Title: LIPSTICK COMPOSITION

Abstract

A lipstick composition containing a volatile oil, a water-repellent polymer soluble in the oil, a powdery material, and a nonvolatile oil compatible with the volatile oil, wherein the total surface area of the powdery material contained in 1 g of the composition is 1-25 m². The composition is improved in secondary adhesiveness and excellent in the feel of use.
本発明の口紅用組成物は、揮発性油分と、前記揮発性油分に溶解する撥水性ポリマーと、粉体と、前記揮発性油分と相溶性を有する非揮発性油分とを含み、組成物が1μg中に含まれる粉体の総表面積が1〜25m²であることを特徴とする口紅用組成物。

本発明の口紅用組成物によれば、二次付着性が改善され、しかも使用感も優れた口紅用組成物を得ることが可能である。

情報としての用途のみ

PCTに基づいて公表される国際出願をパンフレット第1頁にPCT加盟国を同定するために使用されるコード

AL	アルバニア	DK	ダンマーク	LK	スリランカ
AM	アルメニア	EE	エストニア	LS	レスト
AT	オーストリア	FI	フィンランド	LT	リトアニア
AZ	アゼルバイジャン	FR	フランス	LU	ルクセンブルク
BE	ベルギー	DE	ドイツ	LV	ラトヴィア
BF	ブルガリア	GB	イギリス	MC	モナコ
BG	ブルガリア	GE	ゲリシア	MD	モルドバ
BN	ベナン	GG	ガンビア	MG	マダガスカル
BR	ブラジル	GH	ガーナ	MK	サルバドール
BY	ベラルーシ	GI	ギリシャ	ML	マリ
CA	カナダ	GL	グリーンランド	MN	モンゴル
CF	中央アフリカ共和国	GP	ジプチ	MR	モリタリア
CG	コンゴ	GT	グアテマラ	MS	マルティニーク
CH	スイス	HU	ハンガリー	MT	マルタ
CI	コートジボワール	IE	アイルランド	NL	オランダ
CM	カメルーン	JP	日本	NO	ノルウェー
CN	中国	KR	大韓民国	NZ	ニュージーランド
CZ	チェコ共和国	KZ	キルギスタン	PL	ポーランド
DE	ドイツ	LK	スリランカ	PT	ポルトガル
ES	スペイン	LT	リトアニア	RO	ローマニア
FR	フランス	LU	ルクセンブルク	RU	ロシア
GB	イギリス	LV	ラトヴィア	SD	スウェーデン
GE	ゲリシア	MC	モナコ	SE	シンガポール
GI	ギリシア	MD	モルドバ	SG	スロベニア
GH	ガーナ	MG	マダガスカル	SI	スロヴァキア共和国
GI	ギリシア	MK	サルバドール	SK	セネガル
GM	ガンビア	ML	マリ	SN	オーストラリア
GN	コンゴ	MN	モンゴル	SO	スウェーデン
GU	グアム	MS	マルティニーク	SR	スリランカ
HT	イタリア	MT	マルタ	TC	チャーチョール
HU	ハンガリー	MU	ムーアリア	TG	ポーランド
IE	アイルランド	NL	オランダ	TJ	タジキスタン
JP	日本	NO	ノルウェー	TM	チュニジア
KR	大韓民国	NZ	ニュージーランド	TN	チュニス
Lat	ルートガル	PL	ポーランド	TR	チュニジア
LT	リトアニア	RO	ローマニア	TT	タイ
LU	ルクセンブルク	RU	ロシア	TW	チャビゾロ
LV	ラトヴィア	SD	スウェーデン	UG	ウクライナ
M	マラタリア	SE	シンガポール	UZ	ウズベキスタン
MK	サルバドール	SK	セネガル	VN	ヴィエトナム
ML	マリ	SN	セネガル	VR	ヴィンチャール
MN	モンゴル	SO	スリランカ	VR	ヴィンチャール
明 細 書

口紅用組成物

[技術分野]

本発明は口紅用組成物、特に二次付着性の改善に関する。

[背景技術]

口紅は、きわめてポピュラーな化粧品の一つであるが、唇に塗布するという性質上、唇に対し無刺激、無害であること、不快な味やの匂いがないこと等が要求される。

ところで最近、口紅を唇に塗布した後、お口紅がカップなど唇に接触する部位に転写されてしまうわゆる二次付着性の改善が強く要望されている。

そこで、近年この二次付着性を改善を目的とした「耐うつり性の改善された化粧料組成物」として、特開平6-199630号公報に記載されたものが報告されている。この化粧料組成物は、揮発性溶媒と、シリコン樹脂と、ワックスと、粉末と、油分を含むことを特徴としている。そしてこのような化粧料組成物を用いたならば、二次付着性が改善されるというものである。

しかしながら、前記化粧料組成物においても塗布時ののびや、滑らかな使用感の点で課題が残っている。また、二次付着性の問題も完全に解消された訳ではなく、さらなる改良が望まれる。

そして、口紅は唇になじめなかったり、しかもこのなじみが異常な使用感が維持されることが要求され、前記二次付着性の改善は、なじみが良好な使用感の維持と排反する要件であるため、その両者を併せ持つ口紅用組成物の開発は困難であった。

[発明の開示]

本発明は前記従来技術の課題に鑑みられたものであり、その目的はなじみが良好な使用感と共にさらに二次付着性が改善された口紅用組成物を提供することにある。
前記目的を達成するために本発明者らが鋭意検討を行った結果、撥水性ポリマーと粉体との関係、該ポリマーとその他溶剤との関係、およびポリマーとワックスの関係に着目した結果、なめらかな使用感、二次付着性の両者が改善された口紅用組成物が得られることを見出し、本発明を完成するに至った。

すなわち、本発明にかかる口紅用組成物の第1の要旨は、

揮発性油分と、前記揮発性油分に溶解する撥水性ポリマーと、粉体と、前記揮発性油分と相溶性を有する非揮発性油分を含み、組成物1g中に含まれる粉体の総表面積が1～25m²であることを特徴とする。

また、前記組成物は、揮発性油分を10～60重量％、撥水性ポリマーを5～35重量％、粉体を1～25重量％、非揮発性油分を5～40重量％含むことが好適である。

また、前記組成物は、揮発性油分を10～50重量％、撥水性ポリマーを10～35重量％、粉体を1～25重量％、非揮発性油分を10～40重量％含むことが好適である。

また、本発明にかかる口紅用組成物の第2の要旨は、前記口紅用組成物において、粉体が揮発性油分の存在しない状態で、撥水性ポリマーに被覆されうるものであることを特徴とする。

なお、同組成物は、粉体の少なくとも一部がシリカであることが好適である。

また、同組成物は、揮発性油分を20～60重量％、撥水性ポリマーを5～20重量％、シリカを1～10重量％、非揮発性油分を5～30重量％含むことが好適である。

また、本発明にかかる口紅用組成物の第3の要旨は、粉体の少なくとも一部が雲母チタンであることを特徴とする。

また、同組成物は、揮発性油分を10～50重量％、撥水性ポリマーを10～35重量％、雲母チタンを1～10重量％、非揮発性油分を10～40重量％含むことが好適である。

また、同組成物は、雲母チタン／撥水性ポリマーの配合量比が1／30～1／3であることが好適である。

また、同組成物は、雲母チタン／撥水性ポリマーの配合量比が1／10～1／
４であることが好適である。

また、本発明にかかる口紅用組成物の第４の要旨は、前記口紅用組成物において、粉体として少なくとも大径粒子と微粒子が存在し、超微粒子は粒径が 0.01～0.1μmであり、超微粒子の粒径と大径粒子の粒径の比が１：２０～１：５００であることを特徴とする。

なお、同組成物は、揮発性油分を１０～５０重量％、撥水性ポリマーを１０～３５重量％、粉体を２～２０重量％、非揮発性油分を１０～４０重量％含むことが好適である。

また、同組成物は、超微粒子と大径粒子の配合重量比が１：１９～１０：１であることが好適である。

また、同組成物は、超微粒子が微粒子シリカであることが好適である。

また、本発明にかかる口紅用組成物の第５の要旨は、揮発性油分と、前記揮発性油分に溶解する撥水性ポリマーと、粉体と、前記揮発性油分と相溶性を有する非揮発性油分を含み、前記揮発性ポリマーと前記非揮発性油分が、それらのみを混合した場合の濡れ度が９．０～２５．５となるものより選択されることを特徴とする。

なお、同組成物は、揮発性油分を１０～５０重量％、撥水性ポリマーを１０～３５重量％、非揮発性油分を１０～４０重量％含むことが好適である。

また、同組成物は、非揮発性油分として、撥水性ポリマーに対する可塑化力のある油分と、可塑化力のない油分とを用いることにより濡れ度を調整することが好適である。

また、同組成物は、粉体の少なくとも一部がシリカであることが好適である。

また、同組成物は、シリカを０．１～１０重量％含むことが好適である。

また、本発明にかかる口紅用組成物の第６の要旨は、揮発性油分と、前記揮発性油分に溶解する撥水性ポリマーと、前記揮発性油分に分散するワックスと、前記揮発性油分と相溶性を示す非揮発性油分を含み、前記撥水性ポリマーと前記ワックスの配合比が１０／３～５／７であることを特徴とする。

なお、同組成物は、揮発性油分を１０～５０重量％、撥水性ポリマーを１０～３５重量％、ワックスを５～２５重量％、非揮発性油分を１０～４０重量％含む
ことが好適である。
また、同組成物は、さらに粉体を含むことが好適である。
また、同組成物は、粉体を１〜２０重量％含むことが好適である。
また、同組成物は、粉体の少なくとも一部がシリカであることが好適である。
また、同組成物は、シリカを１〜１０重量％含むことが好適である。
また、本発明にかかる口紅用組成物の第７の要旨は、前記いずれかの組成物に
おいて、さらに水を配合することを特徴とする。
なお、同組成物は、水を０．０５〜５重量％含むことが好適である。
また、同組成物は、配合する水が天然水であることが好適である。
また、前記いずれかの口紅用組成物において、揮発性油分がシリコーン油、撥
水性ポリマーがシリコーン樹脂であることが好適である。
また、前記いずれかに記載の口紅用組成物において、撥水性ポリマーと非揮発
性油分の重量比が１/２〜２/１であることが好適である。
なお、本明細書中において、「総表面積」とは、組成物１g中に含まれる粉体
の表面積の総和を意味する。また、「潤度」は、以下的方法により測定された値
を意味する。また、「可塑化力のある」とは、非揮発性油分の撥水性ポリマー
を溶解する力が３０重量％以上であることをいい、「可塑化力のない」とは、非
揮発性油分の撥水性ポリマーを溶解する力が５重量％以下であることをいう。
【潤度の測定方法】
1. 組成物中に含有する比率と比率で、揮発性油分、撥水性ポリマー、非揮発
性油分を混合し、混合試料を作成する。
2. 前記混合試料を２．８×１．９×０．３ｃｍ³の黑色の皿に０．２g流し込み
、９０℃〜６hr放置し、揮発性油分を完全に揮発させる。
3. 得られた試料の潤度を調色機を用いて測定し、潤度とする。

以下、本発明の構成について詳述する。各構成要件の組み合わせによる効果を
説明する前に、各構成要件について説明する。

揮発性油分
本発明において好適に用いられる揮発性油分としては、デカメチルテトラシロキサン、ヘキサメチルジシロキサン、ドデカメチルペンタシロキサンなどの鎮状ポリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサンなどの環状ポリシロキサン、シェルソル（シェル化学）、アイソパネル（エッソ化学）等の軽質流動イソパラフィン等が挙げられる。

撥水性ポリマー

また、本発明において好適に用いられる撥水性ポリマーとしては、例えばシリコン樹脂、シリコンゴム、フッ素変性シリコン樹脂、アルキル変性シリコン樹脂等が挙げられ、特にシリコン樹脂が好ましい。

具体的には、平均式（1）

\[R_n S_i O_{(3n-6)} \cdot 2 \ldots (1) \]

（Rは炭素数1～6までの炭化水素基又はフェニル基を表し、nは1.0～1.8までの値を示す。）

で表されるシリコン樹脂が挙げられる。このシリコン樹脂は、RSiO₃単位、RSiO₂単位、RSiO₃単位及びSiO₂単位のうち適当な組み合わせからなり、約1.500～2.000までの平均分子量を有することが好ましい。

非揮発性油分

本発明において好適に用いられる非揮発性油分としては、皮膚安全性の高いものであれば、いずれも使用可能である。例えば流動パラフィン、スクワラン、ヒマシ油、オリーブ油、ホホバ油、グリセリルジイソステアレート、トリメチロールプロパントリ2エチルイソステアレート、イソブチルミリステート、セチル2エチルヘキサノエート、グリセリルトリイソステアレート、2ヘプチルウンデシルアルミテート、メチルポリシロキサン、ポリブテン、トリイソステアリン酸グリセリン、ジイソステアリルマレート、ラノリン等が挙げられ、これらの中から一種又は二種以上が任意に選択される。
本発明において好適に用いられる粉体としては、化粧品に通常用いられる粉末ならびに複数の使用可能であり、例えばタルク、カオリン、鈍雲母（セリサイト）、白雲母、金雲母、合成雲母、赤雲母、リチア雲母、雲母チタン、バーミキュライト、炭酸マグネシウム、炭酸カルシウム、ケイ酸アルミニウム、ケイ酸バリウム、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ酸ストロンチウム、タンゲストン酸金属塩、マグネシウム、シリカ、ゼオライト、ペントナイト、硫酸バリウム、焼成硫酸カルシウム（焼石膏）、リン酸カルシウム、フッ素アパタイト、ヒドロキシアパタイト、セラミックパウダー、窒化ホウ素、二酸化チタン、酸化亜鉛などの無機粉末、ポリアミド樹脂粉末、ナイロン粉末、ポリエチレン粉末、ポリプロピレン粉末、ポリエステル粉末、ポリメタクリル酸メチル粉末、ポリステレン粉末、ステレンとアクリル酸の共重合体樹脂粉末、シリコン樹脂粉末、ペンゾグアナミン樹脂粉末、ポリ四氟エチレン粉末、セルロース粉末などの有機粉末、顔料等が挙げられる。

ワックス

本発明においては、撥水性ポリマーと共に配合することにより二次付着性の改善のため、また、棒状口紅を形成するための保形剤としてワックスを配合することが可能である。本発明で用いられるワックスとしては、セレシンワックス、カルナバロウ、ポリエチレンワックス、パラフィンワックス、キャンデリラロウ、マイクロクリスタリンワックス、ベヘニン酸、ベヘニルアルコール、モクロウ、ビーズワックス、セタノール等が挙げられる。

他の成分

なお、本発明にかかる口紅用組成物には、通常口紅などの化粧品に配合される各種成分、例えば酸化防止剤、紫外線吸収剤、紫外線遮蔽剤、防腐剤、保湿剤、染料、などを配合することができる。

組成物中の粉体の総表面積との相関

本発明の口紅用組成物の第1の要旨においては、組成物中の粉体の総表面積が
1〜25㎡であることが特徴である。そこで粉体としては、一種又は二種以上のものを用いることができ、二種以上の粉体を用いる場合は、各粉体の比表面積は同一でも異なるものでも良い。

本発明は、前述した構成をとることにより、塗布前に、製品形態として揮発性油分中に撥水性ポリマー、粉体、非揮発性油分などが溶解ないし分散しており、塗布時ののびがよく、なめらかなる使用感を得ることができる。

そして、唇への塗布後には、前記揮発性油分が揮発し、撥水性ポリマー、粉体、非揮発性油分が唇上に残存する。前記撥水性ポリマーと前記非揮発性油分が共存する状態では、べたつきが著しいが、本発明ごとく、組成物中の粉体の総表面積を調整することにより、該粉体が撥水性ポリマー及び非揮発性油分を引きつけ、これらによるべたつきを抑制し、二次付着性を改善するものと思われる。

なお、同組成物における揮発性油分の好適な配合量は、10〜60重量%、好ましくは10〜50重量%である。10%未満では相対的に他の成分が多くなることから塗布時ののびにかけ、一方、60重量%を越えると、相対的に他の成分が少なくなることから二次付着性の改善が不十分となる。50重量%を越えると、組成物が液状となるため、より好ましくは10〜50重量%とすることが好ましい。

また、撥水性ポリマーの好適な配合量は、5〜35重量%、好ましくは10〜35重量%、特に好ましくは15〜30重量%である。撥水性ポリマーの配合量が5重量%未満であると、二次付着性の改善は全くなされず、10重量%以上配合することにより、より二次付着性の改善が良好となる。一方、撥水性ポリマーの配合量が35重量%を越えると、のびが悪く、べたつきを生じる場合があり、より好ましくは30重量%以下である。

また、粉体の好適な配合量は、総表面積の好適な範囲を満たす場合であっても、1〜25重量%とすることが好ましい。粉体が1重量%未満の場合には、べたつきを押さえるのに乏しい場合があり、また25重量%を越える場合には、使用感触が悪化する場合がある。

また、非揮発性油分の好適な配合量は、5〜40重量%、好ましくは10〜40重量%、特に好ましくは15〜30重量%である。非揮発性油分が5重量%未
溝では、塗布、乾燥後の感触が悪くなってしまう。一方、40重量％を越えると二次付着性の問題が生じてしまう。

なお、本発明においては、棒状口紅を構成する際の保形剤として5～20重量％のワックスを配合することができる。

シリカの配合

本発明にかかる口紅用組成物の第2の要旨においては、粉体が揮発性油分の存在しない状態で撥水性ポリマーに被覆されうるものであることが特徴的である。このような粉体としては、特にシリカが好ましい。同組成物において、シリカの配合量を1～10重量％、特に好ましくは1～8重量％とすると、使用触感、二次付着性とも良好に改善される。

本発明は、前述した構成をとることにより、塗布前には、製品形態として揮発性油分中に撥水性ポリマー、シリカ、非揮発性油分などが溶解ないし分散しており、塗布時ののびがよく、なめらかな使用感を得ることができる。

そして、唇への塗布後には、前記揮発性油分が揮発し、撥水性ポリマー、シリカ、非揮発性油分が唇上に残存する。前記撥水性ポリマーは単独では一般にべたつきが著しいが、本発明においては、シリカが配合され、該粉体が撥水性ポリマーのべたつきを抑制するものと思われる。

なお、同組成物における揮発性油分の好適な配合量は、10～60重量％、好ましくは20～60重量％である。10％未満では相対的に他の成分が多くなることから塗布時ののびにかけ、一方、60重量％を越えると、相対的に他の成分が少なくなってことから二次付着性の改善が不十分となる。特に使用触感の観点から、20～60重量％とすることが好ましい。

また、撥水性ポリマーの好適な配合量は、好ましくは5～20重量％、特に好ましくは7～15重量％である。撥水性ポリマーの配合量が5重量％未満であると、二次付着性の改善は全くなされず、一方、撥水性ポリマーの配合量が20重量％を越えると、べたつきを生じる場合があり、より好ましくは15重量％以下である。

また、粉体の好適な総配合量は、組成物中1～25重量％、特に好ましくは1
〜20重量％である。粉末が1重量％未満の場合には、べたつきを押さえるのに乏しい場合があり、また25重量％を越える場合には、使用感受が悪化する場合がある。特にシリカを0.1〜10重量％、特に好ましくは1〜8重量％用いると使用感受、二次付着性とも良好に改善される。

また、非揮発性油分の好適な配合量は、好ましくは5〜30重量％、特に好ましくは7〜15重量％である。非揮発性油分が5重量％未満では、塗布、乾燥後の感触が悪くなってしまう。一方、30重量％を越えるとべたつきを生じる場合がある。

なお、本発明においては、棒状口紅を構成する際の保形剤として5〜20重量％のワックスを配合することができる。

雲母チタンの配合

本発明にかかる口紅用組成物の第3の要旨においては、粉末の少なくとも一部が雲母チタンであることが特徴的である。特に雲母チタンを1〜10重量％、特に好ましくは1〜8重量％用いると使用感受、二次付着性とも良好に改善される。

ここにいう雲母チタンとは、雲母を酸化チタン若しくはチタン化合物で被覆したものをいい、雲母:チタンが80:20〜50:50のものを用いることが好ましい。また、雲母とチタンの他に、酸化鉄、緑青、カーミン等の含まれるものも用いることができる。

本発明は、前述した構成をとることにより、塗布前には、製品形態として揮発性油分中に撥水性ポリマー、雲母チタン、非揮発性油分などが溶解ないし分散しており、塗布時ののびがよく、なめらかで使用感を得ることができる。

そして、唇への塗布後には、前記揮発性油分が揮発し、撥水性ポリマー、雲母チタン、非揮発性油分が唇上に残存する。前記撥水性ポリマーが配合されると非揮発性油分と共に雲母チタンを配合しているので、雲母チタンが撥水性ポリマーによるべたつきを抑制し、二次付着性を改善し、併せて唇の乾が軽減されるものと思われる。

なお、同組成物における揮発性油分の好適な配合量は10〜60重量％、好ましくは10〜50重量％である。10％未満では相対的に他の成分が多くなるこ
とから塗布時ののひにかけ、一方、60重量％を越えると、相対的に他の成分が
少なくなることから二次付着性の改善が不十分となる。50重量％を越えると、
組成物が液状となるため、特に10～50重量％とすることが好ましい。

また、撥水性ポリマーの好適な配合量は、5～35重量％、好ましくは10～
35重量％、特に好ましく15～30重量％である。撥水性ポリマーの配合量
が5重量％未満であると、二次付着性の改善は全くなされず、10重量％以上配
合することにより、より二次付着性の改善が良好となる。一方、撥水性ポリマー
の配合量が35重量％を越えると、べたつきを生じる場合があり、より好ましく
は30重量％以下である。

また、粉体の好適な総配合量は、組成物中1～25重量％、特に好ましくは1～
20重量％である。粉体が1重量％未満の場合には、べたつきを押さえるのに
乏しい場合があり、また25重量％を越える場合には、使用感触が悪化する場合
がある。

さらに本発明においては、雲母チタンと撥水性ポリマーの配合量比が1/30
～1/3であることが好ましく、特に1/10～1/4であることが好ましい。1/3以上では、のびが悪くなり、一方、1/30以下ではべたつきが生じ、二
次付着性の改善も不十分となる。特に1/10～1/4にした場合には全ての使
用性二次付着性優れた口紅用組成物を得ることが可能である。

本発明における非揮発性油分の好適な配合量は、5～40重量％、好ましくは
10～40重量％、特に好ましくは15～30重量％である。非揮発性油分が5
重量％未満では、塗布、乾燥後の感触が悪くなってしまう。一方、40重量％を
越えるとべたつきを生じる場合がある。

なお、本発明においては、棒状口紅を構成する際の保形剤として5～20重量
％のワックスを配合することができる。

超微粒子と大径粒子の組合せとの相関

本発明にかかる口紅用組成物の第4の要旨においては、粉体として少なくとも
大径粒子と超微粒子が存在し、超微粒子は粒径が0.01～0.1μmであり、
超微粒子と大径粒子の粒径の比が1：20～1：500であることが特徴的であ
る。ここでは、超微粒子としては、超微粒シリカ、超微粒セラミック、超微粒酸化チタン、超微粒硫酸バリウム、超微粒亜鉛鉱等が挙げられ、これらの中でも、特に超微粒シリカを用いることが好ましい。

本発明は、前述した構成をとることにより、塗布前には、製品形状として揮発性油分中に揮発性ポリマー、粉体、非揮発性油分などが溶解ないし分散しており、塗布時ののびがよく、なめらかな使用感を得ることができる。

そして、塗布後の塗布後には、前記揮発性油分が揮発し、揮発性ポリマー、粉体、非揮発性油分が塗膜に残存する。前記揮発性ポリマーは単独では一般にべたつきが著しいが、本発明においては、超微粒シリカ等の超微粒子と大径粒子とが配合され、該粉体が揮発性ポリマーのべたつきを抑制するものと思われる。また、超微粒子と大径粒子を配合することにより使用時の艶を演出すると思われる。

なお、同組成物における揮発性油分の好適な配合量は、10〜60重量％、好ましくは10〜50重量％である。10％未満では相対的に他の成分が多くなることから塗布時ののびにかけ、一方、60重量％を越えると、相対的に他の成分が少なくなることから二次付着性の改善が不十分となる。50重量％を越えると、組成物が液状となるため、特に10〜50重量％とすることが好ましい。

また、揮発性ポリマーの好適な配合量は、5〜35重量％、好ましくは10〜35重量％、特に好ましくは15〜30重量％である。揮発性ポリマーの配合量が5重量％未満であると、二次付着性の改善は全くなされず、10重量％以上配合することにより、二次付着性の改善がより良好となる。一方、揮発性ポリマーの配合量が35重量％を越えると、べたつきを生じる場合があり、より好ましくは30重量％以下である。

また、粉体の好適な配合量は、組成分中1〜25重量％、特に好ましくは2〜20重量％である。粉体が1重量％未満の場合は、べたつきを押さえるのに乏しい場合があり、また25重量％を越える場合には、使用感触が悪化する場合がある。本発明においては、超微粒子を1〜10重量％、特に好ましくは1〜8重量％用いると使用感触、二次付着性とも良好に改善される。

また、同組成物における超微粒子と大径粒子の配合比は、1：19〜10：1であることが好ましい。超微粒子に対して大径粒子の配合量が多すぎると使用
時のべたつきを生じる場合がある。一方、大径粒子の配合量が少なすぎると塗布時のがびが悪く、塗布後の艶も得られない。

また、非揮発性油分の好適な配合量は、5～40重量％、好ましくは10～40重量％、特に好ましくは15～30重量％である。非揮発性油分が5重量％未満では、塗布、乾燥後の感触が悪くなってしまう。一方、40重量％を超えるとべたつきを生じる場合がある。

なお、本発明においては、棒状口紅を構成する際の保形剤として5～20重量％のワックスを配合することができる。

撥水性ポリマーと非揮発性油分の混度との相関

本発明にかかる口紅用組成物の第5の要旨においては、配合される撥水性ポリマーと非揮発性油分のみを混合した状態の混度が9.0～25.5となるように調整されることが特徴的である。混度が8.9以下では二次付着性の改善が不十分となり、べたつきを生じる場合がある。一方、25.6以上では、艶が不十分であり、べたつき、のびが悪く、二次付着を生じる場合もある。

本発明は、前述した構成をとることにより、塗布前には、製品形態として揮発性油分中に撥水性ポリマー、粉体、非揮発性油分などが溶解しない状態で、塗布時のがばがよく、なめらかで使用感を得ることができる。

そして、唇への塗布後には、前記揮発性油分が揮発し、撥水性ポリマー、粉体、非揮発性油分が唇上に残存する。前記撥水性ポリマーは単独では一般にべたつきが著しいが、本発明においては、撥水性ポリマーと非揮発性油分の混度を一定範囲に保持することで、撥水性ポリマーの溶解度を調整することにより、のびの悪さ、べたつきを抑制し、唇の艶を演出し、しかも二次付着性を改善すると思われる。

なお、本発明において用いられる非揮発性油分として、撥水性ポリマーに対して可塑化力のある油分と可塑化力のない油分を適宜組み合わせて用いることにより、撥水性ポリマーと非揮発性油分の混度を調整することが可能である。

同組成物における揮発性油分の好適な配合量は、10～60重量％、好ましくは10～50重量％である。10％未満では相対的に他の成分が多くなることか
ら塗布時ののびにかけ、一方、60重量%を越えると、相対的に他の成分が少なくななることから二次付着性の改善が不十分となる。50重量%を越えると、組成物が液状となるため、特に10～50重量%とすることが好ましい。

また、撥水性ポリマーの好適な配合量は、5～35重量%、好ましくは10～35重量%、特に好ましくは15～30重量%である。撥水性ポリマーの配合量が5重量%未満であると、二次付着性の改善は全くないため、10重量%以上配合することにより、より二次付着性の改善が良好となる。一方、撥水性ポリマーの配合量が35重量%を越えると、べたつきを生じる場合があり、より好ましくは30重量%以下である。

また、粉体の好適な配合量は、組成物中0.1～25重量%、特に好ましくは0.1～20重量%である。粉体が0.1重量%未満の場合には、べたつきを押さえるのに乏しい場合があり、また25重量%を越える場合には、使用感触が悪化する場合がある。特にシリカを0.1～10重量%、特に好ましくは1～8重量%用いると使用感触、二次付着性とも良好に改善される。

また、非揮発性油分の好適な配合量は、5～40重量%、好ましくは10～40重量%、特に好ましくは15～30重量%である。非揮発性油分が5重量%未満では、塗布、乾燥後の感触が悪くなってしまう。一方、40重量%を越えるとべたつきを生じる場合がある。

なお、本発明においては、棒状口紅を構成する際の保形剤として5～20重量%のワックスを配合することができる。

撥水性ポリマーとワックスの組合せとの相関

本発明にかかる口紅用組成物の第6の要旨においては、撥水性ポリマーとワックスを配合した口紅用組成物における撥水性ポリマーとワックスの配合量比が、10/3～5/7であることが特微的である。10/3以上ではべたつきが生じ、二次付着性の改善も不十分である。また、5/7以下では、パサッキが生じ、二次付着性の改善も不十分である。

本発明は、前述した構成をとることにより、塗布前には、製品形態として揮発性油分中に撥水性ポリマー、ワックス、非揮発性油分などが溶解ないし分散して
おり、塗布時ののびがよく、なめらかな使用感を得ることができる。

そして、唇への塗布後には、前記揮発性油分が揮発し、撥水性ポリマー、ワックス、非揮発性油分等が唇上に残存する。ワックスによる被膜は、それ単独では剥離しやすいが、シリコン樹脂等の撥水性ポリマーと共存させ、樹脂により架橋することにより二次付着性を改善することが可能であると思われる。

さらに、前記撥水性ポリマーは単独では一般にべたつき、一方、前記ワックスは単独では一般にパサツキを生じる。本発明においては、撥水性ポリマーとワックスを融合することにより、撥水性ポリマーのべたつきと、ワックスのパサツキを抑制するものと思われる。

なお、同組成物における揮発性油分の好適な配合量は、10～60重量％、好ましくは10～50重量％である。10％未満では相対的に他の成分が多くなることから塗布時ののびにかけ、一方、60重量％を越えると、相対的に他の成分が少なくなることから二次付着性の改善が不十分となる。50重量％を越えると、組成物が液状となるため、特に10～50重量％とすることが好ましい。

また、撥水性ポリマーの好適な配合量は、5～35重量％、好ましくは10～35重量％、特に好ましくは15～30重量％である。撥水性ポリマーの配合量が5重量％未満であると、二次付着性の改善は全くなされず、10重量％以上配合することにより、より二次付着性の改善が良好となる。一方、撥水性ポリマーの配合量が35重量％を越えると、べたつきを生じる場合があり、より好ましくは30重量％以下である。

また、粉体の好適な配合量は、組成物中1～25重量％、特に好ましくは1～20重量％である。粉体が1重量％未満の場合には、べたつきを押さえるのに乏しい場合があり、また25重量％を越える場合には、使用感触が悪化する場合がある。特にシリカを1～10重量％、特に好ましくは1～8重量％用いると使用感触、二次付着性とも良好に改善される。

また、非揮発性油分の好適な配合量は、5～40重量％、好ましくは10～40重量％、特に好ましくは15～30重量％である。非揮発性油分が5重量％未満では、塗布、乾燥後の感触が悪くなってしまう。一方、40重量％を越えるとべたつきを生じる場合がある。
また、ワックスの好適な配合量は、5～25重量％である。5重量％未満では、充分な撥水性を担保することができず、一方、25重量％を越えると塗布面にパサッキが生じてしまう。なお、ここで用いるワックスは、製品時の保形剤としても機能する。

水の配合との相関

本発明にかかる口紅用組成物の第7の要旨においては、前記いずれかの組成物において、「うるおい感」及び「艶」を改善するために追加成分として水を配合することが特徴的である。この水としては天然水を用いるとより効果が高い。

ここで、天然水とは、飲料水などの分野で、一般にナチュラルウォーター、ナチュラルミネラルウォーター、ミネラルウォーター（1990年3月20日日本国農林水産省発表のミネラルウォーター類品質表示ガイドライン参照：以下総称して天然水と呼ぶ）と呼ばれる地下、地表からの湧き水を意味する。

本発明に用いられている天然水は、地下水、地表水であって、飲用に共しいう程度のものであればいずれの使用も可能であるが、特に、富士山麓（山梨、静岡県各地）、兵庫県兵庫県、群馬県谷川岳、南アルプス山麓、北アルプス山麓、大阪府北摂山系、岩手県大峰山系、京都府山崎、京都府鞍馬山、鹿児島県霧島山系、鹿児島県屋久島、福島県及び山形県吾妻山系等が好適なものとして挙げられる。

その他、栃木県那須山系、新潟県山形県、群馬県赤城山系、埼玉県武蔵丘陵、秩父山系、千葉県山武群、東京都目白台、神奈川県丹沢山系、山梨県富士山山西麓、朝霧高原、甲府御坂峠、富士山麓下部温泉、笹子峠、西桂町、南アルプス甲斐駒ヶ岳、静岡県沼津市、竜ヶ岩洞、長野県松本、安曇野、上高地、軽井沢、木曾御嶽、中央アルプス駒ヶ岳ふもと、新潟県越後山系、石川県白山、滋賀県音羽山系、京都府北山、鞍馬山、大文字温泉、大阪金剛山麓、能勢吉野山、丹波、和歌山県護摩壇山山麓、岡山県志賀島、広島県賀茂台地などが例示される。

本発明においては、これらの採水場所の天然水の一種または二種以上を選択して用いることが好ましい。配合量は特に限定されないが、口紅用組成物0.05～5重量％以上、特に好ましくは0.1～2重量％である。0.05重量％未満では、充分なうるおい感、艶を得ることはできない。一方、5重量％を越える
と二次付着性を生じてしまう。

【発明を実施するための最良の形態】
以下、本発明の好適な実施の形態に基づき本発明を更に詳細に説明する。なお、
本発明は以下の実施例に限定されるものではない。また、配合量は特に指定がな
い限り、重量％で示す。また使用性の評価は以下的方法に従って行った。

【使用性の評価方法】
各実施例について化粧専用パネル20名を用いて使用テストを行った。なお、
評価は以下の基準に従って判断した。
◎：16～20名が良好と判定
〇：11～15名が良好と判定
△：8～10名が良好と判定
×：0～5名が良好と判定

（1）組成物中の粉体の総表面積との相関
まず、本発明者らは下記の組成の口紅を作成し、その使用感、二次付着性など
を調べた。なお、以下の試験例においては、いずれも少量の界面活性剤を用いて
いる。組成及び結果を表-1に示す。
表 - 1

<table>
<thead>
<tr>
<th>試験例</th>
<th>1-1</th>
<th>1-2</th>
<th>1-3</th>
<th>1-4</th>
<th>1-5</th>
<th>1-6</th>
<th>1-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>振発性油分</td>
<td>34.8</td>
<td>33.8</td>
<td>31.8</td>
<td>29.8</td>
<td>26.8</td>
<td>24.8</td>
<td>19.8</td>
</tr>
<tr>
<td>非揮発性油分</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>流動パラフィン</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>ヒマシ油</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>ポリマー</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>粉体</td>
<td>シリカ（比表面積200m²/g）</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>顔料（比表面積2m²/g）</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ワックス</td>
<td>セレシンワックス</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>総表面積（m²）</td>
<td>0.1</td>
<td>2.1</td>
<td>6.1</td>
<td>10.1</td>
<td>16.1</td>
<td>20.1</td>
<td>30.1</td>
</tr>
<tr>
<td>伸び</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>×</td>
</tr>
<tr>
<td>飽</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>×</td>
</tr>
<tr>
<td>二次付着性</td>
<td>×</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>べたつき</td>
<td>×</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

なお、撥水性のシリコン樹脂Aとしては、約3000の分子量を有し、かつ
(CH₃)₃SiO₁/₂ : SiO₂単位 = 0.8 : 1からなる平均式(C₃H₇)₃SiO₁/₄で表されるシリコン樹脂を用いている（以下、シリコン樹脂Aという）。

上記結果より明らかなように、粉体として顔料のみを配合した場合には、総表面積は0.1m²となり、二次付着性、使用時のべたつきの改善は全く見られない。
また、配合した粉体の総表面積が0.1m²では二次付着性の改善は全く見られず、
べたつきの点でも満足な結果を得られない。さらに、総表面積が30.1m²では、
二次付着性の改善は見られるものの、伸びが悪く、十分な飽を得ることができない。
さらに、比表面積の異なるシリカを用いて検討を行った。組成及び結果を表2に示す。

<table>
<thead>
<tr>
<th></th>
<th>試 験 例</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-8</td>
<td>1-9</td>
<td>1-10</td>
<td>1-11</td>
<td>1-12</td>
<td>1-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>振発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オルタメチルシクロテトラクロキサン</td>
<td>44.8</td>
<td>39.8</td>
<td>34.8</td>
<td>29.8</td>
<td>24.8</td>
<td>19.8</td>
</tr>
<tr>
<td>非揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>流動パラフィン</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>カービン油</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>ポリマー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリコン樹脂 A</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>粉体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリカ（比表面積10m²/g）</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>顔料（比表面積2m²/g）</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ワックス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セレシンワックス</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>総表面積（m²）</td>
<td>0.1</td>
<td>0.6</td>
<td>1.1</td>
<td>1.6</td>
<td>2.1</td>
<td>2.6</td>
</tr>
<tr>
<td>伸び</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>細度</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>二次着着性</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>べたつき</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

上記結果より総表面積が1.0 m²以下では、二次着着性及びべたつきの改善が不十分となる。また、表面積が1.0 m²以上では、すべての評価が良好であり、二次着着性の改善も十分であった。

したがって、表1及び表2の結果より総表面積が1 ~ 2.5 m²であることが必要である。

さらに、本発明者らは異なる粉体を配合して検討を行った。組成及び結果を表
上記結果より明らかのように、比表面積の異なる粉体を配合した場合であっても、総表面積が上記条件を満たす場合には二次付着性が改善され、伸びが良く、乾燥、べたつきの改善された口紅用組成物を得ることが可能である。

従って、組成物１g中の粉体の総表面積を１〜２５m^2とすることが必要である。

次に、本発明者らは各成分の有効配合量について検討を進めた。
撥水性ポリマー配合量

まず、本発明者らは撥水性ポリマーの配合量について検討を行った。なお、総表面積は 10.1 m²である。組成及び結果を表-4に示す。

表-4

<table>
<thead>
<tr>
<th>試験例</th>
<th>1-21</th>
<th>1-22</th>
<th>1-23</th>
<th>1-24</th>
<th>1-25</th>
<th>1-26</th>
<th>1-27</th>
<th>1-28</th>
</tr>
</thead>
<tbody>
<tr>
<td>揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オクタデシルクロロトリフルオロホルム</td>
<td>50</td>
<td>45</td>
<td>40</td>
<td>35</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>非揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>流動パラフィン</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>ポリマー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリコン樹脂 A</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>粉体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリカ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>（比表面積 200 m²/g）</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>顔料（比表面積 2 m²/g）</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ウックス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セレスシンウックス</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

伸び
○ ○ ○ ○ ○ ○ ○ △
乾燥
○ ○ ○ ○ ○ ○ ○ ○
二次付着性
△ ○ ○ ○ ○ ○ ○ ◎
べたつき
◎ ◎ ◎ ◎ ◎ ◎ ○ △

上記検討結果より二次付着性を改善すること上では、総表面積が条件を満たしている場合であっても、撥水性ポリマーが10重量%以上であることが好ましい。しかし、撥水性ポリマーが35重量%を越えると、べたつき感、伸びの悪さが発生することができ、特に好ましくは30重量%までである。

粉体の配合量

次に本発明者らは、粉体の配合量について検討した。組成及び結果を表-5に示す。
表 - 5

<table>
<thead>
<tr>
<th>試験例</th>
<th>1-29</th>
<th>1-30</th>
<th>1-31</th>
<th>1-32</th>
<th>1-33</th>
<th>1-34</th>
<th>1-35</th>
</tr>
</thead>
<tbody>
<tr>
<td>揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オクタメチルトリクロロメタン</td>
<td>40</td>
<td>39</td>
<td>35</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>非揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>流動パラフィン</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>ポリマー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリコン樹脂 A</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>粉体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリカ（比表面積200m²/g）</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>顔料（比表面積2m²/g）</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>ワックス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セレシンワックス</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>粉体の総配合量</td>
<td>5.5</td>
<td>6</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>総表面積</td>
<td>10.01</td>
<td>10.02</td>
<td>10.1</td>
<td>10.2</td>
<td>10.3</td>
<td>10.4</td>
<td>10.5</td>
</tr>
</tbody>
</table>

伸び | ○ | ○ | ○ | ○ | ○ | ○ | ○ |
艶 | ○ | ○ | ○ | ○ | ○ | ○ | ○ |
二次付着性 | ○ | ○ | ○ | ○ | ○ | ○ | ○ |
べたつき | ○ | ○ | ○ | ○ | ○ | ○ | △ |
粉っぽさ | ○ | ○ | ○ | ○ | ○ | ○ | △ |

上記結果より明らかように、粉体の総表面積が条件を満たす場合であっても、粉体の総配合量が、25重量％以上では伸びが悪く、べたつきを生じ、また、組成物に対する粉体の割合が高くなると粉っぽさが残ってしまう。

さらに本発明者らは、粉体の配合量が少ない領域での検討を行った。結果を表 - 6 に示す。
表 - 6

<table>
<thead>
<tr>
<th></th>
<th>試験例</th>
<th>1-36</th>
<th>1-37</th>
<th>1-38</th>
<th>1-39</th>
<th>1-40</th>
<th>1-41</th>
<th>1-42</th>
</tr>
</thead>
<tbody>
<tr>
<td>揚発性油分</td>
<td>オクタメチルシシクロテトラシクロキサン</td>
<td>44.7</td>
<td>44.2</td>
<td>43.7</td>
<td>41.7</td>
<td>39.7</td>
<td>36.7</td>
<td>34.7</td>
</tr>
<tr>
<td>非揚発性油分</td>
<td>流動パラフィン</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>ポリマー</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>シリコン樹脂 A</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>粉体</td>
<td>シリカ（比表面積200m²/g）</td>
<td>0</td>
<td>0.5</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>顔料（比表面積2m²/g）</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>ワックス</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>セレシンワックス</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>粉体の総配合量</td>
<td></td>
<td>0.3</td>
<td>0.8</td>
<td>1.3</td>
<td>3.3</td>
<td>5.3</td>
<td>8.3</td>
<td>10.3</td>
</tr>
<tr>
<td>総表面積</td>
<td></td>
<td>0.006</td>
<td>1.006</td>
<td>2.006</td>
<td>6.006</td>
<td>10.006</td>
<td>16.006</td>
<td>20.006</td>
</tr>
<tr>
<td>伸び</td>
<td></td>
<td>☀</td>
<td>☀</td>
<td>☀</td>
<td>☀</td>
<td>☀</td>
<td>☀</td>
<td>☀</td>
</tr>
<tr>
<td>酸性</td>
<td></td>
<td>☀</td>
<td>☀</td>
<td>☀</td>
<td>☀</td>
<td>☀</td>
<td>☀</td>
<td>☀</td>
</tr>
<tr>
<td>二次付着性</td>
<td></td>
<td>△</td>
<td>☀</td>
<td>☀</td>
<td>☀</td>
<td>☀</td>
<td>☀</td>
<td>☀</td>
</tr>
<tr>
<td>べたつき</td>
<td></td>
<td>△</td>
<td>△</td>
<td>☀</td>
<td>☀</td>
<td>☀</td>
<td>☀</td>
<td>☀</td>
</tr>
</tbody>
</table>

上記結果より明らかのように、粉体の総表面積が条件を満たす場合であっても、粉体の総配合量が、1重量％未満では、若干のべたつきを生じることがある。従って、表 - 5 及び表 - 6 より粉体の総配合量は、1〜25重量％であることが好ましい。

非揚発性油分の配合量

次に本発明者らは非揚発性油分の配合量について検討した。なお、総表面積は10〜1m²である。組成及び結果を表 - 7 に示す。
表 - 7

<table>
<thead>
<tr>
<th>試験例</th>
<th>1-43</th>
<th>1-44</th>
<th>1-45</th>
<th>1-46</th>
<th>1-47</th>
<th>1-48</th>
<th>1-49</th>
<th>1-50</th>
<th>1-51</th>
</tr>
</thead>
<tbody>
<tr>
<td>揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オクタデシルジクロロトリシクロhexane</td>
<td>50</td>
<td>45</td>
<td>40</td>
<td>35</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>非揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>流動パラフィン</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>ポリマー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリコン樹脂A</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>粉体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリカ（比表面積200m²/g）</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>顔料（比表面積2m²/g）</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ウックス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セレシンウックス</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

伸び
△ ○ ○ ○ ○ ○ ○ ○ ○
艶
○ ○ ○ ○ ○ ○ ○ ○ ○
二次付着性
○ ○ ○ ○ ○ ○ ○ ○ △
べたつき
△ ○ ○ ○ ○ ○ ○ △

上記結果より明らかなように、非揮発性油分が5重量％では伸びが悪く、べたつきも生じてしまう。一方で、非揮発性油分が45重量％となると、べたつき、二次付着性の改善も十分でない。従って、非揮発性油分の配合量は、10〜40重量％であることが好ましい。

油分とポリマーの比率

前記検討を行なう中で、本発明者からは非揮発性油分と揮発性ポリマーの比率が使用感、二次付着性に大きな影響を与えることを見出した。

すなわち、非揮発性油分が相対的に著しく少ない場合には、揮発性ポリマーの影響が強くて、べたつき、伸びの悪さなどを生じる場合があり、また揮発性ポリマーが相対的に著しく少ない場合には揮発性ポリマーの作用が非揮発性油分に阻害され、二次付着性などが悪化するものと思われる。組成及び結果を表-
8に示す。

表-8

<table>
<thead>
<tr>
<th>試験例</th>
<th>1-52</th>
<th>1-53</th>
<th>1-54</th>
<th>1-55</th>
<th>1-56</th>
<th>1-57</th>
<th>1-58</th>
<th>1-59</th>
</tr>
</thead>
<tbody>
<tr>
<td>非揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>流動パラフィン</td>
<td>5</td>
<td>10</td>
<td>14.9</td>
<td>19.8</td>
<td>24.7</td>
<td>29.5</td>
<td>34.3</td>
<td>39.0</td>
</tr>
<tr>
<td>ヒマシ油</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td>振発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オクタメチルシクロトランジロキサン</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>ポリマー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリコン樹脂A</td>
<td>40</td>
<td>35</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>粉体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリカ（比表面積200m²/g）</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>顔料（比表面積200m²/g）</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ワックス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セレシンワックス</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>樹脂/非揮発性油分</th>
<th>8/1</th>
<th>7/2</th>
<th>2/1</th>
<th>5/4</th>
<th>4/5</th>
<th>1/2</th>
<th>2/7</th>
<th>1/8</th>
</tr>
</thead>
<tbody>
<tr>
<td>伸び</td>
<td>×</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>酣</td>
<td>△</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>二次付着性</td>
<td>×</td>
<td>△</td>
<td>☭</td>
<td>☭</td>
<td>☭</td>
<td>○</td>
<td>△</td>
<td>×</td>
</tr>
<tr>
<td>べたつき</td>
<td>×</td>
<td>△</td>
<td>○</td>
<td>☭</td>
<td>☭</td>
<td>☭</td>
<td>☭</td>
<td>☭</td>
</tr>
</tbody>
</table>

上記検討結果より、樹脂と非揮発性油分の比が2/1を超えると、伸び、酔が若干悪くなり、しかも二次付着性、べたつき感などの改善もあまり認められない。また、樹脂と非揮発性油分の比が1/2未満では、樹脂の特性を充分に発揮することができず、二次付着性の改善効果が不十分となることがある。

従って、樹脂と非揮発性油分の比は、1/2以上、2/1以下であることが好ましい。
(2) シリカの配合との相関

本発明者らは、下記の組成の口紅を作成し、その使用感、二次付着性などを調べた。なお、以下の試験例においては、いずれも少量の界面活性剤を用いている組成と結果を表-9に示す。

<table>
<thead>
<tr>
<th></th>
<th>試験例</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2-1</td>
<td>2-2</td>
<td>2-3</td>
<td>2-4</td>
<td>2-5</td>
</tr>
<tr>
<td>非揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ヒマシ油</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>グリセリングリセリート</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>挥発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オクタデシルフタロイソキサン</td>
<td>50</td>
<td>35</td>
<td>30</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>ポリマー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリコン樹脂A（撥水性）</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>樹脂B（非撥水性）</td>
<td>-</td>
<td>15</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>粉体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリカ</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>顔料</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ワックス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セレシンワックス</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

伸び	○ ○ ○ ○ ○
粘性	○ ○ ○ ○ ○
二次付着性	× △ △ ○ ○
ぺたつき	○ × △ × ○

なお、樹脂Bはポリビニルメチルエーテルである。

以上の検討結果より明らかのように、ポリマーを配合しない場合には伸び、粘性、ぺたつきなどには問題ないものの、二次付着性の改善が不十分である（試験例2-1）。一方、ポリマーを配合すると、二次付着性は改善される傾向にあるが、非撥水性ポリマーを用いた場合には二次付着性の改善が十分でないばかりでなく、著しいぺたつきを生じる（試験例2-2）。そこで、このポリマーのぺたつきを改善する
るために本発明者らは粉体の使用を検討した。そして、非揮発性ポリマーとともに、シリカを配合したところ、べたつきが多少改善された（試験例2-3）。一方、ポリマーとして揮発性ポリマーを用いた場合には、二次付着性が大幅に改善されるが、べたつきは残る（試験例2-4）。しかし、揮発性ポリマーと共にシリカを用いることで、二次付着性、べたつき共に良好な口紅が得られることが見出された（試験例2-5）。

次に、本発明者らは各成分の有効配合量について検討を進めた。

揮発性ポリマー配合量

まず、本発明者らは揮発性ポリマーの配合量について検討を行なった。組成と結果を表-10に示す。

<table>
<thead>
<tr>
<th>試験例</th>
<th>2-6</th>
<th>2-7</th>
<th>2-8</th>
<th>2-9</th>
<th>2-10</th>
<th>2-11</th>
<th>2-12</th>
<th>2-13</th>
<th>2-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>非揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ヒマシ油</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オクタデシルクロルオクチルオキシ_normalized:4</td>
<td>60</td>
<td>58</td>
<td>56</td>
<td>53</td>
<td>50</td>
<td>48</td>
<td>46</td>
<td>43</td>
<td>38</td>
</tr>
<tr>
<td>ポリマー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリコンレジン（揮発性）</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>粉体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリカ</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>顔料</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ワックス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セレシンワックス</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

伸び

<table>
<thead>
<tr>
<th></th>
<th>○</th>
<th>○</th>
<th>○</th>
<th>○</th>
<th>○</th>
<th>○</th>
<th>○</th>
<th>○</th>
<th>○</th>
</tr>
</thead>
</table>

乾燥

<table>
<thead>
<tr>
<th></th>
<th>○</th>
<th>○</th>
<th>○</th>
<th>○</th>
<th>○</th>
<th>○</th>
<th>○</th>
<th>○</th>
<th>○</th>
</tr>
</thead>
</table>

二次付着性

<table>
<thead>
<tr>
<th></th>
<th>△</th>
<th>○</th>
<th>○</th>
<th>○</th>
<th>○</th>
<th>○</th>
<th>○</th>
<th>○</th>
<th>○</th>
</tr>
</thead>
</table>

べたつき

<table>
<thead>
<tr>
<th></th>
<th>○</th>
<th>○</th>
<th>○</th>
<th>○</th>
<th>○</th>
<th>○</th>
<th>○</th>
<th>○</th>
<th>△</th>
</tr>
</thead>
</table>
上記検討結果より、二次付着性を改善する上では、撥水性ポリマーが5重量%以上、特に7重量%以上であることが好ましい。但し、撥水性ポリマーが20重量%を越えると、べたつき感が発生することがあり、特に好ましくは15重量%までである。

粉体配合量
次に、本発明者らは粉体の配合量について検討を行なった。組成と結果を表-11に示す。

<table>
<thead>
<tr>
<th>試験例</th>
<th>2-15</th>
<th>2-16</th>
<th>2-17</th>
<th>2-18</th>
<th>2-19</th>
<th>2-20</th>
<th>2-21</th>
<th>2-22</th>
<th>2-23</th>
</tr>
</thead>
<tbody>
<tr>
<td>非揮発性油分</td>
<td>ヒマラヤ油</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>挥発性油分</td>
<td>オクタメチルシクロテトラシクロキサン</td>
<td>49.5</td>
<td>49</td>
<td>48</td>
<td>45</td>
<td>42</td>
<td>40</td>
<td>35</td>
<td>32</td>
</tr>
<tr>
<td>ポリマー</td>
<td>シリコンレジン（撥水性）</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>粉体</td>
<td>シリカ</td>
<td>0.5</td>
<td>1.0</td>
<td>2.0</td>
<td>5.0</td>
<td>8.0</td>
<td>10.0</td>
<td>15.0</td>
<td>18.0</td>
</tr>
<tr>
<td>顔料</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>ワックス</td>
<td>セレスシワックス</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>伸び</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>△</td>
</tr>
<tr>
<td>曲げ</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>△</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>二次付着性</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
</tr>
<tr>
<td>べたつき</td>
<td>△</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
</tr>
</tbody>
</table>

上記検討結果より、べたつき感を改善する上では、シリカの配合量が1.0重量%以上が好ましい。但し、シリカの配合量が10重量%を越えると、伸びなどの使用感触が悪くなり、べたつきも多少劣化する場合がある。従って、べたつきを抑えるためには、粉体の配合量は1.0〜10重量%、特に1.0〜
8. 0重量%であることが好ましい。なお、シリカの外に顔料その他の粉体を用いる場合、シリカを含めたこれら粉体の総量は20重量%以下が望ましい。

油分とポリマーの比率

本構成においても非揮発性油分と発水性ポリマーの配合量比が使用感、二次付着性の改善に大きな影響を与えることを見出し、さらに検討を行った。組成と結果を表-12に示す。

表-12

<table>
<thead>
<tr>
<th>試験例</th>
<th>2-24</th>
<th>2-25</th>
<th>2-26</th>
<th>2-27</th>
<th>2-28</th>
<th>2-29</th>
<th>2-30</th>
<th>2-31</th>
</tr>
</thead>
<tbody>
<tr>
<td>非揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>流動パラフィン</td>
<td>5</td>
<td>10</td>
<td>14.9</td>
<td>19.8</td>
<td>24.7</td>
<td>29.5</td>
<td>34.3</td>
<td>39.0</td>
</tr>
<tr>
<td>ヒマシ油</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td>振発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オクタデカン</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>ポリマー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリコン樹脂A</td>
<td>40</td>
<td>35</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>粉体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリカ(粒径0.02μm)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>顔料(粒径5μm)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ワックス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セレシンワックス</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

樹脂/非揮発性油分 | 8/1 | 7/2 | 2/1 | 5/4 | 4/5 | 1/2 | 2/7 | 1/8 |

伸び | △ | ○ | ○ | ○ | ○ | ○ | ○ | ○ |
乾燥 | △ | △ | ○ | ○ | ○ | ○ | ○ | ○ |
二次付着性 | △ | △ | △ | △ | △ | △ | △ | △ |
べたつき | △ | △ | △ | △ | △ | △ | △ | △ |

上記検討結果より、樹脂と非揮発性油分の比が8/1を越えると、のび、乾燥が悪くなり、しかも二次付着性、べたつき性などの改善もあまり認められない。ま
た、樹脂と非揮発性油分の比が1/2未満であると、樹脂の特性を十分に発揮することができず、二次付着性の改善効果が不十分となることがある。

従って、樹脂と非揮発性油分の比は、1/2以上、2/1以下であることが好ましい。

（3）雲母チタンの配合との相関

まず、本発明者らは、下記の口紅を作成し、その使用感、二次付着性等を検討した。なお、以下の試験例においては、いずれも少量の界面活性剤を用いている。組成と結果を表-13に示す。

<table>
<thead>
<tr>
<th>表-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>試験例</td>
</tr>
<tr>
<td>酸発性油分</td>
</tr>
<tr>
<td>オクタダテルシクロテトラデカン</td>
</tr>
<tr>
<td>非酸発性油分</td>
</tr>
<tr>
<td>流動パラフィン</td>
</tr>
<tr>
<td>ポリマー</td>
</tr>
<tr>
<td>シリコーン樹脂A</td>
</tr>
<tr>
<td>粉体</td>
</tr>
<tr>
<td>酸化チタン</td>
</tr>
<tr>
<td>マイカ</td>
</tr>
<tr>
<td>雲母チタンA</td>
</tr>
<tr>
<td>顔料</td>
</tr>
<tr>
<td>ワックス</td>
</tr>
<tr>
<td>セレシンワックス</td>
</tr>
<tr>
<td>伸び</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>酸</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>二次付着性</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>べたつき</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
なお、雲母チタンAとして、雲母：TiO₂が60：40のものを用いた。

上記検討結果より、粉末を全く配合しない口紅（試験例3-1）では、二次付着性の改善が全く見られず、べたつきも生じてしまいます。また、チタン単独（試験例3-2）およびマイカ単独（試験例3-3）で配合した口紅では、艶、二次付着性、べたつきの改善が不十分である。また、チタンおよびマイカを雲母チタンAに含まれるのと同比率において、配合した口紅（試験例3-4）においても艶がなく、二次付着性、べたつきの改善も不十分であった。

一方、雲母チタンAを配合した試験例3-5においては、艶、二次付着性、べたつきのいずれも改善された優れた口紅用組成物を得ることができた。

次に、本発明者らは各成分の有効配合量について検討を進めた。

撥水性ポリマー配合量

まず、本発明者らは撥水性ポリマーの配合量について検討を行った。組成と結果を表-14に示す。
<table>
<thead>
<tr>
<th></th>
<th>試験例</th>
<th>3-6</th>
<th>3-7</th>
<th>3-8</th>
<th>3-9</th>
<th>3-10</th>
<th>3-11</th>
<th>3-12</th>
<th>3-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オクタデシルシクロヘキサン</td>
<td>50</td>
<td>45</td>
<td>40</td>
<td>35</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>非揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>流動パラフィン</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>ポリマー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリコン樹脂 A</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>粉体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>雲母チタン A</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>顔料</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ワックス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セレシンワックス</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

伸び

○ ○ ○ ○ ○ ○ ○ △

発

○ ○ ○ ○ ○ ○ ○ ○ ○

二次付着性

△ ○ ○ ○ ○ ○ ○ ○ ○

べたつき

○ ○ ○ ○ ○ ○ ○ △

上記検討結果より、二次付着性を改善する上では、撥水性ポリマーが 10 重量 %以上であることが好ましい。但し、撥水性ポリマーが 35 重量 %を越えると、べたつき感、伸びの悪さが発生することがあり、特に好ましくは 30 重量 %までである。

粉体配合量

次に、本発明者らは粉体の配合量について検討を行った。組成と結果を表 - 15 に示す。
<table>
<thead>
<tr>
<th></th>
<th>試</th>
<th>験</th>
<th>例</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3-14</td>
<td>3-15</td>
<td>3-16</td>
</tr>
<tr>
<td>揮発性油分</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オクタメチルサトシトランジオキシシン</td>
<td>35</td>
<td>34</td>
<td>33</td>
</tr>
<tr>
<td>非揮発性油分</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>流動パラフィン</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>ポリマー</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>粉体</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>雲母チタンA</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>顔料</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ワックス</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セレシンワックス</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

伸び 〇 〇 〇 〇 〇 〇 〇
乾燥 〇 〇 〇 〇 〇 〇 〇
二次付着性 △ 〇 〇 〇 〇 〇 〇
べたつき △ 〇 〇 〇 〇 〇 〇

上記検討結果より、べたつき感を改善する上では、雲母チタンの配合量が1重量％以上が好ましい。但し、雲母チタンの配合量が10重量％を越えると、伸びなどの使用感受が悪くなり、乾燥も多少劣化する場合がある。従って、乾燥を維持しつつ、べたつきを抑えられるためには、雲母チタンの配合量は1～10重量％、特に1～8重量％であることが好ましい。なお、雲母チタンの外に顔料その他の粉体を用いる場合、雲母チタンを含めたこれら粉体の総量は20重量％以下が望ましい。

非揮発性油分配合量

次に、非揮発性油分の配合量について検討を行った。組成と結果を表-16に示す。
揮発性油分
オクタデシカルクロロトリトランキシン 5 0 4 5 4 0 3 5 3 0 2 5 2 0 1 5 1 0
非揮発性油分
流動パラフィン 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5
ポリマー
シリコン樹脂 A 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5
粉体
雲母チタン A 5 5 5 5 5 5 5 5 5 5
顔料 5 5 5 5 5 5 5 5 5 5
ワックス
セレシンワックス 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

伸び
○ ○ ○ ○ ○ ○ ○ ○ ○ ○
乾燥
○ ○ ○ ○ ○ ○ ○ ○ ○ ○
二次付着性
△ ○ ○ ○ ○ ○ ○ ○ ○ △
べたつき
△ ○ ○ ○ ○ ○ ○ ○ ○ △

表記結果の通り、非揮発性油分が 10 重量％未満では、二次付着性の改善が不十分であり、べたつきも生じてしまう。一方、非揮発性油分が 40 重量％を越えると、二次付着性の改善が十分でない。したがって、非揮発性油分の配合量は、10 〜 40 重量％であることが好ましい。

雲母チタンと撥水性ポリマーの配合量比

次に雲母チタンと撥水性ポリマーの配合量比について検討した。組成と結果を表 - 17 に示す。
表 17

<table>
<thead>
<tr>
<th>試験例</th>
<th>3-30</th>
<th>3-31</th>
<th>3-32</th>
<th>3-33</th>
<th>3-34</th>
<th>3-35</th>
<th>3-36</th>
<th>3-37</th>
</tr>
</thead>
<tbody>
<tr>
<td>揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>トリメチルシクロヘキサソノロン</td>
<td>40</td>
<td>37.5</td>
<td>40</td>
<td>35</td>
<td>32</td>
<td>28</td>
<td>29</td>
<td>24</td>
</tr>
<tr>
<td>非揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>流動パラフィン</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>ポリマー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリコニン樹脂A</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>粉体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>雲母チタンA</td>
<td>10</td>
<td>7.5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>顔料</td>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ワックス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セレシンワックス</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>雲母チタン/シリコニン樹脂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1</td>
<td>1/2</td>
<td>1/3</td>
<td>1/4</td>
<td>3/25</td>
<td>1/15</td>
<td>1/30</td>
<td>1/35</td>
<td></td>
</tr>
<tr>
<td>伸び</td>
<td>×</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>脆性</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>△</td>
</tr>
<tr>
<td>二次付着性</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td>C</td>
<td>△</td>
</tr>
<tr>
<td>べたつき</td>
<td>○</td>
<td>○</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td>△</td>
<td>○</td>
<td>△</td>
</tr>
</tbody>
</table>

上記結果より明らかなように、雲母チタンとシリコニン樹脂の配合量比が1/2以上では伸びが悪く、使用性が落ちる。ただし1/35ではべたつきを生じてしまう。従って、雲母チタンとシリコニン樹脂の配合量比が1/30〜1/3であることが好ましい。さらに、雲母チタンとシリコニン樹脂の配合量比が1/10〜1/4ではすべての使用性に優れたロコを得ることができる。

（4）超微粒子と大径粒子の組合せとの相関

次に、本発明者らは下記の組成のロコを作成し、その使用感、二次付着性などを調べた。なお、以下の試験例においては、いずれも少量の界面活性剤を用いている。超微粒子と大径粒子の粒径比（以下、粒径比という）は、超微粒子の粒径
大径粒子の粒径で求めた。組成及び結果を表 - 18 に示す。

<table>
<thead>
<tr>
<th>試験例</th>
<th>4-1</th>
<th>4-2</th>
<th>4-3</th>
<th>4-4</th>
<th>4-5</th>
<th>4-6</th>
<th>4-7</th>
<th>4-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>非揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>流動パラフィン</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>振発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オクタデカシクロテトラシクロテン</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>ポリマー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>粉体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリカ（粒径 0.02 μm）</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>シリカ（粒径 2 μm）</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>マイカ（粒径 3 μm）</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>風料（粒径 7 μm）</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>風料（粒径 2 μm）</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>風料（粒径 0.5 μm）</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ワックス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セレシエンワックス</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>粒径比</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>伸ばし</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.04</td>
<td>0.01</td>
<td>0.003</td>
<td>0.007</td>
</tr>
<tr>
<td>酢</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>二次付着性</td>
<td>×</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>べたつき</td>
<td>×</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
</tbody>
</table>

以上の検討結果より明らかなように、粉末を全く配合しない場合には、二次付着性、べたつき感の改善が全くみられない。また、粒径の大きい粉末のみを配合したのでは、二次付着性の十分な改善を図ることができない。一方、超微粒シリカを配合すると、べたつき感の点で改善が不十分である。

そこで、超微粒シリカとともに各種大径粒子を配合したところ、二次付着性、べたつき感、べたつきのすべての面で優れた組成物を得ることが可能であった。
次に、本発明者らは各成分の有効配合量について検討を進めた。

撥水性ポリマー配合量

まず、本発明者らは撥水性ポリマーの配合量について検討を行なった。なお、本試験における超微粒子と大径粒子の粒子比は0.004である。組成及び結果を表-19に示す。

<table>
<thead>
<tr>
<th>表-19</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>非揮発性油分</td>
</tr>
<tr>
<td>流動バラフィン</td>
</tr>
<tr>
<td>振発性油分</td>
</tr>
<tr>
<td>オクタメチルシクロトリアセチルセシン</td>
</tr>
<tr>
<td>ポリマー</td>
</tr>
<tr>
<td>シリコン樹脂A</td>
</tr>
<tr>
<td>粉体</td>
</tr>
<tr>
<td>シリカ（粒径0.02μm）</td>
</tr>
<tr>
<td>頭料（粒径5μm）</td>
</tr>
<tr>
<td>ワックス</td>
</tr>
<tr>
<td>ホレンジワックス</td>
</tr>
<tr>
<td>伸び</td>
</tr>
<tr>
<td>背</td>
</tr>
<tr>
<td>二次付着性</td>
</tr>
<tr>
<td>べたつき</td>
</tr>
</tbody>
</table>

上記検討結果より、二次付着性を改善する上では、撥水性ポリマーが10重量％以上、特に15重量％以上であることが好ましい。但し、撥水性ポリマーが35重量％を越えると、べたつき感が発生することがあり、特に好ましくは30重量％までである。
粉体配合量

次に、本発明者らは粉体の配合量について検討を行った。まず、超微粒子の配合量について検討した。組成及び結果を表 - 20 に示す。

表 - 20

<table>
<thead>
<tr>
<th>実験例</th>
<th>4-17</th>
<th>4-18</th>
<th>4-19</th>
<th>4-20</th>
<th>4-21</th>
<th>4-22</th>
<th>4-23</th>
<th>4-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>非揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>流動パラフィン</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>振発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オクタメチルシロキサン</td>
<td>39.5</td>
<td>39.0</td>
<td>38.0</td>
<td>35.0</td>
<td>32.0</td>
<td>30.0</td>
<td>25.0</td>
<td>20.0</td>
</tr>
<tr>
<td>ポリマー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリコン樹脂 A</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>粉体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリカ (粒径 0.02 μm)</td>
<td>0.5</td>
<td>1.0</td>
<td>2.0</td>
<td>5.0</td>
<td>8.0</td>
<td>10.0</td>
<td>15.0</td>
<td>20.0</td>
</tr>
<tr>
<td>顔料 (粒径 5 μm)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ワックス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セレシンワックス</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

伸び

<table>
<thead>
<tr>
<th>実験例</th>
<th>4-17</th>
<th>4-18</th>
<th>4-19</th>
<th>4-20</th>
<th>4-21</th>
<th>4-22</th>
<th>4-23</th>
<th>4-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>伸び</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>○</td>
<td>○</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

脆

<table>
<thead>
<tr>
<th>実験例</th>
<th>4-17</th>
<th>4-18</th>
<th>4-19</th>
<th>4-20</th>
<th>4-21</th>
<th>4-22</th>
<th>4-23</th>
<th>4-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>脆</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>●</td>
<td>△</td>
<td>×</td>
</tr>
</tbody>
</table>

二次付着性

<table>
<thead>
<tr>
<th>実験例</th>
<th>4-17</th>
<th>4-18</th>
<th>4-19</th>
<th>4-20</th>
<th>4-21</th>
<th>4-22</th>
<th>4-23</th>
<th>4-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>二次付着性</td>
<td>○</td>
<td>○</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
</tr>
</tbody>
</table>

べたつき

<table>
<thead>
<tr>
<th>実験例</th>
<th>4-17</th>
<th>4-18</th>
<th>4-19</th>
<th>4-20</th>
<th>4-21</th>
<th>4-22</th>
<th>4-23</th>
<th>4-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>べたつき</td>
<td>△</td>
<td>○</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
</tr>
</tbody>
</table>

上記検討結果より、べたつき感を改善する上では、シリカの配合量が 1 重量％以上が好ましい。但し、シリカの配合量が 1 0 重量％を越えると、伸びなどの使用感度が悪くなり、脆も多少劣化する場合がある。従って、脆を維持しつつ、べたつきを抑えるためには、シリカの配合量は 1 ～ 1 0 重量％、特に 1 ～ 8 重量％であることが好ましい。

さらに、超微粒子と大径粒子の配合比の検討を行った。なお、本実験における粒径比は 0.004 である。組成及び結果を表 - 21 に示す。
<table>
<thead>
<tr>
<th></th>
<th>試験例</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4-25</td>
<td>4-26</td>
<td>4-27</td>
<td>4-28</td>
<td>4-29</td>
<td>4-30</td>
<td>4-31</td>
<td>4-32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>非揮発性油分</td>
<td></td>
</tr>
<tr>
<td>流動パラフィン</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>揮発性油分</td>
<td></td>
</tr>
<tr>
<td>オクタデシルシクロヘキサン</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>30</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ポリマー</td>
<td></td>
</tr>
<tr>
<td>粉体</td>
<td></td>
</tr>
<tr>
<td>シリカ（粒径0.02μm）</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td>5.0</td>
<td>8.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>顔料（粒径5μm）</td>
<td>19.0</td>
<td>18.0</td>
<td>17.0</td>
<td>15.0</td>
<td>12.0</td>
<td>10.0</td>
<td>5.0</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ワックス</td>
<td></td>
</tr>
<tr>
<td>セレシンワックス</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>超微粒子／大径粒子</td>
<td>1/19</td>
<td>1/9</td>
<td>3/17</td>
<td>1/3</td>
<td>2/3</td>
<td>1/1</td>
<td>2/1</td>
<td>10/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

伸び	◎	◎	◎	◎	◎	◎	◎	◎	◎
噴入	◎	◎	◎	◎	◎	◎	◎	◎	◎
二次付着性	◎	◎	◎	◎	◎	◎	◎	◎	◎
ねたつき	◎	◎	◎	◎	◎	◎	◎	◎	◎

以上の結果より明らかのように、超微粒子と大径粒子の配合比が1:19~1:0:1であれば、使用感、二次付着性の改善された組成物を得ることが可能である。

油分と撥水性ポリマーの比率

本構成においても非揮発性油分と撥水性ポリマーの配合量比が使用感、二次付着性の改善に大きな影響を与えることを見出し、さらに検討を行った。組成と結果を表-22に示す。
<table>
<thead>
<tr>
<th>試験例</th>
<th>4-33</th>
<th>4-34</th>
<th>4-35</th>
<th>4-36</th>
<th>4-37</th>
<th>4-38</th>
<th>4-39</th>
<th>4-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>非揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>流動パラフィン</td>
<td>5</td>
<td>10</td>
<td>14.9</td>
<td>19.8</td>
<td>24.7</td>
<td>29.5</td>
<td>34.3</td>
<td>39.0</td>
</tr>
<tr>
<td>ヒマシ油</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td>揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>トルエン</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>ポリマー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリコン樹脂A</td>
<td>40</td>
<td>35</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>粉体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリカ（粒径 0.02μm）</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>顔料（粒径 5μm）</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ワックス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セレシンワックス</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>樹脂 / 非揮発性油分</th>
<th>8/1</th>
<th>7/2</th>
<th>2/1</th>
<th>5/4</th>
<th>4/5</th>
<th>1/2</th>
<th>2/7</th>
<th>1/8</th>
</tr>
</thead>
<tbody>
<tr>
<td>伸び</td>
<td>×</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>押し</td>
<td>△</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>二次付着性</td>
<td>×</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>△</td>
<td>×</td>
</tr>
<tr>
<td>べたつき</td>
<td>×</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

上記検討結果より、樹脂と非揮発性油分の比が 2 / 1 を越えると、のび、押しが悪くなり、しかも二次付着性、べたつき感などの改善もあまり認められない。また、樹脂と非揮発性油分の比が 1 / 2 未満であると、樹脂の特性を十分に発揮することができず、二次付着性の改善効果が不十分となることがある。
従って、樹脂と非揮発性油分の比は、1 / 2 以上、2 / 1 以下であることが好ましい。
（５）撥水性ポリマーと非揮発性油分の薄度との相関

本発明者らは、粉体を必須の構成要件とする場合にも、揮発性油分が揮散後の非揮発性油分と撥水性ポリマーの存在形態が使用感、二次付着性に大きな影響を与えることを見出した。

すなわち、揮発性油分が揮散した後に、表面に残る非揮発性油分が、撥水ポリマーを適度に可塑化することにより、使用感及び二次付着性の改善に加えて、塗被後の薄い感を与えられると考えられる。

検討に先立ち、薄度の測定方法について説明する。

【薄度の測定方法】

1. 組成物中に含有する比率と同比率で、揮発性油分、撥水性ポリマー、非揮発性油分を混合し、混合試料を作成する。

2. 前記混合試料を、2.8 × 1.9 × 0.3 cmの黒色の皿に0.2 g流し込み、90 ℃ - 6 hr放置し、揮発性油分を完全に揮散させる。

3. 得られた試料の薄度を測色機（Color-Eye7000、Macbeth社製）を用いて測定する（し値を薄度とする）。

上記の観察の下、撥水性ポリマーと非揮発性油分の薄度について検討を行った。
なお、以下の試験例においては、いずれも少量の界面活性剤を用いている。組成及び結果を表 - 23 に示す。
表 - 23

<table>
<thead>
<tr>
<th>試験例</th>
<th>5-1</th>
<th>5-2</th>
<th>5-3</th>
<th>5-4</th>
<th>5-5</th>
<th>5-6</th>
<th>5-7</th>
<th>5-8</th>
<th>5-9</th>
<th>5-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>振発性油分</td>
<td></td>
</tr>
<tr>
<td>オクタメチルシクロテトラシクロエタン</td>
<td>50</td>
<td>45</td>
<td>40</td>
<td>35</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>非振発性油分</td>
<td></td>
</tr>
<tr>
<td>流動パラフィン</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>ボリマー</td>
<td></td>
</tr>
<tr>
<td>粉体</td>
<td></td>
</tr>
<tr>
<td>シリカ</td>
<td>5</td>
</tr>
<tr>
<td>顔料</td>
<td>5</td>
</tr>
<tr>
<td>ワックス</td>
<td></td>
</tr>
<tr>
<td>セレスシエンワックス</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>湿度</th>
<th>28.9</th>
<th>25.6</th>
<th>18.3</th>
<th>15.2</th>
<th>13.8</th>
<th>11.9</th>
<th>10.3</th>
<th>9.5</th>
<th>8.9</th>
<th>8.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>伸び</td>
<td>×</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>破断</td>
<td>△</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>二次付着性</td>
<td>×</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>べたつき</td>
<td>×</td>
<td>×</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

上記検討結果より、湿度が25.6以上では伸び、破断、二次付着性、べたつきが生じる。また、湿度が8.9以下では、樹脂の特性を充分に発揮することができず、二次付着性の改善効果が不十分となることがある。

また、本発明者らは、非揮発性油分の内、撥水性ポリマーに対する可塑化力の異なる油分を用いて湿度を調整し、さらに検討を行った。組成及び結果を表 - 24に示す。
<table>
<thead>
<tr>
<th>試験例</th>
<th>5-11</th>
<th>5-12</th>
<th>5-13</th>
<th>5-14</th>
<th>5-15</th>
<th>5-16</th>
<th>5-17</th>
<th>5-18</th>
</tr>
</thead>
<tbody>
<tr>
<td>揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オクタメチル硫酸トリトロホキサン</td>
<td>35</td>
<td>31.5</td>
<td>29.0</td>
<td>25.5</td>
<td>23.0</td>
<td>19.5</td>
<td>17.0</td>
<td>13.5</td>
</tr>
<tr>
<td>非揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>流動パラフィン</td>
<td>15</td>
<td>18</td>
<td>20</td>
<td>23</td>
<td>25</td>
<td>28</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>ヒマシ油</td>
<td>-</td>
<td>0.5</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>ポリマー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>粉体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリカ</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>顔料</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ワックス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セレシシンワックス</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>板厚</th>
<th>15.2</th>
<th>14.8</th>
<th>14.4</th>
<th>14.1</th>
<th>13.6</th>
<th>12.9</th>
<th>11.8</th>
<th>11.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>伸び</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>耐</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>二次付着性</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>ベタつき</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

以上の結果より、非揮発性油分の内、換水性ポリマーに対する可塑化力の高い油分と可塑化力の低い油分とを組み合わせて適当な板厚に調整することにより、なじみがよく、二次付着性の改善された物理を得ることが可能である。すなわち、本発明においては、可塑化力の異なる非揮発性油分の配合量を調整し、揮発性油分揮発後の換水性ポリマーと非揮発性油分の板厚を調整することが可能である。

さらに、樹脂の配合量を15重量%、及び35重量%として、非揮発性油分を調整して、その評価を行った。組成及び結果を表25に示す。
表 - 25

<table>
<thead>
<tr>
<th>試験例</th>
<th>5-19</th>
<th>5-20</th>
<th>5-21</th>
<th>5-22</th>
<th>5-23</th>
<th>5-24</th>
<th>5-25</th>
<th>5-26</th>
</tr>
</thead>
<tbody>
<tr>
<td>掲発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オクラメチルグロベラシオキサソル</td>
<td>5.2</td>
<td>4.0</td>
<td>2.9</td>
<td>3.7</td>
<td>2.7</td>
<td>2.1</td>
<td>8</td>
<td>16.5</td>
</tr>
<tr>
<td>非掲発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>トリメチロールアミン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>トリエチルヒドリシロエート</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.5</td>
</tr>
<tr>
<td>流動パラフィン</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td>-</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>-</td>
</tr>
<tr>
<td>ヒマジ油</td>
<td>-</td>
<td>2.3</td>
<td>3.5</td>
<td>-</td>
<td>0.2</td>
<td>0.5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ポリマー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリコン樹脂 A</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>粉体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリカ</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>顔料</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ワックス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セレシオンワックス</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>濃度</td>
<td>13.1</td>
<td>12.0</td>
<td>9.1</td>
<td>12.1</td>
<td>21.6</td>
<td>19.3</td>
<td>17.7</td>
<td>14.1</td>
</tr>
</tbody>
</table>

伸ば	○	○	○	○	○	○	○	○
乾	○	○	○	○	○	○	○	○
二次付着性	○	○	○	○	○	○	○	○
べたつき	○	○	○	○	○	○	○	○

上記結果通り、樹脂量を一定にして配合する非掲発性油分の組成を変化させる
ことによって、濃度を調整すれば伸ばがよく、二次付着性が改善され、しかもべ
たつかない口紅用組成物を得ることが可能である。

したがって、本発明の口紅用組成物においては、換水性ポリマーと非掲発性油
分の濃度を、9.0以上12.5,5以下とすることが好ましい。

次に、本発明者らは各成分の有効配合量について検討を進めた。
腮水性ポリマー配合量

まず、本発明者らは腮水性ポリマーの配合量について検討を行った。組成及び結果を表-26に示す。

<table>
<thead>
<tr>
<th>試 験 例</th>
<th>5-27</th>
<th>5-28</th>
<th>5-29</th>
<th>5-30</th>
<th>5-31</th>
<th>5-32</th>
<th>5-33</th>
<th>5-34</th>
</tr>
</thead>
<tbody>
<tr>
<td>撥発性油分</td>
<td>オクタパラジクロトライクロロペンゼン</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>非撗発性油分</td>
<td>流動パラフィン</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ヒマシン油</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ポリマー</td>
<td>シリコン樹脂A</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>粉体</td>
<td>シリカ</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>顔料</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ワックス</td>
<td>セレシンワックス</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>濁度</td>
<td>9.1</td>
<td>10.0</td>
<td>12.0</td>
<td>14.5</td>
<td>18.3</td>
<td>20.1</td>
<td>23.5</td>
<td>25.3</td>
</tr>
<tr>
<td>伸び</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>△</td>
</tr>
<tr>
<td>耐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>二次付着性</td>
<td>△</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>べたつき</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

上記検討結果より、二次付着性を改善する上では、濁度が好適な範囲に含まれる場合であっても、腮水性ポリマーが10重量%以上であることが好ましい。しかし、腮水性ポリマーが35重量%を越えると、べたつき感、伸びの悪さが発生することがあり、特に好ましくは30重量%までである。
粉体配合量
次に、本発明者らは粉体の配合量について検討を行った。組成及び結果を表27に示す。

表 - 27

<table>
<thead>
<tr>
<th></th>
<th>試験例</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5-35</td>
<td>5-36</td>
<td>5-37</td>
<td>5-38</td>
<td>5-39</td>
<td>5-40</td>
</tr>
<tr>
<td>揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オクタメチルシクロトリシロキサン</td>
<td>34.8</td>
<td>34.7</td>
<td>33.8</td>
<td>28.8</td>
<td>25.8</td>
<td>23.8</td>
</tr>
<tr>
<td>非揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>流動パラフィン</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>ヒマシ油</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>ポリマー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリコン樹脂A</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>粉体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリカ</td>
<td>0.0</td>
<td>0.1</td>
<td>1.0</td>
<td>5.0</td>
<td>8.0</td>
<td>10.0</td>
</tr>
<tr>
<td>顔料</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>ワックス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セレスシンワックス</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>濃度</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>伸び</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>膨</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>二次付着性</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>△</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>べたつき</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>△</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

上記結果より、べたつき感を改善する上では、シリカの配合量が0.1重量%以上であることが好ましい。ただし、シリカの配合量が10重量%を越えると、のび等の使用感触が悪化し、シリカの配合量は、0.1〜10重量%、特に1〜8重量%であることが好ましい。なお、シリカの他に顔料その他粉体を配合する場合、シリカを含めたこれらの粉体の総量は、20重量%以下であることが望ましい。
(6) 撥水性ポリマーとワックスの組合せとの相関

また、本発明者らは、粉体を必須の構成要件としない場合にも撥水性ポリマーとワックスを所定の配合することにより、二次付着性および使用性の改善がはかれることが見出した。

すなわち、本発明者らは下記の組成の口紅を作成し、その使用感、二次付着性等を調べた。なお、以下の試験例においては、いずれも少量の界面活性剤を用いている。組成と結果を表-28に示す。

表-28

<table>
<thead>
<tr>
<th></th>
<th>試 験 例</th>
<th>6-1</th>
<th>6-2</th>
<th>6-3</th>
<th>6-4</th>
<th>6-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>非揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>流動パラフィン</td>
<td></td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>挥発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オクタメチルクロトリトリチオキサン</td>
<td></td>
<td>75</td>
<td>50</td>
<td>60</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>ポリマー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリコン樹脂A</td>
<td></td>
<td>-</td>
<td>25</td>
<td>-</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>ワックス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セレシンワックス</td>
<td></td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>粉体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリカ</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>顔料</td>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

伸び

二次付着性

べたつき

パサッキ

上記結果より明らかなように、油分と顔料のみで処方した口紅は、二次付着性、の改善が見られない（試験例6-1）。そこで、シリコン樹脂を配合した口紅を処方したところ、二次付着性のわずかな改善は見られたもののべたつき感が生じてしまう（試験例6-2）。一方、シリコン樹脂と同様に被膜形成の能力を有するワック
スを配合すると、べたつきはないがパサツキが生じ、二次付着性の改善も十分ではない（試験例6-3）。そこで、シリコン樹脂と共にワックスを配合した口紅を処方したところ、すべての観察評価に優れ、しかも二回付着性の改善された口紅であることが判明した（試験例6-4）。さらにこれにシリカを配合した口紅は、より二次付着性が改善された優れた口紅となることが示唆される（試験例6-5）。

撥水性ポリマーとワックスの配合比

次に本発明者らは、撥水性ポリマーとワックスの配合比について検討した。組成と結果を表-29に示す。

表-29

<table>
<thead>
<tr>
<th></th>
<th>試験例</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6-6</td>
<td>6-7</td>
<td>6-8</td>
<td>6-9</td>
<td>6-10</td>
<td>6-11</td>
</tr>
<tr>
<td>非揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>流動パラフィン</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>挥発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オリルメチルトリクロリントリシロキサン</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>ポリマー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリコン樹脂A</td>
<td>35</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>ワックス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セレシンワックス</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td>21</td>
<td>25</td>
</tr>
<tr>
<td>粉体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>顔料</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>シリコン樹脂/ワックス</td>
<td>7/1</td>
<td>10/3</td>
<td>25/13</td>
<td>20/17</td>
<td>5/7</td>
<td>2’5</td>
</tr>
<tr>
<td>伸び</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>脆</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>二次付着性</td>
<td>△</td>
<td>○</td>
<td>○○</td>
<td>○○</td>
<td>○○</td>
<td>○○</td>
</tr>
<tr>
<td>べたつき</td>
<td>△</td>
<td>○</td>
<td>○○</td>
<td>○○</td>
<td>○○</td>
<td>○○</td>
</tr>
<tr>
<td>パサツキ</td>
<td>○</td>
<td>○</td>
<td>○○</td>
<td>○○</td>
<td>○○</td>
<td>△</td>
</tr>
</tbody>
</table>

上記検討結果より明らかのように、シリコン樹脂が多いと二次付着性およびべ
たつきの改善が不十分である。一方、ワックスの配合量が多くなると、パサッキが生じる。したがって、撥水性ポリマーとワックスの配合比が、10 / 3 ～ 5 / 7 であることが好ましい。

さらに本発明者らは、各有効成分の配合量の検討を行った。

撥水性ポリマーの配合量

まず、本発明者らは撥水性ポリマーの配合量について検討を行った。結果を表 - 30 に示す。

<table>
<thead>
<tr>
<th>試験例</th>
<th>6-12</th>
<th>6-13</th>
<th>6-14</th>
<th>6-15</th>
<th>6-16</th>
<th>6-17</th>
<th>6-18</th>
<th>6-19</th>
</tr>
</thead>
<tbody>
<tr>
<td>非揮発性油分</td>
<td>流動パラフィン</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>挥発性油分</td>
<td>オクタメチルシクロヘキサン</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ポリマー</td>
<td>シリコン樹脂 A</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>ワックス</td>
<td>セレシンワックス</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>粉体</td>
<td>顔料</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>伸び</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>性</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>二次付着性</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>べたつき</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>パサッキ</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

上記検討結果より、撥水性ポリマーが10重量％未満では、二次付着性の改善が不十分であり、パサッキを生じる場合がある。従って、二次付着性を改善するためには、撥水性ポリマーが10重量％以上、特に15重量％以上であることが
好ましい。ただし、撥水性ポリマーが35重量%を超えると、べたつき感が発生することがあり、二次着性の改善も不十分となるため、特に好ましくは、30重量%までである。

ワックスの配合量

次に、本発明者らはワックスの配合量について検討を行った。組成と結果を表-31に示す。

表-31

<table>
<thead>
<tr>
<th></th>
<th>試験例</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6-20</td>
<td>6-21</td>
<td>6-22</td>
<td>6-23</td>
<td>6-24</td>
<td>6-25</td>
</tr>
<tr>
<td></td>
<td>6-26</td>
<td>6-27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>非揮発性油分</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>流動パラフィン</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>振発性油分</td>
<td>47</td>
<td>45</td>
<td>42</td>
<td>40</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>オクタメチルシクロテトラシロキサン</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>ポリマー</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>シリコン樹脂A</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>ワックス</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>セレシンワックス</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>粉体</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>顔料</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>伸び</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>動</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>二次付着性</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>べたつき</td>
<td>△</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>パサッキ</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>△</td>
</tr>
</tbody>
</table>

上記検討結果より、二次付着性を改善する上では、ワックスが5重量%以上、特に8重量%以上であることが好ましい。ただし、ワックスが25重量%を越えると、パサッキが生じ、二次付着性の改善も十分でないため、特に好ましくは、20重量%までである。
粉体の配合量

次に本発明者らは、粉体の配合量について検討した。組成と結果を表-32に示す。

表-32

<table>
<thead>
<tr>
<th></th>
<th>試験例</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6-28</td>
<td>6-29</td>
<td>6-30</td>
<td>6-31</td>
<td>6-32</td>
<td>6-33</td>
</tr>
<tr>
<td>半流動性成分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>流動パラフィン</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>振発性成分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オクタメチルシクロテトラシロキサン</td>
<td>47</td>
<td>45</td>
<td>42</td>
<td>40</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>ポリマー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリコン樹脂A</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>ワックス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セレシンワックス</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>粉体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリカ</td>
<td>0</td>
<td>0.5</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>顏料</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>伸び</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>質</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>二次付着性</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>べたつき</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>パサツキ</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>△</td>
</tr>
</tbody>
</table>

上記検討結果より、シリカを配合することにより、口紅の艶が増し、特にシリカを1重量％以上配合すると、二次付着性の改善も強固なものとなる。ただし、シリカの配合量が10重量％を越えると、伸び等の使用感が悪くなり、艶も劣化する場合がある。したがって、艶を維持しつつも二次付着性の改善をさらに強固なものとするためには、シリカの配合量が1〜10重量％以上、特に1〜8重量％であることが好ましい。
（7）水の配合との相関

前記検討を行うことで、本発明者らは、水を配合することにより、使用感が向上され、しかも二次付着性の改善された口紅用組成物を得ることができるのを見出した。なお、以下の試験例においては、いずれも少量の界面活性剤を用いている。組成及び結果を表-33に示す。

表-33

<table>
<thead>
<tr>
<th>試験例</th>
<th>7-1</th>
<th>7-2</th>
<th>7-3</th>
<th>7-4</th>
<th>7-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>非揮発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>グリセリン</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>ヒマシ油</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>挥発性油分</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>メチルシクロヘキサン</td>
<td>35</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>ポリマー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリコン樹脂A</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>粉体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シリカ</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>顔料</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ウックス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>セレシンウックス</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>乳化剤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ポリエーテル醚性ポリオキシエチルシリコン</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>合成ヘクライド</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>水</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>天然水A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>イオン交換水</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>水道水</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

伸び
〇〇〇〇〇
湿度
△〇〇〇〇〇〇
二次付着性
△△△△△△△
うるおい感
△△〇〇〇〇〇

なお、合成ヘクライドとしては、商標名ラボナイトX LGとして英国ラボルテ
社から提供されるものを用いた。また、天然水Aとしては富士山麓で採水されたもの、水道水は横浜市の上水道より供給されるもの、イオン交換水は横浜市の上水道より供給される水をイオン交換したものを使用した。

上記結果より明らかのように、水を配合しない組成物においては、うるおい感が低くなる。一方、水を配合することにより、艶が改善され、さらに、天然水を配合することにより、艶、うるおい感ともに優れた口紅用組成物を得ることができる。ただし、水は二次付着性を改善するものではないため、二次付着性を改善することを目的として配合したシリカを除いてしまうと、艶、うるおい感は残るものの、本発明の目的である二次付着性の改善は図ることができない。

従って、各二次付着性の改善を図る組成に、水を加えることにより、二次付着性が改善され、しかも艶、うるおい感に優れる口紅用組成物を得ることが可能であることが示唆される。

以下、本発明の好適な配合例を示す。なお、いずれも二次付着性が改善され、べたつきも生じなかった。また、配合量は特に示さない限り重量%で示す。

<table>
<thead>
<tr>
<th>配合例1</th>
<th>1</th>
<th>5</th>
<th>0 重量%</th>
</tr>
</thead>
<tbody>
<tr>
<td>セレシン</td>
<td>1</td>
<td>5</td>
<td>0 重量%</td>
</tr>
<tr>
<td>カルナバロウ</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>グリセリルジイソステアレート</td>
<td>1</td>
<td>5</td>
<td>0 重量%</td>
</tr>
<tr>
<td>ラノリン</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>マカデミアナッツ油</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ジイソステアリルマレート</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>トリメチロールプロパントリ2エチルヘキサノエート</td>
<td>1</td>
<td>5</td>
<td>0 重量%</td>
</tr>
<tr>
<td>グリセリルトリイソステアレート</td>
<td>1</td>
<td>5</td>
<td>0 重量%</td>
</tr>
</tbody>
</table>

約3000の分子量を有し、かつ

\[(\text{CH}_3)_2\text{SiO}_{1.2}:\text{SiO}_{2}\text{単位} = 0.8:1\]

からなる平均式（\(\text{CH}_3\)）1.33SiO1.34で表される
シリコン樹脂
オクタメチルシクロトランスジロキサン
シリカ（比表面積 200 m²/g）
顔料（比表面積 2 m²/g）
香料

合計：100.0 重量％

組成物1g中の総表面積：10.1 m²
評価：伸び 滑り 二次付着性 べたつき

配合例1-2 ペースト状口紅

ワセリン 10.0 重量％
スクワラン 15.0
ヒマシ油 3.0
グリセリルトリイソステアレート 2.0
約5000の分子量を有し、かつ
（CH₃）₃SiO₁/₂ SiO₂単位 = 0.8:1
からなる平均式（CH₃）₁.₃₃SiO₁.₃₄で表される

シリコン樹脂 25.0
デカメチルシクロペンタシロキサン 39.5
シリカ（比表面積 200 m²/g） 2.5
顔料（比表面積 2 m²/g） 3.0
香料 適量

合計：100.0 重量％

組成物1g中の総表面積：5.06 m²
評価：伸び 滑り 二次付着性 べたつき

配合例1-3 乳化型スティック状口紅
<table>
<thead>
<tr>
<th>成分</th>
<th>重量 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>パラフィンワックス</td>
<td>10.0</td>
</tr>
<tr>
<td>マイクロクリスタリンワックス</td>
<td>4.0</td>
</tr>
<tr>
<td>グリセリンジイソステアレート</td>
<td>7.0</td>
</tr>
<tr>
<td>マカデミアナッツ油</td>
<td>3.0</td>
</tr>
<tr>
<td>ポリブテン</td>
<td>3.0</td>
</tr>
<tr>
<td>ジイソステアリルマレート</td>
<td>4.0</td>
</tr>
<tr>
<td>約8000の分子量を有し、かつ</td>
<td></td>
</tr>
<tr>
<td>(CH₃)₃SiO₁₋₂ : SiO₂単位 = 0.8 : 1</td>
<td></td>
</tr>
<tr>
<td>からなる平均式 (CH₃)₃Si₃SiO₃₃で表される</td>
<td></td>
</tr>
<tr>
<td>シリコン樹脂</td>
<td>25.0</td>
</tr>
<tr>
<td>デカメチルシクロペンタシロキサン</td>
<td>10.5</td>
</tr>
<tr>
<td>オクタメチルシクロテトラシロキサン</td>
<td>5.0</td>
</tr>
<tr>
<td>ジメチルポリシロキサン（粘度6cP）</td>
<td>5.0</td>
</tr>
<tr>
<td>シリカ（比表面積20m²/g）</td>
<td>10.0</td>
</tr>
<tr>
<td>ジイソステアリン酸ポリグリセリル</td>
<td>1.0</td>
</tr>
<tr>
<td>ポリオキシエチレン＝メチルポリシロキサン共重合体</td>
<td>2.0</td>
</tr>
<tr>
<td>イオン交換水</td>
<td>5.0</td>
</tr>
<tr>
<td>グリセリン</td>
<td>1.0</td>
</tr>
<tr>
<td>頻料（比表面積2m²/g）</td>
<td>4.5</td>
</tr>
<tr>
<td>香料</td>
<td>適量</td>
</tr>
</tbody>
</table>

合計：100.0 重量 %

組成物1g中の総表面積：2.09m²
評価：伸び 0, 酸 0, 二次付着性 2, べたつき 2

配合例1-4 スティック状口紅
<table>
<thead>
<tr>
<th>成分</th>
<th>重量 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>ポリエチレンワックス</td>
<td>8.0</td>
</tr>
<tr>
<td>キャンデリラロウ</td>
<td>3.0</td>
</tr>
<tr>
<td>スクワラン</td>
<td>8.0</td>
</tr>
</tbody>
</table>
マカデミアナッツ油脂肪酸エステル 2.5
グリセリルトリエチルヘキサンオエート 4.5
約6000の分子量を有し、かつ
（CH₃）₃SiO₁·₇：SiO₂単位 = 0.8：1
からなる平均式（CH₃）₁₃₃SiO₁₃₃で表される
シリコン樹脂 20.0
デカメチルシクロペンタシクロキサン 42.0
硫酸バリウム（比表面積18.9m²／g） 5.0
シリカ（比表面積200m²／g） 2.0
顔料（比表面積2m²／g） 5.0
香料 適量

合計 100.0 重量％

構成物1g中の総表面積 5.045m²
評価：伸び（），乾（），二次付着性（），べたつき（）

2. シリカの配合により規定したものの配合例

配合例2-1 スティック状口紅

グリセリルトリエチルヘキサノエート 10.0 重量％
セレシン 8.0
カルナバリウム 2.0
マイカ 10.0
シリカ 5.0
ジメチルポリシクロキサンメチル（ポリオキシエチレン）共重合体 2.0
オクタメチルシクロテトラシクロキサン 38.0
約3000の分子量を有し、かつ
（CH₃）₃SiO₁·₇：SiO₂単位 = 0.8：1
からなる平均式（CH₃）₁₃₃SiO₁₃₃で表される
<table>
<thead>
<tr>
<th>材料</th>
<th>重量 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>シリコン樹脂</td>
<td>20.0</td>
</tr>
<tr>
<td>顔料</td>
<td>5.0</td>
</tr>
<tr>
<td>酸化防止剤</td>
<td>適量</td>
</tr>
<tr>
<td>紫外線吸収剤</td>
<td>適量</td>
</tr>
<tr>
<td>香料</td>
<td>適量</td>
</tr>
</tbody>
</table>

合計：100.0 重量%

評価：伸び ◎, 色 ◎, 二次付着性 ◎, べたつき ◎

配合例 2 - 2 スティック状口紅

<table>
<thead>
<tr>
<th>材料</th>
<th>重量 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>グリセリルトリ2エチルヘキサノエート</td>
<td>5.0</td>
</tr>
<tr>
<td>ジメチルポリシロキサン（粘度20cP）</td>
<td>5.0</td>
</tr>
<tr>
<td>セレシン</td>
<td>5.0</td>
</tr>
<tr>
<td>カルナバロウ</td>
<td>3.0</td>
</tr>
<tr>
<td>ポリエチレンワックス</td>
<td>3.0</td>
</tr>
<tr>
<td>マイヤ</td>
<td>18.0</td>
</tr>
<tr>
<td>シリカ</td>
<td>2.0</td>
</tr>
<tr>
<td>デカメチルシクロペンタシロキサン</td>
<td>36.0</td>
</tr>
</tbody>
</table>

約5,000分子量を有し、かつ

\[(\text{C}_3\text{H}_7)_3\text{SiO}_{1.5}:\text{SiO}_2\text{単位} = 0.5:1\]

からなる平均式 \((\text{C}_3\text{H}_7)_1.5\text{SiO}_{1.5}\)で表される

<table>
<thead>
<tr>
<th>材料</th>
<th>重量 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>シリコン樹脂</td>
<td>15.0</td>
</tr>
<tr>
<td>顔料</td>
<td>5.0</td>
</tr>
<tr>
<td>パール剤</td>
<td>3.0</td>
</tr>
<tr>
<td>酸化防止剤</td>
<td>適量</td>
</tr>
<tr>
<td>紫外線吸収剤</td>
<td>適量</td>
</tr>
<tr>
<td>香料</td>
<td>適量</td>
</tr>
</tbody>
</table>

合計：100.0 重量%
評価：伸び ☎, 餅 ☎, 二次付着性 ☎, べたつき ☎

配合例2-3 スティック状口紅

流動パラフィン 5.0 重量%
ジメチルポリシロキサン（粘度 20 c s） 5.0
カルナバロウ 2.0
ポリエチレンワックス 8.0
マイカ 7.0
シリカ 8.0
ジメチルポリシロキサンメチル（ポリオキシエチレン）共重合体 1.0
オクタメチルシクロテトラシロキサン 38.0
約 3,000 の分子量を有し、かつ

（CH₃）₃SiO₁/₂ : SiO₂单位 = 0.8 : 1

からなる平均式 (CH₃)₁.₄₅SiO₁.₄₄で表される
シリコン樹脂 18.0
顔料 3.0
パール剤 5.0
酸化防止剤 適量
紫外線吸収剤 適量
香料 適量

合計：100.0 重量%

評価：伸び ☎, 餅 ☎, 二次付着性 ☎, べたつき ☎

配合例2-4 スティック状口紅

グリセリルトリ2エチルヘキサノエート 5.0 重量%
ジメチルポリシロキサン（粘度 20 c s） 5.0
ヒマシ油 3.0
セレシン 4.0
カリナバロウ 4.0
ポリエチレンワックス 4.0
マイカ 10.0
シリカ 2.0
ジメチルポリシロキサンメチル(ポリオキシエチレン)共重合体 1.0
オクタメチルシクロテトラシロキサン 20.0
テタメチルシクロペンタシロキサン 19.0
約5000の分子量を有し、かつ
（CH₃）₃SiO₁·₂·SiO₂単位 = 0.5:1
からなる平均式（CH₃）₃·₅SiO₁·₅で表される
シリコン樹脂 30.0
顔料 5.0
パール剤 3.0
酸化防止剤 適量
紫外線吸収剤 適量
香料 適量

合計：100.0重量％

評価：伸び ☺, 硬 ☺, 二次付着性 ☻, べたつき ☻

3. 雲母チタンの配合により規定したものの配合例

配合例3-1 スティック択口紅

セレシン 15.0重量％
カリナバロウ 2.0
グリセリルジソステアレート 15.0
ラノリン 0.2
マカデミアナッツ油 0.1
ジイソステリアルマレート 3.0
トリメチルールプロパントリ２エチルヘキサノエート 1.5
グリセリルトリイソステアレート 1.5
約３０００の分子量を有し、かつ
（C₈H₈)₃S_iO₁.₇₂: SiO₂単位 = 0.8:1
からなる平均式（C₈H₈)₁.₃₃S_iO₁.₃₄で表される
シリコン樹脂 30.0
オクタメチルシクロテトラシロキサン 23.6
赤色１０４号－１ 1.6
二酸化チタン 1.5
雲母チタン（雲母：TiO₂ = 55:45） 5.0
香料 適量

合計：100.0 重量％

評価：伸び◎、艶○、二次付着性◎、べたつき○。

配合例３－２ ベースト状口紅
ワセリン 10.0 重量％
スクワラン 15.0
ヒマシ油 3.0
グリセリルトリイソステアレート 2.0
約５000の分子量を有し、かつ
（C₈H₈)₃S_iO₁.₇₂: SiO₂単位 = 0.8:1
からなる平均式（C₈H₈)₁.₃₃S_iO₁.₃₄で表される
シリコン樹脂 25.0
デカメチルシクロペンタシロキサン 37.4
赤色２０１号 0.8
ベンガラ 0.8
カーミン被覆雲母チタン
（雲母：TiO₂：カーミン = 60:37:3） 6.0
香料

配合例 3 - 3 乳化型スティック状口紅

<table>
<thead>
<tr>
<th>材料</th>
<th>量</th>
</tr>
</thead>
<tbody>
<tr>
<td>パラフィンワックス</td>
<td>10.0</td>
</tr>
<tr>
<td>マイクロクリスタリンワックス</td>
<td>4.0</td>
</tr>
<tr>
<td>グリセリルジイソステアレート</td>
<td>7.0</td>
</tr>
<tr>
<td>マカデミアナッツ油</td>
<td>3.0</td>
</tr>
<tr>
<td>ポリブテン</td>
<td>3.0</td>
</tr>
<tr>
<td>ジイソステアリルマレート</td>
<td>4.0</td>
</tr>
</tbody>
</table>

合計：100.0 重量％

評価：伸び 〇 、 色 〇 、 二次付着性 〇 、 べたつき 〇 、

(十八烷基)₃Si(二酸化)₂O₇ : SiO₂ 単位 = 0.8 : 1

からなる平均式 (十八烷基)₃₀Si(二酸化)₇₀O₁₅₀で表される

シリコン樹脂 | 30.0 |
デカメチルシクロペンタシロキサン | 12.2 |
オクタメチルシクロペンタシロキサン | 7.0 |
ジメチルポリシロキサン（粘度6 c.s.） | 5.0 |
シリカ | 0.5 |
合成ケイ酸ナトリウム−マグネシウム | 1.0 |
ポリオキシエチレン−メチルポリシロキサン共重合体 | 2.0 |
イオン交換水 | 5.0 |
グリセリノール | 1.0 |
赤色202号 | 2.0 |
二酸化チタン | 0.3 |

ベンガラ被覆雲母チタン

(雲母：TiO₂：ベンガラ＝55 : 20 : 25) | 2.0 |
雲母チタン（雲母：TiO₂＝65 : 35） | 1.0 |
香料

合計：100.0重量％
評価：伸び○、乾○、二次付着性○、べたつき○。

4. 超微粒子と大径粒子により規定したものの配合例

配合例4-1 スティック状口紅

セレシン 15.0重量％
カルナパロウ 2.0
グリセリルジイソステアレート 15.0
ラノリン 0.2
マカデミアナッツ油 0.1
ジイソステアリルマレート 3.0
トリメチロールプロパントリ2エチルヘキサノエート 1.5
グリセリルトリイソステアレート 1.5

約3000の分子量を有し、かつ

（C₃H₇）₃SiO₁·₂₅SiO₂単位 = 0.8:1

からなる平均式（C₃H₇）₃₃SiO₁·₃₅で表される

シリコン樹脂 30.0
オクタメチルシクロテトラシクロキサン 21.7
シリカ（粒径0.02μm） 5.0
赤色202号（粒径0.933μm） 5.0
香料

合計：100.0重量％

粒径比（超微粒子／大径粒子）：0.021
評価：伸び○、乾○、二次付着性○、べたつき○。
配合例4－2 スティック状口紅

セレシ ニン 15.0 重量％
カルナバロウ 2.0
グリセリルジイソステアレート 15.0
ラノリン 0.2
マカデミアナッツ油 0.1
ジイソステアリルマレート 3.0
トリメチロールプロパントリ2エチルヘキサソエート 1.5
グリセリルトリイソステアレート 1.5
約3000の分子量を有し、かつ
（CH₃）₃Sio₁/₂：SiO₂単位 = 0.8:1
からなる平均式（CH₃）₃Sio₁/₃で表される
シリコン樹脂 30.0
オクタメチルシクロトトラシロキサン 21.7
シリカ（粒径0.03μm） 5.0
雲母チタン（粒径6.9μm） 5.0
香料 適量

合計：100.0 重量％

粒径比（超微粒子／大径粒子）：0.0043
評価：伸び○，艶○，二次付着性○，べたつき○

配合例4－3 スティック状口紅

セレシニン 15.0 重量％
カルナバロウ 2.0
グリセリルジイソステアレート 15.0
ラノリン 0.2
マカデミアナッツ油 0.1
ジイソステアリルマレート 3.0
トリメチロールプロパントリ2エチルヘキサノエート 1.5
グリセリルトリイソステアレート 1.5
約3000の分子量を有し、かつ
（CH₃）₃SiO₇/₂ : SiO₂単位 = 0.8 : 1
からなる平均式（CH₃）₃₃SiO₁₃₄で表される
シリコン樹脂 30.0
オクタメチルシクロテトラシクロキサン 21.7
微粒子硫酸バリウム（粒径0.08μm） 5.0
雲母チタン（粒径6.9μm） 5.0
香料 適量

合計：100.0 重量％

粒径比（超微粒子/大径粒子）：0.012
評価：伸び○、弾○、二次付着性○、べたつき○

配合例4-4 スティック状口紅
ポリエチレンワックス 8.0 重量％
キャンデリラロウ 3.0
スクワラン 8.0
マカデミアナッツ油脂肪酸エステル 2.5
グリセリルトリ2エチルヘキサノエート 4.5
約6000の分子量を有し、かつ
（CH₃）₃SiO₇/₂ : SiO₂単位 = 0.8 : 1
からなる平均式（CH₃）₃₃SiO₁₃₄で表される
シリコン樹脂 20.0
デカメチルシクロベンタシクロキサン 44.0
シリカ（粒径0.02μm） 5.0
赤色226号（粒径0.407μm） 5.0
香料 適量
粒径比（超微粒子／大径粒子）：0.049
評価：伸び◎、乾○、二次付着性◎、べたつき◎

配合例4-5 乳化型スティック状口紅

パラフィンワックス 10.0重量％
マイクロクリスタリンワックス 4.0
グリセリルジイソステアレート 7.0
マカデミアナッツ油 3.0
ポリブテン 3.0
ジイソステアリルマレート 4.0

約8000の分子量を有し、かつ
(C₃H₇)₃SiO₁₋₂: SiO₂単位 = 0.8:1
からなる平均式(C₃H₇)₃₃SiO₃₃で表される
シリコン樹脂 30.0
デカメチルシクロペンタシクロキサン 10.5
オクタメチルシクロテトラシクロキサン 7.0
ジメチルポリシクロキサン（粘度6cS） 5.0
シリカ（粒径0.02μm） 3.0
合成ケイ酸ナトリウム－マグネシウム 1.0
ポリオキシエチレン－メチルポリシクロキサン共重合体 1.0
イオン交換水 5.0
グリセリン 1.0
赤色酸化鉄（粒径0.602μm） 4.5
香料 適量

合計：100.0重量％
粒径比（超微粒子／大径粒子）：0.033
評価：伸び ◎，艶 ○，二次付着性 ◎，べたつき ◎

配合例 4 - 6 ベースト状口紅

ワセリン 10.0 重量％
スクワラン 15.0
ヒマシ油 3.0
グリセリルジイソステアレート 2.0
約5000の分子量を有し、かつ
(C₃H₆)₃SiO₁·₂: SiO₂単位 = 0.8:1
からなる平均式 (C₃H₆)₁·₃₃SiO₁·₃₄で表される
シリコン樹脂 25.0
デカメチルジクロロペンタシクロキサン 39.5
シリカ（粒径 0.02 µm） 2.5
赤色202号（粒径 0.933 µm） 3.0
香料 適量

合計：100.0 重量％

粒径比（超微粒子/大径粒子）：0.021
評価：伸び ◎，艶 ○，二次付着性 ◎，べたつき ◎

5. 損水性ポリマーと非揮発性油分の濃度により規定したもの配合例

配合例 5 - 1 スティック状口紅

セレシン 15.0 重量％
カルナバロウ 2.0
グリセリルジイソステアレート 15.0
ラノリン 0.2
マカデミアナッツ油 0.1
ジイソステアリルマレート 3.0
トリメチルループパントリトリエチルヘキサノエート 1.5
グリセリルトリイソステアレート 1.5
約3000の分子量を有し、かつ
（CH₃）₃SiO₁₋₂ : SiO₂単位 = 0.8 : 1
からなる平均式（CH₃）₂₃₃SiO₁₃₄で表される
シリコン樹脂 30.0
オクタメチルシクロテトラシロキサン 21.7
シリカ 5.0
顔料 5.0
香料 適量

合計：100.0 重量％

著度：18.0
評価：伸び ☎️, 飽 ☎️, 二次付着性 ☎️, べたつき ☎️.

配合例5-2 ペースト状口紅
ワセリン 10.0 重量％
スクワラン 15.0
ヒマジ油 3.0
グリセリルトリイソステアレート 2.0
約5000の分子量を有し、かつ
（CH₃）₃SiO₁₋₂ : SiO₂単位 = 0.8 : 1
からなる平均式（CH₃）₂₃₃SiO₁₃₄で表される
シリコン樹脂 25.0
デカメチルシクロペンタシロキサン 39.5
シリカ 2.5
顔料 3.0
香料 適量
配合例 5-3 スティック状口紅

ポリエチレンワックス 8.0 重量％
キャンデリラロウ 3.0
スクワラン 8.0
マカデミアナッツ油脂肪酸エステル 2.5
グリセリルトリエチルヘキシノエート 4.5

約 6000 の分子量を有し、かつ

\((CH_3)_cSiO_{1.2}:SiO_{2}\) 単位 = 0.8:1

からなる平均式 \((CH_3)_{1.33}SiO_{1.34}\) で表される

シリコン樹脂 20.0
デカメルシクロペンタシクロキサン 44.0
微粒子硫酸バリウム 5.0
顔料 5.0
香料 適量

合計：100.0 重量％

濁度：14.1
評価：伸び iado、艶 ○、二次付着性 iado、べたつき ○、

配合例 5-4 乳化型スティック状口紅

パラフィンワックス 10.0 重量％
マイクロクリスタリンワックス 4.0
グリセリルジイソステアレート 7.0
マカデミアナッツ油 3.0
ポリプテン 3.0
ジイソステアリルマレート 4.0
約8000の分子量を有し、かつ
（C\(_3\)H\(_8\))\(_3\)SiO\(_1.2\) : SiO\(_2\)単位 = 0.8 : 1
からなる平均式（C\(_3\)H\(_8\))\(_1.5\)SiO\(_1.5\)で表される
シリコン樹脂 30.0
デカメチルシクロペンタシクロキサン 10.5
オクタメチルシクロペンタシクロキサン 7.0
ジメチルポリシクロキサン（粘度6cS） 5.0
シリカ 3.0
合成ケイ酸ナトリウム—マグネシウム 1.0
ポリオキシエチレン—メチルポリシクロキサン共重合体 2.0
イオン交換水 5.0
グリセリン 1.0
顔料 4.5
香料 適量

合計：100.0重量％

濁度：21.5
評価：伸び○、乾○、二次着性○、べたつき○

6. 搾水性ポリマーとワックスの組合せにより規定したものの配合例

配合例6-1 スティック状口紅

セレシンワックス 15.0重量％
カルナバロウ 2.0
グリセリルジイソステアレート 15.0
ラノリン 0.2
マカデミアナッツ油 0.1
ジイソステアリルマレート 3.0
トリメチルールプロパントリリ2エチルヘキサンオエート 1.5

グリセリリトリイソステアレート 1.5

約3000の分子量を有し、かつ

\((\text{CH}_3)_3\text{SiO}_{1.5} : \text{SiO}_2\) 単位 = 0.8:1

からなる平均式 \((\text{CH}_3)_{1.33}\text{SiO}_{1.34}\) で表される

シリコン樹脂 30.0

オクタメチルシクロテトラシロキサン 21.7

シリカ 5.0

顔料 5.0

香料 適量

合計：100.0 重量％

評価：伸び 〇，乾 〇，二次付着性 〇，べたつき 〇，パサツキ 〇

配合例6-2 スティック状口紅

ポリエチレンワックス 8.0 重量％

キャンドリラロウ 3.0

スクワラン 8.0

マカデミアナッツ油脂肪酸エステル 2.5

グリセリリトリリ2エチルヘキサンオエート 4.5

約6000の分子量を有し、かつ

\((\text{CH}_3)_3\text{SiO}_{1.5} : \text{SiO}_2\) 単位 = 0.8:1

からなる平均式 \((\text{CH}_3)_{1.33}\text{SiO}_{1.34}\) で表される

シリコン樹脂 20.0

デカメチルシクロペンタシロキサン 44.0

シリカ 5.0

顔料 5.0

香料 適量
配合例 6-3 乳化型スティック状口紅

パラフィンワックス 10.0 重量％
マイクロクリスタリンワックス 4.0
グリセリルジイソステアレート 7.0
マカデミアナッツ油 3.0
ポリプロlene 3.0
ジイソステアリルマレート 4.0

約8000の分子量を有し、かつ
(\(\text{CH}_3\))_5S\text{iO}_{1.5}S\text{iO}_2 \text{単位} = 0.8:1
からなる平均式 (\(\text{CH}_3\))_3S\text{iO}_{1.3}で表される
シリコン樹脂 30.0
テカメルシクロペンテンシリコン 10.5
オクタメルシクロトランスシリコン 7.0
ジメチルポリシロキサン（粘度6 cS） 5.0
シリカ 3.0
合成ケイ酸ナトリウム－マグネシウム 1.0
ポリオキシエチレン－メチルポリシロキサン共重合体 2.0
イオン交換水 5.0
グリセリン 1.0
顔料 5.0
香料 適量

合計：100.0 重量％
評価：伸び 伸 乾 二次付着性 べたつき べたつき パサッキ
配合例 6-4 スティック状口紅

<table>
<thead>
<tr>
<th>成分名</th>
<th>重量 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>セレシンワックス</td>
<td>15.0</td>
</tr>
<tr>
<td>カルナパロウ</td>
<td>2.0</td>
</tr>
<tr>
<td>グリセリルジイソステアレート</td>
<td>15.0</td>
</tr>
<tr>
<td>ラノリン</td>
<td>0.2</td>
</tr>
<tr>
<td>マカデミアナッツ油</td>
<td>0.1</td>
</tr>
<tr>
<td>ジイソステアリルマレート</td>
<td>3.0</td>
</tr>
<tr>
<td>トリメチロールプロパントリエチルヘキサノエート</td>
<td>1.5</td>
</tr>
<tr>
<td>グリセリルトリイソステアレート</td>
<td>1.5</td>
</tr>
</tbody>
</table>

約 3000 の分子量を有し、かつ

\[(\text{C}_3\text{H}_5)_{35}\text{SiO}_{1/2}: \text{SiO}_2 \text{単位} = 0.8:1\]

からなる平均式 \((\text{C}_3\text{H}_5)_{35}\text{SiO}_{1/4}\) で表される

<table>
<thead>
<tr>
<th>成分名</th>
<th>重量</th>
</tr>
</thead>
<tbody>
<tr>
<td>シリコン樹脂</td>
<td>30.0</td>
</tr>
<tr>
<td>オクタメチルシクロテトラシロキサン</td>
<td>21.7</td>
</tr>
<tr>
<td>シリカ</td>
<td>5.0</td>
</tr>
<tr>
<td>雲母チタン</td>
<td>3.0</td>
</tr>
<tr>
<td>風料</td>
<td>2.0</td>
</tr>
<tr>
<td>香料</td>
<td>適量</td>
</tr>
</tbody>
</table>

合計：100.0 重量 %

評価：伸び サ、艶 サ、二次付着性 サ、べたつき サ、パサッキ サ

7. 水の配合により規定したものの配合例

配合例 7-1 スティック状口紅

<table>
<thead>
<tr>
<th>成分名</th>
<th>重量 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>グリセリルトリエチルヘキサノエート</td>
<td>10.0</td>
</tr>
<tr>
<td>セレシン</td>
<td>8.0</td>
</tr>
<tr>
<td>カルナパロウ</td>
<td>2.0</td>
</tr>
<tr>
<td>マイカ</td>
<td>10.0</td>
</tr>
</tbody>
</table>
シリカ
オクタメチルシクロテトラシロキサン
ポリエーテル変性ジメチルポリシロキサン（粘度220c/s）
ビーガムHV（R.T.Vanerbuilt社製）
精製水
約5000の分子量を有し、かつ
（\(\text{CH}_3\)\text{SiO}_{1.5} : SiO_2単位 = 0.5 : 1
からなる平均式（\(\text{CH}_3\)\text{SiO}_{1.5}で表される
シリコン樹脂
顔料
酸化防止剤
紫外線吸収剤
香料

合計：100.0 重量％
評価：艶○、二次付着性○、うるおい感○，

配合例 7-2 スティック状口紅
グリセリルトリ2エチルヘキサンオエート
ジメチルポリシロキサン（粘度20c/s）
セレシンワックス
カルナバワックス
ポリエチレンワックス
マイカ
シリカ
デカメチルシクロペンタシロキサン
約5000の分子量を有し、かつ
（\(\text{CH}_3\)\text{SiO}_{1.5} : SiO_2単位 = 0.5 : 1
からなる平均式（\(\text{CH}_3\)\text{SiO}_{1.5}で表される
シリコン樹脂
モンモリロナイト（国峰鉱化K K製国ピアG - 4）
天然水（採水地：谷川岳）
グリセリン
顔料
パール剤
酸化防止剤
紫外線吸収剤
香料

合計：100.0重量％

評価：艶○、二次付着性○、うるおい感○。

配合例7-3 スティック状口紅

流動パラフィン 5.0重量％
ジメチルポリシロキサン（粘度200cS） 5.0
カルナパロウ 2.0
ポリエチレンワックス 8.0
マイカ 7.0
シリカ 8.0
ジメチルポリシロキサンメチル（ポリオキシエチレリン）共重合体 1.0
オクタメチルシクロテトラシロキサン 34.9

約3000の分子量を有し、かつ

（CH₃₂）₃SiO₁₋₂SiO₂単位 = 0.8：1
からなる平均式（CH₃₂）₃₃SiO₁₈SiO₄で表される

シリコン樹脂 18.0
グリセロールモノオレート 3.0
天然水（採水地：南アルプス） 0.1
顔料 3.0
パール剤
酸化防止剤
紫外線吸収剤
香料

合計：100.0 重量％
評価：艶○、二次付着性○、うるおい感○。

配合例7-4 スティック状口紅
グリセリルトリ2エチルヘキサノエート 5.0
ジメチルポリシロキサン（粘度200cs） 3.0
ヒマシ油 3.0
セレシオン 4.0
カルナバロウ 4.0
ポリエチレンワックス 4.0
マイカ 10.0
シリカ 2.0
ジメチルポリシロキサンメチル(ポリオキシエチレン)共重合体 1.0
オクタメチルシクロテトラシロキサン 17.9
デカメチルシクロヘキサン 19.0

約3000の分子量を有し、かつ
（CH₃）₃SiO₁·₂·₃SiO₂単位 = 0.8:1
からなる平均式（CH₃）₃₃SiO₁₅₄で表される
シリコン樹脂 15.0
ポリエーテル変性ジメチルポリシロキサン（粘度2200cs） 1.0
合成ヘクライト（ラボナイトXLG：英国ラボルテ社製） 3.0
水 0.1
顔料 5.0
パール剤 3.0
酸化防止剤
紫外線吸収剤
香料

合計：100.0重量％

評価：艶○、二次付着性○、うるおい感○。
請求の範囲

1. 揮発性油分と、
前記揮発性油分に溶解する撥水性ポリマーと、
粉体と、
前記揮発性油分と相溶性を有する非揮発性油分と、
を含み、
組成物1g中に含まれる粉体の総表面積が1～25m²であることを特徴とする口紅用組成物。

2. 請求項1に記載の口紅用組成物において、
揮発性油分を10～60重量％、
撥水性ポリマーを5～35重量％、
粉体を1～25重量％、
非揮発性油分を5～40重量％
含むことを特徴とする口紅用組成物。

3. 請求項1に記載の口紅用組成物において、
揮発性油分を10～50重量％、
撥水性ポリマーを10～35重量％、
粉体を1～25重量％、
非揮発性油分を10～40重量％
含むことを特徴とする口紅用組成物。

4. 請求項1に記載の口紅用組成物において、粉体が揮発性油分の存在しない状態で、撥水性ポリマーに被覆されうるものであることを特徴とする口紅用組成物。

5. 請求項4に記載の口紅用組成物において、粉体の少なくとも一部がシリカであることを特徴とする口紅用組成物。
6. 請求項4又は5に記載の口紅用組成物において、
揮発性油分を20〜60重量%、
撥水性ポリマーを5〜20重量%、
シリカを1〜10重量%、
非揮発性油分を5〜30重量%、
含むことを特徴とする口紅用組成物。

7. 請求項1に記載の組成物において、粉体の少なくとも一部が雲母チタンであることを特徴とする口紅用組成物。

8. 請求項7に記載の口紅用組成物において、
揮発性油分を10〜50重量%、
撥水性ポリマーを10〜35重量%、
雲母チタンを1〜10重量%、
非揮発性油分を10〜40重量%、
含むことを特徴とする口紅用組成物。

9. 請求項7又は8に記載の口紅用組成物において、雲母チタン/撥水性ポリマーの配合量比が1/30〜1/3であることとき特徴とする口紅用組成物。

10. 請求項7又は8に記載の口紅用組成物において、雲母チタン/撥水性ポリマーの配合量比が1/10〜1/4であることを特徴とする口紅用組成物。

11. 請求項1に記載の口紅用組成物において、粉体として少なくとも大径粒子と超微粒子が存在し、
超微粒子は粒径が0.01〜0.1μmであり、
超微粒子の粒径と大径粒子の粒径の比が1:20〜1:500であることを特徴とする口紅用組成物。
12. 請求項11に記載の口紅用組成物において、
揮発性油分を10～50重量%、
撥水性ポリマーを10～35重量%、
粉体を2～20重量%、
非揮発性油分を10～40重量%、
含むことを特徴とする口紅用組成物。

13. 請求項11又は12に記載の口紅用組成物において、超微粒子と大径粒子の配合量比が1：19～10：1であることを特徴とする口紅用組成物。

14. 請求項11～13のいずれかに記載の口紅用組成物において、超微粒子が超微粒シリカであることを特徴とする口紅用組成物。

15. 挥発性油分と、
前記揮発性油分に溶解する撥水性ポリマーと、
粉体と、
前記揮発性油分と相溶性を有する非揮発性油分と、
を含み、
前記撥水性ポリマーと前記非揮発性油分が、それらの宮を混合した場合の潤度が9.0～25.5となるものより選択されることを特徴とする口紅用組成物。

16. 請求項15に記載の口紅用組成物において、
揮発性油分を10～50重量%、
撥水性ポリマーを10～35重量%、
非揮発性油分を10～40重量%、
含むことを特徴とする口紅用組成物。

17. 請求項15又は16に記載の口紅用組成物において、非揮発性油分とし
テ、撥水性ポリマーに対する可塑化力のある油分と、可塑化力のない油分とを用
いることにより濁度を調整することを特徴とする口紅用組成物。

18．請求項15～17のいずれかに記載の口紅用組成物において、粉体の少
なくとも一部がシリカであることを特徴とする口紅用組成物。

19．請求項18に記載の口紅用組成物において、シリカを0．1～10重量
%含むことを特徴とする口紅用組成物。

20．揮発性油分と、
前記揮発性油分に溶解する撥水性ポリマーと、
前記揮発性油分に分散するワックスと、
前記揮発性油分と相溶性を示す非揮発性油分と、
を含み、
前記撥水性ポリマーと前記ワックスの配合比が10/3～5/7であることを
特徴とする口紅用組成物。

21．請求項20に記載の口紅用組成物において、
揮発性油分を10～50重量％、
撥水性ポリマーを10～35重量％、
ワックスを5～25重量％、
非揮発性油分を10～40重量％、
含むことを特徴とする口紅用組成物。

22．請求項20又は21に記載の口紅用組成物において、さらに粉体を含む
ことを特徴とする口紅用組成物。

23．請求項22に記載の口紅用組成物において、粉体を1～20重量％含む
ことを特徴とする口紅用組成物。
24. 請求項22又は23に記載の団紅用組成物において、粉体の少なくとも一部がシリカであることを特徴とする団紅用組成物。

25. 請求項24に記載の団紅用組成物において、シリカを1〜10重量％含むことを特徴とする団紅用組成物。

26. 請求項1〜25のいずれかに記載の団紅用組成物において、さらに水を配合することを特徴とする団紅用組成物。

27. 請求項26に記載の団紅用組成物において、水を0.05〜5重量％含むことを特徴とする団紅用組成物。

28. 請求項26又は27に記載の団紅用組成物において、配合する水が天然水であることを特徴とする団紅用組成物。

29. 請求項1〜28のいずれかに記載の団紅用組成物において、揮発性油分がシリコン油、撥水性ポリマーがシリコン樹脂であることを特徴とする団紅用組成物。

30. 請求項1〜29のいずれかに記載の団紅用組成物において、撥水性ポリマーと非揮発性油分の重量比が1/2〜2/1であることを特徴とする団紅用組成物。
INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP95/01995

A. CLASSIFICATION OF SUBJECT MATTER

Int. C16 A61K7/025

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int. C16 A61K7/00, 7/025

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1926 - 1995
Kokai Jitsuyo Shinan Koho 1971 - 1995

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP, 63-183516, A (Shiseido Co., Ltd.), July 28, 1988 (28. 07. 88), Line 10, upper left column to line 10, upper right column, page 6 (Family: none)</td>
<td>1-3, 29, 30</td>
</tr>
<tr>
<td>A</td>
<td>JP, 6-39339, A (L'oreal), January 18, 1994 (18. 01. 94), Left column, page 1 & EP, 566442, A & CA, 2092973, A</td>
<td>5, 6, 18, 19, 24, 25</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C. [] See patent family annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier document but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed
 * "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 * "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 * "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 * "&" document member of the same patent family

Date of the actual completion of the international search: December 15, 1995 (15. 12. 95)

Date of mailing of the international search report: December 26, 1995 (26. 12. 95)

Name and mailing address of the ISA/

Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP, 2-282312, A (Kose Corp.), November 19, 1990 (19. 11. 90), Upper left column, page 7 (Family: none)</td>
<td>7-10</td>
</tr>
<tr>
<td>Y</td>
<td>JP, 5-70326, A (Pola Chemical Industries Inc.), March 23, 1993 (23. 03. 93) (Family: none)</td>
<td>26, 27 28</td>
</tr>
</tbody>
</table>
国際調査報告

A. 発明の属する分野の分類（国際特許分類（IPC））

Int. Cl* A 61K 7/025

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. Cl* A 61K 7/007/025

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1926-1995年
日本国公開実用新案公報 1971-1995年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名 及び一部の図版が関連するときは、その関連する図版の表示</th>
<th>関連する請願の範囲の番号</th>
</tr>
</thead>
</table>

☑ C欄の続きにも文献が列挙されている。

□ バントファミリーに関する別紙を参照。

※ 引用文献のカテゴリー
「A」特に関連のある文献ではなく、一般的技術水準を示すもの
「E」先行文献であるが、国際出願日以後に公表されたもの
「L」優先権主張に基づく探文又は他の文献の発行日若しくは他の特別な理由を考慮するために引用する文献（理由を付す）
「O」口頭による開示、使用、展示等に言及する文献
「P」国際出願日対して、かつ優先権の主張の基礎となる出願日の後に公表された文献
「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のためにより引用するもの
「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
「&」同一バントファミリー文献

国際調査を完了した日
15.12.95
国際調査報告の発送日
26.12.95

名称及び住所
日本国特許庁（ISA／JP）
郵便番号100
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）
加 河 美 春

電話番号 03-3581-1101 内線 3454

株式PCT／ISA／210（第2ページ）（1992年7月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP, 2-282312, A (株式会社 小林コーポー), 19.11月.1990 (19.11.90). 第7頁左上欄（ファミリーなし）</td>
<td>5, 6, 18, 19, 24, 25</td>
</tr>
<tr>
<td>Y</td>
<td>JP, 5-70326, A (ポーラ化成工業株式会社), 23.3月.1993 (23.03.93) (ファミリーなし)</td>
<td>26, 27, 28</td>
</tr>
</tbody>
</table>

株式PCT／ISA／210（第2ページの続き）（1992年7月）