(54) 发明名称
水坝加固方法

(57) 摘要
本发明涉及一种水坝加固方法及加固浆料，其步骤为：选择一段需加固的水坝，根据坝体形状制作与其相适应的围罩；将围罩放置于坝体的外侧，围罩的下端插入水底的淤泥中且上端露出水面，围罩的侧面板靠设于坝体的外侧面并通过密封条贴紧坝体外侧面；在围罩内依次放置多个注浆管，注浆管的下端伸至围罩的底部；对注浆孔进行注浆并利用水下摄像机即时检测浆料填充情况，浆料从围罩底部开始逐渐填充围罩内部空间并将其中的积水从围罩顶部排出，当浆料将从围罩顶部溢出时停止注浆；等浆料完全固化后，取下围罩并对注浆管进行封孔；浆料经固化后在水坝外侧形成一种防水的加强结构层，防止水渗入坝体内或对坝体表面的侵蚀造成对坝体的破坏。
1. 一种水坝加固方法，其特征在于包括如下步骤：
 a. 选择一段需加固的水坝，根据坝体形状制作与其相适应的围罩（2）；
 b. 将围罩（2）放置于坝体（1）的外侧，围罩（2）的下端插入水底的淤泥中且上端露出水面，围罩的侧面板（6）靠设于坝体的外侧面并通过密封条贴紧在坝体（1）的外侧面；
 c. 在围罩（2）内依次放置多个注浆管（3），注浆管的下端伸至围罩的底部；
 d. 对注浆孔（3）进行注浆并利用水下摄像机即时检测浆料填充情况，浆料从围罩底部开始逐渐填充围罩内部空间并将其中的积水从围罩（2）顶部排出，当浆料将从围罩顶部溢出时停止注浆；
 e. 等浆料完全固化后，取下围罩并对注浆管进行封孔。

2. 根据权利要求1所述的水坝加固方法，其特征在于：所述围罩的斜面板（5）与坝体外侧面平行，所述围罩的内表面设有薄膜。

3. 根据权利要求1所述的水坝加固方法，其特征在于：注浆时控制各注浆管的注浆速度，以使围罩内各处的浆料抬升速度保持一致。

4. 根据权利要求1所述的水坝加固方法，其特征在于：所述侧面板（6）的宽度为5~10cm，相邻注浆管（3）的中心间距为15~30cm。

5. 根据权利要求1所述的水坝加固方法，其特征在于：所述浆料是包括树脂与硬化剂的双组份高强度发泡型树脂。
水坝加固方法

技术领域
[0001] 本发明涉及一种水坝加固方法，能够对水坝进行加固。

背景技术
[0002] 近年来，我国水利基础设施建设得到快速发展，包括新建的大型水坝、南水北调工程等，为国民经济的发展提供了保障。然而，水坝或运河的水坝、堤岸作为维护水利工程安全的一道防线，成为人民生命安全的保障。然而，管涌或渗水造成的水坝决堤不时发生，由于其发生的不确定性、危害性较大；现有技术中，如中国专利号为 CN102051896 的文献，为解决水坝管涌提供了一种方案，在出现险情时能够及时处置，防止管涌进一步引起决堤，可以说该方案起到了事后排险的作用，未能从根本上防止险情的发生；中国专利号为 CN102051868 的文献，利用在坝体内钻孔注浆的方法来填充内部空隙并加固坝体，从而防止坝体渗水，然而坝体外侧部分仍浸泡在水中，即使是强度较高的混凝土石砌岸坝经水的长期侵蚀，外侧坝体也会出现裂缝，进而引发外侧坝体坍塌，从而破坏整个坝体结构。

发明内容
[0003] 本发明首要解决的技术问题是提供一种水坝加固方法，能够防止坝体由于水侵蚀而被破坏。
[0004] 为了解决上述技术问题，本发明提供了一种水坝加固方法，其包括如下步骤：
 a. 选择一段需加固的水坝，根据坝体形状制作与其相适应的围堰；
 b. 将围堰放置于坝体的与水相邻的外侧，围堰的下端插入水底的淤泥中且上端露出水面，围堰的侧面板架设于坝体的外侧面并用密封条贴紧坝体外侧面；
 c. 在围堰内依次放置多个注浆管，注浆管的下端伸至围堰的底部；
 d. 对注浆孔进行注浆并利用水下摄像机实时检测浆料填充情况，浆料从围堰底部开始逐渐填充围堰内部空间并将其中的积水从围堰顶部排出，当浆料从围堰顶部溢出时停止注浆；
 e. 使浆料完全固化后，取下围堰并用注浆管进行封孔。
[0005] 所述围堰的斜面板与坝体外侧面平行，所述围堰的内表面设有薄膜。
[0006] 注浆时控制各注浆管的注浆速度，以使围堰内各处的浆料抬升速度保持一致。
[0007] 所述侧面板的宽度为 5~10cm，相邻注浆管的中心间距为 15~30cm。
[0008] 本发明还提供一种水坝加固浆料，该浆料用于上述水坝加固方法的注浆过程中。
[0009] 该浆料是包括树脂与硬化剂的双组份高强发泡型树脂。
[0010] 该浆料在注入 10 分钟后完全固化并达到最终强度。
[0011] 该浆料的出机粘度为 200±65mPa·s，固化后的压缩强度 ≥ 1.5MPa，弯曲强度 ≥ 1.3MPa。
[0012] 相对于现有技术，本发明具有的技术效果是：
 1) 本发明的水坝加固方法，利用围堰及注浆管对需要加固的水坝外侧面注浆，浆料经
固化后在水坝外侧形成一种防水的强化结构层，可以防止水渗入坝体内部或水对坝体表面的侵蚀造成对坝体的破坏；

2) 围罩的斜面板与坝体的外侧面平行，使围罩下端、上端至坝体的距离不变，保证注浆管对各处进行注浆时，出浆的速度稳定，有利于使各处浆料的流动或抬升速度保持一致；

3) 各处的水流速度及各注浆管的长短会影响各处的注浆进度，因而在水下摄像机的监测下，根据各处浆料的填充进度，对各注浆管的注浆速度进行调节，有利于使各处浆料的抬升速度保持一致；

4) 该结构层的厚度为 5-10cm，可以在坝体的外侧形成一层致密且轻薄的防水层，不会对坝体的结构产生较大的附加荷载，相邻注浆管的中心间距为 15-30cm，可以保证浆料填充的均匀性；

5) 该浆料不含水，不与水发生化学反应，不溶解于水中，能够密实填充脱空；浆料在水中固化后有柔韧性与弹性，不容易发生开裂，其抗拉强度和抗压强度与混凝土比较接近，长期浸入水中也不受水的侵蚀，同时该树脂材料具有良好的抗渗性，能阻止河水下渗入坝体内，对坝体裂缝和接缝有良好的密封作用，从根本上解决坝体的管涌及渗水的问题；

6) 浆料固化后形成发泡状固体，其密度为水泥浆或沥青材料的 8%，对存在需要加固的坝体产生的附加荷载小；

7) 该浆料的自由膨胀比可达 20：1，浆料膨胀过程不受水的影响，能够快速填满脱空和裂缝，在膨胀过程中进一步压实坝体周围的土层；

8) 该浆料可在注入 10 分钟后完全固化并达到其最终强度，浆料固化过程及最终强度不受水的影响，浆料在水中固化时间短特别有利于在汛期等水流较大环境下对水坝进行加固强化；

9) 固化后的浆料稳定性强，不易老化变形，其耐久性可达百年；

10) 浆料固化后，各化学成分不会由于水流冲刷而流失，对环境无污染；

11) 经该浆料加固后的坝体，后期无需定期维护、保养，减少了坝体的养护成本；

12) 所述围罩内表面设有的薄膜，用于注浆后将固化的浆料与围罩相隔离，有利于围罩从固化后的浆料层上取下。

【0013】

附图说明

【0014】为了清楚说明本发明的创新原理及其相比于现有产品的技术优势，下面借助于附图通过应用上述原理的非限制性实例说明可能性的实施例。在图中：

图 1 为本发明中需加固的水坝的断面图；
图 2 为本发明中需加固的水坝的俯视图；
图 3 为本发明中围罩的侧视图；
图 4 为本发明中围罩的后视图。

【0015】

具体实施方式

【0016】实施例 1
如图1所示，本实施例中的坝体1，围堰2，注浆管3。

[0017] 如图3与图4所示，所述根据坝体的外侧面形状制作的围堰2包括三个面板，分别为斜面板5及前后侧的侧面板6，当斜面板5与坝体外侧面平行时，侧面板6则垂直于坝体的外侧面，侧面板6上适于和坝体相贴合的边缘设有密封条7，该密封条7适于与坝体外侧面贴紧密封；在该围堰2的内表面贴有一层塑料薄膜，所述围堰2的材料可以为塑料或金属，所述侧面板6的宽度（包括密封条在内）为5~10cm。

[0018] 如图1与图2所示，本发明的水坝加固方法，包括以下步骤：

1. 选择一段需加固的水坝，根据该水坝的坝体外侧面的形状来制作相适应的围堰2；
2. 将上述围堰2放置于坝体1的外侧且斜面板5与坝体外侧面平行，围堰2的下端插入水底的淤泥中且上端露出水面，侧面板6垂直靠设于坝体的外侧面并使密封条紧贴坝体1外侧面；
3. 在上述围堰2内平行于坝体外侧面依次放置多个注浆管3，相邻注浆管3的中心间距为15~30cm，注浆管的下端伸至围堰的底部；
4. 在注浆管3上安装注浆接头，调试注浆设备并与注浆接头连接，检验注浆材料并加入注浆设备中；
5. 对注浆孔3进行注浆并利用水下摄像机伸入围堰内，即时检测围堰内的浆料填充情况，浆料从围堰底部开始逐渐填充围堰内部空间并将其中的积水4从围堰2顶部排出，同时控制各注浆管的注浆速度，使围堰各处的浆料抬升速度保持基本一致，当浆料将从围堰顶部溢出时停止注浆；
6. 等待10分钟后浆料完全固化，取下围堰2并使塑料薄膜与围堰2分离；
7. 对注浆管进行封孔。

[0019] 上述围堰2对于该段坝体加固完成后，只需在取下的围堰2的内表面粘上薄膜，又可以进行再次利用，该薄膜用于在围堰与浆料之间建立隔离层，方便围堰从固化后的浆料上取下，该方法适用于对坝体多次或分段加固，围堰的重复利用节约了施工的成本，提高了施工的效率。

[0020] 实施例2

本发明中所述的浆料采用一种双组份高强度发泡型树脂，其型号为SZ2，该双组份高强度发泡型树脂包括专用树脂与硬化剂两种组分，注浆时将两种组分同时加入上述注浆设备中，两种组分混合后发生化学反应，体积迅速膨胀并形成泡沫状浆料，该浆料的出机粘度为200±65mPa·s，该浆料在流动中体积不断膨胀，渗透能力强，适用于快速填充空间并在压力作用下排挤出积水，当上述浆料注人10分钟后完全固化并达到其最终强度，其压缩强度≥1.5MPa，其弯曲强度≥1.3MPa，该浆料与水不发生化学反应且与水不相溶。

[0021] 相比现有的水下加固浆料，该浆料具有以下特点：

1. 该浆料不含水，不与水发生化学反应，不溶解于水中，能够密实填充脱空；浆料在水下固化后有柔韧性和弹性，不容易发生开裂，其抗拉强度和抗压强度与混凝土比较接近，长期浸入水中也不受水的腐蚀，同时该树脂材料具有良好的抗渗性，能阻止河水下渗入坝体内，对坝体裂缝和接缝有良好的密封作用，从根本上解决坝体的管涌及渗水的问题；
2. 浆料固化后形成发泡状固体，其密度为水泥浆或沥青材料的8%，对存在需要加固的坝体产生的附加荷载小；
（3）该浆料的自由膨胀比可达 20:1，浆料膨胀过程不受水的影响，能够快速填充裂纹和裂缝，使膨胀过程中进一步压实坝体周围的土层；

（4）该浆料可在注入 10 分钟后完全固化并达到其最终强度，浆料固化过程及最终强度不受水的影响，浆料在水中固化时间短特别有利于在汛期等水流较大环境下对水坝进行加固强化；

（5）固化后的浆料稳定性强，不易老化变形，其耐久性可达百年；

（6）浆料固化后，各化学成分不会由于水流冲刷而流失，对环境无污染；

（7）经该浆料加固后的坝体，后期无需定期维护、保养，减少了坝体的养护成本。

【0022】显然，上述实施例仅仅为清楚地说明本发明所作的举例，而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说，在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而这些属于本发明的精神所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。
图 3
图 4