(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

lﬂb A 00 0

(10) International Publication Number

WO 2006/088773 A2

(43) International Publication Date
24 August 2006 (24.08.2006)

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GOGF 3/06 (2006.01) kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
(21) International Application Number: CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
PCT/US2006/004943 GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
(22) International Filing Date: LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
13 February 2006 (13.02.2006) NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ,

(25) Filing Language: English VC, VN, YU, ZA, ZM, ZW.
(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(30) Priority Data:
60/652,626 14 February 2005 (14.02.2005) US
11/118,455 29 April 2005 (29.04.2005) US

(71) Applicant: NETWORK APPLIANCE, INC. [US/US];
495 East Java Drive, Sunnyvale, CA 94089 (US).
Published:
(72) Inventors: HITZ, David; 495 East Java Drive, Sunnyvale, — \ithour international search report and to be republished
CA 94089 (US). EDWARDS, John, K.; 1173 Crandano upon receipt of that report
Court, Sunnyvale, CA 94087-2076 (US).
For two-letter codes and other abbreviations, refer to the "Guid-
(74) Agents: ATTAYA, Michael et al.; Cesari and McKenna, ance Notes on Codes and Abbreviations” appearing at the begin-
LLP, 88 Black Falcon Avenue, Boston, MA 02210 (US). ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD FOR ENABLING A STORAGE SYSTEM TO SUPPORT MULTIPLE VOLUME FOR-
MATS SIMULTANEOUSLY

INODE 502
POINTER POINTER

LEVEL INDIRECT BLOCK 504 INDIRECT BLOCK 504

1 POINTER POINTER POINTER POINTER
BLOCKS so5 || 08 s05 |°°°| 05
LEVEL DATA DATA DATA DATA

0 BLOCK vee BLOCK BLOCK ese BLOCK
BLOCKS 506 506 506 506

FILE 500

60887773 A2 | IV 200 RO

& (57) Abstract: A system and method enables a storage system to support multiple volume type simultaneously. A volume type field
is contained within a file system information block that permits the storage system to determine the type of volume of a particular
volume associated therewith. The storage operating system may then interpret various on-disk data structures in accordance with
the appropriate volume type.

WO 20

5

10

15

20

25

WO 2006/088773 PCT/US2006/004943

SYSTEM AND METHOD FOR ENABLING A STORAGE SYSTEM
TO SUPPORT MULTIPLE VOLUME FORMATS
SIMULTANEOUSLY

FIELD OF THE INVENTION

The present invention relates to storage systems and, more specifically, to storage

systems that support multiple volume formats simultaneously.

BACKGROUND INFORMATION

A storage system typically comprises one or more storage devices into which in-
formation may be entered, and from which information may be obtained, as desired. The
storage system includes a storage operating system that functionally organizes the system
by, inter alia, invoking storage operations in support of a storage service implemented by
the system. The storage system may be implemented in accordance with a variety of
storage architectures including, but not limited to, a network-attached storage environ-
ment, a storage area network and a disk assembly directly attached to a client or host
computer. The storage devices are typically disk drives organized as a disk array,
wherein the term "disk" commonly describes a self-contained rotating magnetic media
storage device. The term disk in this context is synonymous with hard disk drive (HDD)

or direct access storage device (DASD).

Storage of information on the disk array is preferably implemented as one or more
storage "volumes" of physical disks, defining an overall logical arrangement of disk
space. The disks within a volume are typically organized as one or more groups, wherein
each group may be operated as a Redundant Array of Independent (or Inexpensive) Disks
(RAID). Most RAID implementations enhance the reliability/integrity of data storage
through the redundant writing of data "stripés" across a given number of physical disks in
the RAID group, and the appropriate storing of redundant information (parity) with re-
spect to the striped data. The physical disks of each RAID group may include disks con-

10

15

20

25

30

WO 2006/088773 PCT/US2006/004943

figure to store striped data (i.e., data disks) and disks configure to store parity for the data
(i.e., parity disks). The parity may thereafter be retrieved to enable recovery of data lost
when a disk fails. The term “RAID” and its various implementations are well-known and
disclosed in 4 Case for Redundant Arrays of Inexpensive Disks (RAID), by D. A. Patter-
son, G. A. Gibson and R. H. Katz, Proceedings of the International Conference on Man-
agement of Data (SIGMOD), June 1988.

The storage operating system of the storage system may implement a high-level
module, such as a file system, to logically organize the information stored on the disks as
a hierarchical structure of directories, files and blocks. For example, each “on-disk™ file
may be implemented as set of data structures, i.e., disk blocks, configured to store infor-
mation, such as the actual data for the file. These data blocks are organized within a vol-
ume block number (vbn) space that is maintained by the file system. The file system or-
ganizes the data blocks within the vbn space as a "logical volume"; each logical volume
may be, although is not necessarily, associated with its own file system. The file system

typically consists of a contiguous range of vbns from zero to n-1, for a file system of size
n blocks.

A known type of file system is a write-anywhere file system that does not over-
write data on disks. If a data block is retrieved (read) from disk into a memory of the
storage system and “dirtied” (i.e., updated or modified) with new data, the data block is
thereafter stored (written) to a new location on disk to optimize write performance. A
write-anywhere file system may initially assume an optimal layout such that the data is
substantially contiguously arranged on disks. The optimal disk layout results in efficient
access operations, particularly for sequential read operations, directed to the disks. An
example of a write-anywhere file system that is configure to operate on a storage system
is the Write Anywhere File Layout (WAFL™) file system available from Network Appli-

ance, Inc., Sunnyvale, California.

The storage operating system may further implement a storage module, such as a
RAID system, that manages the storage and retrieval of the information to and from the
disks in accordance with input/output (I/O) operations. The RAID system is also respon-

sible for parity operations in the storage system. Note that the file system only "sees" the

WO 2006/088773 PCT/US2006/004943

10

20

25

30

data disks within its vbn space; the parity disks are "hidden" from the file system and,
thus, are only visible to the RAID system. The RAID system typically organizes the
RAID groups into one large "physical” disk (i.e., a physical volume), such that the disk
blocks are concatenated across all disks of all RAID groups. The logical volume main-
tained by the file system is then “disposed over” (spread over) the physical volume main-

tained by the RAID system.

The storage system may be configure to operate according to a client/server
model of information delivery to thereby allow many clients to access the directories,
files and blocks stored on the system. In this model, the client may comprise an applica-
tion, such as a database application, executing on a computer that “connects™ to the stor-
age system over a computer network, such as a point-to-point link, shared local area net-
work, wide area network or virtual private network implemented over a public network,
such as the Internet. Each client may request the services of the file system by issuing
file system protocol messages (in the form of packets) to the storage system over the
network. By supporting a plurality of file system protocols, such as the conventional
Common Internet File System (CIFS) and the Network File System (NFS) protocols, the

utility of the storage system is enhanced.

When accessing a block of a file in response to servicing a client request, the file
system specifies a vbn that is translated at the file system/RAID system boundary into a
disk block number (dbn) location on a particular disk (disk, dbn) within a RAID group of
the physical volume. It should be noted that a client request is typically directed to a spe-
cific file block number (fbn), which represents an offset into a particular file. For exam-
ple, if a file system is using 4 KB blocks, fbn 6 of a file represents a block of data starting
24 XB into the file and extending to 28 KB, where fbn 7 begins. The fbn is converted to
an appropriate vbn by the file system. Each block in the vbn space and in the dbn space is
typically fixed, e.g., 4k bytes (kB), in size; accordingly, there is typically a one-to-one
mapping between the information stored on the disks in the dbn space and the informa-
tion organized by the file system in the vbn space. The (disk, dbn) location specified by
the RAID system is further translated by a disk driver system of the storage operating
system into a plurality of sectors (e.g., a 4kB block with a RAID header translates to 8 or
9 disk sectors of 512 or 520 bytes) on the specified disk.

WO 2006/088773 PCT/US2006/004943

10

20

25

30

The requested block is then retrieved from disk and stored in a buffer cache of the
memory as part of a buffer tree of the file. The buffer tree is an internal representation of
blocks for a file stored in the buffer cache and maintained by the file system. Broadly
stated, the buffer tree has an inode at the root (top-level) of the file. An inode is a data
structure used to store information, such as metadata, about a file, whereas the data
blocks are structures used to store the actual data for the file. The information contained
in an inode may include, e.g., ownership of the file, access permission for the file, size of
the file, file type and references to locations on disk of the data blocks for the file. The
references to the locations of the file data are provided by pointers, which may further
reference indirect blocks that, in turn, reference the data blocks, depending upon the
quantity of data in the file. Each pointer may be embodied as a vbn to facilitate effi-

ciency among the file system and the RAID system when accessing the data on disks.

The RAID system maintains information about the geometry of the underlying
physical disks (e.g., the number of blocks in each disk) in raid labels stored on the disks.
The RAID system provides the disk geometry information to the file system for use when
creating and maintaining the vbn-to-disk,dbn mappings used to perform write allocation
operations and to translate vbns to disk locations for read operations. Block allocation
data structures, such as an active map, a snapmap, a space map and a summary map, are
data structures that describe block usage within the file system, such as the write-
anywhere file system. These mapping daj[a structures are independent of the geometry
and are used by a write allocator of the file system as existing infrastructure for the logi-
cal volume. Examples of the block allocation data structures are described in U.S. Patent
Application Publication No. US2002/0083037 Al, titled Instant Snapshot, by Blake
Lewis et al. and published on June 27, 2002, which application is hereby incorporated by

reference.

The write-anywhere file system typically performs write allocation of blocks in a
logical volume in response to an event in the file system (e.g., dirtying of the blocks in a
file). When write allocating, the file system uses the block allocation data structures to
select free blocks within its vbn space to which to write the dirty blocks. The selected
blocks are generally in the same positions along the disks for each RAID group (i.e.,
within a stripe) so as to optimize use of the parity disks. Stripes of positional blocks may

WO 2006/088773 PCT/US2006/004943

15

20

25

vary among other RAID groups to, €.g., allow overlapping of parity update operations.
When write allocating, the file system traverses a small portion of each disk (correspond-
ing to a few blocks in depth within each disk) to essentially "lay down" a plurality of
stripes per RAID group. In particular, the file system chooses vbns that are on the same
stripe per RAID group during write allocation using the vbn-to-disk,dbn mappings.

The on-disk structure of the file system is comprised of a number of entities of
discrete data structures organized with appropriate pointers to layers beneath one entity.
A storage system may utilize one physical volume, wherein the volume comprises of a
number of physical disks associated in an arrangement, such as a RAID group for im-
proved data protection. The physical volume utilizes physical volume block numbers
(pvbns) within indirect blocks and inodes to point to other data structures within the on-
disk structure of the file system.

Fig. 1 is a schematic block diagram of an exemplary on-disk storage arrangement
100 of a conventional physical volume of a file system. The on-disk storage arrangement
100 comprises a volinfo block 102 that contains pointers to various fsinfo blocks includ-
ing fsinfo block 105 representing the active file system, as well as fsinfo blocks 110 and
115 representing various snapshots, or persistent consistency point images (PCPIs) asso-
ciated with the active file system. It should be noted that “snapshot” is a trademark of
Network Appliance, Inc. and is used for purposes of this patent to designate a persistent
consistency point (CP) image. A PCPI is a space conservative, point-in-time read-only
image of data accessible by name that provides a consistent image of that data (such as a
storage system) at some previous time. More particularly, a PCPI is a point-in-time rep-
resentation of a storage element, such as an active file system, volume, virtual file sys-
tem, file or database, stored on a storage device (e.g., on disk) or other persistent memory
and having a name or other identifier that distinguishes it from other PCPIs taken at other
points in time. A PCPI can also include other information (metadata) about the active file
system at the particular point in time for which the image is taken. The terms “PCPI” and
“snapshot” may be used interchangeably through out this patent without derogation of

Network Appliance’s trademark rights.

10

15

20

25

WO 2006/088773 PCT/US2006/004943

The volinfo 102 is illustratively located at vbns 1 and 2 or, in alternate embodi-
ments, at another predetermined location on disk. Each fsinfo block 105, 110, 115 is il-
lustratively contained within an fsinfo file, the contents of which comprise the fsinfo
block. In this example, the fsinfo block 105 for the active file system includes the inodes
of the inode file for the active file system 120. The inode file for the active file system
120 includes further inodes for an active map 125, a summary map 130, a space map 135,
a root directory 140 and a hidden metadata directory 145. Each additional fsinfo block,
for example, fsinfo blocks 110 and 115, that is associated with a PCPI includes the inode
of the inode file for the PCPI, which in turn includes appropriate inodes for active maps
and the like (not shown) for the specific PCPI.

Other possible on-disk structures may be used with a storage system. For exam-
ple, a voiume may be modified so as to comprise an aggregate having a plurality of vir-
tual volumes therein. Aggregates and virtual volumes are further described in U.S. Patent
Application Serial No. 10/836,817, entitled extension to a file system Write layout, by
John K. Edwards, et al. In such a storage system, the file system utilizes and interprets
pointers contained within the various on-disk structures, including the volume informa-
tion and fsinfo blocks according to a predetermined virtual volume format. However,
there exists no adequate technique for permitting a storage system to support volumes
having different formats simultaneously. That is, the storage system is typically “hard-
coded” to utilize one type of volume format and to utilize a differing format, all volumes
associated with the storage system need to be modified. Thus, if a storage system utilizes
a conventional physical volume and a set of disks comprising an aggregate are connected
thereto, the storage system will incorrectly interpret the data contained within the aggre-

gate’s disks due to the differing format of pointers contained therein.

SUMMARY OF THE INVENTION

The present invention overcomes the disadvantages of the prior art by providing a
system and method for enabling a storage system to support multiple volume formats si-

multaneously. In the illustrative embodiment, a volume type field is added to a file sys-

10

15

20

25

WO 2006/088773 PCT/US2006/004943

tem information (fsinfo) block that forms a top level of a volume or other data container.
The volume type field holds a type volume that identifies the appropriate type of volume.
By examining the fsinfo block when the volume is initially mounted on the storage sys-
tem, a file system executing on the storage system may interpret correctly other data

within the on-disk structure, including, e.g., the format of pointers within the volume.

Specifically, the file system utilizes the type value stored in the type field
of the FS info block to identify the appropriate type of volume and to interpret the data
contained therein correctly. In alternate embodiments, however, the type field may be
stored in other predetermined locations, e.g. within a memory of the storage system or
may be utilized to identify differing formats. In the illustrated embodiment, the type field
differentiates between a conventional volume and a flexible volume comprising an ag-

gregate having one or more virtual volumes contained therein.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of the invention may be better understood by
referring to the following description in conjunction with the accompanying drawings in
which like reference numerals indicate identical or functionally similar elements:

Fig. 1, already described, is a schematic block diagram of an exemplary on-disk
structuré of a physical volume in accordance with an embodiment of the present inven-
tion;

Fig. 2 is a schematic block diagram of an exemplary storage system in accordance
with an embodiment of the present invention;

Fig. 3 is a schematic block diagram of an exemplary storage operating system in
accordance with an embodiment of the present invention;

Fig. 4 is a schematic block diagram of an exemplary inode in accordance with an
embodiment of the present invention;

Fig. 5 is a schematic block diagram of an exemplary buffer tree data structure
showing pointers in accordance with an embodiment of the present invention;

Fig. 6 is a schematic block diagram of an exemplary buffer tree data structure

WO 2006/088773 PCT/US2006/004943

10

20

25

showing pointer pairs in accordance with an embodiment of the present invention;

Fig. 7 is a schematic block diagram of an exemplary aggregate in accordance with
an embodiment of the present invention;

Fig. 8 is a schematic block diagram of an exemplary on-disk;

Fig. 9 is a schematic block diagram of an exemplary file system information block
in accordance with an embodiment of the present invention; and

Fig. 10 is a flowchart detailing the steps of a procedure for permitting a storage
system to utilize multiple volume type simultaneously in accordance with an embodiment

of the present invention.

DETAILED DESCRIPTION OF AN ILLUSTRATIVE
EMBODIMENT

A. Network Environment

Fig. 2 is a schematic block diagram of an environment 200 including a storage
system 220 that may be advantageously used with the present invention. The storage sys-
tem is a computer that provides storage service relating to the organization of information
on storage devices, such as disks 230 of a disk array 260. The storage system 220 com-
prises a processor 222, a memory 224, a network adapter 226 and a storage adapter 228
interconnected by a system bus 225. The storage system 220 also includes a storage op-
erating system 300 that preferably implements a high-level module, such as a file system,
to logically organize the information as a hierarchical structure of directories, files and

special types of files called virtual disks (hereinafter “blocks™) on the disks.

In the illustrative embodiment, the memory 224 comprises storage locations that
are addressable by the processor and adapters for storing software program code. A por-
tion of the memory may be further organized as a “buffer cache 270 for storing certain
data structures associated with the present invention. The processor and adapters may, in
turn, comprise processing elements and/or logic circuitry configured to execute the soft-
ware code and manipulate the data structures. Storage operating system 300, portions of
which are typically resident in memory and executed by the processing elements, func-

tionally organizes the system 220 by, inter alia, invoking storage operations executed by

10

15

20

25

30

WO 2006/088773 PCT/US2006/004943

the storage system. It will be apparent to those skilled in the art that other processing and
memory means, including various computer readable media, may be used for storing and

executing program instructions pertaining to the inventive technique described herein.

The network adapter 226 comprises the mechanical, electrical and signaling cir-
cuitry needed to connect the storage system 220 to a client 210 over a computer network
240, which may comprise a point-to-point connection or a shared medium, such as a local
area network (LAN) or wide area network (WAN). Illustratively, the computer network
240 may be embodied as an Ethernet network or a Fibre Channel (FC) network. The cli-
ent 210 may communicate with the storage system over network 240 by exchanging dis-
crete frames or packets of data according to pre-defined protocols, such as the Transmis-

sion Control Protocol/Internet Protocol (TCP/IP).

The client 210 may be a general-purpose computer configured to execute applica-
tions 112. Moreover, the client 210 may interact with the storage system 220 in accor-
dance with a client/server model of information delivery. That is, the client may request
the services of the storage system, and the system may return the results of the services
requested by the client, by exchanging packets 250 over the network 240. The clients
may issue packets including file-based access protocols, such as the Common Internet
File System (CIFS) protocol or Network File System (NFS) protocol, over TCP/IP when
accessing information in the form of files and directories. Alternatively, the client may
issue packets including block-based access protocols, such as the Small Computer Sys- -
tems Interface (SCSI) protocol encapsulated over TCP (iSCSI) and SCSI encapsulated

over Fibre Channel (FCP), when accessing information in the form of blocks.

The storage adapter 228 cooperates with the storage operating system 300 execut-
ing on the system 220 to access information requested by a user (or client). The informa-
tion may be stored on any type of attached array of writable storage device media such as
video tape, optical, DVD, magnetic tape, bubble memory, electronic random access
memory, micro-electro mechanical and any other similar media adapted to store informa-
tion, including data and parity information. However, as illustratively described herein,
the information is preferably stored on the disks 230, such as HDD and/or DASD, of ar-
ray 260. The storage adapter includes input/output (I/O) interface circuitry that couples

10

15

20

25

30

WO 2006/088773 PCT/US2006/004943

10

to the disks over an I/O interconnect arrangement, such as a conventional high-

performance, FC serial link topology.

Storage of information on array 260 may be illustratively implemented as one or
more storage “volumes” that comprise a collection of physical storage disks 130 cooper-
ating to define an overall logical arrangement of volume block number (vbn) space on the
volume(s). Each logical volume is generally, although not necessarily, associated with its
own file system. The disks within a logical volume/file system are typically organized as
one or more groups, wherein each group may be operated as a Redundant Array of Inde-
pendent (or Inexpensive) Disks (RAID). Most RAID implementations, such as a RAID-4
level implementation, enhance the reliability/integrity of data storage through the redun-
dant writing of data “stripes” across a given number of physical disks in the RAID group,
and the appropriate storing of parity information with respect to the striped data. An il-
lustrative example of a RAID implementation is a RAID-4 level implementation, al-
though it should be understood that other types and levels of RAID implementations may

be used in accordance with the inventive principles described herein.

B. Storage Operating System

To facilitate access to the disks 230, the storage operating system 300 implements
a write-anywhere file system that cooperates with virtualization modules to “virtualize”
the storage space provided by disks 230. The file system logically organizes the informa-
tion as a hierarchical structure of named directories and files on the disks. Each “on-
disk” file may be implemented as set of disk blocks configure to store information, such
as data, whereas the directory may be implemented as a specially formatted file in which
names and links to other files and directories are stored. The virtualization modules al-
low the file system to further logically organize information as a hierarchical structure of

blocks on the disks that are exported as named logical unit numbers (luns).

In the illustrative embodiment, the storage operating system is preferably the
NetApp® Data ONTAP™ operating system available from Network Appliance, Inc.,
Sunnyvale, California that implements a Write Anywhere File Layout (WAFL™) file sys-
tem. However, it is expressly contemplated that any appropriate storage operating system

may be enhanced for use in accordance with the inventive principles described herein.

10

15

20

25

30

WO 2006/088773 PCT/US2006/004943

11

As such, where the term “WAFL” is employed, it should be taken broadly to refer to any

file system that is otherwise adaptable to the teachings of this invention.

Fig. 3 is a schematic block diagram of the storage operating system 300 that may
be advantageously used with the present invention. The storage operating system com-
prises a series of software layers organized to form an integrated network protocol stack
or, more generally, a multi-protocol engine that provides data paths for clients to access
information stored on the storage system using block and file access protocols. The pro-
tocol stack includes a media access layer 310 of network drivers (e.g., gigabit Ethernet
drivers) that interfaces to network protocol layers, such as the IP layer 312 and its sup-
porting transport mechanisms, the TCP layer 314 and the User Datagram Protocol (UDP)
layer 316. A file system protocol layer provides multi-protocol file access and, to that
end, includes support for the Direct Access File System (DAFS) protocol 318, the NFS
protocol 320, the CIFS protocol 322 and the Hypertext Transfer Protocol (HTTP) proto-
col 324. A VI layer 326 implements the VI architecture to provide direct access transport
(DAT) capabilities, such as RDMA, as required by the DAFS protocol 318.

An iSCSI driver layer 328 provides block protocol access over the TCP/IP net-
work protocol layers, while a FC driver layer 330 receives and transmits block access re-
quests and responses to and from the storage system. The FC and iSCSI drivers provide
FC-specific and iSCSI-specific access control to the blocks and, thus, manage exports of
luns to either iSCSI or FCP or, alternatively, to both iSCSI and FCP when accessing the
blocks on the storage system. In addition, the storage operating system includes a storage
module embodied as a RAID system 340 that manages the storage and retrieval of infor-
mation to and from the volumes/disks in accordance with I/O operations, and a disk

driver system 350 that implements a disk access protocol such as, e.g., the SCSI protocol.

Bridging the disk software layers with the integrated network protocol stack lay-
ers is a virtualization system that is implemented by a file system 380 interacting with
virtualization modules illustratively embodied as, e.g., vdisk module 360 and SCSI target
module 370. The vdisk module 360 is layered on the file system 380 to enable access by
administrative interfaces, such as a user interface (UI) 375, in response to a user (system

administrator) issuing commands to the storage system. The SCSI target module 370 is

10

20

25

30

WO 2006/088773 PCT/US2006/004943

12

disposed between the FC and iSCSI drivers 328, 330 and the file system 380 to provide a
translation layer of the virtualization system between the block (lun) space and the file

system space, where luns are represented as blocks. The UI 375 is disposed over the stor-
age operating system in a manner that enables administrative or user access to the various

layers and systems.

The file system is illustratively a message-based system that provides logical vol-
ume management capabilities for use in access to the information stored on the storage
devices, such as disks. That is, in addition to providing file system semantics, the file
system 380 provides functions normally associated with a volume manager. These func-
tions include (i) aggregation of the disks, (ii) aggregation of storage bandwidth of the
disks, and (iii) reliability guarantees, such as mirroring and/or parity (RAID). The file
system 380 illustratively implements the WAFL file system (hereinafter generally the
“write-anywhere file system™) having an on-disk format representation that is block-
based using, e.g., 4 kilobyte (kB) blocks and using index nodes (“inodes”) to identify
files and file attributes (such as creation time, access permissions, size and block loca-
tion). The file system uses files to store metadata describing the layout of its file system;
these metadata files include, among others, an inode file. A file handle, i.e., an identifier

that includes an inode number, is used to retrieve an inode from disk.

Broadly stated, all inodes of the write-anywhere file system are organized into the
inode file. A file system (f5) info block specifies the layout of information in the file sys-
tem and includes an inode of a file that includes all other inodes of the file system. Each
logical volume (file system) has an fsinfo block that is preferably stored at a fixed loca-
tion within, e.g., a RAID group. The inode of the root fsinfo block may directly reference
(point to) blocks of the inode file or may reference indirect blocks of the inode file that,
in turn, reference direct blocks of the inode file. Within each direct block of the inode
file are embedded inodes, each of which may reference indirect blocks that, in turn, refer-

ence data blocks of a file.

Operationally, a request from the client 210 is forwarded as a packet 250 over the
computer network 240 and onto the storage system 220 where it is received at the net-

work adapter 226. A network driver (of layer 310 or layer 330) processes the packet and,

15

20

25

30

WO 2006/088773 PCT/US2006/004943

13

if appropriate, passes it on to a network protocol and file access layer for additional proc-
essing prior to forwarding to the write-anywhere file system 380. Here, the file system
generates operations to load (retrieve) the requested data from disk 230 if it is not resi-
dent “in core”, i.e., in the buffer cache 270. If the information is not in the cache, the file
system 380 indexes into the inode file using the inode number to access an appropriate
entry and retrieve a logical vbn. The file system then passes a message structure includ-
ing the logical vbn to the RAID system 340; the logical vbn is mapped to a disk identifier
and disk block number (disk,dbn) and sent to an appropriate driver (e.g., SCSI) of the
disk driver system 350. The disk driver accesses the dbn from the specified disk 230 and
loads the requested data block(s) in buffer cache 270 for processing by the storage sys-
tem. Upon completion of the request, the storage system (and operating system) returns a

reply to the client 210 over the network 240.

It should be further noted that the software “path” through the storage operating
system layers described above needed to perform data storage access for the client re-
quest received at the storage system may alternatively be implemented in hardware. That
is, in an alternate embodiment of the invention, a storage access request data path may be
implemented as logic circuitry embodied within a field programmable gate array (FPGA)
or an application specific integrated circuit (ASIC). This type of hardware implementa-
tion increases the performance of the storage service provided by storage system 220 in
response to a request issued by client 210. Moreover, in another alternate embodiment of
the invention, the processing elements of adapters 226, 228 may be configure to offload
some or all of the packet processing and storage access operations, respectively, from
processor 222, to thereby increase the performance of the storage service provided by the
system. It is expressly contemplated that the various processes, architectures and proce-

dures described herein can be implemented in hardware, firmware or software.

As used herein, the term “storage operating system" generally refers to the com-
puter-executable code operable to perform a storage function in a storage system, e.g.,
that manages data access and may, in the case of a file server, implement file system se-
mantics. In this sense, the ONTAP software is an example of such a storage operating
system implemented as a microkernel and including the WAFL layer to implement the

WAFL file system semantics and manage data access. The storage operating system can

10

15

20

25

WO 2006/088773 PCT/US2006/004943

14

also be implemented as an application program operating over a general-purpose operat-
ing system, such as UNIX® or Windows NT®, or as a general-purpose operating system
with configurable functionality, which is configured for storage applications as described

herein.

In addition, it will be understood to those skilled in the art that the inventive tech-
nique described herein may apply to any type of special-purpose (e.g., file server, filer or
storage appliance) or general-purpose computer, including a standalone computer or por-
tion thereof, embodied as or including a storage system 220. An example of a multi-
protocol storage appliance that may be advantageously used with the present invention is
described in U.S. Patent Application Serial No. 10/215,917 titled MULTI-PROTOCOL
STORAGE APPLIANCE THAT PROVIDES INTEGRATED SUPPORT FOR FILE
AND BLOCK ACCESS PROTOCOLS, filed on August 8, 2002. Moreover, the teach-
ings of this invention can be adapted to a variety of storage system architectures includ-
ing, but not limited to, a network-attached storage environment, a storage area network
and disk assembly directly-attached to a client or host computer. The term “storage sys-
tem” should therefore be taken broadly to include such arrangements in addition to any
subsystems configure to perform a storage function and associated with other equipment

or systems.

C. File System Organization

In the illustrative embodiment, a file is represented in the write-anywhere file sys-
tem as an inode data structure adapted for storage on the disks 230. Fig. 4 is a schematic
block diagram of an inode 400, which preferably includes a metadata section 410 and a
data section 450. The information stored in the metadata section 410 of each inode 400
describes the file and, as such, includes the type (e.g., regular, directory, virtual disk) 412
of file, the size 414 of the file, time stamps (e.g., access and/or modification) 416 for the
file and ownership, i.e., user identifier (UID 418) and group ID (GID 420), of the file.
The contents of the data section 450 of each inode, however, may be interpreted differ-
ently depending upon the type of file (inode) defined within the type field 412. For ex-

ample, the data section 450 of a directory inode contains metadata controlled by the file

10

20

25

30

WO 2006/088773 PCT/US2006/004943

15

system, whereas the data section of a regular inode contains file system data. In this lat-

ter case, the data section 450 includes a representation of the data associated with the file.

Specifically, the data section 450 of a regular on-disk inode may include file sys-
tem data or pointers, the latter referencing 4 kilobyte (KB) data blocks on disk used to
store the file system data. Each pointer is preferably a logical vbn to facilitate efficiency
among the file system and the RAID system 340 when accessing the data on disks.
Given the restricted size (e.g., 128 bytes) of the inode, file system data having a size that
is less than or equal to 64 bytes is represented, in its entirety, within the data section of
that inode. However, if the file system data is greater than 64 bytes but less than or equal
to 64 KB, then the data section of the inode (e.g., a first level inode) comprises up to 16
pointers, each of which references a 4 KB block of data on the disk.

Moreover, if the size of the data is greater than 64 KB but less than or equal to 64
megabytes (MB), then each pointer in the data section 450 of the inode (e.g., a second
level inode) references an indirect block (e.g., a first level block) that contains 1024
pointers, each of which references a 4 KB data block on disk. For file system data having
a size greater than 64MB, each pointer in the data section 450 of the inode (e.g., a third
level inode) references a double-indirect block (e.g., a second level block) that contains
1024 pointers, each referencing an indirect (e.g., a first level) block. The indirect block,
in turn, that contains 1024 pointers, each of which references a 4 KB data block on disk.
When accessing a file, each block of the file may be loaded from disk 230 into the buffer
cache 270.

‘When an on-disk inode (or block) is loaded from disk 230 into buffer cache 270,
its corresponding in core structure embeds the on-disk structure. For example, the dotted
line surrounding the inode 400 (Fig. 4) indicates the in core representation of the on-disk
inode structure. The in-core structure is a block of memory that stores the on-disk struc-
ture plus additional information needed to manage data in the memory (but not on disk).
The additional information may include, e.g., a “dirty” bit 460. After data in the inode
(or block) is updated/modified as instructed by, e.g., a write operation, the modified data
is marked “dirty” using the dirty bit 460 so that the inode (block) can be subsequently
“flushed” (stored) to disk. The in-core and on-disk format structures of the WAFL file

10

15

20

25

30

WO 2006/088773 PCT/US2006/004943

16

system, including the inodes and inode file, are disclosed and described in the previously
incorporated U.S. Patent No. 5,819,292 titled METHOD FOR MAINTAINING
CONSISTENT STATES OF A FILE SYSTEM AND FOR CREATING USER-
ACCESSIBLE READ-ONLY COPIES OF A FILE SYSTEM by David Hitz et al., issued
on October 6, 1998.

Fig. 5 is a schematic block diagram of an embodiment of a buffer tree of a file
that may be advantageously used with the present invention. The buffer tree is an inter-
nal representation of blocks for a file (e.g., file 500) loaded into the buffer cache 270 and
maintained by the write-anywhere file system 380. A root (top-level) inode 502, such as
an embedded inode, references indirect (e.g., level 1) blocks 504. Note that there may be
additional levels of indirect blocks (e.g., level 2, level 3) depending upon the size of the
file. The indirect blocks (and inode) contain pointers 505 that ultimately reference data
blocks 506 used to store the actual data of the file. That is, the data of file 500 are con-
tained in data blocks and the locations of these blocks are stored in the indirect blocks of
the file. Each level 1 indirect block 504 may contain pointers to as many as 1024 data
blocks. According to the “write anywhere” nature of the file system, these blocks may be

located anywhere on the disks 230.

As noted above, the present invention permits multiple volume formats may be
utilized in conjunction with a storage system simultaneously. Figs. 1 and 5 describe an
on-disk layout of a conventional physical volume. An alternate volume format that ap-
portions an underlying physical volume into one or more virtual volumes (vvols) of a
storage system is described in the above referenced U.S. Patent Application Serial No.
10/836,817 titled EXTENSION OF WRITE ANYWHERE FILE SYSTEM LAYOUT,
by John K. Edwards et al. The underlying physical volume is an aggregate comprising
one or more groups of disks, such as RAID groups, of the storage system. The aggregate
has its own physical volume block number (pvbn) space and maintains metadata, such as
block allocation structures, within that pvbn space. Each vvol has its own virtual volume
block number (vvbn) space and maintains metadata, such as block allocation structures,
within that vvbn space. Each vvol is a file system that is associated with a container file;
the container file is a file in the aggregate that contains all blocks used by the vvol.

Moreover, each vvol comprises data blocks and indirect blocks that contain block point-

10

15

20

25

WO 2006/088773 PCT/US2006/004943

17

ers that point at either other indirect blocks or data blocks.

In one embodiment, pvbns are used as block pointers within buffer trees of files
(such as file 500) stored in a vvol. This "hybrid" vvol embodiment involves the insertion
of only the pvbn in the parent indirect block (e.g., inode or indirect block). On a read
path of a logical volume, a “logical” volume (vol) info block has one or more pointers
that reference one or more fsinfo blocks, each of which, in turn, “points to” an inode file
and its corresponding inode buffer tree. The read path on a vvol is generally the same,
following pvbns (instead of vvbns) to find appropriate locations of blocks; in this context,
the read path (and corresponding read performance) of a vvol is substantially similar to
that of a physical volume. Translation from pvbn-to-disk,dbn occurs at the file sys-

tem/RAID system boundary of the storage operating system 300.

In an illustrative "dual vbn” hybrid (“flexible”) vvol embodiment, both a pvbn
and its corresponding vvbn are inserted in the parent indirect blocks in the buffer tree of a
file. That is, the pvbn and vvbn are stored as a pair for each block pointer in most buffer
tree structures that have pointers to other blocks, e.g., level 1(L1) indirect blocks, inode
file level 0 (LO) blocks. Fig. 6 is a schematic block diagram of an illustrative embodi-
ment of a buffer tree of a file 600 that may be advantageously used with the present in-
vention. A root (top-level) inode 602, such as an embedded inode, references indirect
(e.g., level 1) blocks 604. Note that there may be additional levels of indirect blocks
(e.g., level 2, level 3) depending upon the size of the file. The indirect blocks (and inode)
contain pvbn/vvbn pointer pair structures 608 that ultimately reference data blocks 606
used to store the actual data of the file.

The pvbns reference locations on disks of the aggregate, whereas the vvbns refer-
ence locations within files of the vvol. The use of pvbns as block pointers 608 in the in-
direct blocks 604 provides efficiencies in the read paths, while the use of vvbn block
pointers provides efficient access to required metadata. That is, when freeing a block of a
file, the parent indirect block in the file contains readily available vvbn block pointers,
which avoids the latency associated with accessing an owner map to perform pvbn-to-

vvbn translations; yet, on the read path, the pvbn is available.

15

20

25

30

WO 2006/088773 PCT/US2006/004943

18

As noted, each inode has 64 bytes in its data section that, depending upon the size
of the inode file (e.g., greater than 64 bytes of data), function as block pointers to other
blocks. For traditional and hybrid volumes, those 64 bytes are embodied as 16 block
pointers, i.e., sixteen (16) 4 byte block pointers. For the illustrative dual vbn flexible
volume, the 64 bytes of an inode are embodied as eight (8) pairs of 4 byte block pointers,
wherein each pair is a vvbn/pvbn pair. In addition, each indirect block of a traditional or
hybrid volume may contain up to 1024 (pvbn) pointers; each indirect block of a dual vbn

flexible volume, however, has a maximum of 510 (pvbn/vvbn) pairs of pointers.

Fig. 7 is a schematic block diagram of an embodiment of an aggregate 700 that
may be advantageously used with the present invention. Luns (blocks) 702, directories
704, qtrees 706 and files 708 may be contained within vvols 710, such as dual vbn flexi-
ble vvols, that, in turn, are contained within the aggregate 700. The aggregate 700 is il-
lustratively layered on top of the RAID system, which is represented by at least one
RAID plex 750 (depending upon whether the storage configuration is mirrored), wherein
each plex 750 comprises at least one RAID group 760. Each RAID group further com-
prises a plurality of disks 730, e.g., one or more data (D) disks and at least one (P) parity
disk.

Whereas the aggregate 700 is analogous to a physical volume of a conventional
storage system, a vvol is analogous to a file within that physical volume. That is, the ag-
gregate 700 may include one or more files, wherein each file contains a vvol 710 and
wherein the sum of the storage space consumed by the vvols is physically smaller than
(or equal to) the size of the overall physical volume. The aggregate utilizes a “physical”
pvbn space that defines a storage space of blocks provided by the disks of the physical
volume, while each embedded vvol (within a file) utilizes a “logical” vvbn space to or-
ganize those blocks, e.g., as files. Each vvbn space is an independent set of numbers that
corresponds to locations within the file, which locations are then translated to dbns on
disks. Since the vvol 710 is also a logical volume, it has its own block allocation struc-

tures (e.g., active, space and summary maps) in its vvbn space.

A container file is a file in the aggregate that contains all blocks used by a vvol.

The container file is an internal (to the aggregate) feature that supports a vvol; illustra-

10

15

20

25

30

WO 2006/088773 PCT/US2006/004943

19

tively, there is one container file per vvol. Similar to the pure logical volume in a file ap-
proach, the container file is a hidden file (not accessible to a user) in the aggregate that
holds every block in use by the vvol. The aggregate includes an illustrative hidden meta-

data root directory that contains subdirectories of vvols:
WAFL/fsid/filesystem file, storage label file

Specifically, a “physical” file system (WAFL) directory includes a subdirectory
fof each vvol in the aggregate, with the name of subdirectory being a file system identi-
fier (fsid) of the vvol. Each fsid subdirectory (vvol) contains at least two files, a filesys-
tem file and a storage label file. The storage label file is illustratively a 4kB file that con-
tains metadata similar to that stored in a conventional raid label. In other words, the stor-
age label file is the analog of a raid label and, as such, contains information about the
state of the vvol such as, e.g., the name of the vvol, a universal unique identifier (uuid)

and fsid of the vvol, whether it is online, being created or being destroyed, etc.

Fig. 8 is a schematic block diagram of an on-disk representation of an aggregate
800. The storage operating system 300, e.g., the RAID system 340, assembles a physical
volume of pvbns to create the aggregate 800, with pvbns 1 and 2 comprising a “physical”
volinfo block 802 for the aggregate. The volinfo block 802 contains block pointers to
fsinfo blocks 804, each of which may represent a snapshot of the aggregate. Each fsinfo
block 804 includes a block pointer to an inode file 806 that contains inodes of a plurality
of files, including an owner map 810, an active map 812, a summary map 814 and a
space map 816, as well as other special metadata files. The inode file 806 further in-
cludes a root directory 820 and a “hidden” metadata root directory 830, the latter of
which includes a namespace having files related to a vvol in which users cannot "see" the
files. The hidden metadata root directory also includes the WAFL/fsid/ directory structure
that contains filesystem file 840 and storage label file 890. Note that root directory 820
in the aggregate is empty; all files related to the aggregate are organized within the hid-

den metadata root directory 830.

In addition to being embodied as a container file having level 1 blocks organized
as a container map, the filesystem file 840 includes block pointers that reference various

file systems embodied as vvols 850. The aggregate 800 maintains these vvols 850 at spe-

10

20

25

30

WO 2006/088773 PCT/US2006/004943

20

cial reserved inode numbers. Each vvol 850 also has special reserved inode numbers
within its vvol space that are used for, among other things, the block allocation bitmap
structures. As noted, the block allocation bitmap structures, e.g., active map 862, sum-

mary map 864 and space map 866, are located in each vvol.

Specifically, each vvol 850 has the same inode file structure/content as the aggre-
gate, with the exception that there is no owner map and no WAFL/fsid/filesystem file,
storage label file directory structure in a hidden metadata root directory. To that end,
each vvol 850 has a volinfo block 852 that points to one or more fsinfo blocks 900, each
of which may represent a snapshot, along with the active file system of the vvol. Each
fsinfo block, in turn, points to an inode file 860 that, as noted, has the same inode struc-
ture/content as the aggregate with the exceptions noted above. Each vvol 850 has its own
inode file 860 and distinct inode space with corresponding inode numbers, as well as its
own root (fsid) directory 870 and subdirectories of files that can be exported separately

from other vvols.

As noted, the storage label file 890contained within the hidden metadata root di-
rectory 830 of the aggregate is a small file that functions as an analog to a conventional
raid label. A raid label includes "physical" information about the storage system, such as
the volume name; that information is loaded into the storage label file 890. Illustratively,
the storage label file 890 includes the name 892 of the associated vvol 850, the
online/offline status 894 of the vvol, and other identity and state information 896 of the

associated vvol (whether it is in the process of being created or destroyed).

An example of a write allocation procedure that may be advantageously used with
the present invention is described in U.S. Patent Application Serial No. 10/836,090 titled,
EXTENSION OF WRITE ANYWHERE FILE LAYOUT WRITE ALLOCATION, by
John K. Edwards, which application is hereby incorporated by reference. Broadly stated,
block allocation proceeds in parallel on the flexible vvol and aggregate when write allo-
cating a block within the vvol, with a write allocator process 282 selecting an actual pvbn
in the aggregate and a vvbn in the vvol. The write allocator adjusts block allocation bit-
map structures, such an active map and space map, of the aggregate to record the selected

pvbn and adjusts similar structures of the vvol to record the selected vvbn. A vvid (vvol

10

15

20

25

30

WO 2006/088773 PCT/US2006/004943

21

identifier) of the vvol and the vvbn are inserted into owner map 710 of the aggregate at
an entry defined by the selected pvbn. The selected pvbn is also inserted into a container
map (not shown) of the destination vvol. Finally, an indirect block or inode file parent of
the allocated block is updated with one or more block pointers to the allocated block.

The content of the update operation depends on the vvol embodiment. For a dual vbn
hybrid vvol embodiment, both the pvbn and vvbn are inserted in the indirect block or

inode as block pointers.

D. Supporting Multiple Volume Formats on a Storage Appliance

The present invention provides a system and method for enabling a storage sys-
tem to support multiple volume formats simultaneously. In the illustrative embodiment,
an on-disk structure e.g. an fsinfo block, is modified to include a volume type field that
holds a type value identifying the format utilized by a particular volume. It should be
noted that a volinfo block is the top-level on-disk structure that points to one or more
fsinfo blocks. In the illustrative embodiment, the fsinfo block is modified in accordance
with the present invention. However, in alternated embodiments, the volinfo block may
be modified in accordance with the teachings of the present invention. Thus, the file sys-
tem, upon first accessing the volume’s fsinfo block, is able to identify the appropriate
volume format associated with the particular volume. During file system operations, the
file system utilizes the identified volume format for determining how to interpret various
file system data structures, including pointers within blocks in the file system. For exam-
ple, in a conventional volume, pointers comprise vbns, whereas in a flexible (or virtual)
volume in an aggregate pointers may comprise pvbn/vvbn pairs. By utilizing the identi-
fied type of volume, the storage system may interpret the pointers appropriately.

Fig. 9 is a schematic block diagram of the fsinfo block on-disk structure for sup-
porting multiple volume formats. The fsinfo block 900 includes a set of PCPI pointers
905, a volume type field 910, an inode for the inode file 915 and, in alternate embodi-
ments, additional fields 920. The PCPI pointers 905 are pointers to PCPIs associated
with the file system. The volume type field 910 identifies the type of volume described
by the fsinfo block. In the illustrated embodiment, the volume type field 910 holds a type

value that differentiates between a conventional volume and an aggregate comprising

10

15

20

25

30

WO 2006/088773 PCT/US2006/004943

22

one or more flexible volumes contained therein. However, in alternate embodiments, the
volume type field 910 may differentiate among other volume formats. As such, the de-~
scription of differentiating between a conventional volume or aggregate should be taken
as exemplary only. The inode for the inode file 915 includes the inode containing the
root-level pointers to the inode file 860 (Fig. 8) of the file system associated with the
fsinfo block. It should be noted that the inventive technique of the present invention may
also be utilized with flexible volumes within an aggregate.

As noted, use of the novel volume type field enables the storage system to inter-
pret appropriately various file system data structures contained within a volume. In the
illustrative embodiment, the file system differentiates between a conventional volume
and an aggregate. That is, upon identifying a conventional volume format, the file sys-
tem interprets the data contained within the on-disk structures in accordance with the
conventional volume model. Similarly, upon identifying a flexible volume, the file sys-
tem utilizes the flexible volume/aggregate paradigm for interpreting data within the on-
disk structures. For example, the file system may properly differentiate between a con-
ventional vbn format and a flexible pvbn/vvbn pair format when traversing the buffer
trees associated with the different volumes.

This differentiation is necessary when processing file operations directed to the
volume. As the various types of volumes (conventional, aggregate, etc.) may utilize dif-
fering formats of block pointers within various on-disk structures, such as indirect blocks
and/or inodes. Thus, the write allocator 382 of storage operating system 300 may inter-
pret block pointers differently based on the type of volume being utilized. Fig. 10isa
flowchart detailing the steps of a procedure 1000 for processing dirtied blocks in a file
system in accordance with an embodiment of the present invention. The procedure be-
gins in step 1005 and continues to step 1010 where a block is dirtied in the file system. A
block may be dirtied by, for example, a write operation directed to a block or by a pointer
within the block being modified. In a typical environment, write operations are directed
to level 0 data blocks whereas indirect blocks have pointers modified during the write
operations due to a “copy-on-write” nature of the file system.

Once a block has been dirtied, the procedure continues to step 1015 where the file

system determines the type of volume being utilized. This determination may be made

10

15

20

25

30

WO 2006/088773 PCT/US2006/004943

23

by examining the volume type field 910 of the block 900 or, in alternate embodiments, by
referencing an in-memory variable identifying the volume type. In such a latter embodi-
ment, the in-memory variable may be configured the first time a particular volume is ac-
cessed so that for each subsequent operation the fsinfo block is not required to be loaded.
If the volume type is a conventional volume, the procedure branches to step 1020, where
the file system operation uses the block allocation bitmap structures to select a “free”
physical block within the vbn space of the volume and then selects (allocates) a pvbn for
the physical block. In step 1025, the data is written to the allocated physical block. The
file system then updates the appropriate pointer in a higher level indirect block (or inode
file “parent” block) of the allocated block in step 1030. This step modifies the appropri-
ate pointer to reference the newly written block. Then, in step 1035, the file system de-
termines if it has reached the topmost level of the buffer tree. If it has, the procedure con-
tinues to step 1040 where the data is flushed (written) to storage. If not, the procedure
loops back to step 1020 and processes the next higher level of the buffer tree, which is
not dirtied due to the pointer being modified in step 1030.

If, in step 1015, the file system determines that the volume is a flexible volume,
the procedure branches to step 1045 where block allocation proceeds in parallel on both
the flexible volume and its aggregate. Here the file system (write allocation 382) selects
a pvbn in the aggregate and a vvbn in the flexible volume. Specifically the file system
uses the block allocation bitmap structures to select a free physical block within the pvbn
space of the aggregate (step 1045) and to select a vvbn from the vvbn space of the vol-
ume (step 1050). The data is then written to the allocated block in step 1055. The se-
lected vvbn/pvbn pointer pair is then written to the higher level indirect block (or inode
“parent” block) in step 1060. The file system then determines, in step 1035, whether it
has reached the top level of the buffer tree. If so, the procedure then flushes the block(s)
to disk and completes in step 1040. Otherwise, the procedure loops back to step 1045
and processes the next higher level block in the buffer tree, which is now dirtied due to
step 1060.

As can be seen from procedure 1000, the use of the volume type value enables the
storage operating system to support multiple volume formats simultaneously. One skilled

in the art will generate that various code paths or operations may be performed for any

10

15

20

25

30

WO 2006/088773 PCT/US2006/004943

24

file system operation that differs between the different volume types. Described above is
the most common operation of writing a dirtied block to disk, however, it should be taken
as exemplary only and should be noted that other procedures may be utilized in accor-
dance with the teachings of the present invention.

It should be noted that the procedure 1000 is typically performed on a delayed ba-
sis, such as when the file system performs a write allocation routine to flush all dirtied
data to a form of persistent storage. However, in alternate embodiments, the file system
may perform procedure 1000 as a result of each dirtying block. Additionally, while the
above description describes the processing of a dirtied block in accordance with an em-
bodiment of the present invention, the teachings herein may be utilized in a wide variety |
of file system operations, such as when the volume formats utilized by a storage system
differ. Thus, for example, when traversing a buffer tree to obtain data from a level 0
block, the file system determines the appropriate type of volume prior to interpreting the
data pointers within the inode and/or indirect blocks. If the buffer tree is a conventional
volume buffer tree, the pointers comprise vbns, whereas if the tree is a flexible volume
buffer tree, the pointers comprise pvbn/vvbn pairs. As such, the teachings of the present
invention enable a file system to effectively handle multiple volume formats simultane-
ously by examining the volume type field before performing any operations that require
differing steps and/or interpretations of the on-disk structure between volume formats.

To again summarize, the present invention provides a system and method for ena-
bling a storage system to support multiple volume formats simultaneously. In accordance
with the illustrative embodiment, a volume type field is added to a fsinfo block associated
with each of volume. The storage operating system examines the volume type field to
identify the appropriate volume type of a given volume. The storage operating system
may then interpret data, including pointers, within the various on-disk structures of the
volume in accordance with the proper volume type.

As will be appreciated by one and skilled in the art, the principles of the president
intervention may be utilized to differentiate among a plurality of differing a volume for-
mats. As such, while this description is written in terms of differentiating between two
different volume formats, it should be taken as exemplary only and not a limiting to the

teachings of the present intervention. The teachings of the president intervention may be

15

WO 2006/088773 PCT/US2006/004943

25

utilized with any number of file systems and and/or differing volume formats. Addition-
ally, while this description has been written in terms of differentiating between volume
formats, the principles of the present invention may be utilized in differentiating among
any form of data containers including, for example file formats for other non-disk for-
mats.

The foregoing description has been directed to specific embodiments of this in-
vention. It will be apparent, however, that other variations and modifications may be
made to the described embodiments, with the attainment of some or all of their advan-
tages. For instance, it is expressly contemplated that the teachings of this invention can
be implemented as sofiware, including a computer-readable medium having program in-
structions executing on a computer, hardware, firmware, or a combination thereof. Ac-
cordingly this description is to be taken only by way of example and not to otherwise
limit the scope of the invention. Therefore, it is the object of the appended claims to
cover all such variations and modifications as come within the true spirit and scope of the

invention.

What is claimed is:

WO 2006/088773 PCT/US2006/004943

26

CLAIMS

1. A method for permitting a storage system to support a data container having one
of a plurality of formats, the method comprising the steps of:

examining a type value from a predetermined data structure of the data container;
and

performing a file system operation to the data container using a format associated .

with the examined type value.

2. The method of claim 1 wherein the data container comprisés a physical volume.
3. The method of claim 1 wherein the data container comprises an aggregate.

4. The method of claim 1 wherein the data container comprises a virtual volume.

5. The method of claim 1 wherein the predetermined data structure comprises a file

system information block.

6. The method of claim 5 wherein the file system information block further com-

prises a volume type field.

7. The method of claim 1 wherein the file system operation comprises the step of

writing a dirtied block to a storage device.

8. A system for permitting a storage system to support a data container having one
of a plurality of formats, the system comprising:

means for reading a type value from a predetermined data structure of the data
container; and

means for performing a file system operation to the data container using a format

associated with the read type value.

WO 2006/088773 PCT/US2006/004943

27

9. The method of claim 8 wherein the data container comprises a physical volume.

10. The method of claim 8 wherein the data container comprises an aggregate.

11. The method of claim 8 wherein the data container comprises a virtual volume.

12. The method of claim 8 wherein the predetermined data structure comprises a file

system information block.

13. The method of claim 12 wherein the file system information block further com-

prises a volume type field.

14. The method of claim 8 wherein the file system operation comprises the step of

writing a dirtied block to a storage device.

15. A system for permitting a storage system to support a data container having a one
of a plurality of formats, the system comprising:

a storage operating system having a file system that supports a plurality of for-
mats associated with the data container, the file system adapted to store a type value in a
predetermined location in the data container; and

wherein the file system is further adapted to interpret data structures of the data
container in accordance with a format defined by the type value stored in the predeter-

mined location in the data container.

16. The system of claim 15 wherein the data container comprises a physical volume.

17. The system of claim 15 wherein the data container comprises an aggregate.

18. The system of claim 15 wherein the data container comprises a virtual volume.

[

WO 2006/088773 PCT/US2006/004943

28

19. The system of claim 15 wherein the predetermined location comprises a file sys-

tem information block.

20. The system of claim 19 wherein the file system information block further com-

prises a volume type field.

PCT/US2006/004943

WO 2006/088773

1/9

| e 1
73 [“
AHOLO3™IA 1 TIT 1
i (€ | Seesey [T
NIAaH ! 1
! 114 O:NIS4 “
e e e e e e = 1
ort .
AMOLOTHIA | .
100¥ *
| A 1
1]
— I 1
gel I ort !
dN (e ' (1 10HSawNS) (€
30VdS ! 300749 O4NISH I
1]
1 1
i T4 OANISH i
a [e e 1
AV
AMYINWNS
| e 1
1 1
g2F — 4 “ 507 “
o3 —
friva mw_wm%wm__mw_ Al_l (WZLSAS TTid IAILOY) (==
3AILOV 30014 O4NISA :
———q F714300NI ! !
! T4 04NISH "

~

00t

2ol
390014
O4NITOA

PCT/US2006/004943

WO 2006/088773

2/9

g

oee 9GZ AVHYY Msia

\ ore

gzz 74
yaldvay Ay
39VHOLS SRIOMLIN

mNNJ
|
00¢
0/¢ -
WILSAS e
JHOVO ONILYN3dO
¥344ng JOVHOLS H0SS300dd
bza4 0z
pec AHONN WILSAS FOVNOLS

13X0vd
0se

¢ Old

0iz
ANJITO

cie
NOLLYOIddY

00c

PCT/US2006/004943

¢ Ol

3/9

ore o7%
05¢ §S302V SS300V
Viaaw VIA3an
W3LSAS
H3IARA ZIE 7IE
Asia di dl
oee 7IE o | I
dol dan dol1
o4
773 —
gze 9ce
W3ALSAS ISOS! "
avu 1 e | zE | oz
o0& dllH S4I0 S4N 5
3T1NAON
139YVLISOS s4va

c8e

088 WILSAS I HOLYOOTIV TLIM

09€ ITNAOW MSIAA

g8 N

WO 2006/088773

00¢e

WO 2006/088773 PCT/US2006/004943

4/9

SIZE 14

|
|
I
|
:
TIME STAMPS 16 |
I
|
|
|
i
|

UID 418

GID 420
] ,
'l DpaTtA 450 |
! |
|
| DIRTYBIT 460 |
|

WO 2006/088773

LEVEL
1
BLOCKS

LEVEL
0
BLOCKS

LEVEL
1
BLOCKS

LEVEL
0
BLOCKS

PCT/US2006/004943

5/9
INODE 502
POINTER POINTER
INDIRECT BLOCK 504 INDIRECT BLOCK 504
POINTER POINTER POINTER POINTER

ﬁ (X X1 .5_0§ .5@ eece &5

DATA DATA DATA DATA
BLOCK Xy} BLOCK BLOCK ese BLOCK
506 506 506 506
F I G 5 FILE 500
INODE 602
PVBN/VVBN PVBN/\/VBN
POINTER PAIR | ee« | POINTER PAIR
608 608

INDIRECT BLOCK 604 INDIRECT BLOCK 604

PVBN/VVBN PVBN/VVBN PVBN/VVBN PVBN/VVVBN
POINTER POINTER POINTER POINTER
PAIR cee PAIR PAIR eee PAIR
608 608 608 608
DATA DATA DATA DATA
BLOCK cee BLOCK BLOCK see BLOCK
606 606 606 606
FILE 600

FIG. 6

WO 2006/088773 PCT/US2006/004943

6/9

VVOL 710
FILE
708

AGGREGATE 700
QTREE
706
RAID PLEX 750
FIG. 7

VWOL 710
DIR
704

LUN
702

760

RAID GROUP _j

PCT/US2006/004943

WO 2006/088773

7/9

968 ALVLS ANV ALILNIAI-
$68 SNLV1S ANI440/ANINO-

268 JNVYN TOAA-

3714 139Y1 3OVHOLS

T4 WI1SAST A

QISH/14YM re
p— 058 TOM p—
088 0e8
ANOLOTIA A¥OLOTIA
100¥ 100y
viva viva
VN g VLI g
N3aaiH N3aaH w mU_ H_
0/8 028
A¥OLOTIA AMOLOTHIA
100y [1008 (4=
998 018
v dv
FoVds aovds (4=
006 $08
30019 30074
558 04NISA 575 O4NISH
g . dVA g .
AIVYWAINS [AHVYINANS °
® []
dvW =y 30014 30018 dVIN T4 30018 00718
3AILOV 30O0NI g OaNIsd 04NITOA FALOV |@eememd ICONI [=f ONISH [gmed ONITOA
[]
. 018
dVIN
__ wanmo (€ AJ
058 1OAA 008

WO 2006/088773

8/9

PCT/US2006/004943

900

PCPI POINTERS 905

" VOLUME TYPE 910
FILE ID 915
920

FIG. 9

WO 2006/088773

9/9

PCT/US2006/004943

1005 / 1000
~— 1010
DIRTY A BLOCK IN FILE SYSTEM
1015
1020 CONVENTIONAL WHAT TYPE FLEXIBLE
VOLUME OF VOLUME? VOLUME ¢ / 1045
ALLOCATE PVBN ALLOCATE PVBN
FOR DATA FOR DATA
1025 ¢ 1050
yd Z
SELECT VVBN FOR
WRITE DATA TO
ALLOCATED BLOCK FLEXIBLE VOLUME
1030 l * Vs 1055
Z WRITE DATA TO
UPDATE POINTER IN ALLOCATED BLOCK
HIGHER LEVEL
INDIRECT BLOCK ¢ 1060
UPDATE PVBNVVBN

POINTER IN HIGHER
LEVEL INDIRECT
BLOCK

1035

YES REAGHED

YES

TOP LEVEL OF
BUFFER TREE?

FIG. 10

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

