

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2021/0009323 A1 Markarian et al.

(43) **Pub. Date:**

Jan. 14, 2021

(54) CHILD RESISTANT STRAIGHT WALL **CONTAINER**

(71) Applicant: Contempo Card Company, Providence, RI (US)

(72) Inventors: Michael Markarian, Tiverton, RI (US);

Manuel Cordeiro, Coventry, RI (US); Vark Markarian, Sr., Cranston, RI

(US)

(21) Appl. No.: 16/903,629

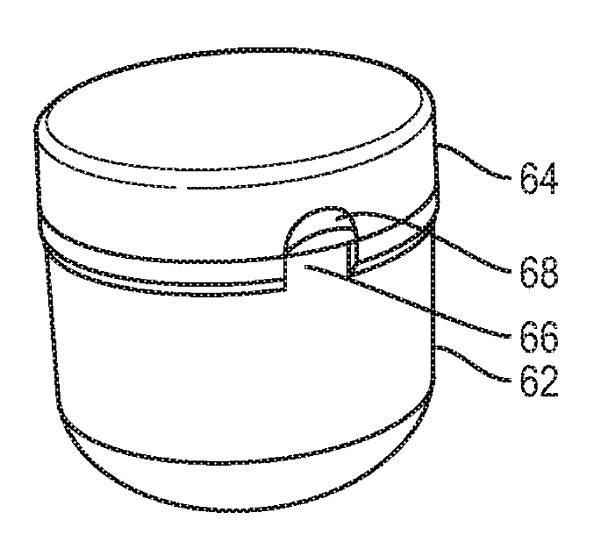
(22) Filed: Jun. 17, 2020

Related U.S. Application Data

(60) Provisional application No. 62/862,461, filed on Jun. 17, 2019, provisional application No. 62/869,635, filed on Jul. 2, 2019, provisional application No. 62/924,975, filed on Oct. 23, 2019.

Publication Classification

(51) Int. Cl. B65D 50/06 (2006.01)B65D 51/24 (2006.01)B65D 51/28 (2006.01)


(52) U.S. Cl.

B65D 50/061 (2013.01); B65D 51/28 CPC (2013.01); **B65D** 51/242 (2013.01)

(57)**ABSTRACT**

A child resistant straight wall container includes a body, a means in which to hold the internal contents, and a means in which to cover the internal contents, the body including a depressed internal space including upward extending walls, an open end and a base forming a cup, the upward extending walls curve inward to form the base of said cup.

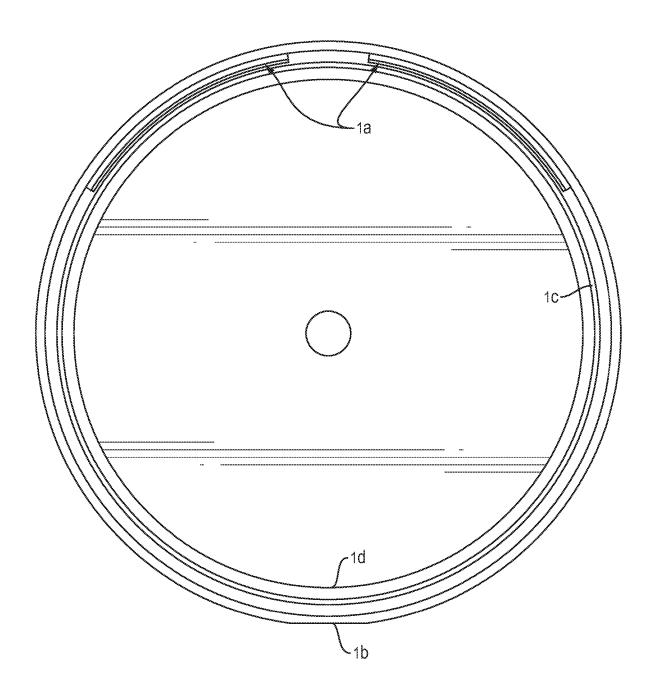


FIG. 1

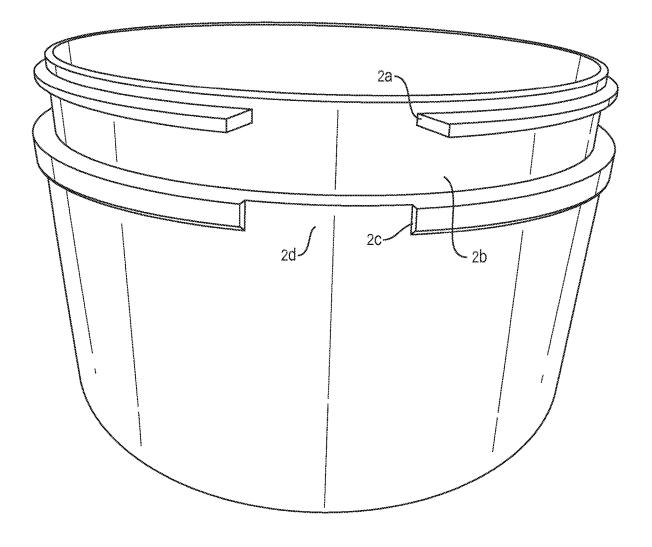


FIG. 2

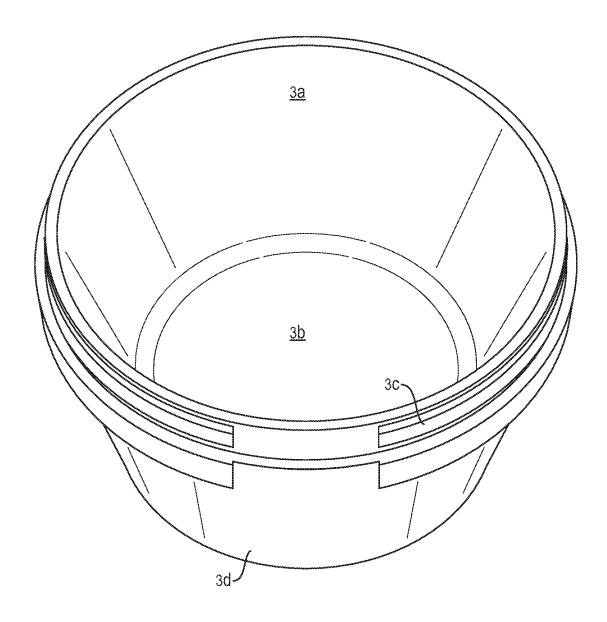
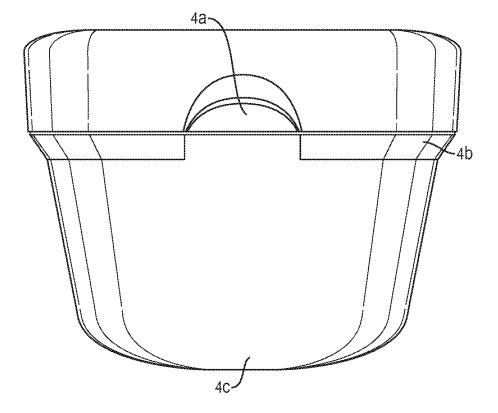
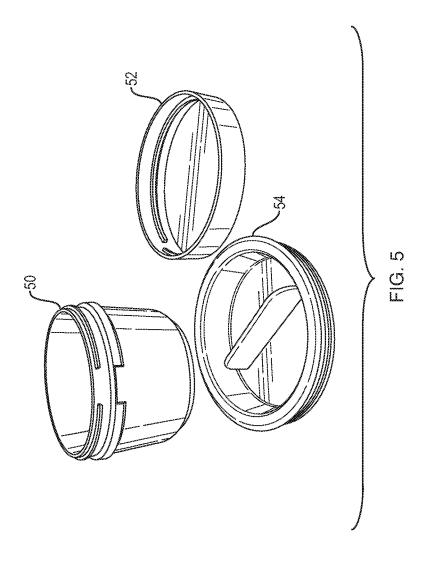
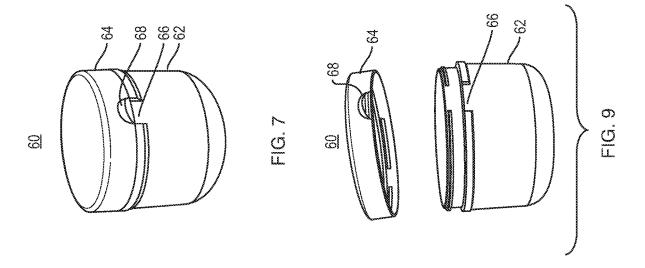
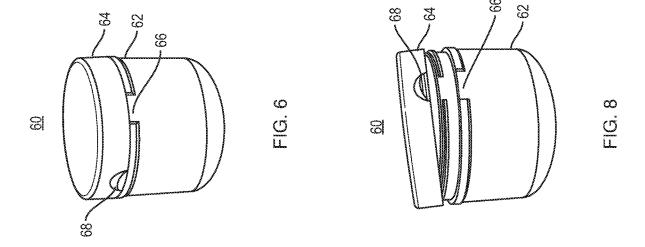
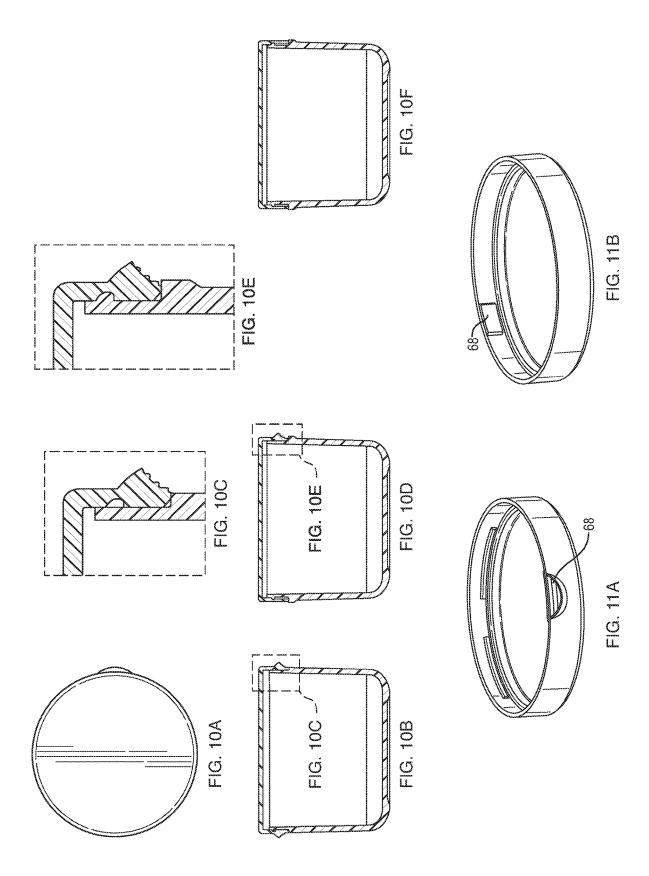
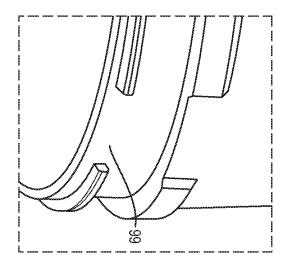
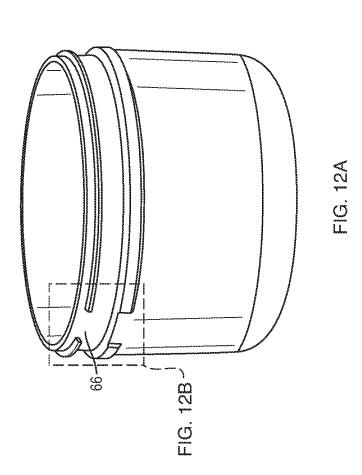


FIG. 3


FIG. 4



CHILD RESISTANT STRAIGHT WALL CONTAINER

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims benefit from U.S. Provisional Patent Application Ser. No. 62/869,635, filed Jul. 2, 2019, U.S. Provisional Patent Application Ser. No. 62/862, 461, filed Jun. 17, 2019, and U.S. Provisional Patent Application Ser. No. 62/924,975, filed Oct. 23, 2019, which are incorporated by reference in their entireties.

BACKGROUND OF THE INVENTION

[0002] The invention generally relates to containers, and more specifically to a child resistant straight wall container. [0003] In general, a container, is a device specifically made to store internal contents. Typically, a child resistant straight wall container includes of a base for holding the contents and a lid for covering and sealing off the child resistant straight wall container's internal environment. When the user adds the lid to the base of the child resistant straight wall container it blocks oxygen from entering the child resistant straight wall container to preventing spillage, limit freezer burns, limit evaporation of volatile components, limit growth of aerobic bacteria or fungi, internalize foul odors and reduce theft of internal contents.

[0004] Traditionally, child resistant containers including push and turn and line up the arrow's containers have been made with a bottle neck which assists in the child resistant functionality. This invention combines aesthetics with functionality by creating a child resistant product without the bottle neck. There are many benefits to having a straight walled container with child resistant functionality. First, the straight wall design provides temporal and financial benefits. At the manufacturing level, it is quicker and easier to create a straight walled container that lacks the bottle neck feature. Additionally, straight walled containers are automation friendly due to the ease of loading products into a child resistant straight wall container having a consistent internal circumference. Also, usability is enhanced because customers can access internal products without having to maneuver their fingers around the bottle neck structure. Lastly, child resistance is particularly important in industries where child access is prohibited such as the alcohol child resistant straight wall, the drug child resistant straight wall and the medical child resistant straight wall where pills, vitamins, supplements and natural remedies. The need for child resistant containers has been enhanced since the expansion of the cannabis child resistant straight wall.

BRIEF SUMMARY OF THE INVENTION

[0005] The following presents a simplified summary of the innovation in order to provide a basic understanding of some aspects of the invention. This summary is not an extensive overview of the invention. It is intended to neither identify key or critical elements of the invention nor delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented later.

[0006] In general, in one aspect, the invention features a child resistant straight wall container including a body, a means in which to hold the internal contents, and a means in which to cover the internal contents, the body including a

depressed internal space including upward extending walls, an open end and a base forming a cup, the upward extending walls curve inward to form the base of said cup.

[0007] The invention may include one or more of the following advantages.

[0008] The present invention provides users with an easy, cheap and efficient method for securing a child resistant straight wall container's internal contents.

[0009] The present invention is automation friendly because it has a straight-wall which allows for efficient product loading and less complex manufacturing.

[0010] The child resistant container has a straight inner wall. Many jars have a straight outer wall, but a straight inner wall is valuable and it is hard to make a straight inner wall and also have a child resistant jar while still keeping a nearly flush exterior between the cap and the base.

[0011] The child resistant container has a nearly flush exterior on the outside between the cap and the base. The is very important for the overall look of the container, which is important to people who want to build brands.

[0012] The child resistant container includes a rounded bottom of the container on the outside (both the outside and the inside are rounded).

[0013] The child resistant container includes an opening mechanism that does not require push and turn or a pinching action, which may be harmful to people who have arthritis or other ailments that could be aggravated in the opening process.

[0014] The child resistant container includes is a round container which is ideal for filling and works in most automated environments and is also easy to label, and additionally, it provides the best customer experience as it is what consumers are most comfortable with.

[0015] The child resistant container does not have a mush-room top.

[0016] The child resistant container has a very wide mouth which is ideal for filling and allows a consumer to pick a specific piece with their fingers.

[0017] The child resistant container has a very small footprint and overall size given the amount that it can hold. [0018] The present invention provides ease of usability by enhancing a user's access to internal contents by using a rounded bottom. A rounded bottom, unlike the typical angled bottom, enables easy content extraction which avoids loss of contents within the lower crevasse of the child resistant straight wall container.

[0019] These and other features and advantages will be apparent from a reading of the following detailed description and a review of the associated drawings. It is to be understood that both the foregoing general description and the following detailed description are explanatory only and are not restrictive of aspects as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] These and other features, aspects, and advantages of the present invention will become better understood with reference to the following description, appended claims, and accompanying drawings where:

[0021] FIG. 1 is a three dimensional internal view of a lid of an exemplary child resistant straight wall container.

[0022] FIG. 2 is a three-dimensional frontal view of a base of the child resistant straight wall container.

[0023] FIG. 3 is a three dimensional inside view of the base of child resistant straight wall container.

[0024] FIG. 4 is a three-dimensional frontal view of the child resistant straight wall container.

[0025] FIG. 5 illustrates components of the child resistant straight wall container.

[0026] FIGS. 6, 7, 8 and 9 illustrate different stages of the child resistant straight wall container.

[0027] FIG. 10A illustrates a top view of the lid.

[0028] FIG. 10B illustrates a cross-section of the lid and body.

 $[00\overline{29}]$ FIG. $10\mathrm{C}$ illustrates another cross-section of the lid and body.

[0030] FIG. 10D illustrates another cross-section of the lid and body.

[0031] FIG. $10\mathrm{E}$ illustrates another cross-section of the lid and body.

[0032] FIG. 10F illustrates another cross-section of the lid and body.

[0033] FIG. 11A illustrates the lid alignment feature.

[0034] FIG. 11B illustrates the lid alignment feature.

[0035] FIG. 12A illustrates the body alignment feature.

[0036] FIG. 12B illustrates the body alignment feature.

DETAILED DESCRIPTION OF THE INVENTION

[0037] The subject innovation is now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It may be evident, however, that the present invention may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing the present invention.

[0038] Reference throughout this specification to "container" is used. One ordinarily skilled in the art will recognize that embodiments of the invention should not be limited to these terms and that the terms are used as a general term for any plug for covering any object that would benefit from the described invention.

[0039] Reference throughout this specification to "base" is used. One ordinarily skilled in the art will recognize that embodiments of the invention should not be limited to these terms and that the terms are used as a general term for any base that can be covered and would benefit from the described invention.

[0040] As used herein, the term "cover" refers the act of sealing off the opening of a traditional container so that atmospheric oxygen is unable to enter into the child resistant straight wall container.

[0041] As used herein, the term "lid" refers to the top part of the child resistant straight wall container that interacts with the base of the child resistant straight wall container to cover the internal contents.

[0042] As used herein, the term "tab" refers to a raised region on the lid than can be used to remove the lid from the child resistant straight wall container.

[0043] As used herein, the term "ridge" refers to a raised region on the lid and/or base that interact to stabilize the lid to the child resistant straight wall container.

[0044] As used herein, the term "shoulder" refers to a raised region on the base of the child resistant straight wall container that interacts with the open end of the lid of the child resistant straight wall container.

[0045] As used herein, the term "clamp" refers to a raised portion on the child resistant straight wall container used to lock the lid onto the child resistant straight wall container creating child resistance.

[0046] As used herein, the term "stabilizer" refers to the groves located along the internal surface of the lid which interacts with the lip of the child resistant straight wall containers base.

[0047] As used herein, the term "straight wall" means the inside of the container is a straight wall and does not have a "neck," which can make it difficult for a consumer to reach into the container and access the product.

[0048] FIG. 1 is a three dimensional internal view of a lid of an exemplary the child resistant straight wall container including, generally, a solid round body having an internally depressed section; with an upward extending wall and a base. This embodiment further includes two longitudinal protrusions along the internal surface of the wall (hereinafter referred to as "stabilizers") (1a) located above an internal divot which extends longitudinally across the entire circumference of the lids internal wall (1c). This embodiment also includes an additional protrusion on the lids internal wall (1d) (hereinafter referred to as a "clamp") opposite of a textured protrusion located on the external surface of the wall (hereinafter referred to as a "tab") (1b).

[0049] FIG. 2 is a three-dimensional frontal view of a base of the child resistant straight wall container including, generally, a region with a smaller external circumference (2b) (hereinafter referred to as the "lip") having a longitudinal protrusion spanning along the circumference of the lip (2a) (hereinafter referred to as the "ridge") (2b). This embodiment further includes an additional protrusion with a circumference slightly greater than the circumference of the child resistant straight wall containers external wall (2c) (hereinafter referred to as the "shoulder") having an internal depression aligned with the start and end point of the ridge located on the lip of the child resistant straight wall container (2d).

[0050] FIG. 3 is a three dimensional inside view of the base of the claimed child resistant straight wall container including, generally, a flat straight internal wall (3a) and the rounded bottom (3b). This embodiment further includes a longitudinal protrusion on the external surface of the lip of the child resistant straight wall container's base (3c) and an internal depression on the shoulder which aligns with the start and end point of the upper ridge (3d).

[0051] FIG. 4 depicts a three-dimensional frontal view of the child resistant straight wall container including, generally, a lid with a tab (4a). The lid is secured to the base and aligns nearly flush with the shoulder on the base of the child resistant straight wall container (4a). The side walls of the child resistant straight wall container curve internally to form a rounded bottom (4c).

[0052] Generally, the child resistant straight wall container includes a body having a base 2 and 3 with a depressed internal space with upward extending wall 3a an open-end and a base 3b. The walls on the base of the child resistant straight wall container are straight 3a, providing for easy manufacturing and automation because samples can be loaded into the straight wall container without the same precision needed to load contents into a bottle necked container. The base of the cup also curves inward to form a rounded bottom 3b and 4c. The rounded bottom provides easy access to the internal contents by allowing users to

insert their fingers and pull the internal contents from the bottom of the child resistant straight wall container. The lid 1 is secured to the base by the longitudinal protrusion located along the circumference of the lip. The lip has an external circumference less than the external circumference on the base 2b allowing for the lid to cover the lip portion of the base and sit nearly flush on the shoulder 2c to form a secure internal environment 4b. This nearly flush interaction makes the base more aesthetically pleasing that the other child resistant containers which contain the bottle neck at the upper portion of the child resistant straight wall container.

[0053] Generally, the child resistant straight wall container includes a body having a lid 1 with depressed internal space with upward extending wall an open-end and a base. Along the internal surface of the wall are two longitudinal protrusions 1a which interact with the longitudinal protrusion on the lip of the child resistant straight wall containers base 2a to secure the lid to the base. The internal divot 1c which runs longitudinally along the internal circumference of the wall on the lid houses the longitudinal protrusion on the lip of the child resistant straight wall containers base 2a to provided minimum friction as users rotate the lid clockwise and counterclockwise. The tab on the lid 1b and 4a has bifunctionality. First, the tab functions as a guide to help users locate the positioning needed to open the child resistant straight wall container. When the tab is aligned with the internal divot on the shoulder of the base 2d, 3d and 4a the user can then use the tab as leverage to push the lid off of the base and therefore opening the child resistant straight wall container. The opening is enabled at this position because the clamp located on the internal surface of the lid 1d can slide through the opening located within the ridge on the lip of the child resistant straight wall container 2a and 3c.

[0054] The base of the child resistant straight wall container, is preferably made from durable materials. Materials suitable for manufacturing can be selected from a material from the group consisting of glass, lenses, glass fiber, fiberglass, clay, metal, bioplastic, flame-retardant plastic, thermoplastic, polymers, polyester resin, nylon, acrylic e-glass epoxy composite, s-glass epoxy composite, carbon-fiber reinforced polymer, nano-dispersed nanoparticles, layered double hydroxides, carbon nanotubes, polyhedral sils-esquioxanes and combinations thereof.

[0055] The lid of the child resistant straight wall container, is preferably made from durable materials. It should be appreciated that the body can be made from non-durable materials. Materials suitable for manufacturing can be selected from a material from the group consisting of glass, lenses, glass fiber, fiberglass, clay, metal, bioplastic, flame-retardant plastic, thermoplastic, polymers, polyester resin, nylon, acrylic e-glass epoxy composite, s-glass epoxy composite, carbon-fiber reinforced polymer, nano-dispersed nanoparticles, layered double hydroxides, carbon nanotubes, polyhedral silsesquioxanes and combinations thereof.

[0056] It should be appreciated that the body can be made from different materials with the lid and base being affixed to the body after all parts are manufactured separately. The parts of the child resistant straight wall container may be formed by any known process or will be known in the art to make solid structures made from any solid substance, including but not limited to, one-shot molding, two-shot molding, or multi-material injection molding. The process used to make the body is dependent on the type of materials

used for each component of the body. If all materials differ in type then a one shot molding may be less desirable.

[0057] The parts of the child resistant straight wall container may be formed by any known process will be known in the art to make solid structures made from any solid substance, including but not limited to, ejection molding, 3D printing, rotational molding, injection molding, thermoforming, compression molding, blow molding, reaction injection molding, vacuum casting and resin casting. The technique used to make the body may vary depending on the type of material used to make the lid and or the base as well as the desired quality and cost of the final product.

[0058] The child resistant straight wall container can be used to secure a variety of contents consisting of food, tobacco, cannabis, liquids and combinations thereof. These uses can be commercial uses, hardware uses, home uses, farm uses or military uses. For example, items can be secured to prevent easy access by children, friends, family or strangers. These uses can be commercial uses, hardware uses, home uses, farm uses or military uses. For example, items can be secured in containers for preventing spillage or access to harmful or volatile substances.

[0059] In the preferred embodiment FIG. 2 and FIG. 3, the base has an external circumference that is greater than the external circumference on the lip 2b of the base allowing the lid to sit on the top of the base and form a nearly flush interaction with the shoulder of the base 4b. In another embodiment the lip can have an external circumference greater than or equal to the external circumference of the base. In this circumstance, the shoulder could have an external circumference that is much greater than the external circumference of the base to maintain the nearly flush interaction between the open end of the lid and the upper portion of the shoulder on the base of the child resistant straight wall container.

[0060] In the preferred embodiment the shoulder has an external circumference that is slightly greater than the external circumference of the base. In another embodiment the shoulder can have an external circumference equal to the external circumference of the base. In this circumstance, the shoulder would not exist allowing the lid to sit nearly flush with the external surface of the base.

[0061] In the preferred embodiment the base of the child resistant straight wall container has a straight wall 3a. It should be appreciated that the base can also be made with a slanted wall.

[0062] The base of the claimed container, is preferably, made from a durable material. It should be appreciated that the base can be made from non-durable materials including but are not limited to, polymers, acrylic, butyl, polyurethane, elastomers, silicone and combinations thereof. In another embodiment the portion of the base below the shoulder can be collapsible allowing users to expand and retract the bottom for easy storage and travel convenience.

[0063] The parts of the child resistant straight wall container may be formed by any known process or will be known in the art to make solid structures made from any solid substance, in particular, those mentioned previously, such as ejection molding, 3D printing, injection molding, thermoforming, compression molding, rotational molding, vacuum casting and resin casting. The technique used to make the base may vary depending on the type of material used to make the base as well as the desired quality and cost of the final product.

[0064] In the preferred embodiment the lid includes two stabilizers 1a. In another embodiment, the lid can have one or more stabilizers. The number of the stabilizers may vary depending on the size of the lid or the length of the stabilizers.

[0065] In the preferred embodiment the lid includes one divot 1c. In another embodiment the lid can have two or more divots. The number of the divots may vary depending on the number of ridges on the lip of the base.

[0066] In the preferred embodiment the base of the lid has a flat internal portion. It should be appreciated that the internal surface of the base can also be made with any attachment selected from a group including but not limited to, a match pad for striking and lighting a match and a chalk pad for writing instructions such as dosages or other information

[0067] It should be appreciated that the lid can be mixed with different hygroscopic substances for removing water from the surrounding environment in order to prevent spoilage, the formation of lumps or germs and preserve the crispness of the internal contents. Materials suitable for manufacturing can be selected from a material from the group consisting of calcium oxide, silica gel, glycerin, ethanol, methanol, concentrated sulfuric acid, activated charcoal, calcium sulfate, calcium chloride, molecular sieves, salt, rice, concentrated sodium hydroxide or other chemical and natural desiccants.

[0068] In the preferred embodiments shown in FIG. 1 and FIG. 4, the tab on the lid is a grooved extended protrusion on the external surface of the child resistant straight wall container 1a and 4b. It should be appreciated that although the image depicts a solid tab 1b and 4a, the tab can have a hollow space for the user to pinch the tab. It should also be appreciated that the tab can be substituted with any handle that is known or will be known in the art, such as a T-shaped handle, drop handle, D-shaped handle C-shaped handle, rounded handle, cup handle, bow/bridge handle, square handle, boss handle, string, and a bar handle. In this circumstance, the handle can protrude from the external portion of the base of the lid and can be made in various shapes, including but not limited to, a circle, a half-circle, a heart, hexagon, pentagon, polygon, diamond, star and triangle. The handle can have a solid or hollow space and grooves can be added to the handle for added grip.

[0069] In summary, in an embodiment, the present invention is a straight wall container that when closed produces a child resistant environment for securing the container's internal contents. The child resistant straight wall container has a straight-wall rounded bottom for easy loading, manufacturing, and usability. This child resistant straight wall container can also be a topical pump, topical stick, roller ball, squeeze tube, and other containers having a straight wall that would benefit from the child resistant feature. The uses of this plug include but are not limited to preventing securing internal contents for marijuana, medications, alcoholic beverages, and other products that users intend to keep out of the reach of children.

[0070] FIG. 5 illustrates exemplary components of the child resistant straight wall container. These components include a body 50, a lid 52 and an optional freshness plug 54. The optional freshness plug 54 is placed on the upper portion of the body 50 and the lid 52 secured to the body 50 over the freshness plug 54.

[0071] In FIGS. 6, 7, 8 and 9, the child resistant straight wall container 60 is illustrates to include a body 62 and a lid 64 (sometimes referred to as a "cap"). When the lid 64 is secured to the body it provides a tight seal to keep any product within the body fresh. The lid 64 can rotate about the body 62. The body 62 includes a body alignment feature 66 (sometimes referred to as a "notch"). The lid 64 includes a lid alignment feature 68 (sometimes referred to as a "tab"). As shown in FIG. 6, when the body alignment feature 66 is not aligned with the lid alignment feature 68, the lid 64 is prevented from being removed from the body, i.e., the lid 64 is considered to be locked to the body 62.

[0072] As shown in FIG. 7, the body alignment feature 66 is aligned with the lid alignment feature 68 yet the lid 64 is locked to the body 62. This help insure that the straight wall container 60 is child resistant.

[0073] In FIG. 8, with the body alignment feature 66 aligned with the lid alignment feature 68, the lid alignment feature 68 may be pushed upward away from the body 62.
[0074] In FIG. 9, after pushing the lid alignment feature 68 upward away from the body 62, the lid 64 may be separated from the body 62.

[0075] FIG. 10A illustrates a top view of the lid.

[0076] $\,$ FIGS. 10B, 10C, 10D, 10E, 10F illustrate cross-sections of the lid and body.

[0077] In FIGS. 11A and 11B, the lid alignment feature 68 is illustrated from a front prospective and a back (inside) prospective.

[0078] As shown in FIGS. 12A and 12B, the body alignment feature 66 includes a gap to enable the lid 64 to be removed when the body alignment feature 66 and the lid alignment feature 68 are aligned.

[0079] In some implementations, body alignment feature 66 and the lid alignment feature 68 include arrows to assist in alignment.

[0080] The parts of the child resistant straight wall container may be formed by any known process or will be known in the art to make solid structures made from any solid substance, in particular, those mentioned previously, such as ejection molding, 3D printing, injection molding, thermoforming, compression molding, rotational molding, reaction injection molding, vacuum casting and resin casting. The technique used to make the tab may vary depending on the type of material used to make the tab as well as the desired quality and cost of the final product.

[0081] While specific embodiments of the subject invention have been discussed, the above specification is illustrative and not restrictive. Many variations of the invention will become apparent to those skilled in the art upon review of this specification. The full scope of the invention should be determined by reference to the claims, along with their full scope of equivalents, and the specification, along with such variations.

[0082] Unless otherwise indicated, all numbers expressed quantities of ingredients, reaction conditions, and so forth use in the specification and claims are to be understood as being modified in all instances by the term "about." Accordingly, unless indicated to the contrary, the numerical parameters set forth in this specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention.

[0083] It would be appreciated by those skilled in the art that various changes and modifications can be made to the illustrated embodiments without departing from the spirit of

the present invention. All such modifications and changes are intended to be within the scope of the present invention except as limited by the scope of the appended claims.

- 1. A child resistant straight wall container comprising: a body in which to hold the internal contents; and
- a cover to secure the internal contents within the body.
- 2. The child resistant straight wall container according to claim 1, wherein said body comprises a depressed internal space comprising upward extending walls, an open end and a base forming a cup.
- 3. The child resistant straight wall container according to claim 2, wherein said upward extending walls curve inward to form the base of said cup.
- **4**. The child resistant straight wall container according to claim **1**, wherein said means in which to cover the internal contents is a circular lid.
- 5. The child resistant straight wall container according to claim 4, wherein said cup comprises an upper circular section with an external circumference that is less than the external circumference of the remainder of the cup and a depth equal to the depth of the lid wherein said upper circular section with an external circumference that is less than the external circumference of the remainder of the cup and a depth equal to the depth of the lid forms a lip.
- **6**. The child resistant straight wall container according to claim **5**, wherein said cup comprises a longitudinal protrusion with a circumference greater than the rest of the body wherein said longitudinal protrusion with a circumference greater than the rest of the body forms a shoulder.
 - 7. (canceled)
- **8**. The child resistant straight wall container according to claim **5**, wherein said lip comprises a longitudinal protrusion spanning along the upper portion of the outer circumference forming a ridge.
- 9. The child resistant straight wall container according to claim 4, wherein said lid comprises a depressed internal space comprising upward extending walls, an open end and a base
- 10. The child resistant straight wall container according to claim 9, wherein said lid comprises one or more longitudinal protrusions on the internal surface of the side wall wherein said one or more longitudinal protrusions on the internal surface of the side wall stabilize said lid.
- 11. The child resistant straight wall container according to claim 9, wherein said lid comprises one or more internal divots extending longitudinally across the internal circumference of said lid.
- 12. The child resistant straight wall container according to claim 4, wherein said lid further comprises a protrusion on the external surface of the side wall.
- 13. The child resistant straight wall container according to claim 12, wherein the protrusion on the external surface of the side wall of said lid is a tab.
 - 14. (canceled)

- 15. (canceled)
- 16. The child resistant straight wall container according to claim 9, wherein the base of said lid comprises an internal attachment selected from a group consisting of a match pad, a chalk pad, a porous liner and any combinations thereof.
- 17. The child resistant straight wall container according to claim 9, wherein the base of said lid comprises a protrusion on the external surface wherein said protrusion forms a handle.
 - 18. (canceled)
 - 19. (canceled)
 - 20. (canceled)
- 21. The child resistant straight wall container according to claim 9, wherein said lid is manufactured from a material selected from the group consisting of glass, lenses, glass fiber, fiberglass, clay, metal, bioplastic, flame-retardant plastic, thermoplastic, polymers, polyester resin, nylon, acrylic e-glass epoxy composite, s-glass epoxy composite, carbon-fiber reinforced polymer, nanodispersed nanoparticles, layered double hydroxides, carbon nanotubes, polyhedral sils-esquioxanes and any combinations thereof.
 - 22. (canceled)
- 23. The child resistant straight wall container according to claim 2, wherein said base is manufactured from a material selected from the group consisting of glass, glass fiber, fiberglass, clay, metal, bioplastic, flame-retardant plastic, thermoplastic, polymers, polyester resin, nylon, acrylic, e-glass epoxy composite, s-glass epoxy composite, carbon-fiber reinforced polymer, nanodispersed nanoparticles, layered double hydroxides, carbon nanotubes, polyhedral sils-esquioxanes and combinations thereof.
 - 24. (canceled)
- 25. The child resistant straight wall container according to claim 1, wherein said container is used to store foods, tobacco, cannabis, herbs, prescription or over-the-counter drugs and/or medications, cosmetics and/or liquids.
 - 26. (canceled)
- 27. The child resistant straight wall container according to claim 2, wherein said base is manufactured using a process selected from the group consisting of ejection molding, 3D printing, rotational molding, injection molding, thermoforming, compression molding, blow molding, reaction injection molding, vacuum casting, resin casting and any combinations thereof.
 - 28. (canceled)
- **29**. The child resistant straight wall container according to claim **1**, wherein said body is manufactured using one-shot molding, two-shot molding, or multi-material injection molding.

* * * * *