(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date (10) International Publication Number
6 March 2003 (06.03.2003) PCT WO 03/019368 A2
(51) International Patent Classification”: GOG6F 9/455 (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
(21) International Application Number: PCT/US02/26900 CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
(22) International Filing Date: 22 August 2002 (22.08.2002) LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

MX, MZ,NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SL SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,

(25) Filing Language: English YU, ZA, ZM, ZW.
(26) Publication Language: English 24 Designated States (regional): ARIPO patent (GH, GM,
L. KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
(30) Priority Data: Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
09/939,106 24 August 2001 (24.08.2001) US European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
(71) Applicant: SUN MICROSYSTEMS, INC [US/US]; TR), OAPI patent (BF, BJ, CE, CG, CI, CM, GA, GN, GQ,
M/S: SCA12-203, 4120 Network Circle, Santa Clara, CA GW, ML, MR, NE, SN, TD, TG).
95054 (US).
Published:
(72) Inventor: SOKOLOYV, Stepan; 34832 Dorado Common, — without international search report and to be republished
Fremont, CA 94555 (US). upon receipt of that report

(74) Agent: MAHBOUBIAN, Ramin; Beyer Weaver & For two-letter codes and other abbreviations, refer to the "Guid-
Thomas, LLP, 2030 Addison Street, 7th Floor, PO. Box ance Notes on Codes and Abbreviations" appearing at the begin-
778, Berkeley, CA 94704 (US). ning of each regular issue of the PCT Gazette.

(54) Title: FRAMEWORKS FOR GENERATION OF JAVA MACRO INSTRUCTIONS FOR STORING VALUES INTO LOCAL
VARIABLES

A 00 N0 O OO

1210)
Conventional Java | Conventional Java

Bytecode Bytecode

Instruction Instruction

"Getfield" "Astorex"
\

Java Macro Instruction
Generator Java Macro Instruction
02 > "Get_Store"
- 1212

(57) Abstract: Techniques for generation of Java macro instructions suitable for use in Java computing environments are disclosed.
As such, the techniques can be implemented in a Java virtual machine to efficiently execute Java instructions. As will be appreciated,
a Java macro instruction can be substituted for two or more Java Bytecode instructions. This, in turn, reduces the number of Java
instructions that are executed by the interpreter. As a result, the performance of virtual machines, especially those operating with
limited resources, is improved. A Java macro instruction can be generated for conventional Java instruction sequences or sequences
of Java instruction that are provided in a reduced set of instruction. In any case, sequences that are frequently encountered can be
replaced by a Java macro instruction. These sequences are typically encountered when Java objects are instantiated, during program-
ming loops, and when a local variables are assigned a value.

0 03/019368 A2

WO 03/019368) PCT/US02/26900

FRAMEWORKS FOR GENERATION OF JAVA MACRO INSTRUCTIONS
FOR STORING VALUES INTO LOCAL VARIABLES

CROSS-REFERENCE TO RELATED APPLICATION

BACKGROUND OF THE INVENTION

[0001] The present invention relates generally to Java programming
environments, and more particularly, to frameworks for generation of Java

macro instructions in Java computing environments.

[0002] One of the goals of high level languages is to provide a portable
programming environment such that the computer programs may easily be
ported to another computer piatform. High level languages such as “Cc”
provide a level of abstraction from the underlying computer architecture and
their success is well evidenced from the fact that most computer

applications are now written in a high level language.

[0003] Portability has been taken to new heights with the advent of the
World Wide Web (“the Web”) which is an interface protocol for the Internet
that allows communication between diverse computer platforms through a
graphical interface. Computers communicating over the Web are able to
download and execute small applications called applets. Given that applets
may be executed on a diverse assortment of computer platforms, the

applets are typically executed by a Java virtual machine.

[0004] Recently, the Java programming environment has become quite
popular. The Java programming language is a language that is designed to
be portable enough to be executed on a wide range of computers ranging
from small devices (e.g., pagers, cell phones and smart cards) up to
supercomputers. Computer programs written in the Java programming
language (and other languages) may be compiled into Java Bytecode
instructions that are suitable for execution by a Java virtual machine
implementation. The Java virtual machine is commonly implemented in

software by means of an interpreter for the Java virtual machine instruction

WO 03/019368 PCT/US02/26900
2

set but, in general, may be software, hardware, or both. A particular Java
virtual machine implementation and corresponding support libraries

together constitute a Java runtime environment.

[0005] Computer programs in the Java programming language are
arranged in one or more classes or interfaces (referred to herein jointly as
classes or class files). Such programs are generally platform, i.e.,
hardware and operating system, independent. As such, these computer
programs may be executed, without modification, on any computer that is

able to run an implementation of the Java runtime environment.

[0006] Object-oriented classes written in the Java programming language
are compiled to a particular binary format called the “class file format.” The
class file includes various components associated with a single class.
These components can be, for example, methods and/or interfaces
associated with the class. In addition, the class file format can include a
significant amount of ancillary information that is associated with the class.
The class file format (as well as the general operation of the Java virtual
machine) is described in some detail in The Java Virtual Machine

Specification, Second Edition, by Tim Lindholm and Frank Yellin, which is

hereby incorporated herein by reference.

[0007] Fig. 1A shows a progression of a simple piece of a Java source code
101 through execution by an interpreter, the Java virtual machine. The
Java source code 101 includes the classic Hello World program written in
Java. The source code is then input into a Bytecode compiler 103 that
compiles the source code into Bytecodes. The Bytecodes are virtual
machine instructions as they will be executed by a software emulated
computer. Typically, virtual machine instructions are generic (i.e., not
designed for any specific microprocessor or computer architecture) but this
is not required. The Bytecode compiler outputs a Java class file 105 that
includes the Bytecodes for the Java program. The Java class file is input
into a Java virtual machine 107. The Java virtual machine is an interpreter

that decodes and executes the Bytecodes in the Java class file. The Java

WO 03/019368 PCT/US02/26900
3

virtual machine is an interpreter, but is commonly referred to as a virtual
machine as it emulates a microprocessor or computer architecture in

software (e.g., the microprocessor or computer architecture may not exist in

hardware).

[0008] Fig. 1B illustrates a simplified class file 100. As shown in Fig. 1B,
the class file 100 includes a constant pool 102 portion, interfaces portion
104, fields portion 106, methods portion 108, and attributes portion 110.
The methods portion 108 can include, or have references to, several Java
methods associated with the Java class which is represented in the class
file 100. One of these methods is an initialization method used to initialize
the Java class after the class file has been loaded by the virtual machine
but before other methods can be invoked. In other words, typically, an

initialization method is used to initialize a Java class before the classes can

be used.

[0009] A conventional virtual machine's interpreter decodes and executes
the Java Bytecode instructions, one instruction at a time, during execution,
e.g., “at runtime.” Typically, several operations have to be performed to
obtain the information that is necessary to execute a Java instruction.
Furthermore, there is a significant overhead associated with dispatching
Bytecode instructions. In other words, the Java interpreter has to perform a
significant amount of processing in order to switch from one instruction to
the next. Accordingly, it is highly desirable to reduce the number of times
the interpreter has to dispatch instructions. This, in turn, can improve the
performance of virtual machines, especially those operating with limited

resources.

[0010] In view of the foregoing, improved frameworks for execution of Java

Bytecode instructions are needed.

WO 03/019368 PCT/US02/26900
4

SUMMARY OF THE INVENTION

[0011] Broadly speaking, the invention relates to Java programming
environments, and more particularly, to frameworks for generation of Java
macro instructions in Java computing environments. Accordingly,
techniques for generation of Java macro instructions suitable for use in
Java computing environments are disclosed. As such, the techniques can
be implemented in a Java virtual machine to efficiently execute Java
instructions. As will be appreciated, a Java macro instruction can be
substituted for two or more Java Bytecode instructions. This, in turn,
reduces the number of Java instructions that are executed by the
interpreter. As a result, the performance of virtual machines, especially
those operating with limited resources, is improved.

[0012] The invention can be implemented in numerous ways, including as a
method, an apparatus, a computer readable medium, and a database
system. Several embodiments of the invention are discussed below.

[0013] One embodiment of the invention includes a Java macro instruction
representing a sequence of Java Bytecode instructions consisting of a Java
Getfield Bytecode instruction immediately followed by a Java Astore
Bytecode instruction. The Java macro instruction can be executed by a
Java virtual machine operating in a Java computing environment. When
the Java macro instruction is executed, the operations that are performed
by the conventional sequence of Java Bytecode instructions are performed.
[0014] Another embodiment of the invention discloses a Java macro
instruction representing a sequence of Java Bytecode instructions
consisting of an inventive Java Getfield Bytecode instruction immediately
followed by an inventive Java Astore Bytecode instruction. The Java macro
instruction can be executed by a Java virtual machine operating in a Java
computing environment. The Java macro instruction is executed, the
operations that are performed by the sequence of Java Bytecode
instructions are performed.

[0015] As a computer readable media including computer program code for

a Java macro instruction, one embodiment of the invention includes a Java

WO 03/019368 PCT/US02/26900
5

macro instruction representing a sequence of Java Bytecode instructions
consisting of a Java Getfield Bytecode instruction immediately followed by a
Java Astore Bytecode instruction. The Java macro insfruction can be
executed by a Java virtual machine operating in a Java computing
environment. When the Java macro instruction is executed, the operations
that are performed by the conventional sequence of Java Bytecode
instructions are performed.

[0016] These and other aspects and advantages of the present invention
will become more apparent when the detailed description below is read in

conjunction with the accompanying drawings.

WO 03/019368 PCT/US02/26900

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] The present invention will be readily understood by the following
detailed description in conjunction with the accompanying drawings,

wherein like reference numerals designate like structural elements, and in
which:

Fig. 1A shows a progression of a simple piece of a Java source code

through execution by an interpreter, the Java virtual machine.
Fig. 1B illustrates a simplified class file.

Figs. 2A-2B illustrate Java computing environments including Java

macro insfruction generators.

Fig. 3 illustrates a method for generating Java macro instructions in

accordanbe with one embodiment of the invention.

Fig. 4 illustrates a method for generating Java macro instructions in

accordance with another embodiment of the invention.

Fig. 5 illustrates a Java Bytecode verifier in accordance with one
embodiment of the invention.

Figs. 6A-6B illustrate Java computing environments including Java
macro instruction generators and Java Bytecode franslators in accordance

with one embodiment of the invention.

Fig. 7A illustrates a computing environment including an internal
representation of an inventive “DUP” instruction suitable for duplicating

values on the stack in accordance with one embodiment of the invention.
Figs. 7B-7C illustrate some of the Java Bytecode instructions
described in Fig. 7A.

Fig. 8 illustrates a mapping of Java Bytecode instantiation
instructions to the virtual machine instructions provided in accordance with

one embodiment of the invention.

WO 03/019368 PCT/US02/26900
7

Fig. 9A illustrates another sequence of conventional Java Bytecodes

that can be executed frequently by a Java interpreter.

Fig. 9B illustrates a Java computing environment including a Java
macro instruction generator and a Java Bytecode translator in accordance

with another embodiment of the invention.

Fig. 10A illustrates an internal representation of a set of Java “Load”
instructions suitable for loading values from a local variable in accordance

with another embodiment of the invention.

Fig. 10B illustrates a set of Java Bytecode instructions for loading 4
byte local variables that can be represented by an inventive “Load”

command in accordance with one embodiment of the invention.

Fig. 10C illustrates a set of Java Bytecode instructions for loading 8

byte local variables in accordance with one embodiment of the invention.

Figs. 11A and 11B illustrate some Java conventional Bytecode
instructions for performing conditional flow operations which can be
represented by two inventive virtual machine instructions in accordance

with one embodiment of the invention.

Fig. 12A illustrates yet another sequence of conventional Java

Bytecodes that can be executed frequently by a Java interpreter.

Fig. 12B illustrates the Java Byteéode translator operating to

translate conventional Java instructions into inventive Java instructions.

Fig. 13A illustrates a computing environment in accordance with one

embodiment of the invention.

Figs. 13B and 13C illustrate a set of conventional Java Bytecode
“instructions for storing arrays that can be represented by an inventive virtual
machine instruction (e.g., Astore) in accordance with one embodiment of

the invention.

WO 03/019368 PCT/US02/26900

DETAILED DESCRIPTION OF THE INVENTION

[0018] As described in the background section, the Java programming
environment has enjoyed widespread success. Therefore, there are
continuing efforts to extend the breadth of Java compatible devices and to
improve the performance of such devices. One of the most significant
factors influencing the performance of Java based programs on a particular
platform is the performance of the underlying virtual machine. Accordingly,
there have been extensive efforts by a number of entities to improve

performance in Java compliant virtual machines.

[0019] To achieve this and other objects of the invention, techniques for
generation of Java macro instructions suitable for use in Java computing
environments are disclosed. As such, the techniques can be implemented
in a Java virtual machine to efficiently execute Java instructions. As will be
appreciated, a Java macro instruction can be substituted for two or more
Java Bytecode instructions. This, in turn, reduces the number of Java
instructions that are executed by the interpreter. As a result, the
performance of virtual machines, especially those operating with limited

resources, is improved.

[0020] Embodiments of the invention are discussed below with reference to
Figs. 2A-13C. However, those skilled in the art will readily appreciate that
the detailed description given herein with respect to these figures is for
explanatory purposes only as the invention extends beyond these limited

embodiments.

[0021] Fig. 2A illustrates a Java computing environment 200 in accordance
with one embodiment of the invention. The Java computing environment
200 includes a Java macro instruction generator 202 suitable for generation
of macro instructions which are suitable for execution by an interpreter. As
shown in Fig. 2A, the Java macro instruction generator 202 can read a
stream of Java Bytecode instructions 204 (Java Bytecode instructions 1-N).

Moreover, the Java macro instruction generator 202 can produce a Java

WO 03/019368 PCT/US02/26900

9
macro instruction 206 which represents two or more Java Bytecode

instructions in the stream 204.

[0022] The Java Bytecode instructions in the stream 204 can be
conventional Java Bytecode instructions, for example, conventional
instructions “new” and “dup” which typically appear in sequence in order to
instantiate a Java object. As will be appreciated by those skilled in the art,
certain sequences appear frequently during the execution of Java
programs. Thus, replacing such sequences with a single macro instruction
can reduce the overhead associated with dispatching Java Bytecode
instructions. As a result, the performance of virtual machines, especially

those operating with limited resources, is enhanced.

[0023] It should be noted that the Java macro instruction generator 202 can
also be used in conjunction with a Java Bytecode translator in accordance
with one preferred embodiment of the invention. Referring now to Fig. 2B,
a Java Bytecode translator 230 operates to translate conventional Java
instructions 1-M into inventive Java instructions 234 (1-N), wherein N is an
integer less than the integer M. More details about the Java Bytecode
translator 230 and inventive Java instructions 1-N are described in U.S.
Patent Application No. 09/819,120 (Att.Dkt.No. SUN1P811/P5512), entitled
‘REDUCED INSTRUCTION SET FOR JAVA VIRTUAL MACHINES,” and
U.S. Patent Application No. 09/820,097 (Att.Dkt.No. SUN1P827/P6095),
entitled “ENHANCED VIRTUAL MACHINE INSTRUCTIONS.” As will be
appreciated, the use of the inventive Java instructions in conjunction with
the Java macro instruction generator can further enhance the performance

of virtual machines.

[0024] It should also be noted that the Java macro instruction can be
internally represented in the virtual machine as a pair of Java streams in
accordance with one embaodiment of the invention. The pair of Java
streams can be a code stream and a data stream. The code stream is
suitable for containing the code portion of Java macro instructions, and the

data stream is suitable for containing a data portion of said Java macro

WO 03/019368 PCT/US02/26900
10

instruction. More details about representing instructions as a pair of
streams can be found in the U.S. Patent Application No. 09/703,449
(Att.Dkt.No. SUN1P814/P5417), entitled “lIMPROVED FRAMEWORKS FOR
LOADING AND EXECUTION OF OBJECT-BASED PROGRAMS.”

[0025] Fig. 3 illustrates a method 300 for generating Java macro
instructions in accordance with one embodiment of the invention. The
method 300 can be used, for example, by the Java macro instruction
generator 202 of Figs. 2A-B. Initially, at operation 302, a stream of Java
Bytecode instructions is read. As will be appreciated, the stream of Java
Bytecode instructions can be read during the Bytecode verification phase.
Java Bytecode verification is typically performed in order to ensure the
accuracy of Java instructions. As such, operation 302 can be efficiently
performed during Bytecode verification since typically there is a need to

verify Bytecode instructions.

[0026] Next, at operation 304, a determination is made as to whether a
predetermined sequence of two or more Java Bytecode instructions has
been found. If it is determined at operation 304 that a predetermined
sequence of two or more Java Bytecode instructions has not been found,
the method 300 ends. However, if it is determined at operation 304 that a
predetermined sequence of two or more Java Bytecode instructions has
been found, the method 300 proceeds to operation 306 where a Java
macro instruction that represents the sequence of two or more Java
Bytecode instructions is generated. The method 300 ends following
operation 306. It should be noted that operations 304 and 306 can also be

performed during the Java Bytecode verification phase.

[0027] Fig. 4 illustrates a method 400 for generating Java macro
instructions in accordance with another embodiment of the invention. The
method 400 can be used, for example, by the Java macro instruction
generator 202 of Figs. 2A-B. Initially, at operation 402, a stream of Java

Bytecode instructions is read. Again, operation 402 can efficiently be

WO 03/019368 PCT/US02/26900
11

performed during Bytecode verification since Bytecode verification is

typically performed anyway.

[0028] Next, at operation 404, the number of times a sequence of Java
Bytecode instructions appear in the stream of Java Bytecode instructions is
counted. Thereafter, at operation 406, a determination is made as to
whether the sequence has been counted for at least a predetermined
number of times. If it is determined at operation 406 that the sequence has
not been counted for at least a predetermined number of times, the method
400 ends. However, if it is determined at operation 406 that the sequence
has been counted for at least a predetermined number of times, the method
400 proceeds to operation 408 where a Java macro instructién that
represents the sequence of Java Bytecode instructions is generated. The

method 400 ends following operation 408.

[0029] Fig. 5 illustrates a Java Bytecode verifier 500 in accordance with one
embodiment of the invention. The Java Bytecode verifier 500 includes a
sequence analyzer 502 suitable for analyzing a stream of Java Bytecodes
504. As shown in Fig. 5, the stream of Java Bytecodes 504 consists of a
sequence of Java Bytecode instructions 1-N. The Java Bytecode verifier
500 operates to determine whether a sequence of two or more Java
Bytecode instructions can be represented as a Java macro instruction. If
the Bytecode verifier 500 determines that a sequence of two or more Java
Bytecode instructions can be represented as a Java macro instruction, the
Bytecode verifier 500 produces a Java macro instruction. The Java macro
instruction corresponds to the sequence of two or more Java Bytecode
instructions. Accordingly, the Java macro instruction can replace the

sequence of two or more Java Bytecode instructions in the Java stream.

[0030] Referring to Fig. 5, a sequence of two or more Java Bytecode
instructions 506 in the stream 504 can be identified by the Java Bytecode
verifier 500. The sequence of two or more Java Bytecode instructions 506
(instructions 11-IM) can be located in positions K through (K+M-1) in the

stream 504. After identifying the sequence of two or more Java Bytecode

WO 03/019368 PCT/US02/26900
12

instructions 506, the Java Bytecode verifier 500 can operate to replace the
sequence with a Java macro instruction 508 (11-IM). As a result, the stream
504 is reduced to a stream 510 consisting of (N-M) Java Bytecode
instructions. As will be appreciated, the Java Bytecode verifier 500 can
identify a number of predetermined sequences of Java Bytecode
instructions and replace them with the appropriate Java macro instruction.
The Java Bytecode verifier 500 can also be implemented to analyze the
sequences that appear in the stream 504 and replace only those that meet
a criteria (e.g., a sequence that has appeared more than a predetermined
number of times). In any case, the number of Java Bytecode instructions in
an input stream 504 (e.g., stream 504) can be reduced significantly. Thus,
the performance of virtual machines, especially those operating with limited

resources, can be enhanced.

[0031] As noted above, the Java Bytecode instructions which are replaced
in the stream can be conventional Java Bytecode instructions which oﬁen
appear in a sequence. One such example is the various combinations of
the conventional instructions representing “New,” and “Dup,” which typically
appear in sequence in order to instantiate a Java object (e.g., New-Dup,

Newarray-Dup_x1, Anewarray-Dup_x2 , etc.).

[0032] Fig. 6A illustrates a Java computing environment 600 including a
Java macro instruction generator 602 in accordance with one embodiment
of the invention. Referring now to Fig. 6A, conventional Java Bytecode
instructions “New,” and “Dup,” are depicted in a sequence 610. The
sequence 610 can be replaced by a single Java macro instruction “New-
Dup” 612 by the Java macro instruction generator 602. As will be
appreciated by those skilled in the art, the sequence 610 can appear
frequently during the execution of Java programs. Thus, replacing this
sequence with a single macro instruction can reduce the overhead

associated with dispatching Java Bytecode instructions.

[0033] Again, it should be noted that the Java macro instruction 602 can

also be used in conjunction with a Java Bytecode translator in accordance

WO 03/019368 PCT/US02/26900
13

with one preferred embodiment of the invention. More details about the
Java Bytecode translator and inventive Java Bytecode instructions are
described in U.S. Patent Application No. 09/819,120 (Att.Dkt.No.
SUN1P811/P5512), entitled “REDUCED INSTRUCTION SET FOR JAVA
VIRTUAL MACHINES,” and U.S. Patent Application No. 09/826,097
(Att.Dkt.No. SUN1P827/P6095), entitled “ENHANCED VIRTUAL MACHINE
INSTRUCTIONS.”

[0034] Fig. 6B illustrates a Java computing environment 620, including a
Java macro instruction generator 602 and a Java Bytecode translator 622,
in accordance with one embodiment of the invention. Referring now to Fig.
6B, the Java Bytecode translator 622 operates to translate conventional
Java instructions 610 into inventive Java instructions 630. The Java macro
instruction generator 602 can receive the inventive Java instructions 630

and generate a corresponding Java macro instruction “New-Dup” 624.

[0035] It should be noted that the inventive Java instructions 630 represent
a reduced set of Java instructions suitable for execution by a Java virtual
machine. This means that the number of instructions in the inventive
reduced set is significantly less than the number of instructions in the
conventional Java Bytecode instruction set. Furthermore, the inventive
Java instructions provide for inventive operations that cannot be performed
by conventional Java Bytecode instructions. By way of example, an
inventive virtual machine operation “DUP” (shown in sequence 630) can be
provided in accordance with one embodiment of the invention. The
inventive virtual machine instruction DUP allows values in various positions

on the execution stack o be duplicated on the top of the execution stack.

[0036] Fig. 7A illustrates a computing environment 700 including an internal
representation 701 of an inventive “DUP” instruction 702 suitable for
duplicating values on the stack in accordance with one embodiment of the
invention. The internal representation 701 includes a pair of streams,
namely, a code stream 706 and a data stream 708. In the described

embodiment, each entry in the code stream 706 and data stream 708

WO 03/019368 PCT/US02/26900
14

represents one byte. The inventive virtual machine instruction DUP 702 is
assaciated with a data parameter A in the code stream 706. It should be
noted that data parameter A may also be implemented in the data stream
708. In any case, the data parameter A indicates which 4 byte value (word
value) on an execution stack 704 should be duplicated on the top of the
execution stack 704. The data parameter A can indicate, for example, an
offset from the top of the execution stack 704. As shown in Fig. 7A, the
data parameter A can be a reference to “Wi,” a word (4 byte) value on the
execution stack. Accordingly, at execution time, the virtual machine can
execute the “DUP” command 702. As a result, the Wi word will be
duplicated on the top of the stack. Thus, the inventive “DUP” instruction
can effectively replace various Java Bytecode instructions that operate to
duplicate 4 byte values on top of the execution stack. Fig. 7B illustrates
some of these Java Bytecode instructions. Similarly, as illustrated in Fig.
7C, an inventive “DUPL” instruction can be provided to effectively replace
various Java Bytecode instructions that operate to duplicate 8 byte values

(2 words) on top of the execution stack.

[0037] It should be noted that conventional Java Bytecode “Dup,”
instructions only allow for duplication of values in certain positions on the
execution stack (i.e., conventional instructions Dup, Dup_x1 and Dup_x2
respectively allow duplication of the first, second and third words on the
execution stack). However, the inventive instructions “DUP” and “DUPL”
can be used to duplicate a much wider range of values on the execution

stack (e.g., W4, Wi, WN, efc.).

[0038] Referring back to Fig. 6B, another inventive instruction, Java
Bytecode instruction “New” is shown in the sequence 630. The Java
Bytecode instruction “New” can effectively replace various conventional

Java Bytecodes used for instantiation.

[0039] Fig. 8 illustrates a mapping of Java Bytecode instantiation
instructions to the virtual machine instructions provided in accordance with

one embodiment of the invention. As will be appreciated, the four

WO 03/019368 PCT/US02/26900
15

conventional Java Bytecode instructions can effectively be mapped into a
single virtual machine instruction (e.g., NEW). The virtual machine
instruction NEW operates to instantiate objects and arrays of various types.
in one embodiment, the inventive virtual machine instruction NEW operates
to determine the types of the objects or arrays based on the parameter
value of the Java Bytecode instantiation instruction. As will be appreciated,
the Java Bytecode instructions for instantiation are typically followed by a
parameter value that indicates the type. Thus, the parameter value is
readily available and can be used to allow the NEW virtual machine

instruction to instantiate the appropriate type at execution time.

[0040] Fig. 9A illustrates another sequence 902 of conventional Java
Bytecodes that can be executed frequently by a Java interpreter. The
sequence 902 represents an exemplary sequence of instructions that are
used in programming loops. As such, sequences, such as the sequence
902, can be repeated over and over again during the execution of Java
Bytecode instructions. As shown in Fig. 9A, the Java macro instruction
generator 202 can replace the conventional sequence of Java instructions

“iinc,” “iload,” and “if_cmplt” with a Java macro instruction “Loop1.”

[0041] Fig. 9B illustrates a Java computing environment 900, including a
Java macro instruction generator 902 and a Java Bytecode translator 904,
in accordance with one embodiment of the invention. Referring now to Fig.
9B, the Java Bytecode translator 904 operates to translate conventional
Java instructions 910 into inventive Java instructions 920. The Java macro
instruction generator 902 can receive the inventive Java instructions 920

and generate a corresponding Java macro instruction “Loop1” 940.

[0042] One of the inventive instructions in the sequence 920 is the inventive
instruction “Load.” Fig. 10A illustrates an internal representation 1000 of a
set of Java “Load” instructions suitable for loading values from a focal
variable in accordance with another embodiment of the invention. in the
described embodiment, a code stream 1002 of the internal representation

1000 includes a Load command 1006 representing an inventive virtual

WO 03/019368 PCT/US02/26900
16

machine instruction suitable for representation of one or more Java “Load
from a local variable” Bytecode instructions. It should be noted that the
Load command 1006 has a one byte parameter associated with it, namely,
an index i 1008 in the data stream 1004. As will be appreciated, at run
time, the Load command 1006 can be executed by a virtual machine to
load (or push) a local variable on top of the execution stack 1020. By way
of example, an offset 0 1022 can indicate the starting offset for the local
variables stored on the execution stack 1020. Accordingly, an offset i 1024

identifies the position in the execution stack 1020 which corresponds to the

index i 1008.

[0043] It should be noted that in the described embodiment, the Load
command 1006 is used to load local variables as 4 bytes (one word). As a
result, the value indicated by the 4 bytes A, B, C and D (starting at offset i
1024) is loaded on the top of the execution stack 1020 when the Load
command 1006 is executed. In this manner, the Load command 1006 and
index i 1008 can be used to load (or push) 4 byte local variables on top of
the execution stack at run time. As will be appreciated, the Load command
1006 can effectively represent various conventional Java Bytecode
instructions. Fig. 10B illustrates a set of Java Bytecode instructions for
loading 4 byte local variables that can be represented by an inventive

“Load” command in accordance with one embodiment of the invention.

[0044] It should be noted that the invention also provides for loading local
variables that do not have values represented by 4 bytes. For example,
Fig. 10C illustrates a set of Java Bytecode instructions for loading 8 byte
local variables in accordance with one embodiment of the invention. As will
be appreciated, all of the Java Bytecode instructions listed in Fig. 10C can
be represented by a single inventive virtual machine instruction (e.g., a
“LoadL” command). The “LoadL” command can operate, for example, in a

similar manner as discussed above.

[0045] Referring back to Fig. 9B, the Java Bytecode translator 904 operates

to replace the conventional Bytecode instruction “if_cmplt” in the sequence

WO 03/019368 PCT/US02/26900
17

910 with the two Bytecode instructions “OP_ISUB” and “OP_JMPLT" in the
reduced set of Java Bytecode instructions. As will be appreciated, two or
more of the inventive virtual machine instructions can be combined to
perform relatively more complicated operations in accordance with one
embodiment of the invention. By way of example, the conditional flow
control operation performed by the Java Bytecode instruction “lcmp”
(compare two long values on the stack and, based on the comparison, push
0 or 1 on the stack) can effectively be performed by performing an inventive
virtual machine instruction LSUB (Long subdivision) followed by another
inventive virtual machine instruction JMPEQ (Jump if equal). Figs. 11A and
11B illustrate some conventional Java Bytecode instructions for performing
conditional flow operations which can be represented by two inventive
virtual machine instructions in accordance with one embodiment of the

invention.

[0046] Fig. 12A illustrates yet another sequence 1210 of conventional Java
Bytecodes that can be executed frequently by a Java interpreter. The
sequence 1210 represents an exemplary sequence of instructions that
perform to obtain a field value and put it on the execution stack. As shown
in Fig. 12A, the Java macro instruction generator 602 can replace the
conventional sequence 1210 of Java instructions “Getfield” and “Astore,”
with a Java macro instruction “Get_Store” 1212. The conventional
instruction “Astore,” represents various conventional Java instructions used

to store values on the execution stack.

[0047] Fig. 12B illustrates a Java computing environment 1200, including a
Java macro instruction generator 602 and a Java Bytecode translator 622,
in accordance with one embadiment of the invention. Referring now to Fig.
12B, the Java Bytecode translator 622 operates to translate conventional
Java instructions 1210 into inventive Java instructions 1220. The Java
macro instruction generator 602 can receive the inventive Java instructions
1220 and generate a corresponding Java macro instruction

“Resolve_Astore” 1222.

WO 03/019368 PCT/US02/26900
18

[0048] The inventive instruction “Astore” represents a virtual machine
instruction suitable for storing values into arrays. By way of example, Fig.
13A illustrates a computing environment 1320 in accordance with one
embodiment of the invention. An inventive AStore 1322 (store into array)
virtual machine instruction can be used to store various values from the
execution stack 1304 into different types of arrays in accordance with one
embodiment of the invention. Again, the header 1310 of the array 1302 can
be read to determine the array’s type. Based on the array’s type, the
appropriate value (i.., the appropriate number of bytes N on the execution
stack 1304) can be determined. This value can then be stored in the array
1302 by using the array-index 1326. Thus, the inventive virtual machine
instruction AStore can effectively represent various Java Bytecode
instructions that are used to store values into an array. Figs. 13B and 13C
illustrate a set of conventional Java Bytecode instructions for storing arrays
that can be represented by an inventive virtual machine instruction (e.g.,

Astore) in accordance with one embodiment of the invention.

[0049] Appendix A illustrates mapping of a set of conventional Java
Bytecode instructions to one or more of the inventive virtual machine

instructions listed in the right column.

[0050] The many features and advantages of the present invention are
apparent from the written description, and thus, it is intended by the
appended claims to cover all such features and advantages of the
invention. Further, since numerous modifications and changes will readily
occur to those skilled in the art, it is not desired to limit the invention to the
exact construction and operation as illustrated and described. Hence, all
suitable modifications and equivalents may be resorted to as falling within

the scope of the invention.

WO 03/019368 PCT/US02/26900
19

Appendix A

nop IGNORE_OPCODE
aconst_null OP_PUSHB
iconst_mi OP_PUSHB
iconst_0 OP_PUSHB
iconst_1 OP_PUSHB
iconst_2 OP_PUSHB
iconst_3 OP_PUSHB
iconst_4 OP_PUSHB
iconst_5 OP_PUSHB
lconst_0O OP_PUSHL
lconst_1 OP_PUSHL
fconst_0 OP_PUSH
fconst_1 OP_PUSH
fconst_2 OP_PUSH
dconst_0 OP_PUSHL
dconst_1 OP_PUSHL
bipush OP_PUSHB
sipush OP_PUSH
idc OP_PUSH
ldc_w OP_PUSH
lde2_w OP_PUSHL
iload OP_LOAD
lload OP_LOADL
fload OP_LOAD
d1oad OP_LOADL
aload OP_LOAD
iload_0 OP_LOAD
ifoad_1 OP_LOAD
iload_2 OP_LOAD
iload_3 OP_LOAD
fload_0O OP_LOADL
110ad_1 OP_LOADL
11o0ad_2 OP_LOADL

WO 03/019368

20

fload_3 OP_LOADL
fload_0 OP_LOADL
fload_1 OP_LOAD
fload_2 OP_LOAD
fload_3 OP_LOAD
dload_0 OP_LOADL
d1oad_1 OP_LOADL
dload_2 OP_LOADL
dicad_3 OP_LOADL
aload_0 OP_LOAD
aload_| OP_LOAD
aload_2 OP_LOAD
aload_3 OP_LOAD
jaload OP_ALOAD
laload OP_ALOAD
faload OP_ALOAD
daload OP_ALOAD
aaload OP_ALOAD
baload OP_ALOAD
caload OP_ALOAD
saload OP_ALOAD
istore OP_STOR
Istore OP_STORL
fstore OP_STOR
dstore OP_STORL
astore OP_STOR
istore_0 OP_STOR
istore_1 OP_STOR
istore_2 OP_STOR
istore_3 OP_STOR
1store_0 OP_STORL
1store_1 OP_STORL
istore_2 OP_STORL
1store_3 OP_STORL
fstore_0 OP_STOR
fstore_1 OP_STOR

PCT/US02/26900

WO 03/019368

21

fstore 2 OP_STOR
fstore_3 OP_STOR
dstore_0 OP_STORL
dstore_1 OP_STORL
dstore_2 OP_STORL
dstore_3 OP_STORL
astore_0 OP_STOR
astore_1 OP_STOR
astore_2 OP_STOR
astore_3 OP_STOR
iastore OP_ASTORE
lastore | OP_ASTOREL
fastore OP_ASTORE
dastore OP_ASTOREL
aastore OP_ASTORE
bastore OP_ASTORE
castore OP_ASTORE
sastore OP_ASTORE
pop OP_POP
pop2 OP_POP

dup OoP_DUP
dup_x1 OP_DUP
dup_x2 OP_DUP
dup2 OP_DUPL
dup2_x1 OP_DUPL
dup2_x2 OP_DUPL
swap OP_SWAP
iadd OP_IADD
ladd OP_LADD
fadd OP_FADD
dadd OP_DADD
isub OP_ISUB
isub OP_LSUB
fsub OP_FSUB
dsub OP_DSUB
imul OP_IMUL

PCT/US02/26900

WO 03/019368

22

fmutl OP_LMUL
fmul OP_FMUL
dmul OP_DMUL
idiv OP_IDIV
Idiv OP_LDIV
fdiv OP_FDIV
ddiv OP_DDIV
irem OP_IREM
frem OP_LREM
frem OP_FREM
drem OP_DREM
ineg OP_INEG
Ineg OP_LNEG
fneg QOP_FNEG
dneg OP_DNEG
ishl OP_ISHL
Ishl OP_LSHL
ishr OP_ISHR
Ishr OP_LSHR
iushr OP_IUSHR
lushr OP_LUSHR
iand OP_IAND
land OP_LAND
ior OP_IOR
lor OP_LOR
ixor OP_IXOR
Ixor OP_LXOR
finc OP_IINC
i2 OP_I2L

i2f IGNORE_OPCODE
i2d OP_I2D
12i oP_L21
12f OP_L2F
12d OP_L2D

f2i

IGNORE_OPCODE

f2l

OP_F2L

PCT/US02/26900

WO 03/019368

23

f2d OP_F2D

d2i OP_D2I

d2i OP_D2L

d2f OP_D2F

i2b IGNORE_OPCODE

i2c IGNORE_OPCODE

i2s IGNORE_OPCODE
fcmp OP_LSUB, OP_JMPEQ
fcmpl OP_FSUB, OP_JMPLE
fempg OP_FSUB, OP_JMPGE
dempl OP_DCMP, OP_JMPLE
dcmpg OP_DCMP, OP_JMPGE
ifeq OP_JMPEQ

ifne OP_JMPNE

iflt OP_JMPLT

ifge OP_JMPGE

ifgt OP_JMPGT

ifle OP_JMPLE

if icmpeq OP_ISUB, OP_JMPEQ
if icmpne OP_ISUB, OP_JMPNE
if icmplt OP_ISuB, OP_JMPLT
if icmpge OP_ISUB, OP_JMPGE
if icmpgt OP_ISUB, OP_JMPGT
if icmple OP_ISUB, OP_JMPLE
if acmpeq OP_ISUB, OP_JMPEQ
if acmpne OP_ISuB, OP_JMPNE
goto OP_JMP

jsr OP_JSR

ret OP_RET

tableswitch OP_SWITCH
lookupswitch OP_SWITCH

ireturn OP_RETURN

Ireturn OP_LRETURN

freturn OP_RETURN

dreturn OP_LRETURN

areturn OP_RETURN

PCT/US02/26900

- WO 03/019368

24

return OP_RETURNV
getstatic OP_RESOLVE
putstatic OP_RESOLVEP
getfield OP_RESOLVE
putfield OP_RESOLVEP
invokevirtual OP_RESOLVE
invokespecial OP_RESOLVE
invokestatic OP_RESOLVE
invokeinterface OP_RESOLVE
xxxunusedxxx IGNORE_OPCODE
new OP_NEW

newarray OP_NEW
anewarray OP_NEW
arraylength OP_ARRAYLENGTH
athrow OP_THROW
checkcast IGNORE_OPCODE
instanceof OP_INSTANCEOF
monitorenter OP_MUTEXINC
monitorexit OP_MUTEXDEC
wide OP_WIDE
multianewarray OP_NEW

ifnull OP_JMPEQ
ifnonnull OP_JMPNE
goto_w OP_JMP

jsr_w OP_JSR

What is claimed is:

PCT/US02/26900

WO 03/019368 PCT/US02/26900
25

CLAIMS

1. In a Java computing environment, a Java macro instruction representing:
a sequence of Java Bytecode instructions consisting of a Java
Getfield Bytecode instruction immediately followed by a Java Astore

Bytecode instruction,
wherein said Java macro instruction can be executed by a Java

virtual machine operating in said Java computing environment, and
wherein when said Java macro instruction is executed, the
operations that are performed by said conventional sequence of Java

Bytecode instructions are performed.

2. A Java macro instruction as recited in claim 1, wherein said Java macro
instruction consists of a conventional Java Getfield Bytecode instruction

immediately followed by a conventional Java Astore Bytecode instruction.

3. A Java macro instruction as recited in claim 1, wherein said Java macro

instruction is generated during the Java Bytecode verification phase.

4. A Java macro instruction as recited in claim 1, wherein said Java virtual

machine internally represents Java instructions as a pair of streams.

5. A Java macro instruction as recited in claim 4,

wherein said pair of streams includes a code stream and a data

stream,
wherein said code stream is suitable for containing a code portion of

said Java macro instruction, and
wherein said data stream is suitable for containing a data portion of

said Java macro instruction.

WO 03/019368 PCT/US02/26900
26

6. A Java macro instruction as recited in claim 5,
wherein said Java macro instruction is generated only when said
virtual machine determines that said Java macro instruction should replace

said conventional sequence.

7. A Java macro instruction as recited in claim 6, wherein said

determination is made based on a predetermined criteria.

8. A Java macro instruction as recited in claim 7, wherein said
predetermined criteria is whether said conventional sequence has been

repeated more than a predetermined number of times.

9. In a Java computing environment, a Java macro instruction representing:
a sequence of Java Bytecode instructions consisting of an inventive
Java Getfield Bytecode instruction immediately followed by an inventive
Java Astore Bytecode instruction,
wherein said Java macro instruction can be executed by a Java
virtual machine operating in said Java computing environment, and
wherein when said Java macro instruction is executed, the
operations that are performed by said sequence of Java Bytecode

instructions are performed.

10. A Java macro instruction as recited in claim 9,

wherein said inventive Astore instruction operates to store values
located on an execution stack into arrays, the virtual machine instruction
representing two or more Java Bytecode executable instructions that are

also suitable for storing values located on an execution stack into an array.

11. A Java macro instruction as recited in claim 10, wherein the arrays can

be an array of 1 byte values, 2 byte values, 4 byte values, or 8 byte values.

WO 03/019368 PCT/US02/26900
27

12. A Java macro instruction as recited in claim 11, wherein a header of an

array is read to determine the type of the array.

13. A computer readable media including computer program code for a
Java macro instruction, said Java macro instruction representing:

a sequence of Java Bytecode instructions consisting of a Java
Getfield Bytecode instruction immediately followed by a Java Astore
Bytecode instruction,

wherein said Java macro instruction can be executed by a Java
virtual machine operating in said Java computing environment, and

wherein, when said Java macro instruction is executed, the
operations that are performed by said conventional sequence of Java

Bytecode instructions are performed.

14. A computer readable media as recited in claim 13, wherein said Java
macro instruction consists of a conventional Java Getfield Bytecode

instruction immediately followed by a conventional Java Astore Bytecode

instruction.

15. A computer readable media as recited in claim 14, wherein said Java

macro instruction is generated during the Java Bytecode verification phase.

16. A computer readable media as recited in claim 15, wherein said Java

virtual machine internally represents Java instructions as a pair of streams.

17. A computer readable media as recited in claim 16,

wherein said pair of streams includes a code stream and a data
stream,

wherein said code stream is suitable for containing a code portion of
said Java macro instruction, and

wherein said data stream is suitable for containing a data portion of

said Java macro instruction.

WO 03/019368 PCT/US02/26900

28

18. A computer readable media as recited in claim 17,
wherein said Java macro instruction is generated only when said
virtual machine determines that said Java macro instruction should replace

said conventional sequence.

19. A computer readable media as recited in claim 18, wherein said

determination is made based on a predetermined criteria.

20. A computer readable media as recited in claim 19, wherein said
predetermined criteria is whether said conventional sequence has been

repeated more than a predetermined number of times.

WO 03/019368 PCT/US02/26900
1/15

101.
Java Source Code
Public class HelloWorld {
Public static void main (string args[]) { 103
System.out.printin("Hello World!")
}

} Bytecode

compiler

105

Java Class File
107

CA FEBABE 0003 002D 00 20 08 00

1D 07 00 OE 07 00 16 00 07 00 1E 07 \ Java Virtual
001C 09...00 02 00 18 Machine

(Interpreter)

" Fig. 1A

WO 03/019368

2/15

Constant Poal

10

———

Interfaces

104

Fields

10

e

Methods

SN

08

e

Attributes

-3

1

Fig. 1B

’/‘

PCT/US02/26900

100

WO 03/019368 PCT/US02/26900

3/15
204
2 r— 200
Java Instruction 1 Java Instruction N __]
Java Macro Instruction
Generator
@ Java Macro Instruction
202 206

Fig. 2A

WO 03/019368 PCT/US02/26900

232

234

4/15

Conventional Java " | Conventional Java
Instruction 1 Instruction M

{

'

Java Bytecode
Translator
230

(nventive Java Inventive Java
Instruction 1 Instruction N

“Java Macro’lnstr:uction. : : : :
Generator —— - Java Macro Instruction
202

Fig. 2B

WO 03/019368 PCT/US02/26900
5/15

(o) y— 20

2

Read a stream of Java Bytecode instructions 302
during Bytecode Verification phase

r

No /Found a predetermined sequence of two 04
or more Java Bytecode instructions?

Yes

Y

Generate a Java macro instruction that represents | 306
the sequence-of two or more Java Bytecode ™~
instructions

WO 03/019368 PCT/US02/26900
6/15

(Start) ’/—400

-

Read a stream of Java Bytecode instructions ,
during Bytecode Verification phase _402

y

Count the number of times a sequence of Java
Bytecode instructions appears in the stream of
Java Bytecaode instructions | \-404

;

No /Sequence has been counted for at least

a predetermined number of times? . 406

Yes

4

Generate a Java macro instruction that represents
the sequence of Java Bytecode instructions 408

WO 03/019368

PCT/US02/26900
7/15
504
506 r
------------- 2 11 12 IMS
K K+1 K+M -1 N
Sequence
Analyzer
502
Java Bytecode Verifier 500
K) 510

508

11-IM

N-M

Fig. 5

WO 03/019368

610

8/15

Conventional Java
Bytecode
Instruction "Newx"

Conventional Java
Bytecode
Instruction "Dupx"

PCT/US02/26900

r-SOO

Y
Java Macro Instruction
Generator Java Macro [nstruction
N "New-Dup”
602 612

Fig. 6A

4

Conventional Java
Bytecode
Instruction "Newx"

Conventional Java
Bytecode
Instruction "Dupx"

'Y
Java Bytecode
Translator

622

630

Inventive Java
"NEW" Bytecode
Instruction

Inventive Java
"DUP" Bytecode
Instruction

|

!

602

Java Macro Instruction
Generator

__..___.__).

Fig. 6B

Java Macro Instruction
"New-Dup"
624

WO 03/019368

Execution
Stack
704

Top

W1

W2

W3

W4

Wn

DUP

Dup

Dup _x1

Dup_x2

9/15

700
r—

PCT/US02/26900

Code Data
706 708
DUP
702
A
701
Fig. 7TA
NEW
DUPL New
Dup2
Newarray
Dup2 xI :
Anewarray
DupZ x2
Multianewarray

Fig. 7B Fig. 7C

Fig. 8

WO 03/019368 PCT/US02/26900

10/15
3902
Conventional Java | Conventional Java | Conventional Java
Bytecode Bytecode Bytecode
Instruction "iinc" | Instruction "iload" | Instruction"if icmplt"‘,

Y

Java Macro [nstruction

Java Macro [nstruction

Generator P " "
202 Loop1
=
Fig. 9A
r_- 900
910
Conventional Java | Conventional Java., ~ Conventional Java -
Bytecode Instruction | Bytecode Instruction | Bytecode Instruction
"finc" "iload" "if_icmplt"
Java Bytecode
Translator
904
]
920
Inventive Java Inventive Java - Conventional Java
Bytecade Instruction Bytecode Instruction Bytecode Instructions
"finc" "Load" "OP ISUB" "OP JMPLT
Java Macro Instruction Java Macro Instruction
Generator > “Loop1"
902 940

Fig. 9B

WO 03/019368

11/15

PCT/US02/26900

1000
r‘

Code Data
1002 1004
Load index i
1006 1008
Execution Stack
1020
1022
Offset 0
Offset 1
1024
g Offset i (A) -
(B)
(©)

(D)

Fig. 10A

WO 03/019368 PCT/US02/26900
12/15

LOAD

iload

fload

aload LOADL _
iload 0 lload
iload 1 dload
iload 2 {load 0
iload 3 Hoad 1
fload 1 lload 2
fload 2 lload_3
fload 3 fload 0
-aload 0 dload 0
aload 1 [doad 1
aload 2 dldad_z
aload 3 dload 3

Fig. 10B Fig. 10C

WO 03/019368

13/15

lemp OP_LSUB, OP_JMPEQ
fompl OP_ESUB, OP_JMPLE
fcmpg OP_FSUB, OP_JMPGE
dempl OP_DCMP, OP_JMPLE
dempg OP_DCMP, OP_JMPGE
u
Fig. 11A
if icmpeq OP_ISUB, OP_JMPEQ
if icmpne OP_ISUB, OP_JMPNE
|if iemplt - OP_ISUB, OP_JMPLT
if fompge OP_ISUE, OP_JMPGE
if icmpgt OP_ISUB, OP_JMPGT
if_icmple OP_ISUB, OP_JMPLE
if_acmpeq OP_ISUB, OP_JMPEQ
if acmpne Op_ISUB, OP_JMPNE

Fig. 11B

PCT/US02/26900

WO 03/019368 PCT/US02/26900
11 2 14/15
0
Conventional Java | Conventional Java

Bytecode Bytecode

Instruction Instruction

"Getfield" "Astorex"
Y

Java Macro Instruction
Generator Java Macro Instruction
02 P~ "Get_Store"
_— 1212

Fig. 12A

1210
Conventional Java | Conventional Java |-~
Bytecode ~ Bytecode
Instruction Instruction
"Getfield" “Astorex”
Y
Java Bytecode
Translator
622

’/-‘1200

1223

Inventive Java

» Bytecode Instruction

"OP_Resolve"

Inventive Java
Bytecode Instruction
“Astore”

Y

€02

Java Macro Instruction
Generator

Fig. 12B

Java Macro Instruction
"Resolve_Astore"
1222

WO 03/019368 PCT/US02/26900
15/15
1320
’/- Array
Execution Stack 1302
1304 Array
4 Header
A 1310
a//
AStore 1322 //’
Array Reference
Array Index 1326 > Orrent
Value } N
|]
Fig. 13A
ASTORE
iastore
fastore
aastore
ASTOREL
bastore lastore
castore dastore
sastore

Fig. 13B

Fig. 13C

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

