（54）发明名称
一种基于五元芳香羧酸构筑的金属有机框架材料、合成方法及其催化应用

（57）摘要
一种基于五元芳香羧酸构筑的金属有机框架材料合成方法及其催化应用，属于晶态材料和催化应用技术领域。该金属有机框架材料化学分子式为：{[Ag₂(ddecb)(4,4′-bipy)₂]ₙ}。其中n表示正无穷，ddecb表示3,5-二(2,5-二羧基苯基)苯甲酸，4,4′-bipy表示4,4′-联吡啶。封闭条件下，多元羧酸有机配体与硝酸银在水热条件下，通过氢氧化钠调节体系pH值，保温并加入表面活性剂作为添加剂，经由水热反应得到晶态金属有机框架材料。进一步测试表明该材料在还原对硝基苯酚及其同分异构体的反应中展现出较高的催化活性。
1. 一种基于五元芳香羧酸构筑的金属有机框架材料，其特征在于，该金属有机框架材料为三维金属有机骨架晶体材料，其化学分子式为\[\{\text{Ag}_2(\text{ddcbca})_n(4',4'-\text{bipy})_2\}\]

2. 权利要求1所述的基于五元芳香羧酸构筑的金属有机框架材料，其特征在于：

3. 权利要求1所述的基于五元芳香羧酸构筑的金属有机框架材料的制备方法，其特征在于，包括以下步骤：在密封条件下，3,5-二(2,5-二溴基苯基)苯甲酸, 4,4'-联吡啶与硝酸盐在去离子水中，经氢氧化钠调节体系酸度，再经由水热反应，并在表面活性剂作为添加剂的条件下，表面活性剂同原料一起加入到反应体系共同参与水热反应，得到具有晶体结构的基于五元芳香羧酸构筑的金属有机框架材料，简称Ag-MOF材料。

4. 权利要求3所述的基于五元芳香羧酸构筑的金属有机框架材料的制备方法，其特征在于，其中五元羧酸有机配体, 4,4'-联吡啶与硝酸银的摩尔比之比为1:1-2:1-4:1，每0.02 mmol的五元羧酸有机配体加入4ml-6ml的去离子水，5-20mg表面活性剂, NaOH 0.01-0.04 mmol，水热反应的温度为100-160°C，反应时间为60-80小时。

5. 权利要求4所述的基于五元芳香羧酸构筑的金属有机框架材料的制备方法，其特征在于，其中五元羧酸有机配体, 4,4'-联吡啶与硝酸银的摩尔比之比为1:1:1:1，每0.02 mmol的有机配体多羧酸加入5ml的去离子水，表面活性剂10mg, NaOH 0.04 mmol；水热反应的温度为110°C，反应时间为72小时。

6. 权利要求3-5任一项所述的基于五元芳香羧酸构筑的金属有机框架材料的制备方法，其特征在于，所述的表面活性剂为正辛酸钠。

7. 权利要求1-6任一项所述的基于五元芳香羧酸构筑的金属有机框架材料在对硝基苯酚及其同分异构体的催化还原反应上的应用。

8. 权利要求7所述的应用，其特征在于，具体步骤包括如下：将基于五元芳香羧酸构筑的金属有机框架材料按0.15 g/L-0.5 g/L的比例投加到浓度为14 mg/L-25 mg/L的对硝基苯酚及其同分异构体的溶液中，加入硼氢化钾，反应在自然光或黑暗的条件下进行，反应温度为室温，反应时间为3 min-20 min，即可完成对硝基苯酚及其同分异构体的还原。

9. 权利要求8所述的应用，其特征在于，硼氢化钾浓度为0.3 g/L ~1 g/L。
一种基于五元芳香羧酸构筑的金属有机框架材料、合成方法
及其催化应用

技术领域
【0001】本发明涉及一种基于五元芳香羧酸构筑的金属有机框架材料合成方法及其催化应用，属于晶态材料和催化应用技术领域。具体以五元羧酸有机物为主配体、含氮有机物为辅助配体，过渡金属银为金属中心经过自组装形成金属有机框架材料（MOF），测试表明该晶态材料在催化还原对硝基苯酚及其同分异构体反应中具有较高催化活性。

背景技术
【0002】金属有机框架材料（Metal-Organic Frameworks, 简称MOFs）是一种新型的微孔晶态材料，金属有机框架材料以金属离子或金属离子簇为节点，以有机配体为桥联，以配位键为作用力进行连接，形成程有序的晶体空间结构，迄今为止，芳香类多羧酸配体被广泛的应用于构筑金属-有机骨架材料，是目前研究最多、最为成功的一类配体。同传统多孔材料相比，其具有：1、孔道大小可调2、比表面积大3、骨架成分多样化4、孔道可修饰调节等诸多优点。鉴于上述优点，金属有机框架材料在光、电、磁、传感、吸附、催化等领域具有重要的应用前景，其中的催化应用中除了利用其高表面积以及规则均匀分布的孔道结构进行贵金属纳米粒子的负载外，金属有机框架材料本身也可作为某些有机反应体系或者特定反应的催化剂。
【0003】与此同时，以对硝基苯酚（4-NP）为代表的酚类有机物是工业废水中很难处理的一种有机污染物，在较低浓度下，对人体及水中生物都能造成严重危害。对硝基苯酚的降解措施集中于液相高压放电、生物细菌降解等，利用高效的异相催化剂将对硝基苯酚还原成对氨基苯酚，是一种很好的且很具有吸引力的措施，另外一方面就是这个降解反应的产物之一4-AP是重要的化工原料。对氨基苯酚，亦称“对羟基苯胺”，是一种应用较为广泛的的化工原料，在化工、医药、燃料、橡胶及油品添加剂等工业领域均有着很重要的应用。因此，将对环境伤害较大的反应物转化为可以利用的化工中间原料，具有重大经济、社会意义。

发明内容
【0004】本发明提供了一种基于五元芳香羧酸构筑的金属有机框架材料合成方法，并将该晶态材料应用于催化还原对硝基苯酚及其同分异构体反应中。
【0005】一种基于五元羧酸、二联吡啶和硝酸银构筑的金属有机框架材料（Ag-MOF），该金属有机框架材料为Ag与五元羧酸有机配体、含氮辅助配位组装形成的三维金属有机骨架晶体材料，其化学通式为：[Ag2(ddecba)(4,4'-bipy)]_n，其中n表示正无穷，ddecba表示3,5-二(2,5-二羧基苯基)苯甲酸，4,4'-bipy表示4,4'-联吡啶。
【0006】该晶态材料属于单斜晶系，空间群为Pc，晶胞参数为：a=10.954 Å, b=9.664 Å, c=17.4127 Å, α=γ=90°, β=97.711°。
【0007】所述的金属有机框架材料的制备方法，包括以下步骤：在封闭条件下，有机配体3,5-二(2,5-二羧基苯基)苯甲酸、4,4'-联吡啶与硝酸银在水溶液中，经由水热反应，并在表面活性剂作为添加剂的条件下得到具有晶体结构的金属有机框架材料，即Ag-MOF材料。
[0008] 其中五元羧酸有机配体，含氮辅配与硝酸银的摩尔量之比为1:1-2:1-4，每0.02mmol的五元羧酸有机配体对应4ml-6ml的去离子水，对应5-20mg表面活性剂，对应NaOH0.01-0.4mmol，水热反应的条件为100-160°C，反应时间为60-80小时。
[0009] 进一步优选为五元羧酸有机配体，含氮辅配与硝酸银的摩尔比为1:1:1，每0.02mmol的有机配体多元羧酸对应5ml的去离子水，对应表面活性剂10mg，对应NaOH0.04mmol，水热反应的条件为110°C，反应时间为72小时。
[0010] 本发明还提供一种将Ag-MOF材料应用于催化还原对硝基苯酚及其同分异构体反应的方法，取一定量制备得到的金属有机框架晶体材料，加入到对硝基苯酚及其同分异构体水溶液中，同时加入一定量的硼氢化钾，体系于室温条件下即可发生反应，迅速完成催化还原过程。
[0011] 其中本发明涉及的室温均指常压下的环境温度即可。
[0012] 本发明涉及金属有机框架的晶体合成方法，测试方法以及结构数据表达。
[0013] 本发明涉及金属有机框架材料热重数据的测试和研究。
[0014] 本发明涉及应用X射线单晶衍射仪收集金属有机框架材料晶体结构数据。
[0015] 本发明开发了一种基于3,5-二(2,5-二羧基苯基)苯甲酸的金属有机框架材料，实验表明，该材料具有良好的热稳定性，可应用于催化材料领域。
[0016] 本发明进一步公开了此种金属有机框架材料的制备方法：通过水热法自组装得到晶态材料。应用日本Rigaku公司的小分子型单晶X-射线衍射仪对晶体进行结构测定，利用石墨单色器，波长λ=0.071073nm的Mo Kα射线，297.8K下测得衍射强度与晶体参数等数据，并用扫描技术，对所收集的数据进行经验吸收校正，所得结果采用Shelxtl-97程序以直接法解析，用全矩阵最小二乘法修正。得到具体晶体学数据如下表所示：

<table>
<thead>
<tr>
<th>I</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>Ca₃H₅N₄O₁₀Ag₂</td>
</tr>
<tr>
<td>Fw</td>
<td>976.43</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁</td>
</tr>
<tr>
<td>aÅ</td>
<td>10.954(4)</td>
</tr>
<tr>
<td>bÅ</td>
<td>9.664(4)</td>
</tr>
<tr>
<td>cÅ</td>
<td>17.4127(7)</td>
</tr>
<tr>
<td>α(°)</td>
<td>90</td>
</tr>
<tr>
<td>β(°)</td>
<td>97.711(5)</td>
</tr>
<tr>
<td>γ(°)</td>
<td>90</td>
</tr>
<tr>
<td>VÅ³</td>
<td>1826.6(13)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>D, g cm⁻³</td>
<td>1.775</td>
</tr>
<tr>
<td>F(000)</td>
<td>976</td>
</tr>
<tr>
<td>R(int)</td>
<td>0.0403</td>
</tr>
<tr>
<td>GOF on F²</td>
<td>1.068</td>
</tr>
<tr>
<td>R₁(ω) = [∑</td>
<td></td>
</tr>
<tr>
<td>wR₂(all data)</td>
<td>0.1001</td>
</tr>
</tbody>
</table>
本发明公开的Ag-MOF材料制备合成的优点在于：
（1）合成方法简单，重现性好，产率高且对湿度要求较低，易于控制反应体系的温度；
（2）有目的地合成具备良好催化性能的功能性晶态材料，结构已知，构效关系明显。
（3）该材料在催化还原对硝基苯酚及其同分异构体的反应过程中起到了传递电子的作用，因而在还原剂高氢化钾存在的条件下，电子经由该材料传递给硝基底物，发生还原反应。
本发明红外光谱测定的方法如下：将金属有机框架材料与KBr混合研磨压薄片测定红外光谱。
本发明对晶态材料样品进行热重分析方法如下：以10℃/min升温速率扫描样品的TG曲线，扫描范围温度范围25～800℃。

附图说明
图1为实施例1所制备的材料的最小不对称结构图。
图2为实施例1所制备材料的三维堆积图。
图3为实施例1所制备材料的热重分析图。
图4为实施例1所制备材料的红外分析图谱。
图5为实施例1制得的材料催化还原对硝基苯酚的紫外吸收光谱图。
图6为实施例1制备的材料催化还原对硝基苯酚颜色变化实物图。
图7为实施例1制得的材料催化还原邻硝基苯酚的紫外吸收光谱图。

具体实施方式
下述的实施例是说明性的，不是限定性的，不能以下述实施例来限定本发明的保护范围。本发明的所述原料均有市售。
实施例中的所用原料均可从市场获得，硝酸银，分析纯，Alpha；3，5-二（2，5-二羧基苯基）苯甲酸，分析纯，济南恒化；4，4’-bipy，分析纯，济南恒化。NaOH，分析纯，国药集团；正辛酸钠，分析纯，国药集团。
实施例1
（1）用电子天平准确称取五元羧酸配体0.02mmol（0.009g），0.02mmol硝酸银（0.0034g），0.02mmol 4,4’-bipy（0.0031g），量取5ml去离子水，滴加0.1M NaOH溶液0.4ml，称量正辛酸钠10mg，上述物质一并加入装有特氟龙衬的不锈钢反应釜中，放入恒温干燥箱中，在110℃下恒温反应72h。反应结束后取出反应釜，以2～3℃/h速率匀速降温至室温，经过滤除去溶剂去离子水，最终得到无色透明块状晶体，即Ag-MOF（化学通式为：[[Ag_2(ddeca)_4,4’-bipy)]_n，n＝1时，具体的分子式为：C_2H_8N_4O_10Ag_2]。)
（2）取浓度为14mg/L的对硝基苯酚溶液3ml，移入比色皿中，再加入1mgAg-MOF催化剂，同时加入3mg KBr，用紫外分光光度计测试其吸收曲线，跟踪波长为400nm处的吸收值。吸收值的变化反映了底物的剩余浓度。
（3）取浓度为60mg/L的邻硝基苯酚溶液3ml，移入比色皿中，再加入1mgAg-MOF催化
剂，同时加入3mg KBH₄，用紫外光光度计测试其吸收曲线。跟踪λ₄4纳米处的吸收值。

【0039】(4) 取浓度为60mg/L的间硝基苯酚溶液3ml，移入比色皿中，再加入1mgAg-MOF催化剂，同时加入3mg KBH₄，用紫外光光度计测试其吸收曲线。跟踪λ₃9纳米处的吸收值。

【0040】(5) 以对硝基苯酚的催化还原为例说明附图中吸收曲线的意义。对硝基苯酚和还原剂硼氢化钾共存时，经紫外光光度计测试其在400纳米处有明显吸收峰，可以认为该体系的特征吸收峰。加入催化剂材料以后，每隔一段时间检测该波长处的吸收值即可用来表征剩余底物的浓度。随着底物对硝基苯酚被不断催化剂还原，其在400纳米处的吸收峰值不断下降。

【0041】其余附图说明：

【0042】附图1：反映了该晶态材料的最小不对称单元组成情况，即材料内部有机配体和金属配位作用的情况。

【0043】附图2：反映了该晶态材料内部晶格的堆积情况。

【0044】附图3：反映了材料在加热条件下的稳定性。

【0045】附图4：反映了材料内部晶格和金属配位作用的情况，为辅助表征。

【0046】附图5：反映了材料催化还原对硝基苯酚所用的时间。曲线从上往下依次为0min、1min、2min、3min、4min、5min、6min、7min、8min，其中，0min、1min、2min的曲线重合。

【0047】附图6：反映了材料催化还原硝基苯酚类反应的肉眼可见的表观情况。

【0048】附图7：反映了材料催化还原邻硝基苯酚所用的时间。曲线从上往下依次为0min、1min、2min、3min、4min、5min、6min、7min、8min、9min、10min、11min、12min。
图7