WO 2005/119432 A2 | 0|00 000 0 00O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
15 December 2005 (15.12.2005)

AT O OO0

(10) International Publication Number

WO 2005/119432 A2

(51) International Patent Classification’: GOOF 9/44
(21) International Application Number:
PCT/IL2005/000568

(22) International Filing Date: 1 June 2005 (01.06.2005)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/575,425 1 June 2004 (01.06.2004) US
(71) Applicant (for all designated States except US): RED
BEND LTD [IL/IL]; 11 Haamal Street, Industrial Park

Afek, 48092 Rosh Haayin (IL).

(72) Inventors; and
(75) Inventors/Applicants (for US only): PELEG, Sharon
[IL/IL]; 58 Bialik Street, 47205 Ramat Hasharon (IL).

(74)

(81)

(84)

MELLER, Evyatar [IL/IL]; 58/32 Menachem Begin
Street, 49732 Petach-Tikva (IL).

Agent: REINHOLD COHN AND PARTNERS; P.O.B.
4060, 61040 Tel-Aviv (IL).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, T1, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

[Continued on next page]

(54) Title: METHOD AND SYSTEM FOR IN-PLACE UPDATING CONTENT STORED IN A STORAGE DEVICE

(START

)

801
N\

DIRECTION INDICATOR
INDICATE "FORWARD"?

No

804
7

802
7

(57) Abstract: Method and
system for updating a stored
version of content stored in a
storage device using an update
package. The update package
that includes update commands is
adapted for updating an original
version of content to an updated
The updating is carried
out in accordance with an update
sequence. The method includes
determining direction of the
updating. If the direction is
indicative of forward then the
method forward-updates the stored

version.

ROLL - BACK

FORWARD UPDATE

version to the updated version
in accordance with the update
sequence. If the direction is

805
7

803
7

indicative of roll-back, the method
generates a roll-back update
sequence opposite to the update

DIRECTION INDICATOR
= "FORWARD"

DIRECTION
="ROLL -BACK"

sequence and rolls-back the stored
version to the original version
in accordance with the roll-back

INDICATOR

-—————(_ TErMiNATE -]

update sequence.

WO 2005/119432 A2 [N N0 0800 A0 0RO 0O AR

FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, For two-letter codes and other abbreviations, refer to the "Guid-
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, ance Notes on Codes and Abbreviations" appearing at the begin-
GQ, GW, ML, MR, NE, SN, TD, TG). ning of each regular issue of the PCT Gagzette.

Published:
— without international search report and to be republished
upon receipt of that report

10

15

20

25

WO 2005/119432 PCT/IL2005/000568

-1-

Method and System for In-Place Updating Content Stored In a

Storage Device

FIELD OF THE INVENTION

This invention relates to updating a stored version of content stored in a
storage device using an update package. More specifically, this invention relates

to in-place updating.

BACKGROUND OF THE INVENTION

Sometimes it is required to update content stored in a storage device. For
example, if the content is a software (such as an executable file), it is sometimes
required to upgrade the software. However, it should be noted that sometimes
other types of content also require updates, such as text or data stored in a
database, etc. Hereinafter the term “old version” or "original version" refers to
content before update, the term “new version” or "ﬁpdated version" refers to the
content after it was updated. An “update package”, sometimes referred to also as
a “difference”, a “difference result” or a “delta”, includes data provided as input
for an update process, wherein the update process updates the old version to the
new version in accordance with the update package.

There are several ways known in the art for generating update packages
and using them for updating versions. For example, US 6,546,552 (“Difference
extraction between two versions of data-tables containing intra-references”,
published 2003) discloses a method for generating a compact difference result
between an old program and a new program. Each program includes reference
entries that contain references that refer to other entries in the program.

According to the method of US 6,546,552, the old prbgram is scanned and for

10

15

25

WO 2005/119432 PCT/IL2005/000568

-2

each reference entry, the reference is replaced by a distinct label mark, whereby a
modified old program is generate(i. In addition, according to US 6,546,552, the
new program is scanned and for each reference entry, the reference is replaced by>
a distinct label mark, whereby a modified new program is generated. Thus,
utilizing directly or indirectly the modified old program and modified new
program, the difference result is generated. |
WO 2004/114130 (“Method and system for updating versions of content

stored in a storage device”, published 2004) discloses a system and method for

~ generating a compact update package between an old version of content and a

new version of content. The system of WO 2004/114130 includes a conversion
element generator for generating a conversion element associated with the old
version and new version. It also includes a modified version generator for
generating a modified version, and an update package generator for generating
the compact update package. The compact update package includes the
conversion element and a modified delta based on the modified version and the
new version. _

WO 2005/003963 (“Method and system for updating versions of content
stored in a storage device”, published 2005) discloses a system and method for
updating versions of content stored in a storage device. The system of WO
2005/003963 includes an update module for obtaining a conversion element and
a small delta. It also includes a converted old items generator for generating
converted old items by applying the conversion element to items of an old
version, a data entries generator for generating data entries based on the modified
data entries and on the converted old item, and a new version generator for
generating a new version of content by applying the commands and the data
entries to the old version. .

US 6,832,373 (“System and method. for updating and distriﬁuting
information”, published 2004) discloses devices, systems and methods for
updating digital information sequences that are comprised by software, devices,

and data. In addition, these digital information sequences may be stored and used

10

15

20

25

30

WO 2005/119432 PCT/IL2005/000568

-3-

in various forms, including, but not limited to files, memory locations, and/or
embedded storage locations. Furthermore, the devices, systems, and methods
described in US 6,832,373 provide a developer skilled in the art with an.ability to
generate update information as needed and, additionally, allow users to proceed
through a simplified update path, which is not error-prone, and may be
performed more quickly than through the use of technologies existing when US
6,832,373 was filed. ’

It is known to those versed in the art that content can be stored in a storage
device, such as disk or memory, while some storage devices are organized in
blocks. Blocks being part of the original version are referred to as “old blocks™ or
“original blocks”, while blocks being part of an updated version are referred to as
“new blocks” or “updated blocks”. In addition, when updating an original version
forming an updated version thereby, the updated version can sometimes use
content previously stored in blocks of the original version. That is, the content of
updated blocks is sometimes similar to content of original blocks.

Furthermore, available storage devices can have a limited space. Thus,
while updating versions in a storage device, it is sometimes preferred to store the
new version in place of the old version, saving space thereby. Such an update
process, where the new version occupies at least some of the space previously
occupied by the old version, is referred to, in the art as “in-place update” or
"updating in-place".

It should be noted that an update process can process the blocks of the old
version in an order which does not necessarily correspond to the sequential order
of the blocks within the file. The order, in accordance with which blocks of the
old version are updated, is referred to as an “update sequence” or “update order”.

~ One of the outcomes of in-place updating is that, once storage blocks have
been updated, the content of at least some of them being part of the original
version (i.e., at least part of the original content), is potentially lost. Therefore,
once the process of updating has started and after some original blocks are

modified to hold updated content (the updated content being part of the updated

10

15

25

30

WO 2005/119432 PCT/IL2005/000568

-4-

version), the storage device can store content which is partly original and partly
updated version.

In addition, it is known in the art that the old content is sometimes
required for the update process, such as in a delta update method. Therefore, if
the update process is interrupted through the course of its running, before the
creation of the new version is completed and when the stored content (or stored
version) is partly old version and partly new Version, the in-place update process
cannot be repeated from start anymore.

In light of the above, it is realized that in-place updating can be sensitive
to interruptions. When the process of in-place updating tries to resume from the
point where it was interrupted (the resume location), it requires information that
allows calculation of the location of interruption. After locating the location of
interruption, the update process may also need to restore other information,
which was available to the interrupted process at the time of interruption.

Currently in the art, a record referred to hereinafter as "state record” is
commonly used for storing results. of calculations calculated before the
interruption. The results, together with the identification of the current updated

block form a "state" of the in-place update process. For example, if the update

" package is compressed and it is being decompressed on-the-fly during the update

process for reading just the necessary parts for updating each old block, and were
the amount of data decompressed from the update package, depends on old
contents of updated blocks, then this amount cannot be re-computed again once
blocks were actually updated. |

As mentioned already above, the process cannot restart from its
beginning; Thercfore, it might be that some of the data in the state record cannot
be re-computed even if the last updated record is known — it needs to be restored

by other means. The common practice in the prior art is to maintain a state-record

" as mentioned above in a storage device accessible to the update process, and to

update it periodically during the update process, to reflect its progress, an

operation referred to hereinafter as “state recording”. Using state recordin
p g

10 -

15

20

25

30

WO 2005/119432 PCT/IL2005/000568

-5-

enables the resurhption of an in-place update process by re-constructing the state
of the process as it was at the last successful update operation, and to continue
the process towards its completion.

In some cases, the information stored during state recording cannot be part
of the contents being updated and must be séparated to another area of storage.
State recording takes time since it involves read & write operations from and to
the storage device. In some case, where the read & write operations of the
storage device are allowed only for whole blocks, the time required for the whole
process is doubled — for each updated block there is another block to update — the
one holding the state's recording.

It is also known to those versed in the art that, in order to properly resume
an interrupted in-place update process, there may also be the need to handle a
corrupted block which was the result of an interrupted storage write operation. It
could be impossible to restore the information in that block, as the block's old
content was modified and there may be no way to restore its old content just by
examining the file's other blocks. This problem is resolved by the prior art by
using a backup buffer where any block's new content is being stored there first
and then copying its content to its target block to be updated (hereinafter referred
as "update-first") or alternatively, the old block is copied to a backup buffer and
afterwards the new content is generated and stored in its target block (hereinafter
referred as "backup-first"). This method is -also known in the art as "2-phase
commit" scheme.

Updating software of embedded devices such as mobile telephones is an
example for an in-f)lace update procedure. It is realized that storage of mobile

telephones can be limited. For example, a mobile telephone can have enough

‘storage to hold only one version of its software (also called firmware).

Maintaining state-recording inside blocks of*the firmware itself is clearly not
practical, since it would interfere heavily with the process of creating the
software and therefore it must be stored in a separate area of storage. Updating

mobile phone's firmware is a relatively slow process due to the speed of the

10

15

20

WO 2005/119432 PCT/IL2005/000568

-6-

storage devices used (Flash memory). During the update process the phone is
inoperable, creating the need to minimize the time it takes.

There is a need in the art for faster and reliable updating procedures,
allowing shorter interruptions in embedded devices operation during software
update.

There is a need in the art to provide for a new method and system for

updating versions of content stored in a storage device.

SUMMARY OF THE INVENTION

It is therefore an object of the invention to provide a new method and
system for updating versions of content stored in a storage device.

The present invention provides a method for updating a stored version of
content stored in a storage device using an update package, wherein the update
package is adapted for updating an original version of content to an updated
version, wherein the update package includes update commands and wherein the
updating is carried out in accordance with an update sequence, the method
comprising: determining direction of the updating including: if the direction is
indicative of forward then forward-updating the stored version to the updated
version in accordance with the update sequence; if the direction is indicative of
roll-back generating a roll-back update sequence opposite to the update sequence
and rolling-back the stored version to the original version in accordance with the
roll-back updéte sequence. A

The present invention further provides a method for reversing an update

| process, the update process is adapted for updating a stored version of content

stored in a storage device to one of a group including an updated version and an
original version using an update package, thé method comprising: reversing
ﬁpdate commands in the update package that were previously performed during
updating. |

Further provided by the present invention is a method for in-place

updating a stored version of content stored in a storage device using an update

10

15

.20

25

30

WO 2005/119432 PCT/IL2005/000568

-7-

package, wherein the update package is adapted for updating an original version
of content to an updated version, the method comprising: determining direction
of the updating; if the direction is indicative of forward then forward-updating
the stored version to the updated version; otherwise rolling-back the stored:
version to the original version.

Further provided by the present invention provide A method for providing
an update process of a stored version, comprising: providing a forward update for
updating the stored Versioh to a first version; providing a roll-back update for
updating the stored version to a second version; applying a first update operation
being either of said forward update and said roll-back update; and applying a
second update operation being either of said forward update and said roll-back
update and being other than said first update operations. |

Further provided by the present invention a method for providing an
update process of a stored version, comprising: applying a roll-back update for
updating the stored version to an original version.

Further provided by the present invention a system for updating a stored
version of conteht stored in a storage device using an update package, wherein
the update package is adapted for updating an original version of content to an
updated version, wherein the update package includes update commands and
wherein the updating is carried out in accordance with an update sequence, the
system comprising: a direction determination unit adapted for determining
direction of the updating. a forward updating processor coupled to the direction
determination unit for forward-updating the stored version to the updated version
in accordance with the update,sequénce when the direction of the updating is
indicative of forward; a roll-back sequence generator coupled to the direction
determination unit for generating a roll-back update sequence opposite to the
update séquence when the direction of the updating is indicative of roll-back; and
a roll-back updating processor coupled to the roll-back sequence generator for
rolling back the stored version to the original version in accordance with the roli-

back update .

10

15

20

WO 2005/119432 PCT/IL2005/000568

-8-

The present invention provide a system for reQersing an update process,
the update process is adapted for updating a stored version of content stored in a
storage device to one of é group including an updated version and an original
version using an update package, the system comprising: an update commands
reversal unit for reversing update commands in the update package that were
previously performed during updating. |

Further provided by the present invention a system for in-place updating a
stored version of content stored in a storage device using an update package,
wherein the update package is édapted for updating an original version of content
to an updated version, the system comprising: a direction determination unit
adapted for determining direction of the updating; a forward updating processor
coupled to the direction determination unit for forward-updating the stored
version to the updated version when the direction is indicative of forward; and a
roll-back updating processor coupled to the direction determination unit for
rolling-back the stored version to the original version when the direction is

indicative of roll-back.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to understand the invention and to see how it may be carried out
in practice, a preferred embodiment will now be described, by way of non-
limiting example only, with reference to the accompanying drawings, in which:

Fig. 1 is a schematic illustration of a system for updating versions in a
cellular network, in accordance with one embodiment of the invention;

Fig. 2 demonstrates simplified exemplary stages in updating an original
version to an updated version; | '

Fig. 3 demonstrates an exemplary original vérsion and a corresponding
exemplary updated version,

Fig. 4 demonstrates exemplary updafe packages adapted to update the

original version of Fig. 3 to the updated version thereof;

WO 2005/119432 PCT/IL2005/000568

-9.

Fig. S is a flowchart illustrating operations performed before reversing an
update process, according to an embodiment of the invention;
Fig. 6 demonstrates by way of example storing deleted content, according
to one embodiment of the invention;
5 Fig. 7 demonstrates by way of example reducing usage of a content

reserve buffer, according to one embodiment of the invention;

Fig. 8 is a flowchart illustrating the main procedures performed while
updating an original version to an updated version in a reversible update process,

according to one embodiment of the invention;

10 Fig. 9 is a flowchart illustrating in detail forward-updating a stored

version, according to one embodiment of the invention;

Fig. 10 is a flowchart illustrating in detail rolling-back a stored version,

according to one embodiment of the invention;

Fig. 11 is a block diagram schematically illustrating a system for updating
15 a stored version of content stored in a storage device, according to -one

embodiment of the invention;

Fig. 12 is a block diagram schematically illustrating a system for

reversing an update process, according to one embodiment of the invention; and

Fig. 13 is a block diagram schematically illustrating a system for updating
20 a stored version of content stored in a storage device, according to another

embodiment of the invention.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

In the following description cdmponents that are common to more than
one figure will be referenced by the same reference numerals.
25 Furthermore, unless specifically noted, the term “update” is used
hereinafter to refer to in-place update.
Fig. 1 is a schematic illustration of a system 101 for updating versions in a |

cellular network, in accordance with one embodiment of the invention. Cellular

10

20

25

WO 2005/119432 PCT/IL2005/000568

-10-

telephones 102 that are coupled to or include storage devices 103, execute
programs that enable their operation. Programs are normally stored in files. The
version of the program currently executing in the cellular telephones is referred
to, hereinafter, as an "old version" or as an "original version".

It is noted that storage devices, such as the storage devices 103, are
sometimes referred to also as "storage devices" or "memory units".

Sometimes there is a need to update the programs in order for the
telephones 102 to execute a newer version thereof. Such an updated version is
generated by an update pfocess operating in the telephone. The update process
operates vin accordance with an update package (constituting a "delta file") that
the cellular telephone receives. _

According to the invention, an update package is generated in an update
package generator 104, operating, for example, in a personal computer (PC) or in
any other type of computer. The update package is stored in an update server 105
and transmitted, via a transmitter 106 to the cellular telephones 102.

It should be noted that the system 101 illustrated in Fig. 1 is a non-binding
example and the invention is not limited to updating programs. Many other types.
of content stored in storage devices require update, such as. data stored in
databases, files stored in the storage device etc. Therefore, hereinafter the term
“content” will be used instead of “program”.
| In the same way, the invention is not limited to cellular networks and/or to
cellular telephones 102. It should be appreciated thét cellular telephones belong
to a group referred to as embedded devices. There are other embedded devices,
such as Personal Digital Assistants (PDAs), set-top boxes and other consumer
electronic devices that are coupled to storage devices for storing content, and
sometimes it is required to update the content stored therein. Yet, it is possible to
update also content stored in storage devices coupled to non-embedded devices,
such as PCs or other computers. Therefore, the storage devices 103 can be, for

example, hard-disk drives, Flash-memory devices or any other storage device.

15

20

25

WO 2005/119432 PCT/IL2005/000568

211 -

For example, a PC, or any other computer, can store files that include data
required for its operation or for operation of programs executing therein (such as.
“info files” or "dot files" known for those versed in the art). Sometimes it is
required to update this data, for example, via communications lines, e.g., via the
internet or via any other communication means.

Understanding this, instead of using terms such as "telephbnes", "PDAs"

"consumer electronic devices", "computer", "PC", etc., the term "updated

. devices" will be used hereinafter, and it should be noted that the term an "update

device" can refer to any device that is coupled to a storage device and allows
updating content stored therein. |

It was previously explained that in order to update content stored in the
storage devices, update packages are generated, stored in the update server 105
and conveyed to.the storage devices or to other devices coupled therewith (such
as the cellular telephones 102). Altemaﬁvely, it is possible to convey an update
package without storing it first in an update server 105. For example, it is
possible to convey the update package directly from the update package
generator where it is generated. In such a case the machine where the update
generator operates or the update generator itself is considered as the update
server 105.

Furthermore, in the example illustrated in Fig. 1, the update péckage is
conveyed via the transmitter 106. This is also non-binding and any other way
applicable for conveying the update package can be used. For example, it is
possible to store the update package on a portable storage device such as a floppy
disk or disk on key thus allowing an updated device (such as the telephones 102)
to access the update package by reading it there from.

When a cellular telephone 102 receives an update package, it can dperate
an update process in accordance with the update package, wherein the update
process updates the origihal version for generating another version referred to as
an "updated version" or as a "new version". It should be noted that the cellular

telephone 102 can operate the update process immediately after receiving the

10

15

20

25

WO 2005/119432 PCT/IL2005/000568

-12-

update package. Alternatively, it can store the update package in a non-volatile
memory, such as in the storage device 103, and operate the update process in
some later time (such as on the next time the telephone reboots).

It is noted that a storage device can store content of original and/or
updated versions. Those versed in the art would appreciate that content is
normally stored in files, while a file, or the content stored therein ié subject to
updates by an update process.

In many times a file is constituted of logically sequential content. For
example, in a file that includes text, wherein the text is "123456789", the
character '2' is logically consecutive. to the character 'l', the character '3' is
logically consecutive to the character "2' etc. However, those versed in the art
would appreciate that, when storing this file in a storage device, it can become
fragmented, i.e., different portions of the file can be stored in different areas of
the storage device. In other words, a logically sequential content is not
necessarily stored in a physically sequential manner in the storage device.

Furthermore, those versed in the art will appreciate that many storage

devices include discrete areas in them. For example, hard drives include sectors

~and so do flash memory modules. A discrete area in a storage device is referred

toas a "storage block", or shortly as "block". It is noted though that hard drives
and flash memory modules are only two examples Qf a storage device. There are
other known per se storage devices such as Random Access Memory (RAM) etc.

Bearing in mind that a logically sequential content is not necessarily-

stored in a physically sequential manner in the storage device, it should be

appreciated that sequential content can be spread over several storage blocks.
Furthermore, one storage block can include content belonging to several logically
sequential contents (such as several ﬁles). Returning now to the previous
example, where the text “123456789” constitutes logically sequential content, it
should be appreciaited that the content “1234” can be stored in one physical

block, while the content “56789” in this example can be stored in a different

10

15

20

25

30

WO 2005/119432 PCT/IL2005/000568

-13 -

physical block that physically precedes the block where “1234” is stored (yet it is
clear that logically the content “1234” precedes the content “56789”).

The Logically sequential text "123456789" will be further considered as
an original version. According to the example, it is possible to update this file to
include an updated version, wherein the text stored in the updated version is
"123756489". In this updated version the characters '4' and '7' were switched,
compared to their position in the original version or in different words, in the
updated version the character '7' replaces the character '4' that appears in the
original version, while the character '4' replaces the character '7'. It should thus be
appreciated that, in order to generate this updated version, it is possible to divide
the original version into several segments (each segments constitutes a "logical

block"). For example, the first segment includes the content "123", the second

- segment's content is "4", the third segment includes "56", the fourth includes "7"

and the fifth includes "89". When generating the updated version, the first, third
and fifth segments are left intact, while the second and fourth segments are
switched. Thus, a segment includes logically sequential content.

It is possible to further define that segments are logically sequential
segments of content that perform uniform behavior during update. In the
example, the segment "123" is logically sequential and it informally stays.
unmodified in the updated version. Similarly, the segment "7" is also logically
sequential (a sequence of 1 character is a valid sequence), and it is uniformly‘
moved to occupy the position formerly occupied by "4", etc.

The previous example of the “123456789” text and the update thereof to
the updated version “123756489”, wherein each segment includes logically
sequential content and performs uniform behavior during update, is a simplified
example. In other examples it is possible to divide the content into segments that
are’ logically sequcntiai; perform uniform behavior during update and occupy
physically sequential afea in one or more physical block. Thus, if “123” is
fragmented in a way where “12” is stored in a ﬁfst block, while “3” is stored in a

second block, wherein “12” does not sequentially preéede “3”, then according to

10

15

20

25

30

WO 2005/119432 PCT/IL2005/000568

-14 -

this example “123”, although logically sequential, should be divided into two
segments (specifically there are “12” and “3”).

In this latter example the segment “12” can yet reside on two different
blocks, as long as the blocks are sequential (a first block sequentially precedes a
second block)' and as long as the character ‘1° is stored in an area ending the first
block while the character ‘2’ is stored in the area opening the second block.

This latter example is non-binding. For example, an alternative
embodiment can limit a segment to occupy physically sequential area in one
physical block (unlike “one or more” in the previous example). Thus, if “12” is
sequentially stored in two sequential blocks it must be further divided into two
segments (one is “1”” and the second is “2”).

When content of a segment in the updated.version (an “updated segment”)
corresponds to content of a segment in the original version (an “original
segment”), these segments are considered as “corresponding segments” or
“matched segments”. Correspondence refers to any logical connection between
the segments, wherein . the updated segment can be a copy of the original.
segment, it can be a modified copy of the original segment (e.g., in large
segments it is sometimes preferred to copy a whole segment and then modify part
of the copied content), or it can include content received by performing a
calculation using content stored in the original segment etc. |

It is noted that sometimes there may be more than one updated segment

corresponding to a certain original segment (e.g., the content of the original

segment is copied twice, thus generating two updated segments corresponding
thereto). The opposite is also true: Sometimes there may be more than one
original segment corresponding to a single updated segment (e.g., in order to
calculate the content of a single updated segment, it is possible to use content
stored in two distinct original segments). |

It was previously meﬁtibned that in order to update an original version to

an updated version, an update process operate in accordance with an update

. package. According to one embodiment, the update package includes update

15

20

25

30

WO 2005/119432 PCT/IL2005/000568

-15-

commands (shortly “commands”), wherein eaéh command corresponds to one
segment in the original and/or updated versions. An update command can include
a code indicative of an update operation and it is appreciated that the codes can
be, e.g., a numerical code, bit-mask, a string code or any other code applicable to
the case.

There are different update operations and hence update commands that are
allowed for updating an original version to an updated version. For example:

A “delete” command corresponds to one segment in the original
version, whose content is deleted when generating the updated version
(hence this command does not correspond to any segment in the updated
version). A deleted segment in the original version has no cdrresponding
segment in the updated version. The delete command ffees the segment in
the storage device thus allowing writing other content into the segment.
That is, the update process does not need to physically delete the content.
It can only mark this area as free.

An “ins.ert” command corresponds to one segment in the update
version, wherein new content is added into this segment. An inserted
segment in the updated version has no corresponding segment in the
original version. It is noted that in some embodiments, when inserted
content is written in a non-free area (i.e., physical area that includes
content that was not freed before, for example, by a delete co;:nmand), the
origirial content is overridden by the inserted content and therefore
considered as deleted. In these embodiments such an insert command is
considered as equivalent to a delete command followed by an insert
command. | |

A ‘v‘copy"’_ command corresponds to one segment in the original -
version (an “original segment™) and to one segment in the updated version
(an “updated segfnent”-), wherein content of the original segment is copied
to the updated segmenf. The original and updated segments are considered

as corresponding segments. After performing a copy operation (in

10

15

20

25

30

WO 2005/119432 PCT/IL2005/000568

-16-

accordance with a coj)y command), the area previously occupied by the
original segment is considered free, thus it is allowed to write other
content therein. It is noted that the update process does not need to
physically delete (free) the content. It can only mark ;chis area as free. In
addition, similarly to the insért 'comm'and, there are some embodiments,
wherein inserted content that is written into a non-free area (i.e., physical
area that includes content that was not freed before, for example, by a
delete command), overrides the non-freed content, which is therefore
considered as deleted. In these embodiments such a copy command is
considered as equivalent to a delete command followed by a copy
command.

A “replace”Acommand replaces content of an original segment with
new content in the update version and hence it corresponds to one original

segment and to one updated segment. The content of the original segment

-is deleted while supplementary data (such as data stored in the

replacements supplementary data portion, 419, of Fig. 4 below) is written
into the updated segment. However, those versed in the art would
appreciate that there are transforming functions, such as Bitwise XOR
(exclusive or), that transform data to another in a reversible manner. For
example, it is possible to bitwise XOR the content of the original segment

with data (“transforming data™) that yields the content of the updated

segment. Those versed in the art would appreciate that it is-later possible

to bitwise XOR the ﬁpdated content with the transforming data to yield

-back the original content (bitwise XOR is a mathematically revertible

function, i.e. if "A XOR B = C" than "C XOR B = A"). In an embodiment
using transforming functions to replace content the supplementary data
can include the transforming data.

It is noted that the exemplary commands described above are non-limiting

and there may be additional types of update commands (such as “backup”) or

fewer types of update commands in an update package. For example, it shoﬁld be

10

15

20

25

30

WO 2005/119432 PCT/IL2005/000568

-17-

appreciated that instead of a “replace” command it is possible to use a
combination of “delete” and “insert” as was previously explained. According to a
different example there can exist a simple update package that instructs the
update process only to delete one segment (and hence this package does not
include any insert, copy and replace commands), etc.

There are storage devices 103 that permit accessing content (for reading
and/or for V\'/'riting)v stored in one block at a time. In an update package adapted
for éuch a storage device, the commands corresponding to a single block should
better be organized in groups, wherein the commands in each group correspond
to one block and do not include commands corresponding to other blocks
interweaved in between. Doing this the update process can access in one read

operation all the original content that is required from the original block or access

‘in one write operation all the updated content that is required to the updated

block. Interweaving commands that correspond to different blocks in an update
package adapted to such a storage device, whenever the update process performs
an operation in accordance with a command it accesses the whole block,
although it actually requires access to a segment thereof.

Before turning to Fig. 2, it is noted that the term “stored version” is used
for referring to the version vcurrently stored in the storage device. The stored .
version can be, e.g., an original version, it can be an intermediate version, as

illustrated, for example, with reference to Fig. 2 below, or it can be an updated

~ version.

Fig. 2 illustrates simplified exemplary stages in updating an original
version 201 to an updated version 202 in a storage device alldwing access to
whole blocks. The original version 201 includes four blocks, specifically these
are 203, 204, 205 and 206. The updated version 202, according to this example,
also includes four blocks, namely 207, 208, 209 and 210, wherein block 207
replaces block 203, block 208 replaces block 204, block 209 replaceé bloék 205
and block 210 replaces block 206. Accofding to the example, the update process
first replaces block 203 with block 207. Thus, the stored version 211 includes a -

10

15

20

25

30

WO 2005/119432 PCT/IL2005/000568

-18 -

combination of the original versiQn 201 and the updated version 202, wherein the
first block is 207 (which belongs to the lipdated version) while the other blocks A
(i.e., 204, 205 and 206) still belong to the original version 201. Next, according
to the example, the update process replaces block 204 with block 208, thus the
stored version becomes 212. Then the stored version 213 is generated, and finally .
the stored version becomes the updated version 202. Versions that are partly
original and partly updated (e.g., versions 211, 212, 213) are referred to as
"intermediate versions".

It should be appreciated that the update process illustrated in Fig. 2 can
terminate, normally or not, at any stage. Thus, the stored version stored in the
storage device can be any of the versions 201, 211, 212, 213 or 202.
Furthermore, since interruption may occur while storing content in an- updated
block, the last updated block at the point of interruption may be corrupted, that is,
it may contain undefined content as is known to those versed in theart. -

It should be noted that the example provided with reference to Fig. 2 is by
no .way binding. Original, intermediate and/or updated versions can include any
number of blocks, a block can include any applicable number of bits and the
update process can perform any operation applicable to the case apart or in
addition to replacing blocks (sﬁch as deleting blocks, inserting blocks, moving
blocks etc.). | '

In addition, in a storage device that allows access to pértions of blocks,
there can also exist original, updated and intermediate Versioﬁs. However, in
these cases Fig. 2 would illustrate segments instead of blocks.

Fig. 3 illustrates an éxemplary original version 301 and a cdrresponding
exemplary updated version 302. The original version is sometimes also referred
to as a “source version” while the updated version ié sometimes referred to as a
“target version”. Segments 303, 304, 305, 306, 307 and 308 constitute together
the original version 301, while segments 309, 310, 311, 312, 313, 314 and 315. |
constitute together the updated version 302. It is noted that the original version

includes fewer segments compared to the updated version (six segments in the

10

15

20

25

WO 2005/119432 PCT/IL2005/000568

-19-

original version corﬂpared to seven segments in the updated version). Thus, the
update process inserted new content (segments 311 and 313 in the example) into
the updated version. In addition, it is noted that the content of segments 303, 305,
306 and 308 in the original version is identical to the content of segments 309,
312, 315 and 314 of the updated version, respectively. That is, the original
content of these segments is copied into the corresponding segments in the
updated versioﬁ. F.urthermore, the content of segment 307 of the original version
is deleted thus it does not appear in the new version, while the updated content of
segment 310 replaces the original content of segment 304.

In the example of Fig. 3 the original version 301 is stored in one block in
the storage device, specifically, block 316. The update process is an in-place
update process, that is, t_hé updated version overrides the original version, hence

the update version 302 is also stored in block 316. However, this is non-limiting

and a version (an original and/or updated version) can be stored in more than one

~ block as was previously explained, with reference to the “123456789” example.

In addition, it is possible to see 301 and 302 as part of larger original and updated
versions. Thus, the term “original version 301" and “updated Versidn 302" refer
to the versions as a whole, or to one block there from. |
While looking at the figure it is illustrated that there are two free segments
padding the original version 301 on both sides.. Specifically, these are segments
318 and 319. There are also two free segments, 320 and 321 padding the updated
version 302. It is noted that the free segments 318, 319, 320 and 321 are not part
of the original or updated versidns, instead they are unused spaces in the block
316, when occupied by the original or updated version. Theses free segments can
sometimes be used for storing content which is part of other files. It is flirther
noted that according to the example, the free segment 320 is smaller than the free
segment 318, while the. free segment 321 is smaller than the free segment 319.
That is, the spade occupied by the original version 301 is smaller than the size |

occupied by the updated version 302.

10

15

20

25

30

WO 2005/119432 PCT/IL2005/000568

220 -

The segments 303 and 309 are corresponding segments. Similarly are 304
and 310; 305 and 312; 306 and 315; and 308 and 314. v

Fig. 4 illustrates alternative updatei packages 401 and 402 adapted to
update the original version 301 of Fig. 3 to the updated version 302 thereof. The
update package 401 includes update Commandé for updating the version. The
command 403 instructs the update process to copy the original content of
segment 303 to the updated segment 309. The update comm’a.n.d 404 instructs the
update process to replace the original content of segment 304 with the “replaced
data”, thus yielding the updated content of the updated segment 310. It should be
noted that it is also possible to use a transforming function, such as XOR in order
to replace data, as was previously explained. In such an embodiment the
“replaced data” would store the transforming data.

Command 405 is in charge for deleting the original content of segment
307; command 306 copies the original content of segment 308 to the updated
segment 314; command 407 copies the original content of segment 306 to the
updated segment 315; command 408 instructs the update process to insert the
“inserted data” into the updated segment 313; command 409 instructs it to copy
the original content of segment 305 to the updated segmen’i 312; and command
410 is in chargé of inserting the inserted data as the updated content of segment
311. It is noted that data provided to the update process, such as inserted and/or
replaced data, are interweaved with the>update commands of the update package -
401. Such an update packége, where data are interweavéd with the update
command is referred to as a “data indistinct update package” or "data
interweaved update package”. |

It is noted that the order by which the update commands appear in the
update package is not necessarily equivalent to the order of the respective

segments in the original and/or updated versions. In addition, it is noted that if

301 and 302 are parts of an original an updated ver‘sion then the update package

includes additional commands, for updating additional segments of additional .

blocks. In this case 401 is part of an update package.

10

15

20

25

30

WO 2005/119432 PCT/IL2005/000568

221 -

It is further noted that data such as “inserted data” and “replaced data” that
are required- for some update commands are generally referenced as
“supplementary data”. An update command that requires supplementary data is
referenced as a “data consuming apdate comrriand’_’.

The update package 402 is an alternative update package (or a part
thereof) that generates the updated version 302 from the original version 301.
The update commands in the update package 402 are equivalent to the update
commands of the update package 401, and ofdered in the same order as they
appear therein: command 411 is equivalent to command 403; corﬁmand 412 is
equivalent to command 404; command 413 is equivalent to command 405;
command 414 is equivalent to command 406; command 415 is equivalent to
command 407; command 416 is equivalent to command 408; command 417 is
equivalent to command 409; and command 418 is equivalent to command 409.
However, in the update package 402, unlike the update package 401, all the
supplementary data required for insert and replace commands appear in the end
of the update package. The portion 419 of the update package is used for storing |
supplementary data required for replace commands (hence it is referred to as a
“replacements suppleméntary data portion™), while the portion 420 of the update
package is used for storing data required for inseft commands (hence it is

referred to as an “insertions suppl'emen.tall'y data portion”). Such an update

‘package, where supplementary data are stored in supplementary data portions is

- referred to as a “data distinct update package

It is noted that each supplementary data portion (such as portions. 419 and

420) can include supplementary data items that correspond to more than one data

consuming update command. In the example of Fig. 4, the insertions

supplementary data portion 420 includes supplementary data of the update
commands 416 and 418. |

- According to one embodiment, a data consuming update command can

include a pointer to the respective suppiementary data item that is stored in the

update package, e.g., a pointer to the beginning of supplementary data item

10

15

20

25

30

WO 2005/119432 PCT/IL2005/000568

2.

included in one of the portions 419 and 420. According to a different
embodiment, each updéte command that requires supplementary data can include
the size of the respective data, thus allows computing the position where the
respective supplementary data item begins. This is non-binding and other
embodiments are allowed as well. For example, the supplementary data portion
can associate with each supplementary data item the size of this item. If the
supplementary data items are stored in the supplementary data portion by the
same order of the data consuming update commands in the update package, then
a person versed in the art would appreciéte that this embodiment allows
computing the position where a supplementary data item, respective of each data
consuming update command begins.

It would be appreciated by those versed in the art that original versions are
updated to yield updated versions. Such an update (or an original version to an
updated version) is referenced as "forward updating”. In addition, those versed in
the art would appreciate that while forwarded 'updating versions, an update

package is processed from its beginning towards its end. Processing an update

package from its beginning towards its end is referred to as "forward processing"

of the update package.

According to the invention, it is sometimes required to reverse the
direction of update, thus returning to the original version. Such a reverse is.
sometimes desired, for example, when the forward update process fails in the
middle, thus yielding a stored version that is an intermediate version. A cellular
operator, for example, may wish to return to the previous version (the original
version) when such failure occurs. |

According to another example, thn an update process starts operating it
can present a message to the user such as "the handheld is not updating software.
The update is éxpe_cted to last for 30 minutes during which the telephone will be
iﬁoperable". If the user must use his telephone within the coming 30 minutes he
is given the option to cancel the update process (thus postponing it to some later

time). However, the update process can perform part of the update task before the

10

15

20

25

30

WO 2005/119432 PCT/IL2005/000568

-23-

user presses cancel, which results in an intermediate version. Therefore, when the -
user presses "cancel" the update process has to reverse and return to the original
version.

Returning from a stored version to its corresponding original version is
referred to as "roll-back”, while an update process that performs roll-back is
referred to as a "rolling-back update proéess”. According to one embodiment of
the invention a rolling back update process can operate in accordance with the
update package used for forward updatiﬁg this original version, but in a reversed
direction (i.e., from its end toward the beginning) as will further be explained in
detail. v A |

The examples provided are by no way limiting and other examples and
reasons for roll-back exist as well. One such additional example is when a
cellular operator successfully updates an original version to an updated version,
however, the updated version is found non-satisfactory and therefore the operator
would rather return (roll-back) to the previously operating original version. That
is, roll-back does not requfre that the stored version would be an intermediate
version,; it can occur also when the stored version is an updated version.

Returning to the updateA package 402 of Fig. 4, 421 is a “direction
indication”, constituting “update attribute bits”. The direction indication is used
to indicate the direction by which the update process should operate, and/or the
reason for this operation. For example, there can be’ differem codes fof the
different directions and/or reasons of operation. |

However, this is non-limiting and other embodiments can storé the
direction indication in other storage areas which are not necessarily part of the
update package. For example, there can be a "direction indication buffer" in the
storage device 103. ’

In accordance with certain embodiments thé direction of the update is one
of two directions. Specifically, the direc‘;ion is one of forWard and roll-back. This
is non-limiting and other émbodiments can have any direction applicable to the

case.

10

15

20

25

WO 2005/119432 PCT/IL2005/000568

-24 -

When an update process, operating in accordance with one embodiment of
the invention starts operating, it needs to identify the direction of operation and
the start position. It is noted that when a forward update initially begins, the

| stored version is normally the original version, the start position is the beginning
of the original version and the beginning of the updaté package, and the direction
A‘is forward (as was already noted). ‘However, if the stored version is an
intermediate version, -the start positioh ‘would be somewhere along the
intermediate version and along the update package. Similarly, the direction can
be either forward or roll-back.

Returning to Fig. 3, it was already mentioned that during the update
process several segments were modified (therefore constituting "replaced blocks"
or "inserted blocks"). It was also explained with reference to Fig. 4 that the
content of the modified segments is provided with the update package used by
the update process.- Thus, it is possible to predict what should be the content of an
updated segment, based on the update package.

- According to one embodiment, therefore, it is possible to include in the
update package signatures corresponding to the modified portions in the update
segments. A signature, for example, can be a known per se checksum computed
for the specific block. The signétures can be stored together with their
corresponding blocks. HoWever, alternative embodiments are allowed as well,
such as storing signatures in the béginning or end of the updafe package, in
separated tables etc.

It was also explained (e.g., with reference to Figs. 3 and 4) that content of
some segments is copied from the original version to the updated version.
Therefore, given an original version and an update package, it is possible to
compute signatures for all segments in the updated version. Furthermore, it is
possible to compute one signature that corresponds to all the segrhents in a block
that are part of the updated version. Such a signature is referred to as a “block’s

updated signature”.

15

20

25

WO 2005/119432 PCT/IL2005/000568

-25 -

It is further possible, according to the embodiment, to calculate a “block’s
original signature”, that is, a signature that corresponds to all the segments in a
block that are part of the original version.

Understanding this, and bearing in mind the explanation that a stored
version can be either an original version, an intermediate version or an updated
version (see, for example, Fig. 2), a person versed in the art would appreciate
that by calculatihg signatures of blocks in the stored version and comparing them
with the blocks’ original signatures and with the blocks’ updated signatures it is
possible to determine the identity of the stored version. Furthermore, if the stored
version is determined to be an intermediate version, it is possible to determine
the.’position of interruption of the previously running update process. Then it 1s
possible to locate the update.command in the update package that corresponds to
the position -of interruption.

In storage devices that allow access to content that occupies part of a
block it is further possible to compare segments’ signatures, in order to determine
the segment where interruption of the previously running update process
occurred. | |

It is further possible to associate with the update package records
referenced as “state Vrecords”‘. According to one embodiment it is possiblé to
associate a state record with commands correspdnding to each block, wherein the
state record reflects the state of the ﬁpdate process, as it should be after the

update of the corresponding block is completed. For example, the state-record

. can include a copy of the block in RAM used by the update process to hold

variables that maintain the process, such as known per se local variables.

 After determining the identity of the stored version, the position of
interruption of the previouély running update process and the state record, it is
possible, according to one embodiment of the invention, to reverse (or revert) the -
update process, thus returning to the original version that existed before the .

previously running update process started running.

10

15

20

25

WO 2005/119432 PCT/IL2005/000568

-26 -

Fig. 5 is a flowchart illustrating operations pérformed before reversing an
update process, according to an embodiment of the invention. In 501 the update
sequence is determined in accordance with the update package and in 502 the
update process reads the first block of the stored version in accordance with the
update sequence. In 503 the signature corresponding to the read block is accessed
(e.g., by reading it from the update.package) and a corresponding signature is
calculated in 504, based on content read in 502. If in 505 the update process
identifies that the two signatures match and as long as there are other, un-
examined blocks (see 506), the signature corresponding to the next block in
accordance with the update sequence is accessed in 507 and in 508 the block is
read in order to calculate its corfesponding signature in 504. If in 506 it is found
that there are no more un-examined blocks, this means that the stored versionv is
an updated version and the update process terminates without reversing. It is
noted though that this is non-limiting and other embodiments can reverse even a
stored version, which is an updated version.

When in 505 the two signatures do not match, the update process can
access the stafe record that corresponds to the read block, as done in 509, in order
to restore the process state in 510. Once the state has been restored, the process

‘ revérses in 511 in order to return to the original version.

It is noted that according to one example, while updating a block the
update process stores its original content in a backup buffer to allow restoring its
content if the update process fails before the block's update is complete
(‘backup-first’). A different example can store the updated block's content in the
backup' buffer (‘update-first')) without incurring changes to the block itself,
instead of the original cbntent, and then copy the updated content from the
backup buffer to the block. In the backup-first case, when locating the point of
interruption it is possible that the content of this block is corrupted. In this case
the content can be recovered from the backup buffer. Alternatively, in case of

'update-first', the new content already exists in the backup buffer.

10

15

20

25

WO 2005/119432 PCT/IL2005/000568

-27-

It is noted that Fig. 5 is non-binding. In an alternative embodiment the
signatures in the update package can correspond to blocks in the original version .
instead of the updated version. Those versed in the art will appreciate that instead
of comparing signatures locating the point of interruption by looking to the first
block in the stored version whose signature does not match to the corresponding
signature in the update package, in this alternative embodiment it is required to
look for the first block in the stored version whose signature does match to the
corresponding signature in the update package, wherein the point of interruption
is the previous block in the stored version, acéording to the update sequence.

It was previously described that roll-back is sometimes performed due to

user (hand-held owner) selection etc. In case of owner's initiated roll-back, it is

‘not necessarily required to search for the start position. According to one

embodiment of the invention, when canceling an update process it is possible to
store an indication of the start position (the indication can be stored, for example,
in association with the direction indication).

Before turning on to describe how reversal can be performed, it is noted
that it is also possible to reverse a rolling-back update, thus yielding a forward
update. For example, if an owner cancels a forward update (thus starting a roll-
back), he can change his mind and reverse the update process again (by canceling
the rolling-back update process), thu‘s’ returning to the forward update, which
results with an updated versiqn. That is, aécording to one embodiment, when
canceling an update process it is possible to "toggle" between forward and roll-
back direction indications. . |

It is noted that because the term ‘reversal' explains reversal from forward
updating to rolling-back and vice versa the update process operating before the
reversal is referred to as pre-reversal update process and the one operating after
the reversal is referred to as post-revérsal update process. It should be understdod
that if the pre-reveréal update process performs forward update, then the post-

reversal update process peffdrms roll-back. The contrary is also correct: if the

15

20

25

30

WO 2005/119432 PCT/IL2005/000568

-28 -

pre-reversal update process performs roll-back, then the post-reversal update.
process performs forward update. |

Similarly, the stored version that exists before the update process ‘
(forward-update or roll-back) starts operating is generally referred to as source
version, while the stored version that the update process is generally referred to
as a "target version". The source version can be an original version, an updated
version or an intermediate version. The target version can be either an original
version or an updated version.

According to one embodiment of the invention, in order tb allow reversal
(from forward updating to rolling-back and vice versa), it 1s required to backup
any content deleted during the pre-reversal update process, as it will be necessary

to re-introduce this content into the target version. Fig. 6 illustrates by way of

~example storing deleted content during a pre-reversal update process, according

to one embodiment of the invention. In the figure, there is illustrated one segment
307 of the original version 301 (see Fig. 3), which is the source version in this
example. There is also illustrated a portion of the update package 402 of Fig. 4,
wherein the illustrated portion includes the delete update command 413, in
charge for deleting segment 307. The portion also includes the replacements
supplementary giata portion 419, the insertions supplementary data portion 420
and the direction indication 421. -

In addition, a “content reserve buffer” 601 is illustrated. The content
reserve buffer, constituting a “save buffer”, is an area in the storélge device 103
accessible to the update process, that is specially allocated in order to allow
reserving deleted content. According to one embodiment the content reserve

buffer 601 can be allocated temporarily only for the duration of the update

process and be reused afterwards for any other task. Before deleting content

during the update process, it is possible to reserve (602) a copy thereof in the -
content reserve buffer. Alternatively, it is poSsible to dedicate space in the update
package for the content reserve buffer, thus ensuring that there is enough space in

the storage device 103 for this buffer, in the cost of a larger update package

10

15

20

25

30

WO 2005/119432 PCT/IL2005/000568

-29-

(which requires more bandwidth and/or more time to transmit, compared to a
smaller update package). |

It is noted that Fig. 6 illustrates reserving content during a delete
operation. However, this is non-limiting and according to some embodiments
reserving should occur whenever the update process performs an operation that
overrides content, such as “replace”, in order to allow for a later reversal of the
advancing update process. It is further noted that embodiments operating a
transforming function while performing a “replace” operation, can avoid
reserving the stored content before overriding it with the replacing cdntent,
because the transforming data can be re-applied to the replacing content in order
to re-transform it back to content identical to the stored content.

The embodiment of Fig. 6 is non-binding and alternative embodiments are
allowed as well. For example, it is possible to include a copy of the deleted data
in the update package. This way more network resources will be required in
order to transmit the update package (which becomes even larger), yet, the
update process will be faster, as no reserve operations are required.

Fig. 7 illustrates by way of example reducing usage of a content reserve
buffer, according to one embodiment of the invention. It is noted that
supplementary data items used. for insertion and replacement commands in the
pfe-reversal update process -are not required after performing their respective
update commands as their supplementary data is already written into the target
version. Yet, it was already explained that content deleted during the advancing

update process is reserved, e.g., in the content reserve buffer. Thus, it is

appreciated that the content stored in the content reserve buffer can be copied

(701) into the update package, in-place of the already used supplementary data
420, allowing to free (and/or re-use) the content reserve buffer thereby.

As suggested by the latter example of Fig. 7, the update package itself can -
be updated inQplace, which may require a reliable rhodiﬁcation method for
modifying its storage area in case the update process is interrupted. Reliable in-

place modification of the update package can use any reliability technique, such

10

15

20

25

30

WO 2005/119432 PCT/IL2005/000568

-30-

as using a backup buffer, package signatures and state records as was previously
explained.

According to one embodiment of the invention it is possible to replace the
supplementary data items whenever they become "free" (i.e., substantially
immediately after using each one of them). According to a different embodiment
it is possible to replace the sﬁpplémentary data items at a later time, e.g., upon
termination of the update process. |

It should be appreciated that sometimes there are two or more deleted
segments, whose content (or al least part of their content) is similar or shared.
According to an alternative embodiment, when two or more segments share
content, this content can be reserved only once, while the other occurrences can
reserve an indication as to where the reserved content is stored or how to retrieve
it.

When the pre-reversal update process terminates, the direction indication
421 is set to indicate which direction should a preceding update process operate,
if such an update process initiates. It is noted that if the.pre-reversal update
process fails, or stopped in the middle, it also sets the direction indication 421, to
indicate whether the preceding update process (if initiated) should operate in a
forward or roll-back mode (such as in Fig. 5, 511).

According 'to the invention, reversing a forward update process is
performed by uhdoing each of the update commands performed by the forward
update process but in a reversed order, starting from the last update command
performed by the forward update process, and terminating with the first update
command in the update package. Similarly, reversing a rolling-back updaté
process is performed by redoing each of the update commands, whose reversing
command was performed by the rolling-back update process, starting from the
lasf reversed-update commarid performed by the rblling-back update sequence.

Reversing will be further explained with refere‘nce to the example
previously presented in Figs. 3 and 4. According to the example it is assumed

that the forward update process operated shccess_fully and yielded the updated

10

15

20

25

WO 2005/119432 PCT/IL2005/000568

=31 -

version 302 by updating the original version 301 in accordance with the update
package 402. It is noted that following this successful forward update the

direction indicator 421 indicates that the update process direction should be

‘ reversed (i.e., thé preceding update process, if initiated, will operate as roll-back).

According to the example, the rolling-back update process undoes the
update operations done by its preceding forward update process, but in a reversed
order: starting from the last update command executed before the advancing
process terminated and terminating with the first update command 411. In the
example, the first update command to be undone by during roll-back is 418. It is
noted that while reversing an update process, the supplementary data portions
(420 and 421 in the figure) are also accessed in a reversed order.

"According to the example, the supplementary data portions include
reserved content written thereto while deleting content during the forward
update. Understanding that a rolling-back update behaves like a forward update
(apart from the reversed direction of progress and the reversal of the commands),
it should be appreciated that whenever the rolling-back update process deletes
content from the stored version, a copy of the deleted content is written into the
supplementary data portions (or into the content reserve buffer). |

The following example explains how each of the exemplary update
commands (copy, delete, insert and replace) can be undone by performing an
appropriate operation (a “reversing update command” or "reverting operation"),
which reverses the original operation’s result: ' B
' A “delete” operation can be unoone (or rolled-back, reversed) by

an insert operation. The content previously deleted by the delete command

is the supplernentary data for the insertion command. For example, the
delete operation performed by the c'ommand delete 307 (see, for example,
command 413) is reversed by iﬁsert 307 supplementary-data (wherein the
supplementary data can be store in the sunplementary data nortion or in

the content reserve buffer).

10

15

20

25

30

WO 2005/119432 PCT/IL2005/000568

-32-

An “insert” operation performed in accordance with an "insert"
command can be undone by a delete operation. For example, command
418 (insert 311) can be undone by performing delete 311. 1t is noted that
when deleting content while performing the reversing command, the |
deleted content should be reserved, e.g. in the content reserve buffer or in
the iﬁseﬁ supplementary data portion.

A “copy” operation can be undone by copying_ the updated segment

back to its original position. For example, the command 417 (copy 305 —

312) can be reversed by the command copy 312 — 305.

A “replace” operation can be undone by deleting content inserted
by the pre-reversal update process and writing instead data stored in the
replacements supplementary data portion 419 or in the content reserve
buffer. In other words, a replace operation can be undone by another,
reversed, replace operation. However, those versed in the art would
appreciate that if a transforming function such as bitwise XOR is used for
'insert' in the pre-reversal update process, then the insert operation can be
reversed by operating the same 'transforming function on the content
previously written' by the pre-reversal insert operation using the
supplementary data (transforming data), in order to yield back the content
stored in the pre-reversal segment. |

~ It is thus illustrated that a reversed update command (or a rolling-
back update command) reversely corresponds to an update command.

Fig. 8 is a flowchart illustrating the main procedufes performed

while updating a source version to a target version in a reversible update

process, according to one embodiment of the invention. It is noted that the ,
direction of the update process is determined in 801 in accordance with
the value of the direction indicator 419. If the indicator indicates that the
update process should operate as forward update, thén the update process
will operate in 802 in accordance with the update 'package in a forward

direction. Upon termination (normal termination or failure), in 803, the

10

15

20

25

30

WO 2005/119432 PCT/IL2005/000568

-33-

update process will set the direction indicator to indicate that a preceding

update process, if initiated, should perform roll-back,. However, if the

update process determines in 801 that the update process should operate to

perform roll-back, then it will operate in 804 in accordance with the
update paékage in roll-back direction. Upon termination (normal
terminatioﬁ or failure), in 805, the update process will set the direction
indicator to indicate that a preceding update process, if initiated, should
perform forward-update.

Fig. 9 is a flowchart illustrating in detail a forward update process,
according to one embodiment of the invention. Upon start, in 901, the
update process has to locate the position in the stored version where it
should start updating. It is appreciated that if the stored version is the
original version then the start position is the beginning of the version, if
the stored version is the updated version then the start position is the end
of the version (hence the forward update process will terminate without
perforrriing any update operation), and if the stored version is an
intermediate version then the start positioh is in the termination point of
the previously running update process (see, for example, Fig. 5).

In 902 the update process initiates the process’ state. If the stored
version is an intermediate version then the state would be initiated in
accordance with the state record. However, if the stored version is an

original or updated version then the state would be initiated as new. In

- addition, at this stage the update process locates the update command

from where it should start reading, and it determines pointer positions
such as in the replacements supplementary data portioh 419, the insertions
supplementary data portion 420 and the content réserve buffer 601, thus
alloWing‘it to access (for reading and/or writi-ng) the correct ‘data- items
stored therein. |

It is illustrated in 903 that if the stored version is an updated

version, and rememberiﬁg that the update process is a forward update

10

15

20

25

30

WO 2005/119432 PCT/IL2005/000568

-34 -

process, then thefe are no more update commands in accordance with the
update sequence, and therefore the update process terminates without
performing any update command. However, if the stored version is an
original version or an intérmediate versioﬁ then the update process reads
from the update package the next update command in accordance with the

update sequence and operates accordingly. If the update command is a

'copy' command (905) the content of the original segment is copied into

the updated segment in 906. It is noted that when the target segment is not
free, there are some embodiments that require reserving the:content stored
therein in the contenf reserve buffer (or in the insertions supplementary
data portion 420), as if there is a delete command before the copy
command.

If the command is.an 'insert’ command (907) then in 908 data is
copied from the insertions supplementary data portion 420 into the
updated segment and in 909 the pointer in the insertions supplementary
data portion is advanced to the next data item. Again, there may be some
embodiments wherein before inserting the supplementary data into the
updated segment, if the updated segment is not free, content stored therein
is reserved in the content reserve buffer (or in the insertions
supplementary daté portion 420), as if there is a delete command before
the copy command. , |

If the command is a 'delete’ command (910) then in 911 the content
stored in the original segment is copied into the content reserve buffer (or
into the insertions supplementary data portion 420), and in 912 the pointer'
to in the content reserve buffer is advanced to the next aVailable.spaCe.

According to the example (where there are 'copy', 'insert', 'deleté'
and 'replace' commands), those versed in the art would 'appreciate that if
the update command is neither ‘copy’, nor 'insert' nor 'delete’, if must be
'replace’. Therefore, in 913 the content of the original segment is bitwise

XORed with the transforming data, wherein the result is stored in the -

10

15

20

25

30

WO 2005/119432 PCT/IL2005/000568

-35-

updated segment (see 914) and the pointer to the next data item in the
replacements supplementary data portion 419 is advanced to the next data
item. _

Fig. 10 is a flowchart illustrating in detail rolling-back a stored
version, according to one embodiment of the invention. Upon start, in
1001, the update. process has to locate the position in the stored version
where it should start updating. It is appreciated that if the stored version is
the original version then the start poéition is the beginning of the version
(hence the rolling-back update process will terminate without performing
any update operation), if the stored version is the updated version then the

start positioh is the end of the version, and if the stored version is an

intermediate version then the start position is in the termination point of

the previously running update process (see, for example, Fig. 5).

In 1002 the update process initiates the process’ state. If the stored
version i‘s an intermediate version then the state would be initiated in
accordance with the state record. However, if the stored version is an
original or updated version then the state would be initiated as new. In
addition, at this stage the ﬁpdate process locates the update command
from where it should start reading, and it determines pointer positions
such as in the replacements supplementary data portion 419, the insertions
supplementary data portion 420 and the content reserve buffer 601, thus
allowing it to access (for reading and/or writing) the correct data items
stored therein.

- The rolling-back update process operates in accordance with a roll-
back»update sequehce, which is opposite to the update sequence of the
update package. It is illustrated in 1003. that if the stored version is an
original version, and remémbcring that the update process is a rlolling-
back update process, then there are- no more up'daté commands in

accordance with the roll-back update sequeﬁce, and therefore the update

" process terminates without performing any update command. However, if

10

15

20

25

WO 2005/119432 PCT/IL2005/000568

-36-

the stored version is an updated version or an intermediate version then
the roll-back update process reads from the update package the next
update command in accordance with the reversed update sequence (or in
other words: the previous update command in accordance with the update
sequence) and performs the update operation reversely corresponding to
the update command. o

If the update command is a 'copy' command (1005) the content of
the updated segment is copied into the original segment in 1006, which is
the update command reversely corresponding to the 'insert' command. It is
noted that wheﬁ the original segment is not free, there are some
embodiments that require reserving the content stored therein in the
content reserve buffer (or in the insertions supplementary data portion
420), as if there is a delete command before the copy command, in
accordance with the roll-back update sequence).

If the command is an 'insert' command (1007) then in 1008 data is
copied from the stored version to the content reserve buffer (or to the
insertions supplementary data portion 420), which is the update"command
reversely corresponding to the 'insert' command, and in 1009 the pointer
to the con—tent' reserve buffer is advanced to the next available space
(alternatively the pointer to the insertions supplerhentary data portion is
retreated to the previous data item). | '

If the command is a 'delete’ command (1010) then in 1011 data is
copied from the insertions supplementary data portion 420 (or from the
content reserve buffer) into the original segment, and in 1012 the pointer
in the insertions supplementary data portion is retreated to the previous
data item. Again, there may be some embodifnents wherein before
copying the supplementary data into the original segment, if the or@ginal
segment is not free,. content stored therein is reserved in the éontent

reserve bﬁffer (or in the insertions supplementary data portion 420), as if

15

20

25

30

WO 2005/119432 PCT/IL2005/000568

-37-

there is an insert command before the delete command, in accordance with
the roll-back update sequence). -

According to the example (where there are 'copy', 'insert', 'delete’
and 'replace’' commands), those versed in the art would appreciate that if
the update command is neither 'copy’, nor 'insert' nor 'delete’, it must be
'replace’. Therefore, in 1013 the content of the updated segment is bitwise
XORed with the transforming data, wherein the result is stored in the
original segment (see 1014). According to the embodiment the
transforming data is stored in the replacements supplementary data portion
419. Therefore, in 1015 the pointer to the next data item in the
replacements supplementary data portion 419 is retreated to the previous
data item. .

The invention provides for a method for providing an update
process of a stored version. The method comprising:

providing a forward update for updating the stored version to a first
version;

providing a roll-back update for updating the stored version to a
second version;

applying a first update operation being either of said forward
update and said roll-back update; and

applying a second update operation being either of said forward
update and said roll-back update and being other than said first update
operations. | ' _
| It is appreciated that in accordance with certain embodiments the
first version can be one of several versions, including 'original version and
updated version. However, this is non-limiting and other embodiments
may have a different version being the first version, such as an
intermediate version. | |

Similarly, it is appreciated that in accordance with certain

embodiments the second version can be one of several versions, including

10

15

20

25

30

WO 2005/119432 PCT/IL2005/000568

-38 -

original version and updated version. However, this is also non-limiting
and other embodiments may have a different version being the second
version, such as an intermediate version.

In addition, it is appreciated that in accordance with certain
embodiments the first update operation can be one of several update
operations, such as forward update operation and roll-back update
operation. This is non-limiting and other embodiments may have different
update operation being the first update operation.

| It is also appreciated that in accordance with certain embodiments
the second update operation can be one of several update operations, such
as forward update operation and roll-back update operation. This is non-
limiting and other embodiments may have different update operation
being the second update operation. |

Fig. 11 is a block diagram schematically illustrating a system 1101
for updating a stored version of content stored in a storage device,
according to one embodiment of the invention. The system 1101 includes
a direction determination unit 1102 adapted for determining direction of
the updating, for example, in accordance with the direction indication 421.

The system 1101 also includes a forward updating processor 1103
coupled to the direction determination unit 1102. When the direction
determination unit 1102 determines that the direction of the updating is
indicative of forward, the forward updating processor 1103 forward-
updates the stored versioﬁ to the updated version in accordance with the
update sequence. This is done, for example, in accordance with the
flowchart of Fig. 9. |

When the direction determination unit 1102 determines that the
direction of the updating is indicative of roll-back, a roll-back sequence
generator 1104 that is coupled to the direction determination unit 1102
generates a roll-back update sequence opposite to the update sequence.

The roll-back sequence generator 1104 can follow the update sequence in

10

15

20

25

30

WO 2005/119432 PCT/IL2005/000568

-39 -

a reversed order, one command at a time. Alternatively it can follow the
update sequence altogether, thus generating and storing the roll-back
update sequence in the storége device, e.g., as a list.

The system 1101 also includes a roll-back updating processor 1105
coupled to the roll-back sequence generator 1104. The roll-back updating
processor 1105 rolls-back the stored version to the original version in
accordance with the roll-back update. This is done, for example, in
accordance with the flowchart of Fig. 10.

Fig. 12 is block diagram schematically illustrating a system for
reversing an update process, according to one embodiment of the
invention. The system 1201 includes an update commands reversal unit
1202. The update commands reversal unit 1202 reverses update
commands in the update package that were previously performed during
updating. See, for example, 1006, 1008, 1011 and 1013 in Fig. 10.

Fig. 13 is a block diagram schematically illustrating a system 1301
for updating a stored version of content stored in a storage device. The
system 1301 includes a direction determination unit 1302. According to
one embodiment, the direction determination unit 1302 uses the direction
indication in order to determine direction. |

A forward updating processor 1303 is coupled to the direction
determination unit 1302. When the direction is indicative of forward, the
forward updating processor 1303 forward-updates the stored version to the
updated version, e.g., in accordance with the flowchart of Fig. 9.

The system 1301 also includes a roll-back update processor 1304.
When the direction determination unit 1302 determines that the direction
is roll-back, the roll-back update processor 1304 rolls-back the stofed
version to the original version, e.g., in accordance with the flowchart of
Fig. 10. |

It will also be understood that the system according to the invention

may be a suitably programmed computer. Likewise, the invention

WO 2005/119432 PCT/IL2005/000568
- 40 -

contemplates a computer program being readable by a computer for
executing the method of the invention. The invention further contemplates
a machine-readable memory tangibly embodying a program of
instructions executable by the machine for executing the method of the
invention.

The present invention has been described with a certain degree of
particularity, but those versed in the art will readily appreciate that various
alterations and modifications may be carried out, without departing from

the scope of the following Claims:

10

15

20

25

WO 2005/119432 PCT/IL2005/000568

-41 -

CLAIMS:

1. A method for updating a stored version of content stored in a storage
device using an update package, wherein the update package is adapted for
updating an original version of content to an updated version, wherein the update
package includes update commands and wherein the updating is carried out in
accordance with an update seQuence, the method comprising:
determining direction of the updating including:
if the direction is indicative of forward then forward-
updating the stored version to the updated versioﬁ in accordance
with the update sequence; and
if the direction is indicative of roll-back generating a roll-
back update sequence opposite to the update sequence and rolling-
back the stored version to the original version in accordance with
the roll-back update sequence.
2. The method of claim 1, wherein the stored version is one of a group
including an original version, an updated version and an intermediate version.
3. The method of claims 1 and 2, wherein the update package includes
update commands, each update command is of a group including copy update
command, delete update command, insert update command and replace update
command. |
4. The method according to any of the previous claims, wherein forward-
updating performs update operations directly corresponding to the update
commands in accordance with the update sequence.
5. The method according to.'any of the previous claims, wherein rolling-
back performs update operation reversely corresponding to the update commands
in accordance with the roll-back update sequence.
6. The method according to any of the previous claims wherein before
deleting content from the stored version the updating includes:

reserving content subject to deletion.

10

15

20

25

30

WO 2005/119432 PCT/IL2005/000568

-4) -

7. The method of claim 6, wherein an update command reversely .
corresponding to a delete command uses reserved content.
8. A method for reversing an update process, the update process is adapted
for updating a stored version of content stored in a storage device to one of a
group including an updated version and an original version using an update
package, the method comprising:

reversing update commands in the update package that were previously
performed during updating. |
9, The method of claim 8, wherein updating is forward-updating a stored
version to an updated version.
10. The method of claim 8, wherein updating is rolling-back a stored version
to an original version.
11. A method for in-place updating a stored version of content stored in a
storage device using an update package, wherein the update package is adapted
for updating an original version of content to an updated version, the method
comprising:

determining direction of the updating; and

if the direction is indicative of forward then forward-updating the stored
version to the updated version; _

otherwise rolling-back the stored version to the original version.
12. A method for providing an update process of a stored version,
cbmprising: _

pr(_)viding a forward update for updating the stored version to a first
version;

providing a roll-back update for updating the stored version to a second
version; |

applying a first update operation being either of said forward update and
said roll-back update; and)

applying a second update operation being either of said forward update

and said roll-back update and being other than said first update operations.

10

15

20

25

WO 2005/119432 PCT/IL2005/000568

-43:

13. A method for providing an update process of a stored version,
comprising:

applying a roll-back update for updating the stored version to an original
version. '

14. A system for updating a stored version of content stored in a storage
device using an update package, wherein the update package is adapted for
updating an original version of content to an updated version, wherein the update
package includes update commands and wherein the updating is carried out in
accordance with an update sequence, the system comprising:

_ a direction determination unit adapted for determining direction of the
updating.

a forward updating processor coupled to the direction determination unit
for forward-updating the stored version to the updated version in accordance with
the update sequence when the direction of the updating is indicative of forward;

a roll-back sequence generator coupled to the direction determination unit
for generating a roll-back update sequence opposite to the update sequence when
the direction of the updating is indicative of roll-back; and

a roll-back updating processor coupled to the roll-back sequence generator
for rolling back the stored version to the original version in accordance with the

roll-back update .

15. The system of Claim 14, wherein the direction determination unit

determines direction is accordance with a direction indication.

16. The system according to anyone of claims 14 and 15, wherein thé stored
version is one of a group including an original version, an updated version and an
intermediate version. . |

17. A system for reversing an update process, the update process is adapted
for updating a stored version of content stored in a storage device to one of a
group including an updated version and an original version using an update

package, the system comprising:

10

15

20

25

30

WO 2005/119432 PCT/IL2005/000568

-44 -

an update commands reversal unit for reversing update commands in the

update package that were previously performed during updating.
18. A system for in-place updating a stored version of content stored in a
storage device using an update package, wherein the update package is adapted
for updating an original version of content to an updated version, the system
comprising:

a direction determination unit adapted for determining direction of the |
updating;

a forward updating prbcessor coupled to the direction determination unit
for forward-updating the stored version to the updated version when the direction
is indicative of forward; and

a roll-back updating processor coupled to the direction determination unit
for rolling-back the stored version to the original version when the direction is
indicative of roll-back.

19. A computer program comprising computer program code means for

~ performing all the steps of claim 1 - 7, when said program is run on a computer.

20. A computer program as claimed in claim 19 embodied on a computer
readable medium.

21. A computer program comprising computer program code means for
performing all the steps of claim 8 - 10 when said program is run on a computer.
22. A computer program as claimed in claim 21 embodied on a computer

readable medium.

23 A computer program comprising computer program code means for

performing all the steps-of claim 11 when said program is run on a computer.

24. A computer program as claimed in claim 23 embodied on a computer
readable medium.

25. A computer progfam corriprising éomputer program code means for
performing all the steps of claim 12 when said program is run on a computer.

26. A computer program as claimed in claim 25 embodied on a computer

readable médium.

WO 2005/119432 PCT/IL2005/000568
-45 -

27. A computer program comprising computer program code means for
performing all the steps of claim 13 when said program is run on a computer.
28. A computer program as claimed in claim 27 embodied on a computer

readable medium.

WO 2005/119432 PCT/IL2005/000568

1/13

FIG. 1

101

H3LLINSNYHL

<
o
<‘_

106~\\

UPDATE
SERVER
UPDATE
PACKAGE
GENERATOR

105~\\

SUBSTITUTE SHEET (RULE 26)

WO 2005/119432 PCT/IL2005/000568

2/13

203 | 204 | 205 | 206
201~_ -

207 | 208 | 209 | 21
202~ __— 0 0 0

207 | 204 | 205 | 206
211~ -

207 | 208 | 205 | 206

207 | 208 | 209 | 206

FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 2005/119432

318~_

-Correspondence
303~ P

Correspondence

3044

305~

[~
Correspondence

316

306—

\Correspondence

 Correspondence

PCT/IL2005/000568
302
d 320
1l 309
’—__’____,—‘"'
=310
o
] 311
316 |
NERERARERANE I
R
|
T 313
RN AR ARERE |
{HRIH
314
315
§ 321

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 2005/119432 PCT/IL2005/000568

4/13

/401 402

403~ Copy 303—309 Copy 303—309 —411
404~ |Replace 304-310 "replaced data" Replace 304—-310 412
405~ Delete 307 Delete 307 -—413
406~ Copy 308 --314 Copy 308—~314 414
407~/ Copy 306 -315 Copy 306—-315 —415
408~ Insert 313 "inserted data" | Insert 313 —416
409~ Copy 312 Copy 312 {417
410~ Insert 311 "inserted data" Insert 311 418
——419
N 421
{HHEHHRHRH S

FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 2005/119432 PCT/IL2005/000568

5/13

o1 DETERMINE UPDATE
S0~ SEQUENCE

S02_| READ FIRST BLOCK

{

ACCESS THE SIGNATURE

503~_1{ CORRESPONDING TO THE
FIRST BLOCK

- 508
CALCULATE SIGNATURE)

504—~__{ CORRESPONDING TO THE -
READ BLOCK READ NE)‘(T BLOCK

507~ |ACCESS NEXT SIGNATURE
_ CORRESPONDING TO THE
NEXT BLOCK

505

MORE
BLOCKS?

TWO
SIGNATURES
MATCH?

509 ACCESS STATE
] RECORD

510 RESTORE UPDATE | (TERMINATEj
T~ PROCESS STATE

511 REVERSE UPDATE
7 PROCESS

FIG. 5

SUBSTITUTE SHEET (RULE 26)

WO 2005/119432 PCT/IL2005/000568

6/13

301

r402

Reserve 602

Delete 307 _| 413

601

T
N

FIG. 6

SUBSTITUTE SHEET (RULE 26)

WO 2005/119432 PCT/IL2005/000568

713

402

601

1419

701 L
. 420
IEgeRepeRt ekt peREcaent

'
I N
| I T |
| I -
| I S
| I T
Ml I

|0 D I
| I T T
Ty

§ MY D |
| P AV
1 1NT
Ml e .\
I W

FIG. 7

SUBSTITUTE SHEET (RULE 26)

WO 2005/119432 PCT/IL2005/000568

8/13

C START)

801
N\

DIRECTION INDICATOR
INDICATE "FORWARD"?

No

- 804 802
))

ROLL - BACK FORWARD UPDATE
805 803
7 \ ' 7
DIRECTION INDICATOR DIRECTION INDICATOR
= "FORWARD" = "ROLL -BACK"

A (TERMINATE =~ J=——

FIG. 8

SUBSTITUTE SHEET (RULE 26)

WO 2005/119432

9/13

LOCATE START POSITION
901/]
INIT STATE
902"

MORE UPDATE
COMMANDS TO
PERFORM?

904
\

READ NEXT UPDATE COMMAND

905

- START

PCT/IL2005/000568

)

TERMINATE)

KQOG

SUPPLEMENTARY DATA PORTION

{

UPDATE COPY CONTENT OF ORIGINAL
COMMAND = SEGMENT TO UPDATED -
COPY? SEGMENT
| [\908
COPY DATA FROM
INSERTIONS SUPPLEMENTARY
UPDATE DATA PORTION TO UPDATED
C?h'l\/'s'\égf‘;g = SEGMENT
/909
ADVANCE POINTER IN
910 INSERTIONS SUPPLEMENTARY
UPDATE " Yes DATA PORTION
DELETE? [
COPY CONTENT OF ORIGINAL
SEGMENT TO RESERVED
CONTENT BUFFER
XOR CONTENT OF ORIGINAL 912
SEGMENT WITH
ADVANCE POINTER
TRANSFORMING DATA ora N RESERVED
[CONTENT BUFFER
STORE XOR RESULT IN
UPDATED SEGMENT
/\91 5
ADVANCE POINTER IN REPLACEMENTS
FIG. 9

SUBSTITUTE SHEET (RULE 26)

WO 2005/119432

PCT/IL2005/000568

10/13

- staRT)

LOCATE START POSITION
1001J
INIT STATE
1002/

. COMMANDS TO
PERFORM? '

1004
\

READ NEXT UPDATE COMMAND

UPDATE
COMMAND

UPDATE
COMMAND =
INSERT?

UPDATE

r1 006

COPY CONTENT OF UPDATED
SEGMENT TO ORIGINAL

SEGMENT

/~1 008

COPY DATA FROM
THE STORED VERSION TO THE
RESERVED CONTENT BUFFER

’ /\1 009

RETREAT POINTER IN THE

RESERVED CONTENT BUFFER

1011
COMMAND = [
DELETE? COPY CONTENT OF
INSERTIONS SUPPLEMENTARY
DATA PORTION TO THE
ORIGINAL SEGMENT
XOR CONTENT OF UPDATED —1012
SEGMENT WITH
RETREAT POINTER IN
TRANSFORMING DATA o1a NSERTIONS
, SUPPLEMENTARY DATA
STORE XOR RESULT IN PORTION
ORIGINAL SEGMENT
1015
RETREAT POINTER IN REPLACEMENTS FIG. 10
SUPPLEMENTARY DATA PORTION :

SUBSTITUT

E SHEET (RULE 26)

WO 2005/119432

11/13

1101
7

PCT/IL2005/000568

1102
7

DIRECTION

DETERMINATION UNIT

1104
7

1103
™)

FORWARD UPDATING

PROCESSOR

ROLL -BACK SEQUENCE

GENERATOR

1105
7

ROLL -BACK UPDATING

PROCESSOR

SUBSTITUTE SHEET (RULE 26)

FIG. 11

WO 2005/119432 PCT/IL2005/000568

12/13

1201
7

1202
7

UPDATE COMMANDS
REVERSAL UNIT

FIG. 12

SUBSTITUTE SHEET (RULE 26)

WO 2005/119432

PCT/IL2005/000568

13/13

1301
7

1302
7

DIRECTION

1304
7

ROLL -BACK UPDATING

1303
)

DETERMINATION UNIT

FORWARD UPDATING

PROCESSOR

PROCESSOR

FIG. 13

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

