously, but the
routing/decision stage 125 may determine that the object and/or block is not local. As a result, the
algorithm may involve the request traversing 1270 up the tree toward the root, until the
object/block is found. Any number of levels and corresponding node elements may be traversed
until the object/block is found. In some embodiments, at each step along the path, the same or
similar process steps may be followed to independently determine the next step on the path. No
central coordination is required. Additionally, as disclosed herein, object memory fabric API and
triggers normally get executed in the leafs, but can be executed in a distributed manner at any

index.

[0149] As asimplified example, in the case depicted the request traverses 1270 up from the
object memory fabric node object index 1240 corresponding to object memory 1235 to the object
router 1220. The object router 1220, with its an object router object index, may identify the
request object/block as being down the branch toward object memory fabric node object index
1241. Hence, at the index of object router 1220, the request may then be routed 1275 toward the
leaf(s) that can supply the object/block. In the example depicted, the object memory 1236 can
supply the object/block. At the object memory 1236, memory access/caching 1241 may be
performed (which may include previously described process steps for a hit case being performed),
and the object/block may be returned 1280 back to the original requesting leaf 1235 for the
ultimate return 1290. Again, in some embodiments, at each step along the path, the same or
similar process steps may be followed to independently determine the next step on the path. For
example, the original requesting leaf 1235 may perform previously described process steps 1285

for a hit case, and then return 1290 the requested data.

[0150] As disclosed herein, the operation of a single object memory fabric index structure, the
object memory fabric index structure may be based on several layers of the same tree
implementation. Certain embodiments employing tree structure may have several uses within
object memory fabric as described in Table 4 below. However, various other embodiments are
possible.

37

WO 2016/200649 PCT/US2016/035203

Table 4. Tree Structure Uses

Use Object Memory Node Object Object Memory
Index Fabric Router

Determine local location of
objects and blocks comprising Yes
objects as function of object
address space

Determine which children hold
objects, and blocks comprising Yes Yes
objects, as a function of object
address space

Generate object address space

as function of local physical Yes
address (single level)
Object virtual address to object
address space Yes
Application defined
Yes

[0151] FIG. 13 is a block diagram illustrating an example of leaf level object memory structure
1300 in view of the object memory fabric distributed object memory and index structure, in
accordance with certain embodiments of the present disclosure. In some embodiments, the leaf
level object memory structure 1300 may include a nested set of B-trees. The root tree may be the
object index tree (OIT) 1305, which may index objects locally present. The index for the object
index tree 1305 may be the object memory fabric object address, since objects start at object size
modulo zero. There may be one object index tree 1305 for each object that has at least a single

block stored locally within the object memory.

[0152] The object index tree 1305 may provide one or more pointers (e.g., local pointers) to one
or more per object index trees (POIT) 1310. For example, every local object may have a per
object index tree 1310. A per object index tree 1310 may index object metadata and blocks
belonging to the object that are locally present. The per object index tree 1310 leaves point to the
corresponding metadata and blocks (e.g., based on offset within object) in DRAM 1315 and flash

38

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

1320. A leaf for a specific block can point to both DRAM 1315 and flash 1320, as in the case of

leaf 1325, for example. Organization of object metadata and data is disclosed further herein.

[0153] The tree structure utilized may be a modified B-tree that is copy-on-write (COW)
friendly. COW is an optimization strategy that enables multiple tasks to share information
efficiently without duplicating all storage where most of the data is not modified. COW stores
modified blocks in a new location which works well for flash memory and caching. In certain
embodiments, the tree structure utilized may be similar to that of the open source Linux file system
btrfs, with major differences being utilization for a single object/memory space, hardware
acceleration, and the ability of independent local indices to aggregate as described previously. By
utilizing multiple layers of B-trees, there can be a higher degree of sharing and less rippling of
changes. Applications, such as file systems and database storage managers, can utilize this

underlying efficient mechanism for higher level operation.

[0154] FIG. 14 is a block diagram illustrating an example of object memory fabric router object
index structure 1400, in accordance with certain embodiments of the present disclosure. With
some embodiments, the object memory fabric router object index and the node object index may
use an almost identical structure of object index trees 1405 and per object index trees 1410 for
each object. The object index trees 1405 may index objects locally present. Each object described
in an object index tree 1405 may have a per object index tree 1410. The per object index trees

1410 may index blocks and segments that are locally present.

[0155] The object memory fabric router object index and the node object index may index
objects and blocks within objects that are present in the children 1415 within the tree structure
1400, namely child router(s) or leaf object memory. An entry within a leaf in the per object index
tree 1410 has the ability to represent multiple blocks within the object. Since blocks of an object
may tend to cluster together naturally and due to background housekeeping, each object tends be
represented much more compactly in object indices that are closer to the tree root. The object
index trees 1405 and per object index trees 1410 may enable reduplication at the object and block
level, since multiple leafs can point to the same blocks, as in the case of leaves 1425 and 1430, for
example. Index Copy-On-Write (COW) support enables, for example, only modified blocks to be
updated for an object.

[0156] FIGS. 15A and 15B are block diagrams illustrating non-limiting examples of index tree
structures, including node index tree structure 1500 and leaf index tree 1550, in accordance with

certain embodiments of the present disclosure. Further non-limiting examples of various aspects

39

WO 2016/200649 PCT/US2016/035203

of index tree fields are identified in Table 5 below. Other embodiments are possible. An
individual index tree may include node blocks and leaf blocks. Each node or leaf block may

include of a variable number of entries based on the type and size. Type specifies type of node,
node block, leaf, and/or leaf block.

Table 5. Index Tree Fields

Name Description Size

NSize Encoded node size field. Single value for OIT node. Multiple |3
values for POIT node based on object size corresponding to
POIT index. Implies the size of NValue field.

ObjSize Encoded Object Size 3

ObjectID Maximum size object ID 107

Object Offset 4k block Based on Object size corresponding to POIT index 52
(9-52)

LPointer (LP) References local 4k block in flash or dram. Includes 32 bits of |32
pointer and a single bit specifying dram address space.

LParent (LPt) Local Parent references the local 4k block of the parent node in | 33
flash or dram. Includes 32 bits of pointer and a single bit
specifying dram address space.

LSize Encoded leaf LValue size. 3
Otype Type of OIT Leaf 2
Ptype Type of POIT Leaf 2
Etype Type of OIT or POIT Entry Node 3
Rtype Type of reserved Leaf 3
num May be utilized to increase the size of data that the leaf |0

specifies to increase the efficiency of index tree and storage
device. Values may include:

+ 1block

* 4 blocks (flash page)

* 512 blocks (minimum size object, 2 Mbyte)

Children Specifies a remote device number 32
Block State Encoding of 4k block cache coherency state 8
Block referenced count (unsigned) 7

40

WO 2016/200649 PCT/US2016/035203

Modified - Indicates that the block has been modified with |1
respect to persistent store. Only valid for blocks while they are
present in volatile memory.

DS State [15:0] | DownStream State [15:0] - Enumerates the state of for the | 128
block within object specified by Object Offset for each of 16
devices.

[0157] Size specifies independently the size of the LPointer and IndexVal (or object offset).
Within a balanced tree, a single block may point to all node blocks or all leaf blocks. In order to
deliver highest performance, the tree may become un-balanced, such as for example where the
number of levels for all paths through the tree are equivalent. Node blocks and leaf blocks may
provide fields to support un-balanced trees. A background activity may re-balance the trees that
are part of other background operations. For example, an interior node (non-leaf) in OIT may
include L Pointer and NValue fields. NValue may include object size and object ID. Object ID
requires 107 (128-21) bits to specify the smallest possible object. Each LPointer may point to the
next level of interior node or a leaf node. LPointer may require enough bits to represent all the
blocks within its local storage (approximately 32 bits representing 16 terabytes). For a node in the
POIT, the NValue may consist of the object offset based on object size. The object size may be
encoded within the NSize field. The size field may enable a node to hold the maximum number of
LPointer and NValue fields based on usage. An index tree root node may be stored at multiple
locations on multiple flash devices to achieve reliable cold boot of the OIT. Tree root block

updates may be alternated among mirrors to provide wear leveling.

[0158] By default, each POIT Leaf entry may point to the location of a single block (e.g., 4k
bytes). POIT Leaf OM entry and POIT Leaf Router entry may contain a field to enable support
beyond single block to enable more compressed index trees, higher resulting index tree
performance and higher persistent storage performance by being able to match the page size for

persistent storage.

[0159] Nodes and leafs may be differentiated by the Type field at the start of each 4k block. The
NNize field may encode the size of NValue field within a node, and LSize field may encode the
size of the LValue field within a leaf. The size of the LPointer field may be determined by the
physical addressing of local storage is fixed for a single devices (e.g., RDIMM, node router, or
router). The LPointer may be only valid within a single device and not across devices. The
LPointer may specify whether the corresponding block is stored in persistent memory (e.g., flash)
or faster memory (e.g., DRAM). Blocks that are stored in DRAM may also have storage allocated

within persistent memory, so that two entries are present to indicate the two storage locations for a
41

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

block, node or leaf. Within a single block type, all NValue and/or LValue fields may be a single

size.

[0160] The OIT Node may include several node level fields (Type, NSize, and LParent) and
entries including OIT Node Entry or OIT Leaf Entry. Since an index tree can be un-balanced at
times a node can include both node and leaf entries. The POIT Node may include one or more
node level fields (e.g., Type, NSize, and/or LParent) and entries including OIT Leaf Entry. _OIT
Leaf types may be differentiated by the otype field. OIT Leaf (Object Index Table Leaf) may
point to the head of a POIT (Per Object Index Table) that specifies object blocks and object
metadata. OIT Leaf R may point to a remote head of an POIT. This may be utilized to reference
an object that is residing on a remote device across a network. This leaf may enable the remote

device to manage the object.

[0161] POIT Leaf types may be differentiated by the ptype field. POIT Leat OM may point to a
block of object memory or metadata. The Object offset field may be one bit greater than the
number of bits to specify the offset for a specific object size to specify metadata. For example, for
2! object size 10 bits may be required (9 plus 1 bits). The implementation can choose to represent
the offset in two’s complement form (signed form, first block metadata is -1), or in one’s
complement where the additional bit indicates metadata (first block of metadata is represented by

1, with metadata bit set).

[0162] POIT Leaf Remote may point to an block of object memory or metadata that is remote
from the local DIMM. This may be used to reference a block that is residing on a remote device
across a network through the stream package interface. For example, this device could be a
mobile device. This leaf may enable object memory fabric hardware to manage coherence on a

block basis for the remote device.

[0163] POIT Leaf Router may be utilized within node object routers and inter-node object
routers to specify the state of the corresponding object memory fabric Block Object Address for
each of up to 16 downstream nodes. If within a node object router, up to 16 DIMMs may be
specified in some embodiments (or more in other embodiments). If within an inter-node object
router up to 16 downstream routers or node object routers (e.g., server nodes) may be specified in
some embodiments (or more in other embodiments). The Block Object Address can be present in

one or more downstream devices based on valid state combinations.

[0164] Index lookups, index COW updates, and index caching may be directly supported in

object memory fabric hardware in Object Memory, node object index, and object memory fabric
42

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

Router. In addition to the node formats for object memory fabric indices, application-defined
indices may be supported. These may be initialized through the object memory fabric API. An
advantage of application-defined indices may be that object memory fabric hardware-based index

lookup, COW update, index caching, and parallelism may be supported

[0165] Various embodiments may provide for background operations and garbage collection.
As each DIMM and Router within object memory fabric may maintain its own directory and
storage locally, background operations and garbage collection may be accomplished locally and
independently. Each DIMM or Router may have a memory hierarchy for storing index trees and
data blocks, that may include on-chip cache, fast memory (e.g., DDR4 or HMC DRAM) and

slower nonvolatile memory (e.g., flash) that it can manage, as well as index trees.

[0166] Each level within the hierarchy may perform the following operations: (1) Tree balancing
to optimize lookup time; (2) Reference count and aging to determine when blocks are moved
between different storage; (3) Free list updating for each local level of hierarchy as well as keeping
a parameters of fill level of the major levels of the local hierarchy; (4) Delivering periodic fill
levels to the next level of hierarchy to enable load balancing of storage between DIMMs on a local
server and between levels of object memory fabric hierarchy; (5) If a Router, then load balancing

between child nodes.

[0167] Block reference count may be utilized object memory fabric to indicate the relative
frequency of access. Higher value may indicate more frequent use over time, lower less frequent
use. When block reference count is associated with a block in persistent memory, blocks which
have lowest values may be candidates to move to another DIMM or node that has more available
space. Each time a block is accelerated into volatile memory, the reference count may be
incremented. Low frequency background scanning may decrement the value if it is not in volatile
memory and increments the value if it is in volatile memory. It may be expected that the scanning
algorithm may evolve over time to increment or decrement based or reference value to provide
appropriate hysteresis. Blocks that are frequently accelerated into or present in volatile memory

may have higher reference count values.

[0168] When a block reference count is associated with a block in volatile memory, blocks
which have lowest values may be candidates to move back to persistent memory or memory within
another DIMM or node. When a block moves into volatile memory, reference count may be
initialized based on the instruction or use case that initiated the movement. For example, a

demand miss may set the value to a midpoint, and a speculative fetch may set it to a quarter point.

43

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

Single use may set it to below the quarter point. Moderate frequency background scanning may
decrement the referenced value. Thus, demand fetches may be initially weighted higher than
speculative fetches. If a speculative fetch is not utilized, it may quickly fall to the lower
referenced values that may be replaced first. Single use may be weighted low to be candidate for
replacement sooner than other blocks. Thus, single use and speculative blocks may not replace

other frequently accessed blocks.

[0169] FIG. 16 is a block diagrams illustrating an aspect of example physical memory
organization 1600, in accordance with certain embodiments of the present disclosure. Object
memory fabric may provide multiple methods to access objects and blocks. For example, a direct
method may be based on execution units within object memory fabric or devices that can directly

generate full 128-bit memory fabric addresses may have full direct access.

[0170] An associated method may consider conventional servers having limited virtual address
and physical address spaces. Object memory fabric may provide an API to dynamically associate
objects (e.g., segments) and blocks (e.g., pages) with the larger object memory fabric 128-bit
memory fabric address. The associations provided by AssocObj and AssocBlk operations may be
utilized by object memory fabric driver (e.g., Linux driver) and object memory fabric system
library (Syslib) interfacing with the standard processor memory management to enable object
memory fabric to behave transparently to both the operating system and applications. Object
memory fabric may provide: (a) an API to associate a processor segment and its range of virtual
addresses with an object memory fabric object thus ensuring seamless pointer and virtual
addressing compatibility; (b) an API to associate a page of virtual address space and the
corresponding object memory fabric block with a page/block of local physical memory within an
object memory fabric DIMM (which may ensure processor memory management and physical
addressing compatibility); and/or (c) local physical memory divided into standard conventional
server DIMM slots, with 512 Gbytes (2°° bytes) per DIMM slot. On a per slot basis, object
memory fabric may keep an additional directory indexed by physical address of the object memory
fabric address of each block that has been associated with the corresponding physical address as

illustrated in the following diagram.

[0171] FIG. 16 is a block diagram illustrating an example physical memory organization 1600,
in accordance with certain embodiments of the present disclosure. A physical memory directory
1605 for physical memory 1630 may include: object memory fabric object block address 1610;
object size 1615; reference count 1620; a modified field 1625 which may indicate whether the
block has been modified with respect to persistent memory; and/or write enable 1630 which may

44

10

15

20

25

WO 2016/200649 PCT/US2016/035203

indicate whether local block cache state is sufficient for writing. For example, if the cache state
were copy, writes may be blocked, and object memory fabric would may with sufficient state for
writing. The physical address range may be assigned to each by system BIOS on boot based
object memory fabric DIMM SPD (Serial Presence Detect) configuration.

[0172] FIG. 17A is a block diagram illustrating an example object addressing 1700, in
accordance with certain embodiments of the present disclosure. FIG. 17B is a block diagram
illustrating example aspects of object memory fabric pointer and block addressing 1750, in
accordance with certain embodiments of the present disclosure. Object memory fabric objects
1705 may include object data 1710 and metadata 1715, both divided into 4k blocks in some
embodiments as one unit of storage allocation, referenced by the object memory fabric address
space 1720. The object starting address may be the ObjectID 1755. Data 1710 may be accessed as
a positive offset from ObjectID 1755. The largest offset may be based on ObjectSize 1760.

[0173] Object metadata 1715 may be accessed as a negative offset from ObjectStart 1725
(ObjectID). Metadata 1715 can be also referenced by an object memory fabric address in the top

1/16th of object address space 1720. The start of a specific objects metadata may be 2'**-

2'%*+0bjStart/16. This arrangement may enable the POIT to compactly represent metadata 1715
and the metadata 1715 to have an object address space so it can be managed coherently just like
data. Although the full object address space may be allocated for object data 1710 and metadata
1715, storage may be sparsely allocated on a block basis. At a minimum, an object 1705 has a
single block of storage allocated for the first block of metadata 1715, in some embodiments.
Object access privilege may be determined through object memory fabric Filesystem ACL or the
like. Since object memory fabric manages objects in units of 4k blocks, addressing within the
object memory fabric object memory are block addresses, called Block Object Address 1765
(BOA), which corresponds to object address space [127:12]. BOA [11:0] may be utilized by the

object memory for ObjectSize (BOA[7:0]) and object metadata indication (BOA[2:0])

[0174] FIG. 18 is a block diagram illustrating example aspects 1800 of object metadata 1805, in
accordance with certain embodiments of the present disclosure. Table 6 below indicates metadata
of the first block 1810 of metadata 1805 per certain embodiments. In some embodiments, the first

block 1810 of metadata 1805 may hold metadata for an object as depicted.

Table 6. Metadata First Block

Name Description Size

45

10

15

WO 2016/200649 PCT/US2016/035203

Object address space Object ID. Number of significant bits
determined by object size 16
Object size Object Size
CRC Reserved for optional object crc 16
Parity pointer Pointer to pages used for optional object block 16
parity
Compression Flags OID of compression object 16
Encryption Flags OID of encryption object 16
System Defined Reserved for software defined OS functions 256
Application Defined Reserved for software defined owning 256
application functions
Others 432
Remote Object Table Specifies Objects accessible from this object. 1024
Specifies 64 OIDs (128 bit). The zero entry is
used to specify object or metadata within this
Triggers Triggers or Trigger B-Tree root 2048
4096

[0175] System-defined metadata may include any Linux-related data to coordinate use of certain
objects seamlessly across servers. Application-defined metadata may include application related
data from a file system or database storage manager to enable searches and/or relationships

between objects that are managed by the application.

[0176] For an object with a small number of triggers, base triggers may be stored within the first
block; otherwise, a trigger B-tree root may reference metadata expansion area for the
corresponding object. Trigger B-tree leaf may specify base triggers. A base trigger may be a
single trigger action. When greater than a single action is required, a trigger program may be
invoked. When trigger programs are invoked, they may reside in the expansion area. The remote

object table may specify objects that are accessible from this object by the extended instruction set.

[0177] Certain embodiments may provide for an extended instruction execution model. One
goal of the extended execution model may be to provide a lightweight dynamic mechanism to
provide memory and execution parallelism. The dynamic mechanism enables a dataflow method
of execution that enables a high degree of parallelism combined with tolerance of variation in
access delay of portion of objects. Work may be accomplished based on the actual dependencies,
not a single access delay holding up the computation.

46

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

[0178] Various embodiments may include one or a combination of the following. Loads and
memory references may be split transactions, with separate request and response so that the thread
and memory path are not utilized during the entire transaction. Each thread and execution unit
may be able to issue multiple loads into object memory fabric (local and remote) prior to receiving
a response. Object memory fabric may be a pipeline to handle multiple requests and responses
from multiple sources so that memory resources can be fully utilized. The execution unit may be
able to accept responses in a different order from that the requests were issued. Execution units
can switch to different threads to be fully utilized. Object memory fabric can implement policies
to dynamically determine when to move objects or portions of objects versus moving a thread

versus creating a thread.

[0179] FIG. 19 is a block diagram illustrating aspects of an example micro-thread model 1900,
in accordance with certain embodiments of the present disclosure. A thread may be the basic unit
of execution. A thread may be defined at least in part by an instruction pointer (IP) and a frame
pointer (FP). The instruction pointer may specify the current instruction that is being executed.

The frame pointer may specify the location of the current execution state of the thread.

[0180] A thread can include multiple micro-threads. In the example depicted, the thread 1905
include micro-threads 1906 and 1907. However, a thread can include greater numbers of micro-
threads. The micro-threads of a particular thread may share the same frame pointer but have
different instruction pointers. In the example depicted, frame pointers 1905-1 and 1905-2 specity

the same location, but instruction pointers 1910 and 1911 specify different instructions.

[0181] One purpose of micro-threads may be to enable data-flow like operation within a thread
by enabling multiple asynchronous pending memory operations. Micro-threads may be created by
a version of the fork instruction and may be rejoined by the join instruction. The extended
instruction set may treat the frame pointer as a top of stack or register set by performing operations
on offsets from the frame pointer. Load and store instructions may move data between the frame

and the object.

[0182] FIG. 20 is a block diagram illustrating aspects of an example relationship 2000 of code,
frame, and object, in accordance with certain embodiments of the present disclosure. Specifically,
FIG. 20 illustrates how object data 2005 is referenced through the frame 2010. The default may be
for load and store instructions to reference the object 2005 within local scope. Access to object
2005 beyond local scope can be given in a secure manner by access control and security policies.

Once this access is given, objects 2005 within local and non-local scope can be accessed with

47

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

equal efficiency. Object memory fabric encourages strong security by encouraging efficient object
encapsulation. By sharing the frame, micro-threads provide a very lightweight mechanism to
achieve dynamic and data-flow memory and execution parallelism, for example, on the order of
10-20 micro-threads or more. The multiple threads enable virtually unlimited memory based

parallelism.

[0183] FIG. 21 is a block diagram illustrating aspects of an example of micro-thread
concurrency 2100, in accordance with certain embodiments of the present disclosure. Specifically,
FIG. 21 illustrates the parallel data-flow concurrency for a simple example of summing several
randomly located values. A serial version 2105 and a parallel version 2110 are juxtaposed, in
accordance with certain embodiments of the present disclosure. The parallel version 2110 can be

almost n times faster since loads are overlapped in parallel.

[0184] Referring again to FIG. 20, the approach can be extended to interactive and recursive
approaches in a dynamic manner. The advantages of prefetching ahead can now be achieved in
cases with minimal locality without using prefetch. When an object is created, a single default
thread 2015 (single micro-thread 2020 is created) may be waiting to start with a start message to
the default thread 2015. The default thread 2015 then can create micro-threads with the thread or

use a version of the fork instruction to create a new thread.

[0185] In some embodiments, both the instruction pointer and the frame pointer may be
restricted to the expansion metadata region 1815 starting at block two and extending to
SegSize/16. As the number of objects, object size, and object capacity increase, the thread and
micro-thread parallelism may increase. Since threads and micro-threads may be tied to objects, as
objects move and distribute so may the threads and micro-threads. Embodiments of object
memory fabric may have the dynamic choice of moving objects or portions of objects to threads or
distributing threads to the object(s). This may be facilitated by the encapsulated object methods

implemented by the extended execution model.

[0186] As further noted above, embodiments of the present invention may also include an object
memory fabric instruction set which can provide a unique instruction model based on triggers that
support core operations and optimizations and allow the memory intensive portion of applications

to be more efficiently executed in a highly parallel manner within the object memory fabric.

[0187] The object memory fabric instruction set can be data-enabling due to several
characteristics. First, the sequence of instructions can be triggered flexibly by data access by a

conventional processor, object memory fabric activity, another sequence or an explicit object
48

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

memory fabric API call. Second, sequences can be of arbitrary length, but short sequences can be
more efficient. Third, the object memory fabric instruction set can have a highly multi-threaded
memory scale. Fourth, the object memory fabric instruction set can provide efficient co-threading

with conventional processors.

[0188] Embodiments of the present invention include two categories of instructions. The first
category of instructions is trigger instructions. Trigger instructions include a single instruction and
action based on a reference to a specific Object Address (OA). A trigger instruction can invoke
extended instructions. The second category of instructions is extended instructions. Extended
instructions define arbitrary parallel functionality ranging from API calls to complete high level
software functions. After a discussion of the instruction set model, these two categories of
instructions will be discussed in turn. As noted, trigger instructions enable efficient single purpose

memory related functions with no context outside of the trigger.

[0189] Using the metadata and triggers defined above an execution model based on memory data
flow can be implemented. This model can represent a dynamic datatlow method of execution in
which processes are performed based on actual dependencies of the memory objects. This
provides a high degree of memory and execution parallelism which in turn provides tolerance of
variations in access delays between memory objects. In this model, sequences of instructions are
executed and managed based on data access. These sequences can be of arbitrary length but short

sequences are more efficient and provide greater parallelism.

[0190] The extended instruction set enables efficient, highly threaded, in-memory execution.
The instruction set gains it’s efficiency in several manners. First, the instruction set can include
direct object address manipulation and generation without the overhead of complex address
translation and software layers to manage differing address spaces. Second, the instruction set can
include direct object authentication with no runtime overhead that can be set based on secure third
party authentication software. Third, the instruction set can include object related memory
computing. For example, as objects move, the computing can move with them. Fourth, the
instruction set can include parallelism that is dynamic and transparent based on scale and activity.
Fifth, the instruction set can include an object memory fabric operation that can be implemented
with the integrated memory instruction set so that memory behavior can be tailored to application
requirements. Sixth, the instruction set can handle functionality for memory-intensive computing
directory in the memory. This includes adding operations as memory is touched. Possible
operations may include, but are not limited to, searching, image/signal processing, encryption, and
compression. Inefficient interactions with conventional processors are significantly reduced.

49

10

15

20

25

30

35

WO 2016/200649 PCT/US2016/035203

[0191]

The extended instruction capability can be targeted at memory intensive computing

which is dominated with memory references for interesting size problems that are larger than

caches or main memory, and simple operations based on these references. Some examples can

include but are not limited to:

Defining API macros from conventional processors.

Defining the streams of interaction between hierarchical components of the object memory
fabric. Each component can use a core set of instruction sequences to implement object
memory fabric functionality.

Short sequences for macros to accelerate key application kernels such as BFS (Breath First
Search), etc. BFS is a core strategy for searching a graph and is heavily used by graph
databases and graph applications. For example, BFS is used across a wide variety of
problem spaces to find a shortest or optimal path. It is a representative algorithm that
illustrates the challenges for analyzing large scale graphs namely, no locality because
graphs are larger than caches and main memory and virtually all the work is through
memory references. In the case of BFS, the extended instruction capability described
herein coupled with threads handles almost the entire BFS by recursive instantiation of
threads to search adjacency lists based on graph size and available nodes. Highly parallel
direct in-memory processing and high-level memory operations reduce software path-
length. When combined with object memory fabric capability described above to bring all
data in-memory and localize it ahead of use, the performance and efficiency per node is
significantly increased.

Complete layer functionality, such as:

o Storage engine for hierarchical file system built on top of a flat object memory. A
storage engine is, for example, what stores, handles, and retrieves the appropriate
object(s) and information from within an object. For MySQL, the object may be a
table. For a file system, the object may be a file or directory. For a graph database,
the object may be a graph and information may consist of vertices and edges.
Operators supported may be, for example, based on type of object (file, graph, SQL,
etc.).

o Storage engine for structured database such as MySQL

o Storage engine for unstructured data such as graph database

o Storage engine for NoSQL key-value store

Complete application: Filesystem, structured database such as MySQL, unstructured data
such as graph database or NoSQL key-value store

User programmable.
50

WO 2016/200649 PCT/US2016/035203

[0192] According to one embodiment, a base trigger may invoke a single trigger action based on
reference to a specific OA. There can be a single base trigger per OA. When greater than a single
action is required, a trigger program can be invoked with the TrigFunction base trigger. Base

triggers may consist of the instructions included in Table 7 below.

Table 7. Example Base Trigger Instruction Set

Base Trigger Description
Trigger Fetch the block specified in the pointer at the specified object
offsetbased on specified trigger conditions and actions
TrigFunction Executethe trigger program starting at specified meta-data offset
when the specified data object offset and specified trigger
conditions.

[0193] As noted, the Trigger instruction set can include fetching the block specified in the
pointer at the specified object offset based on the specified trigger conditions and actions. The

Trigger instruction binary format can be expressed as:

Trigger Ptriype Triglype TrigAction RefPolicy ObjOffset

[0194] An example set of operands for the Trigger instruction set are included in Tables 8-12

below.

51

WO 2016/200649 PCT/US2016/035203
Table 8. PrtType- Pointer Type
Encoding Symbol Description
None No pointer
OA Object Address
ObjReg ObjectRelative
ObjVA Object Virtual Address
Reserved Reserved
Table 9. TrigType- Trigger Type
Encoding Symbol Description
None
demand Trigger by demand miss for block
prefetch Trigger by preached block
access Triggered by actual processor access to cache block
emptyfill Trigger by empty or fill instructions. Enables trigger on
specific processor action
any Any trigger type
reserved Reserved
Table10. TrigA ction- Trigger Action
Encoding Symbol Description
None
Cache Trigger by demand miss for block
Clean Trigger by preached block
reserved Triggered by actual processor accessto cache block
Table 11. RefPolicy- Reference Count and Policy
Encoding Symbol Description
InitLowA Initial reference count of prefetch page to low value, policy A
InitMidA Initial reference count of prefetch page to mid value, policy A
InitHighA Initial reference count of prefetch page to high value, policy A

52

WO 2016/200649 PCT/US2016/035203
InitLowB Initial reference count of prefetch page to low value, policy B
InitMidB Initial reference count of prefetch page to mid value, policy B
InitHighB Initial reference count of prefetch page to high value, policy B

Table 12. ObjOffset- Object Offset

Description

Object offset based on Object size. Trigger can be evaluated based on TriggerType and trigger
action taken if TriggerType is satisfied is define by TriggerAction and RefPolicy.

[0195] As noted, the TrigFunction (or TriggerFunct) instruction set can include executing the
trigger program starting at specified meta-data offset when the specified data object offset and
specified trigger conditions. TriggerFunct can enable more complex sequences than a single

Trigger instruction to be executed. The TrigFunct Instruction binary format can be expressed as:

TrigFunct Pirlype TrigType MetaDataOffset ObjOffset
[0196] An example set of operands for the Trigger instruction set are included in Tables 13-16
below.
Table 13. PrtType- Pointer Type
Encoding Symbol Description
None No pointer
OA Object Address
ObjReg Object Relative
ObjVA Object Virtual Address
Reserved Reserved
Table 14. TrigType- Trigger Type
Encoding Symbol Description
None
demand Trigger by demand miss for block
prefetch Trigger by preached block
access Triggered by actual processor access to cache block

53

5

10

WO 2016/200649 PCT/US2016/035203

emptyfill Trigger by empty or fill instructions. Enables trigger on
specific processor action

any Any trigger type

reserved Reserved

Table 15. MetaDataOffset- Meta-Data Offset

Description

Meta-Data offset based on Object size. TriggerFunction can be evaluated based on TriggerType.
The trigger program starting at MetaDataOffset is executed if TriggerType is satisfied.

Table 16. ObjOffset- Object Offset

Description

Object offset based on Object size. TriggerFunction can be evaluated based on TriggerType at
ObjOffset. The trigger program starting at MetaDataOffset is executed if TriggerType is satisfied.

[0197] According to one embodiment, extended instructions can be interpreted in 64 bit word
chunks in 3 formats, including short (2 instructions per word), long (single instruction per word),

and reserved.

Table 17. Extended Instruction Format
Format bits[63:62] bits[61:31] bits[30:0]
Short 0x00 s instruction[1] (31 bits) s_instruction[0] (31 bits)
Long 0x01 1 instruction (62 bits)
Reserved Ox1*

[0198] Generally speaking, triggers in combination with the extended instruction set can be used
to define arbitrary, parallel functionality such as: direct object address manipulation and generation
without the overhead of complex address translation and software layers to manage differing
address space; direct object authentication with no runtime overhead that can be set based on
secure 3rd party authentication software; object related memory computing in which, as objects
move between nodes, the computing can move with them; and parallelism that is dynamically and

transparent based on scale and activity. These instructions are divided into three conceptual
54

WO 2016/200649

PCT/US2016/035203

classes: memory reference including load, store, and special memory fabric instructions; control

flow including fork, join, and branches; and execute including arithmetic and comparison

instructions.

[0199] A list of the different types of memory reference instructions are shown in Table 18

below.

Table 18. Memory Reference Instructions
[30:23] [22:17] [16:11] [10:5] [4:0]

Instruction Encoding/Options FPA FPB FPC Predicate
Pull encode[7:0] oid offset prior, plstate |src pred
Push encode[7:0] oid offset prior, plstate |src pred
Ack encode[7:0] oid offset src_pred
Load encode[4:0],0size[2:0] | src oid src offset dst fp src_pred
Store encode[4:0],0size[2:0] | dst oid dst offset src fp src_pred
ReadPA encode[7:0] Src pa dst fp src_pred
WritePA encode[7:0] dst pa src fp src_pred
Empty encode[7:0] src oid src offset dst fp src_pred
Fill encode[7:0] dst oid dst offset src fp src_pred
Pointer encode[5:0], opt[1:0] dst oid dst offset src_pred
PrePtrChn | encode[4:0], opt[2:0] src oid src offsetst |src offsetend | src pred
ScanEF encode[4:0],0pt[2:0] src oid src offset dst fp src_pred
Create src_pred
CopyObj src_pred
CopyBlk src_pred
Allocate src_pred
Deallocate src_pred
Destroy src_pred
Persist src_pred
AssocObj src_pred
DeAssocOb;j src_pred

55

10

WO 2016/200649 PCT/US2016/035203

AssocBlk lencode[5:0],0pt[1:0] src oid src pa dst 1s src_pred
DeAssocBlk ncode[7:0] src_pred
OpenObj src_pred
OpenBlk src_pred
Btree src_pred

[0200] The pull instruction may be utilized within the object memory fabric as a request to copy
or move the specified block to (e.g. local) storage. The 4k byte block operand in the object
specified by src oid at the object offset specified by src offset may be requested with the state
specified by pull state with the priority specified by priority. The data may be subsequently

moved by a push instruction. The Pull instruction binary format can be expressed as:

Pull Instruction (binary format)

[30:23] [22:17] [16:11] [10:9] [8:5] [4:0]

src oid src offset priority pull state Predicate

[0201] An example set of operands for the Pull instruction set are included in Tables 19-23

below.

Table 19. predicate- Predicate

Description

Specifies a single bit predicate register. If the predicate value is true, the instruction executes, if
false the instruction does not execute.

Table 20. src_oid — Source Object Identifier

Description

Index into the remote object table to specify the specific object identifier for this memory
operation. Index value of 0 always corresponds to local object.

Table 21. src_off — Source Object Offset

Description

Specifies the unsigned offset from the thread frame pointer to read the source operand
corresponding to the object offset.

56

WO 2016/200649

PCT/US2016/035203

Table 22. priority — How object memory fabric treats the requests

Encoding

Symbol

Description

0x0

required-high

Highest priority handling of requests. Highest priority requests
are always handled in the order received.

Ox1

required-low

Can be optionally reordered with respect to required-high by
object memory fabric only to prioritize required-high requests
for short time periods. Must be completed. Typically most
requests are of required-low priority.

0x2

optional-high

Requests can be considered optional by object memory fabric
and can be delayed or deleted as required to manage object
memory fabric load. Optionalhigh requests are always
considered ahead of opfional-low requests.

0x3

optional-low

Request can be considered optional by object memory fabric
and can be delayed or deleted as required to manage object
memory fabric load. Optional-low requests are treated at the
lowest priority. Typically most optional requests are o the
optional-low priority.

Table 23. pull_state — Requested object memory fabric state for block

States can be listed in order of weakest to strongest. State can be returned in a stronger state.
Modified with respect to persistent memory can be indicated by _m suffix.

Encoding Symbol Description

0x0 invalid

Ox1 snapcopy Snapshot copy. This copy can be updated when a block is
persisted. Utilized for object fault tolerance. Can be configured
on an object basis redundancy and geographic dispersion.

0x2 shadcopy Shadow copy. Can be updated on a lazy basis (eventually
consistent), usually after a period of time or some number of
writes and/or transactions. Can also be used for fault tolerant
block copies.

0x3 copy Read-only copy. Will be updated for owner modifications as

they occur. Insures sequential consistency.

57

WO 2016/200649 PCT/US2016/035203

Ox4 own_snapcopy Exclusive owner with snapshot copy. Enables local write
B privilege without any updates required. Snapshot copies may
0x38 OWn=Snapeopy_Meyist, but are only updated when corresponding block is
persisted and through and push instruction with push_state =
pstate sncopy.
0x5 own_shadcopy Non-exclusive owner with shadow copies. Enables write

privilege shadow copies or snapshot copies to exist which are

0x9 own-shadcopy m updated from writes on a lazy basis- eventually consistent.

Non-exclusive owner with copies. Enables write privilege and

0x6 own copy X)) : A
copies, shadow copies or snapshot copies to exist which are

Oxa own_copy_m updated from writes. Multiple writes to the same block can
occur with a single update.

0x7 own Eﬁicéusive owner. Enabl}fs local‘ writg privilege. No copies,
shadow copies or snapshot copies exist.

Oxb own_m P P P

Oxc error Error has been encountered on corresponding block.

Oxd- reserved Reserved

Oxf

[0202] Push instruction may be utilized to copy or move the specified block from local storage
to a remote location. The 4k byte block operand in the object specified by src oid at the object
offset specified by src offset may be requested with the state specified by pull state with the
priority specified by priority. The data may be previously requested by a pull instruction. The

Push instruction binary format can be expressed as:

Push Instruction (binary format)

[30:23] [22:17] [16:11] [10:9] [8:5] [4:0]

src oid src offset priority push_state Predicate

[0203] An example set of operands for the Push instruction set are included in Tables 24-28

below.

Table 24. predicate- Predicate

Description

Specifies a single bit predicate register. If the predicate value is true, the instruction executes, if
false the instruction does not execute.

58

WO 2016/200649

PCT/US2016/035203

Table 25. src_oid — Source Object Identifier

Description

Index into the remote object table to specify the specific object identifier for this memory
operation. Index value of 0 always corresponds to local object.

Table 26. src_off — Source Object Offset

Description

Specifies the unsigned offset from the thread frame pointer to read the source operand
corresponding to the object offset.

Table 27. priority — How object memory fabric treats the requests

Encoding

Symbol

Description

0x0

required-high

Highest priority handling of requests. Highest priority requests
are always handled in the order received.

0Ox1

required-low

Can be optionally reordered with respect to required-high by
object memory fabric only to prioritize required-high requests
for short time periods. Must be completed. Typically most
requests are of required-low priority.

0x2

optional-high

Requests can be considered optional by object memory fabric
and can be delayed or deleted as required to manage object
memory fabric load. Opfional-high requests are always
considered ahead of optional-low requests.

0x3

optional-low

Request can be considered optional by object memory fabric
and can be delayed or deleted as required to manage object
memory fabric load. Opfional-low requests are treated at the
lowest priority. Typically most optional requests are o the

optional-low priority.

Table 28. push_state — Requested object memory fabric state for block

Modified with respect to persistent memory can be indicated by m suffix.

Encoding Symbol Description
0x0 invalid
0x1 snapcopy Snapshot copy. This copy can be updated when a block is

persisted. Utilized for object fault tolerance. Can be
configured on an object basis redundancy and geographic
dispersion.

59

WO 2016/200649 PCT/US2016/035203
0x2 shadcopy Shadow copy. Will be updated on a lazy basis- eventually
consistent, usually after a period of time or some number of
writes and/or transaction. Can also be used for fault tolerant
block copies.
0x3 copy Read-only copy. Can be updated for owner modifications as
they occur. Insures sequential consistency.
Ox4 own_snapcopy Exclusive owner with snapshot copy. Enables local write
Ox8 B privilege without any updates required. Snapshot copies may
X OWn_SRApEOPY M- loxist, but are only updated when corresponding block is
persisted and through and push instruction with push_state =
pstate sncopy.
0x5 own_shadcopy INon-exclusive owner with shadow copies. Enables write
0x9 B ad privilege shadow copies or snapshot copies to exist which are
X own_shadcopy_m updated from writes on a lazy basis- eventually consistent.
0x6 own copy Non-exclusive owner with copies. Enables write privilege and
0 - copies, shadow copies or snapshot copies to exist which are
xa own_copy_ updated from writes. Multiple writes to the same block can
occur with a single update.
0x7 own Exclusive owner. Enables local write privilege. No copies,
oxb o m shadow copies or snapshot copies exist.
Oxc error Error has been encountered on corresponding block.
0Oxd- reserved
Oxf
[0204] PushAck or Ack instruction may be utilized to acknowledge that the block associated

with a Push has been accepted at one or more locations. The 4k byte block operand in the object

specified by src oid at the object offset specified by src offset may be acknowledged. The Ack

instruction binary format can be expressed as:

Ack Instruction (binary format)

[30:23] [22:17] [16:11] [10:9] [8:5] [4:0]
src oid src offset Predicate
[0205] An example set of operands for the Push instruction set are included in Tables 29-31

below.

60

WO 2016/200649 PCT/US2016/035203

Table 29. predicate- Predicate

Description

Specifies a single bit predicate register. If the predicate value is true, the instruction executes, if
false the instruction does not execute.

Table 30. src_oid — Source Object Identifier

Description

Index into the remote object table to specify the specific object identifier for this memory
operation. Index value of 0 always corresponds to local object.

Table 31. src_off — Source Object Offset

Description

Specifies the unsigned offset from the thread frame pointer to read the source operand
corresponding to the object offset.

[0206] The Load instruction set includes the osize operand in the object specified by src_oid at
the object offset specified by src_offset. src_offset can be written to the word offset from the

frame pointer specified by dst fp. The load instruction ignores the empty state.

Load Instruction (binary format)

[30:26] [25:23] [22:17] [16:11] [10:5] [4:0]

osize src oid sre offset dst fp Predicate

[0207] An example set of operands for the Load instruction set are included in Tables 32-36

below.

61

WO 2016/200649 PCT/US2016/035203

Table 32. osize- Object operand size

Encoding Symbol Description
0x0 8bit unsigned 8 bit source is zero extended to 64 bit dst_fp
Ox1 16bit unsigned | 16 bitsource is zero extended to 64 bit dst_fp

0x2 32bit unsigned | 32 bit source is zero extended to 64 bitdst_{p

0x3 64bit 64 bit source is loaded into 64 bit dst_{p
Ox4 8bit signed 8 bit source is sign extended to 64 bit dst_fp
0x5 16bit signed 16 bit source is sign extended to 64 bitdst_fp

0x6 32bit signed 32 bit source is sign extended to 64 bitdst fp

0x7 reserved

Table 33. predicate- Predicate

Description

Specifies a single bit predicate register. If the predicate value is true, the instruction executes, if
false the instruction does not execute.

Table 34. src_oid- Source Object Identifier

Description

Index into the remote object table to specify the specific object identifier for this memory
operation. Index value of 0 always corresponds to local object.

Table 35. src_off- Source Object Offset

Description

Specifies the unsigned offset from the thread frame pointer to read the source operand
corresponding to the object offset.

Table 36. dst_fp- Destination offset from frame pointer

Description

Specifies the unsigned offset from the thread frame pointer to write the source operand.

62

WO 2016/200649 PCT/US2016/035203

[0208] The Store instruction set includes the word specified by sr¢_fp can be truncated to the
size specified by osize and stored into the object specified by dst oid at offset of dst_offst. For
example, only the ssize bytes are stored. The store instruction ignores the empty state. The Store

instruction binary format can be expressed as:

Store Instruction (binary format)

[30:25] [24:23] [22:17] [16:11] [10:5] [4:0]

ssize dst oid dst offset src fp Predicate

[0209] An example set of operands for the Store instruction set are included in Tables 37-41

below.
Table 37. ssize- Store Object operand size
Encoding Symbol Description
0x0 8bit Leastsignificant 8 bits are stored
Ox1 16bit Leastsignificant 16 bits are stored
0x2 32bit Leastsignificant 32 bits are stored
0x3 64bit Least significant 64 bits are stored

Table 38. predicate- Predicate

Description

Specifies a single bit predicate register. If the predicate value is true, the instruction executes, if
false the instruction does not execute.

Table 39. dst_oid- Source Object Identifier

Description

Index into the remote object table to specify the specific object identifier for this memory operation.
Index value of 0 always corresponds to local object.

Table 40. dst_off- Source Object Offset

Description

63

5

10

WO 2016/200649 PCT/US2016/035203

Specifies the unsigned offset from the thread frame pointer to read the source operand
corresponding to the object offset.

Table 41. src_fp- Destination offset from frame pointer

Description

Specifies the unsigned offset from the thread frame pointer to read the source operand.

[0210] The ReadPA instruction reads 64 bytes by physical address of the local memory module.
The operand in the object specified by src_pa can be written to the word offset from the frame

pointer specified by dst fp. The ReadPA instruction binary format can be expressed as:

ReadPA Instruction (binary format)

[30:26] [25:23] [22:17] [16:11] [10:5] [4:0]

src pa dst fp Predicate

[0211] An example set of operands for the ReadPA instruction set are included in Tables 42-44

below.

Table 42. predicate- Predicate

Description

Specifies a single bit predicate register. If the predicate value is true, the instruction executes, if
false the instruction does not execute.

Table 43. src_pa- Source Physical Address

Description

Specifies a physical address local to the current node/server.

Table 44. dst_fp- Destination offset from frame pointer

Description

Specifies the unsigned offset from the thread frame pointer to write the source operand.

64

10

15

WO 2016/200649 PCT/US2016/035203

[0212] The WritePA instruction writes 64 bytes by physical address of the local memory
module. The 64 bytes specified by src_fp is stored into the physical address specified by dst pa.

The ReadPA instruction binary format can be expressed as:

WritePA Instruction (binary format)

[30:25] [24:23] [22:17] [16:11] [10:5] [4:0]

dst pa src fp Predicate

[0213] An example set of operands for the WritePA instruction set are included in Tables 45-47

below.

Table 45. predicate- Predicate

Description

Specifies a single bit predicate register. If the predicate value is true, the instruction executes, if
false the instruction does not execute.

Table 46. dst_pa- Destination physical address

Description

Specifies a physical address local to the current node/server

Table 47. src_fp- Source frame pointer

Description

Specifies the unsigned offset from the thread frame pointer to read the source operand.

[0214] Each word within an object memory fabric object can include an state to indicate empty
or full states. An empty state conceptually means that the value of the corresponding word has
been emptied. A full state conceptually means the value of the corresponding word has been
filled. This state can be used by certain instructions to indivisibly insure that only a single thread
can read or write the word. Empty instructions can operate similar to a load, as shown below in

Table 48.

65

WO 2016/200649 PCT/US2016/035203

Table 48

State Result

Empty Memory doesn’t respond until
word transitions to full state

Full Completes as load and indivisibly
transitions state to empty

[0215] The osize operand in the object specified by src_oid at the object offset specified by
src_offset can be written to the word offset from the frame pointer specified by dst fp. The Empty

instruction binary format can be expressed as:

Empty Instruction (binary format)

[30:26] [25:23] [22:17] [16:11] [10:5] [4:0]

src oid src offset dst fp Predicate

[0216] An example set of operands for the Empty instruction set are included in Tables 49-52

below.

Table 49. predicate- Predicate

Description

Specifies a single bit predicate register. If the predicate value is true, the instruction executes, if
false the instruction does not execute.

Table S0. src_oid- Source Object Identifier

Description

Index into the remote object table to specify the specific object identifier for this memory operation.
Index value of 0 always corresponds to local object.

Table 51. src_off- Source Object Offset

Description

Specifies the unsigned offset from the thread frame pointer to read the source operand
corresponding to the object offset.

66

WO 2016/200649 PCT/US2016/035203

Table 52. dst_fp- Destination offset from frame pointer

Description

Specifies the unsigned offset from the thread frame pointer to write the source operand.

[0217] Each word within a memory fabric object can include an state to indicate empty or full

states. Empty state conceptually means that the value of the corresponding word has been emptied.

Full state conceptually means the value of the corresponding word has been filled. This state can
5 beused by certain instructions to indivisibly insure that only a single thread can read or write the

word. The Fill instruction binary format can be expressed as:

Fill Instruction (binary format)

[30:25] [24:23] [22:17] [16:11] [10:5] [4:0]

dst oid dst offset src fp Predicate

[0218] Fill instruction operates similar to a store, as shown below in Table 53.

Table S3.

State Result

Empty The fill instruction completes as a
store and transitions stateto fi/l.

Full The fill instruction

[0219] The word specified by src_fp can be stored into the object specified by dst_oid at offset
10 of dst offst. Only the ssize bytes are stored. Store ignores empty state. An example set of

operands for the Fill instruction set are included in Tables 54-57 below.

Table 54. predicate- Predicate

Description

Specifies a single bit predicate register. If the predicate value is true, the instruction executes, if
false the instruction does not execute.

67

WO 2016/200649

PCT/US2016/035203

Table S5. dst_oid- Source Object Identifier

Description

Index into the remote object table to specify the specific object identifier for this memory
operation. Index value of 0 always corresponds to local object.

Table 56. dst_off- Source Object Offset

Description

Specifies the unsigned offset from the thread frame pointer to read the source operand
corresponding to the object offset.

Table 57.

src_fp- Destination offset from frame pointer

Description

Specifies the unsigned offset from the thread frame pointer to read the source operand.

[0220] The Pointer instruction set can specify to the object memory fabric that a pointer of

5 ptr_type can be located in the object specified by scrod at object offset specified by src_offset.

This information can be utilized by the object memory fabric to pre-stage data movement. The

Pointer instruction binary format can be expressed as:

Pointer Instruction (binary format)

[30:26]

[24:23]

[22:17] [16:11] [10:5] [4:0]

ptr _type

sre oid sre offset Predicate

[0221] An example set of operands for the Pointer instruction set are included in Tables 58-61

10 below.
Table S8. ptr_type- Pointer Type
Encoding Symbol Description

0x0 none No pointer at this object offset

0x1 MF Address Full 128 Memory Fabric Address pointer at this object offset

0x2 Object Relative | 64 bit objectrelative pointer at this object offset. The range
of the object relative pointer can be determined by object size

0x3 Object-VA 64 bit object virtual address pointer at this objectoffset. The
range of the object relative pointer can be determined by
object size.

68

10

WO 2016/200649 PCT/US2016/035203

Table 59. predicate- Predicate

Description

Specifies a single bit predicate register. If the predicate value is true, the instruction executes, if
false the instruction does not execute.

Table 60. src_oid- Source Object Identifier

Description

Index into the remote object table to specify the specific object identifier for this memory
operation. Index value of 0 always corresponds to local object.

Table 61. src_off- Source Object Offset

Description

Specifies the unsigned offset from the thread frame pointer to read the source operand
corresponding to the object offset.

[0222] The Prefetch Pointer Chain instruction set can be based on the policy specified by policy
in the object specified by src_oid, in the range specified by src_offset st to src_offset end. The
osize operand in the object specified by src_oid at the object offset specified by src_offset can be
written to the word offset from the frame pointer specified by dst_fp. Load ignores empty state.

The PrePtrChn instruction binary format can be expressed as:

PrePtrChn Instruction (binary format)

[30:26] [25:23] [22:17] [16:11] [10:5] [4:0]

policy src oid src offset st | src offset end src pred

[0223] An example set of operands for the Prefetch Pointer Chain instruction set are included in

Tables 62-66 below.

Table 62. Policy- Prefetch PointerChain Policy

Encoding Symbol Description

0x0 none ahead Just prefetch blocks corresponding to pointers in chain

69

WO 2016/200649 PCT/US2016/035203

Ox1 breath lahead | Breath first prefetch. Fetch each pointer in chain then fetch
one ahead of each pointer

0x2 breath 2ahead | Breath first prefetch. Fetch each pointer in chain then
recursively fetch two ahead of each pointer

0x3 breath 3ahead | Breath first prefetch. Fetch each pointer in chain then
recursively fetch three ahead of each pointer

0x4 reserved reserved

0x5 depth lahead | Depth first prefetch 1 deep.

0x6 depth 2ahead | Depth first prefetch 2 deep.

0x7 depth 3ahead | Depth first prefetch 3 deep.

Table 63. predicate- Predicate

Description

Specifies a single bit predicate register. If the predicate value is true, the instruction executes, if
false the instruction does not execute.

Table 64 src_oid- Source Object Identifier

Description

Index into the remote object table to specify the specific object identifier for this memory
operation. Index value of 0 always corresponds to local object.

Table 65. src_off st- Source Object Offset

Description

Specifies the unsigned offset from the thread frame pointer to read the source operand
corresponding to starting object offset..

Table 66. src_off end- Destination offset from frame pointer

Description

Specifies the unsigned offset from the thread frame pointer to read the source operand
corresponding to ending object offset.

[0224] The Scan and Set Empty or Full instruction set can be initialed in an object specified by
src_oid, at offset specified by src_offset with specified policy. Scan can be used to do a breath
first or depth first search and empty or fill the next available location. The ScanEF instruction

binary format can be expressed as:
70

WO 2016/200649

PCT/US2016/035203

ScanEF Instruction (binary format)

[30:26] [25:23] [22:17] [16:11] [10:5] [4:0]
policy src oid src offset dst fp Predicate
[0225] An example set of operands for the Scan and Set Empty or Full instruction set are

included in Tables 67-71 below.

Table 67. osize- Object operand size

Encoding

Symbol

Description

0x0

scan_empty

Scan object until empty state and set to full. Terminates on full
with null value. The object offset when the condition was met
can be placed into dst fp. If the scan terminated without
condition being met, a value of -0x1 can be placed intodst fp.

Ox1

scan_full

Scan object to full state and set to empty. Terminates on
empty with null value. The object offset when the condition
was met can be placed intodst_fp. If the scan terminated
without condition being met, a value of -Ox1 can be placed
intodst_fp.

0x2

ptr full

Follow pointer chain until full and set to empty. Terminates on
null pointer. The object offset when the condition was met can
be placed intodst fp. Ifthe scan terminated without condition
being met, a value of -Ox1 can be placed into dst_fp.

0x3

ptr_empty

Follow pointer chain until empty and set to full. Terminates on
null pointer. The object offset when the condition was met can
be placed intodst fp. Ifthe scan terminated without condition
being met, a value of -Ox1 can be placed into dst_fp.

Table 68. predicate- Predicate

Description

Specifies a single bit predicate register. If the predicate value is true, the instruction executes, if
false the instruction does not execute.

Table 69. src_oid- Source Object Identifier

Description

Index into the remote object table to specify the specific object identifier for this memory
operation. Index value of 0 always corresponds to local object.

71

10

WO 2016/200649 PCT/US2016/035203

Table 70. src_off- Source Object Offset

Description

Specifies the unsigned offset from the thread frame pointer to read the source operand
corresponding to the object offset.

Table 71. dst_fp- Destination offset from frame pointer

Description

Specifies the object offset when the condition was met. If the scan terminated without condition
being met, a value of -0x1 can be placed into dst_fp.

[0226] The Create instruction set includes an object memory fabric object of the specified
ObjSize with an object ID of OA and initialization parameters of Datalnit and Type. No data block
storage can be allocated and storage for the first meta-data block can be allocated. The Create

instruction binary format can be expressed as:
Create Type Redundancy ObjSize OID

[0227] An example set of operands for the Create instruction set are included in Tables 72-75

below.
Table 72. Type
Encoding Symbol Description
volatile temp object that does not need to be persisted
persistant object must be persisted
reserved reserved
Table 73. Redundancy
Encoding Symbol Description
nonredundant Object memory fabric does not provide object redundancy
redundant Object memory fabric guarantees that objectcan be

persisted in at least 2 separate nodes

remote redundani Object memory fabric guarantees that objectcan be
persisted in at least 2 separate nodes which are remote with
respect to each other

reserved reserved

72

10

WO 2016/200649

PCT/US2016/035203

Table 74. ObjSize- Object Size

Description

Specifies the object size.

Table 7S. OID- Object Id

Description

Object memory fabric object ID which also the starting address for the object.

[0228] The CopyObj instruction set includes copies source object specified by SOID to
destination object specified by DOID. If DOID is larger object than SOID, all DOID blocks

beyond SOID size are copied as unallocated. If SOID is larger object than DOID, then the copy

ends at DOID size. The CopyObj instruction binary format can be expressed as:

CopyObj Cype SOID DOID

[0229] An example set of operands for the CopyObj instruction set are included in Tables 76-78

below.

76. Ctype- Copy type

Encoding

Symbol

Description

copy

One time copy from SOID to DOID. Allocated blocks are

one time copied and non-allocated block SOID blocks become
unallocated DOID blocks, object memory fabric has the option
of treating the copy initially as cow and executing the copy in
the background.

cow

All allocated blocks are treated as copy on write. Newly
allocated blocks after cow are considered modified.

reserved

reserved

Table 77. SOID- Source Object ID

Description

Object memory fabric object ID which is the source for the copy.

73

WO 2016/200649 PCT/US2016/035203

Table 78. DOID- Destination Object ID

Description

Object memory fabric object ID which is the destination for the copy.

[0230] The CopyBlk instruction set includes copies cnum source blocks starting at
SourceObjectAddress (SOA) to destination starting at DestinationObjectAddress (DOA). If cnum
blocks extends beyond the object size associated with SOA, then the undefined blocks are copied

as unallocated. The CopyBIk instruction binary format can be expressed as:
CopyBIk ctype cnum SOA DOA

[0231] An example set of operands for the CopBlk instruction set are included in Tables 79-82

below.

Table 79. Ctype- Copy type

Encoding Symbol Description

copy One time copy of cnum blocks starting at SOA to destination
blocks starting at DOA. Allocated blocks are one time copied
and non-allocated SOA blocks become unallocated SOA
blocks, object memory fabric has the option of treating the
copy initially as cow and executing the copy in the background.

cow All allocated blocks are treated as copy on write. Newly
allocated blocks after cow are considered modified.

reserved reserved

Table 80. cnum- Number of blocks to copy

Description

Specifies the number of blocks to copy.

Table 81. SOA- Source object memory fabric Block Object Address

Description

Object memory fabric block object address which is the source for the copy.

74

WO 2016/200649 PCT/US2016/035203

Table 82. DOA- Destination object memory fabric Block Object Address

Description

Object memory fabric block object address which is the destination for the copy.

[0232] The Allocate instruction set includes storage to the object specified by OID. The

Allocate instruction binary format can be expressed as:
Allocate init ASize OID

[0233] An example set of operands for the Allocate instruction set are included in Tables 83-85

below.
Table 83. init- Initialization

Encoding Symbol Description
zero Zeroall data
random Random data.
reserved reserved

Table 84. ASize- Allocation Size

Encoding Symbol Description
block single block
object full object
size2l 2” blocks
size30 2" blocks
size39 2*" blocks

Table 85. OID- Object ID

Description

Object memory fabric object ID for which storage is allocated.

75

10

15

WO 2016/200649 PCT/US2016/035203

[0234] The Deallocate instruction set includes storage for cnum blocks starting at OA. If
deallocation reaches the end of the object, the operation ends. The Deallocate instruction binary

format can be expressed as:
Deallocate cnum OA

[0235] An example set of operands for the Deallocate instruction set are included in Tables 86

and 87 below.

Table 86. cnum- Number of blocks to copy

Description

Specifies the number of blocks to deallocate.

Table 87. OA- Object Address

Description

Object memory fabric block object address which is starting block number for deallocation.

[0236] The Destroy instruction set includes completely deleting all data and meta-data

corresponding to object specified by OID. The Destroy instruction binary format can be expressed

as:

Destroy OID

[0237] An example set of operands for the Destroy instruction set are included in Table 88

below.

Table 88. OID - Object ID

Description

Object ID of the object to be deleted.

[0238] The Persist instruction set includes persisting any modified blocks for the specified OID.

The Persist instruction binary format can be expressed as:

Persist OID
76

10

WO 2016/200649 PCT/US2016/035203

[0239] An example set of operands for the Persist instruction set are included in Table 89 below.

Table 89. OID - Object ID

Description

Object ID of the object to be persisted.

[0240] The AssocObj instruction set includes associating the object OID with the VaSegment
and ProcessID. Associating an OID and VaSegment enables ObjectRelative and ObjectVA
addresses to be properly accessed by the object memory fabric. The AssocObj instruction binary

format can be expressed as:

AssocObj OID ProcessID VaSegment

[0241] An example set of operands for the AssocObj instruction set are included in Tables 90-92

below.

Table 90. OID - Object ID

Description

Object ID of the object to be associated.

Table 91. ProcessID - Process ID

Description

Process ID associated with the VaSegment.

Table 92. OID - Object ID

Description

Object ID of the object to be associated.

[0242] The DeAssocObj instruction set includes de-associating the object OID with the

VaSegment and ProcessID. An error can be returned if the ProcessID and VaSegment do not

77

10

WO 2016/200649 PCT/US2016/035203

match those previously associated with the OID. The DeAssocObj instruction binary format can

be expressed as:
DeAssocObj OID ProcessID VaSegment

[0243] An example set of operands for the DeAssocObj instruction set are included in Tables

93-95 below.

Table 93. OID - Object ID

Description

Object ID of the object to be de-associated.

Table 94. ProcessID - Process ID

Description

Process ID associated with the VaSegment.

Table 95. OID - Object ID

Description

Object ID of the object to be de-associated.

[0244] The AssocBlk instruction set includes associating the block OA with the local physical
address PA. This enables an Object Memory to associate an object memory fabric block with a

PA block for local processor access. The AssocBlk instruction binary format can be expressed as:
AssocBlk place OA PA LS[15:00]

[0245] An example set of operands for the AssocBlk instruction set are included in Tables 96-99

below.

78

WO 2016/200649 PCT/US2016/035203

Table 96. place — Physical Placement

Encoding Symbol Description

0x0 match Associate PA must match physical DIMM with allocated
block. If currently not allocated on any physical DIMM will
associate and allocate on DIMM specified. Returns status
within ack detail package file of SUCCESS or

NOT ALLOC If not allocated the LS field provides a bitmap
of current physical

Ox1 force Force associate and implicit allocate on DIMM specified.

0x2 dynamic Memory fabric associates a free PA with the OA and
returns PA.

0x3 reserved reserved

Table 97. OA - object memory fabric Block Object Address

Description

Object ID of the object to be associated.

Table 98. PA - Physical block Address

Description

Local physical block address of the block to be associated.

Table 99. LS[15:00] — Local State[15:00]

Description

Valid for ackdetail::NOT_ASSOC which indicates that the OA is allocated on a different physical
IDIMM. Local state specifies a single bit indicating which DIMM(s) have currently allocated the
corresponding OA. Value is return in operand3, with bitO corresponding to DIMMO.

5]0246] The DeAssocBlk instruction set includes de-associating the block OA with the local
physical address PA. This OA will then no longer be accessible from a local PA. The

DeAssocBlk instruction binary format can be expressed as:
DeAssocBlk 04 PA

79

WO 2016/200649 PCT/US2016/035203

[0247] An example set of operands for the DeAssocBIk instruction set are included in Tables

100 and 101 below.

Table 100. OA - object memory fabric Block Object Address

Description

Block object address of block to be de-associated.

Table 101. PA - Physical block Address

Description

Local physical block address of the block to be de-associated. Corresponds to Operand2 within
the package header.

[0248] The OpenObj instruction set includes caching the object specified by OID in the manner
5 specified by TypeFetch and CacheMode on an advisory basis. The OpenObj instruction binary

format can be expressed as:
OpenObj TypeFetch CacheMode oID

[0249] An example set of operands for the OpenObj instruction set are included in Tables 102-
104 below.

Table 102. OID - Object ID

Description

Object ID of the object to be associated.

10
Table 103. TypeFetch- Type of Prefetch
Encoding Symbol Description
MetaData Cache MetaData only

First 8 Blocks Cache MetaData and first 8 data blocks

First 32 Blocks | Cache MetaData and first 32 data blocks

Reserved Reserved

80

WO 2016/200649 PCT/US2016/035203

Table 104. CacheMode- Advisory Block State

Encoding Symbol Description

copy Copy block state if possible. All updates can be propagated
immediately

shadcopy Shadow copy block state if possible. Updates can be
propagated in a lazy manner

snapcopy Snapshot copy. Copy only updated on persist.

oWn Own block state is possible. No other copies in memory
fabric

owncopy Own block state with O or more copies if possible.

own_shadcopy Own block state with 0 or more shadow copies (no copy
block state)

OWn_Snapcopy Own block state with 0 or more snapshot copes. (no copy or

shadow copy block state)

[0250] The OpenBlk instruction set includes caching the block(s) specified by OID in the
manner specified by TypeFetch and CacheMode. The prefetch terminates when it’s beyond the

end of the object. The OpenBlk instruction binary format can be expressed as:
OpenBlk TypeFetch CacheMode OID

[0251] An example set of operands for the OpenBlk instruction set are included in Tables 105-
107 below.

Table 105. OID - Object ID

Description

Object ID of the object to be associated.

Table 106. TypeFetch- Type of Prefetch

Encoding Symbol Description

1 Block Cache MetaData only

First 8 Blocks Cache MetaData and 8 data blocks starting at OID

First 32 Blocks | Cache MetaDataand 32 data blocks starting at OID

Reserved Reserved

81

10

WO 2016/200649 PCT/US2016/035203
Table 107. CacheMode- Advisory Block State
Encoding Symbol Description
copy Copy block state if possible. All updates can be propagated
immediately
shadcopy Shadow copy block state if possible. Updates can be
propagated in a lazy manner
snapcopy Snapshot copy. Copy only updated on persist.
oWn Own block state is possible. No other copies in memory
fabric
owncopy Own block state with O or more copies if possible.
own_shadcopy Own block state with 0 or more shadow copies (no copy
block state)
OWn_Snapcopy Own block state with 0 or more snapshot copes. (no copy or
shadow copy block state)

[0252]

are included in Table 108 below.

An example set of operands for the Control Flow (short instruction format) instruction set

Table 108.

[30:23] [22:17] [16:11] [10:5] [4:0]
Instruction Encoding/Options FPA FPB FPC Predicate
Fork encode[6:0], fpobj[0] P FP count src_pred
Join encode[6:0], fpobj[0] 1P FP count src_pred
Branch disp[5:0] src_pred
BranchLink src_pred

[0253] The fork instruction set provides an instruction mechanism to create a new thread or

micro-thread. Fork specifies the New Instruction Pointer (NIP) and new Frame Pointer for the

newly created thread. At the conclusion of the fork instruction, the thread (or micro-thread) which

executed the instruction and the new thread (e.g. micro-thread) are running with fork count

(count) incremented by one. If the new FP has no relationship to the old FP, it may be considered

a new thread, or otherwise a new micro-thread. The Fork instruction binary format can be

expressed as:

82

WO 2016/200649

PCT/US2016/035203

Fork Instruction (binary format)

[30:24] [23] [22:17] [16:11] [10:5] [4:0]
where NIP NFP count Predicate
[0254] An example set of operands for the Fork instruction set are included in Tables 109-113
below.
Table 109. where-Where fork join count can be stored
Encoding Symbol Description
0x0 frame Fork count can be stored directly on the frame. Faster, but only
accessible to micro-threads within the same thread on a single
node
0x1 object Fork count can be stored within the object which
enables distributed operation.

Table 110. predicate- Predicate

Description

Specifies a single bit predicate register. If the predicate value is true, the instruction executes, if
false the instruction does not execute.

Table 111. NIP- New micro-thread Instruction Pointer

Description

Specifies the unsigned offset from the thread frame pointer to read the IP of the newly spawned
micro-thread. The IP can be a valid object meta-data expansion space address.

Table 112. New micro-thread Frame Pointer

Description

Specifies the unsigned offset from the thread frame pointer to read the FP of the newly spawned
micro-thread. The FP can be a valid object meta-data expansion space address.

83

WO 2016/200649 PCT/US2016/035203

Table 113. count- Fork count variable

Description

The fork count variable keeps track of the number of forks that have not been paired with joins. If
the where options indicates frame, the count specifies the unsigned offset from the thread frame
pointer where fork count can be located. If the where option indicates object, the count specifies
the unsigned offset from the thread frame pointer to read the pointer to fork count.

[0255] Join is the instruction mechanism to create a new thread or micro-thread. The join
instruction set enables a micro-thread to be retired. The join instruction decrements fork count

5 (count) and fork count is greater than zero there is no further action. If fork count is zero, then
this indicates the micro-thread executing the join is the last spawned micro-thread for this
fork count and execution continues at the next sequential instruction with the FP specified by FP.

The Join instruction binary format can be expressed as:

[30:24] [23] [22:17] [16:11] [10:5] [4:0]

where FP count Predicate

10 [0256] An example set of operands for the Join instruction set are included in Tables 114-117

below.
Table 114. where-Where fork join count can be stored
Encoding Symbol Description

0x0 frame Fork count can be stored directly on the frame. Faster, but only
accessible to micro-threads within the same thread on a single
node

0x1 object Fork count can be stored within the object which
enables distributed operation.

Table 115. predicate- Predicate

Description

Specifies a single bit predicate register. If the predicate value is true, the instruction executes, if
false the instruction does not execute.

84

WO 2016/200649 PCT/US2016/035203

Table 116. NFP- Post join Frame Pointer

Description

Specifies the unsigned offset from the thread frame pointer to read the FP of the post join
micro-thread. The FP can be a valid object meta-data expansion space address.

Table 117. count- Fork count variable

Description

The fork count variable keeps track of the number of forks that have not been paired with joins. If
the where options indicates frame, the count specifies the unsigned offset from the thread frame
pointer where fork count can be located. If the where option indicates object, the count specifies
the unsigned offset from the thread frame pointer to read the pointer to fork count.

[0257] The branch instruction set allows for branch and other conventional instructions to be

added. The Branch instruction binary format can be expressed as:

Branch Instruction (binary format)
[30:24] [23] [22:17] [16:11] [10:5] [4:0]
Predicate
[0258] An example set of operands for the Execute (short instruction format) instruction set are

included in Table 118 below

Table 118. Short Instruction Format-Execute
[30:23] [22:17] [16:11] [10:5] [4:0]
Instruction Encoding/Options FPA FPB FPC Predicate
Add encode[5:0],esize[1:0] |srcA srcB dst src_pred
Compare encode[5:0],esize[1:0] |srcA srcB dpred src_pred
[0259] Object Memory Fabric Streams and APIs

85

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

[0260] Object memory fabric streams facilitate a mechanism that object memory fabric utilizes
to implement a distributed coherent object memory with distributed object methods. According to
certain embodiments, object memory fabric streams may define a general mechanism that enables
hardware and software modules in any combination to communicate in a single direction. Ring
streams may support a pipelined ring organization, where a ring of two modules may be just two

one-way streams.

[0261] A stream format API may be defined at least in part as two one-way streams. Thus, as
part of providing the infinite memory fabric architecture in some embodiments, communication
between two or more modules may be executed with the stream format API, which at least
partially defines the communication according to the object memory fabric stream protocol so that

the communication is based on different unidirectional streams.

[0262] Each stream may be logically composed of instruction packages. Each instruction
package may contain an extended instruction and associated data. In some embodiments, each
stream may interleave sequences of requests and responses. Streams may include short and long
packages. The short package may be referenced herein as simply an “instruction package,” which
may be descriptive of the instruction packages containing bookkeeping information and
commands. The short package may include either the Pul/ or Ack instructions and object
information. The long package may be referenced herein as an “object data package,” which may
be descriptive of the object data packages carrying object data, as distinguished from the short
package (“instruction packages”) which do not carry object data. The object data package may
include one or more push instructions, object information, and a single block specified by the
object address space block address. All other instructions and data may be communicated within

the block.

[0263] In some embodiments, for example, the short package may be 64 bytes (1 chunk), and the
long package may be 4160 bytes (65 chunks). However, other embodiments are possible. In some
embodiments, there may be a separator (e.g., a 1 byte separator). Object memory fabric streams
may be connectionless in a manner similar to UDP and may be efficiently embedded over UDP or
a UDP-type protocol having certain characteristics common with, or similar to, UDP. In various
embodiments, attributes may include any one or combination of’

* Transaction-oriented request-response to enable efficient movement of object memory

fabric-named (e.g., 128-bit object memory fabric object address) data blocks.

86

WO 2016/200649 PCT/US2016/035203

* Packages may be routed based on the location of block, the request object memory
fabric object address (object address space), and object memory fabric instruction—not

be based on a static IP-like node address.
* Coherency and object memory fabric protocol may be implemented directly.
5 * Reliability may be provided within the object memory fabric end-to-end protocol.
* Connectionless.
* The only state in the system may be the individual block coherency state at each end

node, which may be summarized at object memory fabric routing nodes for efficiency.

[0264] Table 119 below identifies non-limiting examples of various aspects of a short package

10 definition, in accordance with certain embodiments of the present disclosure.

Table 119. Short Package Definition

Name Description Size(bytes)

Instruction For the short extended instruction format, only |8
s _instruction[0] may be utilized. Pull and Ack
may be short extended instructions.

ObjID, ObjOft, ObjSize ObjSize (bit[7:0]) may define the ObjID and| 16
ObjOff fields as defined in object memory fabric
Coherent Object Address (Object Address Space)
Space disclosure above. Bit [11] set specifies
meta-data.

NodelID Hierarchical node number. Nodes can be |8
hardware and/or software based. May utilize to
route a response back to the original requestor.

Acknowledge Accumulated acknowledge fields. These may be | 1
utilized to signal acknowledgement across objects
as defined below.

Operand2 Utilized for PA address for PA instructions. |8
Utilized for optional streaming block count for
other instructions

Operand3 8

Checksum Checksum of the package. This assures | 8
correctness all package chunks and correct
number of chunks per package.

Acknowledge Detail This may include status or error codes specific to | 1
each instruction, shown in the Table CIII below.

Local use Source of the incoming package 1

87

WO 2016/200649 PCT/US2016/035203

Table 119. Short Package Definition
Name Description Size(bytes)
Local destination Destination of the outgoing package 1
Local mod_ref Utilized to locally pass modified and referenced | 1
information
Reserved Reserved. 2
Total Size Short package size. 64

[0265] Table 120 below identifies non-limiting examples of various aspects of a long package

definition, in accordance with certain embodiments of the present disclosure.

Table 120. Long Package Definition
Name Description Size(bytes)
Short package Push may be long package instruction. 64
Block Data 4096
Total Size Short package size. 128

[0266] Table 121 below identifies non-limiting examples of various aspects of object size

encoding, in accordance with certain embodiments of the present disclosure.

Table 121. Object Size Encoding
Encoding ObjSize
0x0 2%
0x1 2%
0x2 2%
0x3 2"
0x4 2%
0xS5 2%
0x6-0xff reserved

88

10

15

20

25

WO 2016/200649 PCT/US2016/035203

[0267] Software and/or hardware based objects may interface to 2 one-way streams, one in each
direction. Depending on the object, there can be additional lower level protocol layering including
encryption, checksum, and reliable link protocol. The object memory fabric stream protocol
provides for matching request response package pairs (and timeouts) to enforce reliability for

packages that traverse over an arbitrary number of streams.

[0268] In certain cases, each request-response package pair is approximately 50% short package
and 50% long package on the average, the average efficiency relative to a block transfer is 204%,

with the equation:
efficiency = 1/(50% * 4096/(40 + 4136))
=1/ (50% * blocksize/(smallpackagesize + largepackagesize))

[0269] For links with stochastic error rates, a reliable link protocol may be utilized to detect the

errors locally.

[0270] Node ID

[0271] Object address spaces (object memory fabric object addresses) can be dynamically
present in any object memory within object memory fabric, as well as dynamically migrate. There
still can be (or, for example, needs to be) a mechanism that enables object memory’s and routers
(collectively nodes) to communicate with each other for several purposes including book-keeping
the original requestor, setup and maintenance. The NodelD field within packages can be utilized
for these purposes. DIMMs and routers can be addressed based on their hierarchical organization.
Non-leaf nodes can be addressed when the lesser significant fields are zero. The
DIMM/software/mobile field can enable up to 256 DIMMs or more and the remainder proxied
software threads and/or mobile devices. This addressing scheme can support up to 2* servers or
server equivalents, up to 2** DIMMs and up to 2°* mobile devices or software threads. Examples

of these fields are shown below in Tables 122-124.

Table 122. Package NodelD Field
[63:56] [55:48] [47:40] [39:32] [31:24] [23:00]
Levell
Level5 Level4 Level3 Level2 Intgr-Node DMWsoftware/
Object mobile
Router

89

WO 2016/200649 PCT/US2016/035203

Table 123. Leveln Field (n=1 to 5)

Encoding Description
0x00-0xfd Node address with hierarchy
Oxfe Add this router ID to NodelD when it first leaves this level

toward root.

Oxff Indicates that the NodelD Field specifies an interior node that is
one level above the field in which this value is specified. All
fields lower than this Leveln Field should be specified as Oxft.

Table 124. DIMM/SW/Mobile NodelID Field

Encoding Description
0x000000-0x0000fe Up to 256 DIMMs per logical server
Oxfe Add this router ID to NodelD when it first leaves this level

toward root.

0x0000ff Indicates that the NodelD Field specifies an interior node that is
one level above the field in which this value is specified. All
fields lower than this Leveln Field should be specified as Oxft.

0x000100-0xfFfref Up 2*-2% (16,776,960) SW threads or Mobile Devices per logical
server

[0272] Table 125 and 126 below identifies non-limiting examples of various aspects of

acknowledge fields and detail, in accordance with certain embodiments of the present disclosure.

Table 125. Acknowledge Fields

Name Description Position Size(bits)

Ack Cleared when package first inserted into| O 1
ring from another ring. Set by an object
when it is able to respond to the request.

BusyAck Cleared when package first inserted into| 1 1
ring from another ring. Set by an object
when it is unable to evaluate or perform
appropriate action on the Object Block
Address. BusyAck may cause the package
to be re-transmitted around the local ring.

90

WO 2016/200649 PCT/US2016/035203

Table 125. Acknowledge Fields

Name Description Position Size(bits)

SnapCopyAck Cleared when package first inserted into| 2 1
ring from another ring. Set by an object to
indicate it still has a snapshot copy of the
Object Block Address. This information
may be used to enable the proper state to
be set when an object transfers the package
between rings (hierarchy levels).

ShadCopyAck Cleared when package first inserted into| 3 1
ring from another ring. Set by an object to
indicate it still has a shadow copy of the
Object Block Address. This information
may be used to enable the proper state to
be set when an object transfers the package
between rings (hierarchy levels).

CopyAck Cleared when package first inserted into | 4 1
ring from another ring. Set by an object to
indicate it still has a copy of the Object
Block Address. This information is used
to enable the proper state to be set when an
object transfers the package between rings
(hierarchy levels).

ToRoot Function may be to enable the uplink ring | 4 1
object that provides streams toward the
root to not require a directory. Signals the
uplink object that a package has traversed
once around the ring and can now be sent
toward the root.

Reserved Reserved. 3

Total Size Acknowledge field size. 8

[0273] Table 126 below identifies non-limiting examples of various aspects of the Acknowledge
detail field, in accordance with certain embodiments of the present disclosure. The Acknowledge
detail field may provide detailed status information of the corresponding request based on the

package instruction field.

91

WO 2016/200649

PCT/US2016/035203

Table 126. Acknowledge Detail

Instructions

Acknowledge Field Definition

Pull, Push, Ack

previous block state. Utilized for diagnostic and

Load, Store

0x0- Success
0x1- Fail

Empty, Fill

0x0- Success
0x1- Fail

Pointer, PrePtrChn, ScanEF

0x0- Success
0x1- Fail

Create

0x0- Success
0x1- Already created (fail)
0x2- Fail

Destroy

0x0- Success
Ox 1- Not valid (nothing to destroy)
0x2- Fail

Allocate

0x0- Success
0x1- Already allocated (fail)
0x2- Fail

Deallocate

0x0- Success
Ox1- not allocated (fail)
0x2- Fail

CopyObj

0x0- Success
0x1- Object doesn’t exist (fail)
0x2- Fail

CopyBIlk

0x0- Success
0x1- Block doesn’t exist (fail)
0x2- Fail

Persist

0x0- Success
0x1- Object doesn’t exist (fail)
0x2- Fail

AssocObj

0x0- Success
0x1- Object doesn’t exist (fail)
0x2- Fail

DeAssocObj

0x0- Success

0x1- Object doesn’t exist (fail)
0x2- Object not associated (fail)
0x3- Fail

AssocBlk

0x0- Success
Ox1- Object or block doesn’t exist (fail)
0x2- Fail

92

10

15

20

WO 2016/200649 PCT/US2016/035203

Table 126. Acknowledge Detail

Instructions Acknowledge Field Definition

DeAssocBlk 0x0- Success

Ox1- Object or block doesn’t exist (fail)
0x2- Block not associated (fail)

0x3- Fail

OpenOb;j 0x0- Success

0x1- Object doesn’t exist (fail)
0x2- Object already open

0x3- Fail

Btree 0x0- Success
0x1- Object doesn’t exist (fail)
0x2- Fail

[0274] In some embodiments, the topology used within object memory fabric may be a
unidirectional point-to-point ring. However, in various embodiments, the stream format would
support other topologies. A logical ring may include any combination of hardware, firmware,
and/or software stream object interfaces. A two-object ring may include two one-way streams
between the objects. An object that connects to multiple rings may have the capability to move,

translate, and/or generate packages between rings to create the object memory fabric hierarchy.

[0275] FIG. 22A is a block diagram illustrating an example of streams present on a node 2200
with a hardware-based object memory fabric inter-node object router 2205, in accordance with
certain embodiments of the present disclosure. In some embodiments, the node 2200 may
correspond to a server node. The inter-node object router 2205 may include ring objects 2210
which are connected with physical streams 2215 in a ring orientation. In various embodiments, the
ring objects may be connected in a ring 2220, which may be a virtual (Time Division Multiplexed)
TDM ring in some embodiments. The ring objects 2210 and streams 2215 can be any combination
of physical objects and streams or TDM ring objects and streams when hardware is shared. As
depicted, one ring object 2210 may connect within the inter-node object router ring 2220 and to a
stream 2225 that goes toward the object memory fabric router. In some embodiments, more than
one ring object 2210 may connect within the inter-node object router ring and corresponding

streams.

[0276] As depicted, the node 2200 may include a PCle 2230, node memory controllers and DD4

memory buses 2235, and object memory fabric object memories 2240. Each object memory fabric

object memory 2240 may have at least one pair of streams that connect to a inter-node object

router ring object 2210 over the DD4 memory bus 2235 and PCle 2230, running at hardware
93

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

performance. As depicted, there can be software objects 2245 running on any processor core 2250
that can be functioning as any combination of routing agent and/or object memory. The software
objects 2245 may have streams that connect ring objects 2210 within the inter-node object router

2205. Thus, such software objects 2245 streams may stream over the PCle 2230.

[0277] FIG. 22B is a block diagram illustrating an example of software emulation of object
memory and router on the node 2200-1, in accordance with certain embodiments of the present
disclosure. The software object 2245 may, for example, emulate object memory fabric object
memory 2240. The software object 2245 may include the same data structures to track objects and
blocks and respond to requests from the inter-node object router 2205 identically to the actual
object memory fabric object memory 2240. The software object 2245-1 may, for example,
correspond to a routing agent by emulating the inter-node object router 2205 functionality. In so
doing, the software object 2245-1 may communicate streams over standard wired and/or wireless

networks, for example, to mobile, wired, and/or Internet of Things (IoT) devices 2255.

[0278] In some embodiments, the entire inter-node object router function could be implemented
in one or more software objects 2245 running on one or more processing cores 2250, with the only
difference being performance. And, as noted, one or more processing cores 2250 can also directly

access object memory fabric object memory per conventional memory reference.

[0279] FIG. 23 is a block diagram illustrating an example of streams within an object memory
fabric node object router 2300, in accordance with certain embodiments of the present disclosure.
The object memory fabric router 2300 may include ring objects 2305 which are connected with
streams 2310. As depicted, ring objects 2305 may be connected by streams 2310 in a ring
topology. The ring objects 2305 and streams 2310 can be any combination of physical or TDM.
One or more ring objects 2305 may connect to a physical stream 2315 that goes toward a leaf
node. As depicted, one ring object 2305 may connect to a physical stream 2320 that goes toward a
root node. In some embodiments, more than one ring object 2305 may connect to a respective

physical stream 2320 that goes toward a root node.
[0280] API Background

[0281] Although API which stands for Applications Programming Interface, sounds like it
should be about how software interfaces to object memory fabric, the main interface to object
memory fabric may correspond to memory in some embodiments. In some embodiments, the
object memory fabric API may correspond to how object memory fabric is set up and maintained

transparently for applications, e.g., by modified Linux libc. Applications such as a SQL database

94

10

15

20

25

30

WO 2016/200649 PCT/US2016/035203

or graph database can utilize the API to create object memory fabric objects and provide/augment

meta-data to enable object memory fabric to better manage objects.

[0282] In various embodiments, overall capabilities of the API may include:
1. Creating objects and maintaining objects within object memory fabric;
2. Associating object memory fabric objects with local virtual address and physical
address;
3. Providing and augmenting meta-data to enable object memory fabric to better
manage objects; and/or

4. Specifying extended instruction functions and methods.

[0283] API functions may utilize the last capability to implement all capabilities. By being able
to create functions and methods, entire native processor sequences can be offloaded to object
memory fabric, gaining efficiencies such as those disclosed above with respect to the extended

instruction environment and extended instructions.

[0284] The API interface may be through the PCle-based Server Object Index, also referred to as
object memory fabric inter-node object router. The API Programming model may directly
integrate with the application. Multi-threading (through in memory command queue) may be
provided so that each application is logically issuing commands. Each command may provide

return status and optional data. The API commands may be available as part of trigger programs.

[0285] In the foregoing description, for the purposes of illustration, methods were described in a
particular order. It should be appreciated that in alternate embodiments, the methods may be
performed in a different order than that described. It should also be appreciated that the methods
described above may be performed by hardware components or may be embodied in sequences of
machine-executable instructions, which may be used to cause a machine, such as a general-
purpose or special-purpose processor or logic circuits programmed with the instructions to perform
the methods. These machine-executable instructions may be stored on one or more machine
readable mediums, such as CD-ROMs or other type of optical disks, floppy diskettes, ROMs,
RAMs, EPROMs, EEPROMs, magnetic or optical cards, flash memory, or other types of machine-
readable mediums suitable for storing electronic instructions. Alternatively, the methods may be

performed by a combination of hardware and software.

[0286] While illustrative and presently preferred embodiments of the invention have been

described in detail herein, it is to be understood that the inventive concepts may be otherwise

95

WO 2016/200649 PCT/US2016/035203

variously embodied and employed, and that the appended claims are intended to be construed to

include such variations, except as limited by the prior art.

96

WO 2016/200649 Attorney Docket No.: 097pcT/U0S2016/035203400PC)

WHAT IS CLAIMED IS:

1. A hardware-based processing node of an object memory fabric, the

hardware-based processing node comprising:
a memory module storing and managing one or more memory objects, wherein:
each memory object is created natively within the memory module, and
each memory object is accessed using a single memory reference instruction
without Input/Output (I/O) instructions,

wherein the hardware-based processing node is configured to utilize a
stream application programming interface (API) to communicate with one or more
additional nodes to operate as a set of nodes of the object memory fabric, wherein the set of
nodes operates so that all memory objects of the set of nodes are accessible based at least in
part on the stream API when the set of nodes are implemented with any one topology of a
plurality of different topologies, the stream API defining communications from any node of
the set of nodes as two one-way streams comprising a first one-way stream in a first
direction and a second one-way stream in a second direction that is opposite with respect to

the first direction.

2. The hardware-based processing node of the object memory fabric of claim
1, wherein the communications defined by the stream API correspond to ring streams according to

a unidirectional ring organization between multiple nodes of the set of nodes.

3. The hardware-based processing node of the object memory fabric of claim
1, wherein the one-way streams each comprise instruction packages, wherein at least one
instruction package of the instruction packages comprises an extended instruction and associated

data.

4. The hardware-based processing node of the object memory fabric of claim
3, wherein the at least one instruction package corresponds to an instruction package that

comprises a pull instruction, or an acknowledge instruction with object information.

5. The hardware-based processing node of the object memory fabric of claim
4, wherein:
physical address of memory and storage is managed with each of the one or
more memory objects based at least in part on an object address space that is allocated on a
per-object basis with an object addressing scheme so that object addresses are allocated to

the one or more memory objects according to the object addressing scheme; and
97

WO 2016/200649 PCT/US2016/035203

the instruction package comprises one or more fields for specifying:
an object ID that corresponds to an object start point in a respective
object address of the object addresses for the respective memory object;
an object offset to address a specific portion of the respective
memory object; and/or

an object size of the respective memory object.

6. The hardware-based processing node of the object memory fabric of claim
4, wherein:
the instruction package comprises one or more fields for specifying a
hierarchical node identification for a requesting node corresponding to a requesting
hardware-based processing node of the plurality of hardware-based processing nodes
and/or requesting software-based node, wherein at least one node of the set of nodes is
configured to route a response to the requesting node based at least in part on the

hierarchical node identification.

7. The hardware-based processing node of the object memory fabric of claim
3, wherein:

physical address of memory and storage is managed with each of the one or
more memory objects based at least in part on an object address space that is allocated on a
per-object basis with an object addressing scheme so that block object addresses are
allocated to the one or more memory objects according to the object addressing scheme;
and

the at least one instruction package corresponds to an object data package
that comprises a push instruction, object information, and a single block specified by a

particular block object address of the block object addresses.

8. The hardware-based processing node of the object memory fabric of claim
7, wherein at least one node of the set of nodes is configured to route the at least one instruction
package based at least in part on a location of the single block, a stream API request, and the push

instruction.

9. The hardware-based processing node of the object memory fabric of claim
7, wherein at least one node of the set of nodes is configured to route the at least one instruction
package based at least in part on a location of the single block, a stream API request, and the push

instruction.

98

WO 2016/200649 PCT/US2016/035203

10. An object memory fabric comprising:

a plurality of hardware-based processing nodes, each hardware-based
processing node comprising:

one or more memory modules storing and managing one or more memory
objects, wherein:

each memory object is created natively within the memory module, and

each memory object is accessed using a single memory reference instruction
without Input/Output (I/O) instructions,

wherein each hardware-based processing node of the plurality of hardware-
based processing nodes is configured to utilize a stream application programming interface
(API) to communicate with other hardware-based processing nodes of the plurality of
hardware-based processing nodes to operate as a set of nodes of the object memory fabric,
wherein the set of nodes operates so that any hardware-based processing node of the
plurality of hardware-based processing nodes is configured to move the one or more
memory objects and/or remotely execute functions on other hardware-based processing
nodes of the plurality of hardware-based processing nodes based at least in part on the

stream APIL

11. The hardware-based processing node of the object memory fabric of claim
10, wherein the moving the one or more memory objects and/or the remotely executing functions
on the other hardware-based processing nodes of the plurality of hardware-based processing nodes
is responsive to a stream API request from a requesting node of the plurality of hardware-based

processing nodes and/or from a software layer interfacing with the object memory fabric.

12. The hardware-based processing node of the object memory fabric of claim
10, wherein each hardware-based processing node of the plurality of hardware-based processing
nodes is further configured to utilize the stream API to initiate requests from within the object

memory fabric.

13. The hardware-based processing node of the object memory fabric of claim
12, wherein each hardware-based processing node of the plurality of hardware-based processing
nodes is further configured to utilize the stream API to propagate and/or initiate operations

responsive to the requests.

99

WO 2016/200649 PCT/US2016/035203

14. The hardware-based processing node of the object memory fabric of claim
10, wherein the object memory fabric comprises a component that uses software to emulate at least

one hardware node of the plurality of hardware-based processing nodes.

15. The hardware-based processing node of the object memory fabric of claim
10, wherein the functions comprise one or more cache coherency functions used to determine
whether a local object cache state is sufficient for an intended operation corresponding to a stream
API request from a requesting node and, consequent to the determining, to forward a response

toward the requesting node or forward the stream API request to another node.

16. The hardware-based processing node of the object memory fabric of claim
10, wherein the moving the one or more memory objects and/or the remotely executing functions
on other hardware-based processing nodes of the plurality of hardware-based processing nodes
based at least in part on the stream API comprises:
pulling and/or pushing at least a portion of the one or more memory objects
between at least two hardware-based processing nodes of the plurality of hardware-based
processing nodes, wherein:
the pulling comprises at least one hardware-based processing node
requesting at least the portion of the one or more memory objects to move to a
location corresponding to the at least one hardware-based processing node; and
the pushing comprises at least one hardware-based processing node
requesting at least the portion of the one or more memory objects to move to a
remote location that is remote from the at least one hardware-based processing

node.

17. The hardware-based processing node of the object memory fabric of claim
16, wherein:

at least the portion of the one or more memory objects comprises memory
object data and memory object metadata; and

the memory object metadata comprises one or more triggers that specify
additional one or more operations to be executed by any object memory module of the
plurality of hardware-based processing nodes when at least the portion of the one or more
memory objects is located at the respective object memory module and accessed as part of

the respective object memory module responding to the pulling and/or the pushing.

100

WO 2016/200649 PCT/US2016/035203

18. A method for facilitating communications among nodes of an object
memory fabric, the method comprising:

creating one or more memory objects natively within a memory module of a
hardware-based processing node of the object memory fabric;

accessing each memory object of the one or more memory objects using a
single memory reference instruction without Input/Output (I/O) instructions; and

utilizing, by the hardware-based processing node, a stream application
programming interface (API) to communicate with one or more additional nodes to operate
as a set of nodes of the object memory fabric, wherein the set of nodes operates so that all
memory objects of the set of nodes are accessible based at least in part on the stream API
when the set of nodes are implemented with any one topology of a plurality of different
topologies, the stream API defining communications from any node of the set of nodes as
two one-way streams comprising a first one-way stream in a first direction and a second

one-way stream in a second direction that is opposite with respect to the first direction.

19. The method for facilitating communications among the nodes of the object
memory fabric of claim 18, wherein the communications defined by the stream API correspond to
ring streams according to a unidirectional ring organization between multiple nodes of the set of

nodes.

20. The method for facilitating communications among the nodes of the object
memory fabric of claim 18, wherein the one-way streams each comprise instruction packages,
wherein at least one instruction package of the instruction packages comprises an extended

instruction and associated data.

21. The method for facilitating communications among the nodes of the object
memory fabric of claim 20, wherein the at least one instruction package corresponds to an
instruction package that comprises a pull instruction, or an acknowledge instruction with object

information.

22. The method for facilitating communications among the nodes of the object
memory fabric of claim 21, the method further comprising:
managing physical address of memory and storage with each of the one or
more memory objects based at least in part on an object address space that is allocated on a
per-object basis with an object addressing scheme so that object addresses are allocated to

the one or more memory objects according to the object addressing scheme;

101

WO 2016/200649 PCT/US2016/035203

wherein the instruction package comprises one or more fields for specifying:
an object ID that corresponds to an object start point in a respective
object address of the object addresses for the respective memory object;
an object offset to address a specific portion of the respective
memory object; and/or

an object size of the respective memory object.

23. The method for facilitating communications among the nodes of the object
memory fabric of claim 21, wherein:
the instruction package comprises one or more fields for specifying a
hierarchical node identification for a requesting node corresponding to a requesting
hardware-based processing node of the plurality of hardware-based processing nodes
and/or requesting software-based node, wherein at least one node of the set of nodes is
configured to route a response to the requesting node based at least in part on the

hierarchical node identification.

24, The method for facilitating communications among the nodes of the object
memory fabric of claim 20, wherein:

managing physical address of memory and storage with each of the one or
more memory objects based at least in part on an object address space that is allocated on a
per-object basis with an object addressing scheme so that block object addresses are
allocated to the one or more memory objects according to the object addressing scheme;

wherein the at least one instruction package corresponds to an object data
package that comprises a push instruction, object information, and a single block specified

by a particular block object address of the block object addresses.

25. The method for facilitating communications among the nodes of the object
memory fabric of claim 24, wherein at least one node of the set of nodes is configured to route the
at least one instruction package based at least in part on a location of the single block, a stream

API request, and the push instruction.

26. The method for facilitating communications among the nodes of the object
memory fabric of claim 24, wherein at least one node of the set of nodes is configured to route the
at least one instruction package based at least in part on a location of the single block, a stream

API request, and the push instruction.

102

WO 2016/200649 PCT/US2016/035203

27. A method for facilitating communications among nodes of an object
memory fabric, the method comprising:

creating one or more memory objects natively within one or more memory
modules of one or more hardware-based processing nodes of a plurality of hardware-based
processing nodes;

accessing each memory object using a single memory reference instruction
without Input/Output (I/O) instructions; and

utilizing, by each hardware-based processing node of the plurality of
hardware-based processing nodes, a stream application programming interface (API) to
communicate with other hardware-based processing nodes of the plurality of hardware-
based processing nodes to operate as a set of nodes of the object memory fabric, wherein
the set of nodes operates so that any hardware-based processing node of the plurality of
hardware-based processing nodes is configured to move the one or more memory objects
and/or remotely execute functions on other hardware-based processing nodes of the

plurality of hardware-based processing nodes based at least in part on the stream APL

28. The method for facilitating communications among the nodes of the object
memory fabric of claim 27, wherein the moving the one or more memory objects and/or the
remotely executing functions on the other hardware-based processing nodes of the plurality of
hardware-based processing nodes is responsive to a stream API request from a requesting node of
the plurality of hardware-based processing nodes and/or from a software layer interfacing with the

object memory fabric.

29. The method for facilitating communications among the nodes of the object
memory fabric of claim 27, further comprising:
utilizing, by each hardware-based processing node of the plurality of
hardware-based processing nodes, the stream API to initiate requests from within the object

memory fabric.

30. The method for facilitating communications among the nodes of the object
memory fabric of claim 29, further comprising:
utilizing, by each hardware-based processing node of the plurality of
hardware-based processing nodes, the stream API to propagate and/or initiate operations

responsive to the requests.

103

WO 2016/200649 PCT/US2016/035203

31 The method for facilitating communications among the nodes of the object
memory fabric of claim 27, further comprising:
emulating at least one hardware node of the plurality of hardware-based
processing nodes with a component of the object memory fabric that uses software to

perform the emulating.

32. The method for facilitating communications among the nodes of the object
memory fabric of claim 27, wherein the functions comprise one or more cache coherency
functions used to determine whether a local object cache state is sufficient for an intended
operation corresponding to a stream API request from a requesting node and, consequent to the
determining, to forward a response toward the requesting node or forward the stream API request

to another node.

33. The method for facilitating communications among the nodes of the object
memory fabric of claim 27, wherein the moving the one or more memory objects and/or the
remotely executing functions on other hardware-based processing nodes of the plurality of
hardware-based processing nodes based at least in part on the stream API comprises:

pulling and/or pushing at least a portion of the one or more memory objects
between at least two hardware-based processing nodes of the plurality of hardware-based
processing nodes, wherein:
the pulling comprises at least one hardware-based processing node

requesting at least the portion of the one or more memory objects to move to a

location corresponding to the at least one hardware-based processing node; and

the pushing comprises at least one hardware-based processing node

requesting at least the portion of the one or more memory objects to move to a

remote location that is remote from the at least one hardware-based processing

node.

34. The method for facilitating communications among the nodes of the object
memory fabric of claim 33, wherein:
at least the portion of the one or more memory objects comprises memory
object data and memory object metadata; and
the memory object metadata comprises one or more triggers that specify
additional one or more operations to be executed by any object memory module of the

plurality of hardware-based processing nodes when at least the portion of the one or more

104

WO 2016/200649 PCT/US2016/035203

memory objects is located at the respective object memory module and accessed as part of

the respective object memory module responding to the pulling and/or the pushing.

105

PCT/US2016/035203

WO 2016/200649

1/26

L6
o
T

MIOMIBN [BOISAUH

abeloig

uoneluesaiday abeiolg

MS
MIOMIEN

uoneueseIisy
LIB1SASSld

uUllcilUgooilUo
oSEQEIE(]

uoneluasaidsy ddy

(ajoum) AJojosali(]

S S
ddy | ddy

O
e
]

& & & & & & & & @

Janies Alpowiwion

& & & @

o
w3
L2

abeloig TS

5

fonejuesaldey sbelolg

NIOMIBN

[

5 UOBIUSSTIay
WISASSIL

Se}

= UONEIUSS STy
aSEdeler]

<2

“uoneessidey ddy

Gél

(ataym) Auoioaai(g

W &@Nww

ddy | ddy

L
b
e

& 2 8 & B & 8 & B

Janag AUpouwion

WO 2016/200649 PCT/US2016/035203

2/26

DATABASE
218

Database
214

COMPONENT COMPONENT
218 220
COMPONENT
222
SERVER
212

; NETWORK({S)
P4 210

206

PCT/US2016/035203

WO 2016/200649

3/26

¢ Old

4a

00%

NFLSASEN

1135 FE43 o9cg
SILVAAN | |Shvadlg | | S033d
INFAT LN3AT YLV

Vit

SNOILYDINNWNGC D

gig

WHLSASENS FOVHOLS

FAA
- VIO FOVEOLS
Tavava
WILSAS ONILYMEA0 v_mS%omo
vig
YLV(] WYHO0N D
p— ace
cle HIAVIN VITTA
SHYHDOHA NOILYDITddY HOVHOLS
Bie FEvavIN
MILADNOD

AHOWIIY WILSAS

AL

20w
WHLSASENS O/l

508
LIND
NOILYNTTE0DY
SNISSEZON

LINM BONISSAD0Hd

FLe Zue
LN LN
DNISSIDOUL NS DNISSIIOUL 9N
AHIVD SHOVO JHIVYD
FHOD IHOD IOD
oL

PCT/US2016/035203

4/26

ddy ddyy Ay ddyy ddyy ddy | e e o s s e q ddy
5%

WO 2016/200649

ooy

PCT/US2016/035203

WO 2016/200649

OSTE, egxe) mm ﬁ mwia@ﬂ mﬁiw wﬁawm\ mﬁi@

ddy ddy ddy ddy ddy ddy | * """ "7 ddy
& . . PRl £, Z,
< & . - % w S o%% e
s ! K “ - \Ax/ ﬂ i f,f o ",
i ‘o - - i %%%&.« s ..
0L 7 [N N U N -

N 7 el . ™ ﬂ m f;f h .,
Q[T & TR T TE Y &
Lo

208dqg ssalppy 10800 puge - Alows)
9oeds eled-eR 108[q0

PCT/US2016/035203

WO 2016/200649

6/26

IGLG.

q515 051§ asLE 3515 BG15. PSig 9516 4Gi5 BG15
/i e s | /T M //////
N m & 5 ° W\ @ Ns ® @ O w‘ ﬂl..w N = & & O Q v MH ¥ RRe N W, Q
v VAN Y VilY v AR ddy ddy | | ddy | | ddy
GEG
Aowsy 41l Alowsy Aowssy Aoway 108lg0 8poN
108[q0 opoN 102lg0 spoN 108{g0 SpPON L by

\

/

005
.

085~ \/ gz9-

® 5 5 3 @ 2R S E 5|3 Q S EB SRR

\

/

029 jo1n0y
isllvlg)

IBIN0Y
o1 wslao
N J/
519 j31n0y
180

\

PCT/US2016/035203

WO 2016/200649

7/26

7 BRON 2uge4

AIOUIBIN
oslao

~ 108lq0 apoN

J@noy Josltd SpoN
wae eyl o

SPON JUQE

AICLUIBIN
wsla0

s & B8 & & e\ &

Jsnoy 1080
SPON-IBIU]

0gl

SPON ouged
Riowisp

103l

Gel
e { SPON ouged

m AIOLWBIN
// 18a0

ozz
lanoy

walgp spoN /

; 004

PCT/US2016/035203

8/26

WO 2016/200649

o “SPON
628
Ew\\. . ™
° 208
=
Li8
\\.1,
i £18
> "8PON v
028
mhm\, ° T
o~
9.8 I
e 908
4 (VA) sSaippy [ENLIA Lo
G18 -
SS3IpPY 1BdIsAud sjuswBog Riowen-u (V1) ssalppy ouge4
syuswibag Alowapy-uj Aowsyy s108lqo Alowsjp-uj

; 008

PCT/US2016/035203

9/26

WO 2016/200649

18s0lao %Emgv al @@g

IESTgl(e[e) @Ewgv dl @@g
}Jos0lqo (Heyslqo) al @@g
1osy0lao @ﬁ%@ al 1elgo
M@%@g (Heislao) al welao
M%%g (Heislao) al welao

0L6

@mwmmm& saippy 108lq0 1Wsisyon) Jsuiod voOI

PCT/US2016/035203

WO 2016/200649

10/26

81 10 Wall 9pON SJ 110 Woul mvoz,.:w/,/% \\ SIaljOJIuoD Alowisul SPON y
1 1 1 1 oot | 1 1 T ocgou
I A Al A I A Aowep Alowspy |1
Ol Ol o] Ol || Ol o] 18[00 40 109[00 4AWO | N
AR A A VT
xepuj 190 xapulfao || xapuf a0 xapuy {40
9PON 4O 8PON 4NO @WE SPON H4INO SPON 4O |
OFOL
N / /\ / N uf o \ /
— xapuj [0 xapuj flao
_ 020! 19Inod ON 0IoL /N _ 19INoH ON ,,Ww& GO0/
xapuj [0
1IN0 ONI ™
GLOL
xepuj 108190
ABINOYH AN
jonaT 484biH O AON 0001

PCT/US2016/035203

WO 2016/200649

11/26

Ovii

Srii

0GL4

GGLL

o0Lt AlADY punolByoeg 1o
G011 189nboy J0SS8D0I

v

idV 8 19 WSHH 98X

ayoes 18307

GLEL
USE|H [E007]

AU ssIN 1
Buissaippy mmm
Buiyoses xapuyxapu| Wwinigd JH

Asusiayo
19 3poN Ul
uoisidaq/bunnoy fiowapy
18lqo

0914
HH Useld
G9LL

Ble(]
winsy

8 BYVED

OCLs

GELL

@f@ffggww

G821 gpzy AUANDY punoibyoeg 40

PCT/US2016/035203

WO 2016/200649

12/26

EmM& cozi 15enbay 105580014
E
CI¥ 4 82T s
8 1dY 9 AJoWsnuUL 10840
g
ayoen BUIUOBO/SSaIDE W
5 S Buisssippy
UIUDBD/SSH00B WS
% !// 9 BuiyoeD Xspuyxapul
. Rz
ﬁ,a m Aoussyo) cc7)
fv \V Y uoispacyBunnoy /
08z1 *, / Ggcl R J
WINSN %4 R
5 % m %
Gicl
18e7 |
7 o pIEMO] - " \
LFCL 0 e? OFci
N R 0424
K P jena7 soybir
0] B8R
gécl

;Qﬁmh

PCT/US2016/035203

(Yd) sordg $saippy [B2ISAU J08S8001d U INYH(O

\

AN

(Jugisisiad) yseld

13/26

xepu}ioelqo Jed

WO 2016/200649

2 e o608 %

oLelL

x*® 00 &%

(LIOd) 8al]

gLgl
sl

X2pU|
welao
i8d

gLEL
=M

Xapui
1sla0
134

@ % % 0 0@

S0¢.

(LIO)
aal] x3pu}1o8lan

[/

;Qmmm

Glyl
(PIYD) Alowsiy 108lqQ jee Jo Si8Inoy Py

PCT/US2016/035203

14/26

5 259 2

WO 2016/200649

\

9 a5 085 @

X8pui
to=lleTg

OLFL
o921

18d

OLvl
2811

Xapu

reicllelg)
18

gLyl

(110d) @84}
xapu| 198/q0 Jod

29 08 08

GOPL

(L10)
o811 xspu] slap

e 5 9803

[/

@fﬁ/r@@%»

PCT/US2016/035203

ABuz 110d | (ezslqo jo uomounpiesyo 1080 | 8Z1SIQ0 |8dALT | 300IE 8PON LIOd < = = = =

Anug 110 ai welao aziglan |edh g MO0|g SPON LIO € = = = =
i

—— — m

15/26

JOMMNOH T feocsscsssoscssocsoscesetsesBIRRAN -« o JBHUOHT anNEAN IBIHOAT | wsiedT | 92ISN @Q\m..w!

WO 2016/200649

o

B>
\\\\§§

\§\§§§\ %\\\ i
lesdal I

d 2PON

Y
(o

.
\N\%n\\\%\\\\\\

§\§\w§§.§

L

s
........... R

$8JAQ Y -400]

PCT/US2016/035203

WO 2016/200649

DBAIESEN adAl | JEST] POAIDSOY < ~ =
j
i
slowsy §87 110d | S1eIsoolg | 19syo 108iap jwnul usipiy) | edAd 1857 110d < M
Py
18IN0Y 1887 110d [0:G1]e1E1S8 8 19840 108[q0 {wnu | edAld jee ﬁ@&ms” ”
b
©o WO §897 LIOd | 9181S %00ig | 19840 108[q0 jwinu | Jautod | edAyd 197 L10d< - aw
W i
iea Lo (11 108lgo sziglap | Bod1 18dAio] yooig 1ee LIO < ~ aw
/ i

BNBAT e, aneA BNBAT azig7 | adAL

o N \\\“\\&x\\\\\\\\\\\\\&\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ e R i
G \%\\\\\\%«\“%\“\\\\%\%\w\\\&\\\\ w%@@@«m o \\\ e

\\m\\&ﬁ\\\\\\\\w\\\\\i\.w\w\\\\\\\\

S8 iy -300]g Jeen

N T

A

;Qmmw

PCT/US2016/035203

17/26

WO 2016/200649

0L8L —~Gl8L —~028) ~ 5291 G091
aawanwa -

9IS JUOIRY PO IM 121221 VOl

SEAG WY = NO0IE

L~ 40 7 _ a? P el

=
=
[
&
X3
&

i Mg

<
X
%]
¥

0 Hase
G091 AIDYIBIT

0£9L ADIBIA] B0

3

N
I
.

{';}

; 0081

PCT/US2016/035203

WO 2016/200649

18/26

AT
GLABISIQO +47:802,C
pz1C ezl
0
GL/l gL/ezISldo
BlED-BI8IN
m\.s
0
OLL1L
BlB(]
GzlL uRisSlao
bpz1€73218 L-ezislan
0cl1L GO/ j9s
(eoedg ssaippy 103[90) 50
18lgO JusieyonD)

S83UDDY AINO «f&//ggmw

PCT/US2016/035203

WO 2016/200649

19/26

09/1 GGlL
/~ -
8zislao esgoNglao ai welgo
0 4 ¢ b &l -t W L34
\\ QGil
IS gl(elg) i 08lao
0 bl ol -l Y LZ1

GG/l
SS3UPDY

10900
Nreiells

a0BdS SS3IPDY
108ig0 Wwaseyos

;Qmm@

PCT/US2016/035203

WO 2016/200649

20/26

100k sang 1sbbu | Jo siebbuy

sigqe welqo swwey

SIBUIO

pauyep uoneoiddy

PBULSP WBISAS

id peieial ‘sBejy uondAioug

1d psieps ‘sBel4 uoissaiduwion

ad Aied

0}~10;

8215 102lq0

(ejep-glail
uonesndde
0 WolsAs
‘sutelBousd
FETelai]
‘siebBiuy 1oy
gigl 8oedg
uoisuedx3y

gi/ezIgheg

0181
HI01g 184

W\l

soedg ssalppy joslgouessyod | e o CIEP-BION 19500 Y00l

/meh

; pogL

PCT/US2016/035203

WO 2016/200649

21/26

\\\ L6l \\M\w

Xu

oo

auiel)

B (L2 | W [T D] |

00

E%.ﬂ%w@@

di

dd

Z-5061
s
d

d-

2061 PEAIY}-OIINIA\

9061\ PEdIY}-0I DI\

Jgedo

8po9o

japdo

ejep-eisiy

;Qmmw

PCT/US2016/035203

WO 2016/200649

22/26

di

dd

GL0C \\m

A

q (e)d}, peoj

(e)dy,

ooz 32800

; 000¢

PCT/US2016/035203

WO 2016/200649

23/26

|

q

U+ =) ppe

y (B)dy, peoj

43 =3 ppe

} (8)d}, peo)

sl nw ppe
uiop
U+ uw, ppe p+q =Y ppe
uiop uiop
[(B)dy, peoj| [7(a)dy, peoj | [P (9)dy, peor| [q (e)dr. peo
Hiog Wio4
Hi04
i
glic

UOISJIBA jajjeied

P+q =} PpE

p (2)dj, peoj

q (e)d}, peo

|

GoLS
UOISIBA

jeLeg

;Qmwm

PCT/US2016/035203

WO 2016/200649

24/26

[444 Orce

Aiowepy | AIOWIDNY
Pelao 4o | welao 4N

=
BN
R
N
W

%
7

o

e walge W
Buiry B

“y, | FOIZE

G e \\ el # 3
~ 0 Buy

P

B ma m s R A R MR MR AR AR NN RN AR R R RN N YRR MR NN RN RN RN R W W R

V//QNNN

/1 Isnoy 10elg0 spoN-ia|

.
¥ %v// Gzee

G0c¢
; 0oce

PCT/US2016/035203

WO 2016/200649

25/26

Y

gGee @dlha(]
10} 40 "pBIAA

‘BlIqoN
fowsy | | Aowsi
eldo 4N 1T Peldo 4N

210d

G0c¢e

N\ v//mmmm w/?/w,mmmm

PCT/US2016/035203

WO 2016/200649

26/26

G0te
108190
Buiry

1a1noy 108lgQ spoN

N
ﬁw\}

7

ITANH

; N

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/035203

A. CLASSIFICATION OF SUBJECT MATTER

IPC(S) - GO6F 9/45, GO6F 17/30, HO4L 12/721, HOAL 12/771, HO4L 12/851, HO4L 12/933 (2016.01)
CPC - GO6F 8/41, GO6F 8/443, GO6F 8/4441, GO6F 8/54, GO6F 17/30979, GO6F 17/30997 (2016.05)
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC - GO6F 9/45, GO6F 17/30, HO4L 12/721, HO4L 12/771, HO4L 12/851, HO4L 12/933
CPC - GO6F 8/41, GO6F 8/443, GO6F 8/4441, GO6F 8/54, GO6F 17/30979, GO6F 17/30997

USPC - 707/770, 717/140, 717/151 (keyword delimited)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Orbit, Google Patents, Google Scholar, Google
Search terms used: hardware based processing node, object memory fabric, memory module

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERLED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 2015/0039840 A1 (Ill HOLDINGS 2, LLC) 05 February 2015 (05.02.2015), entire document 1-34

Y US 2005/0044187 A1 (JHAVERI et al) 24 February 2005 (24.02.2005), entire document 1-34

Y US 2009/0125639 A1 (DAM et al) 14 May 2009 (14.05.2009), entire document 1-34

Y US 2009/0271790 A1 (WILLIAMS) 29 October 2009 (29.10.2009), entire document 4-9, 16, 17, 21-26, 33, 34
Y WO 2000/074305 A2 (DUNTI CORPORATION) 07 December 2000 (07.12.2000), entire 6,23

document

Y US 2012/0185230 A1 (ARCHER et al) 19 July 2012 (19.07.2012), entire document 14, 31

Y US 2001/0027512 A1 (HAGERSTEN) 04 October 2001 (04.10.2001), entire document 15, 32

A US 2015/0063349 A1 (ARDALAN et al) 05 March 2015 (05.03.2015), entire document 1-34

A US 2013/0086563 A1 (BLAINEY et al) 04 April 2013 (04.04.2013), entire document 1-34

A US 2004/0205740 A1 (LAVERY et al) 14 October 2004 (14.10.2004), entire document 1-34

A US 2013/0346444 A1 (NETAPP, INC.) 26 December 2013 (26.12.2013), entire document 1-34

D Further documents are listed in the continuation of Box C.

D See patent family annex.

d Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E" earlier application or patent but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“Q” document referring to an oral disclosure, use, exhibition or other
means

“P” ducument published prior (o the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying tﬂe invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

25 July 2016

Date of mailing of the international search report

05 AUG 2016

Name and mailing address of the ISA/

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, VA 22313-1450

Facsimile No. §71-273-8300

Authorized officer
Blaine R. Copenheaver

PCT Helpdesk: §71-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - description
	Page 92 - description
	Page 93 - description
	Page 94 - description
	Page 95 - description
	Page 96 - description
	Page 97 - description
	Page 98 - description
	Page 99 - claims
	Page 100 - claims
	Page 101 - claims
	Page 102 - claims
	Page 103 - claims
	Page 104 - claims
	Page 105 - claims
	Page 106 - claims
	Page 107 - claims
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - drawings
	Page 121 - drawings
	Page 122 - drawings
	Page 123 - drawings
	Page 124 - drawings
	Page 125 - drawings
	Page 126 - drawings
	Page 127 - drawings
	Page 128 - drawings
	Page 129 - drawings
	Page 130 - drawings
	Page 131 - drawings
	Page 132 - drawings
	Page 133 - drawings
	Page 134 - wo-search-report

