ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

ЗАЯВКА НА ИЗОБРЕТЕНИЕ

(21)(22) Заявка: 2016115934, 19.09.2014
Приоритет(ы):
(30) Конвенционный приоритет:
16.10.2013 CN 201310485200.6
(43) Дата публикации заявки: 20.11.2017 Бюл. № 32
(85) Дата начала рассмотрения заявки PCT на
национальной фазе: 16.05.2016
(86) Заявка PCT:
CN 2014/086914 (19.09.2014)
(87) Публикация заявки PCT:
WO 2015/055071 (23.04.2015)

Адрес для переписки:
191036, Санкт-Петербург, ул 24, "НЕВИНПАТ"

(54) КОНДЕНСИРОВАННОЕ ГЕТЕРОЦИКЛИЧЕСКОЕ СОЕДИНЕНИЕ, СПОСОБ ЕГО
ПОЛУЧЕНИЯ, ЕГО ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ И ПРИМЕНЕНИЯ

(57) Формула изобретения

1. Конденсированное гетероциклическое соединение, представленное формулой I,
формулой II или формулой III, его фармацевтически приемлемая соль, гидрат, сольват,
полиморф или пролекарство

где
A₁ представляет собой N или CH;
A₂ представляет собой N или CH;
A₃ представляет собой N или C;

Стр.: 1
A_4 представляет собой N или C;

A_5 представляет собой O, S, N, CR^{1a} или NR^{5a};

A_6 представляет собой O, S, N, CR^{1b} или NR^{5b};

Когда A_5 представляет собой O или S, A_6 представляет собой N;

Когда A_6 представляет собой O или S, A_5 представляет собой N;

каждый из R^{1a} и R^{1b} независимо представляет собой водород, дейтерий, галоген, амил, алкокси, амиленил, амилнит, циклоалкил, гетероциклоалкил или CN;

R^3 представляет собой $-(CR^8R^9)_mNR^5R^6$, $-(CR^8R^9)_mNR^7C(=Y)R^5$, $-(CR^8R^9)_mNR^7S(O)_2R^5$, $-(CR^8R^9)_mOR^5$, $-(CR^8R^9)_mS(O)_2R^5$, $-(CR^8R^9)_mS(=O)NR^5R^6$, $-(CR^8R^9)_mC(=O)NR^5R^6$, $-(CR^8R^9)_mC(=O)NR^7S(O)_2R^5$, $-(CR^8R^9)_mC(=O)NR^7S(O)_2S(O)_2R^5$;

$(R^3)_k$ означает, что атомы водорода, присоединенные к морфолиновому кольцу, замещены R^3 в количестве 0-к, где в каждом случае R^3 являются одинаковыми или отличными друг от друга, и независимо представляют собой водород, дейтерий, галоген, C_{1-6}алкил, или любые два R^3 соединены простой связью, C_{1-6}алкиленом или C_{1-6}алкиленом, замещенным одним или двумя гетероатомами, с образованием кольцевой структуры, где гетероатом представляет собой O, N или S;

A представляет собой N или CR^{4a};

D представляет собой N или CR^{4d};

E представляет собой N или CR^{4e};

G представляет собой N или CR^{4g};

J представляет собой N или CR^{4j};

A, D, E, G и J одновременно не являются N;

каждый из R^{4a}, R^{4d}, R^{4e}, R^{4g} и R^{4j} независимо представляет собой водород, галоген, CN, амил, алкокси, алкилен, амилнит, циклоалкил, гетероциклоалкил, $-NR^5R^6$, $-OR^5$, $-SR^5$, $-C(=O)R^5$, $-NR^5C(=O)R^5$, $-N(C(=O)R^5)$, $-NR^5C(O)NR^5R^6$, $-NR^7S(O)_2R^5$, $-C(=O)OR^5$ или $-C(=O)NR^5R^6$, $-R^4j$ и R^{4g}, вместе с атомами, к которым они присоединены, образуют насыщенный, ненасыщенный или частично ненасыщенный 5-членный или 6-членный гетероцикл, где 5-членный или 6-членный гетероцикл конденсирован с 6-членным кольцом, содержащим A, D, E, G и J;

Кольцо Q и кольцо Q' представляют собой бензол, 5-9-членное алициклическое кольцо, 5-9-членное гетероалициклическое кольцо или 5-6-членное гетероциклическое кольцо; кольцо Q не является тиофеном или фураном; $(R^1)_{k1}$ означает, что атомы водорода, присоединенные к кольцу Q или кольцу Q', замещены R^1 в количестве 0-k1, где в каждом случае R^1 являются одинаковыми или отличными друг от друга, и каждый независимо представляет собой галоген, $-CN$, амил, алкокси, алкилен, амилнит,
циклоалкил, гетероциклолкил, \(-NR^5\), OR^6, SR^5, C(O)R^5, NR^5C(O)R^6, N(C(O)R^6),
NR^5C(O)NR^5R^6, NR^7S(O)_2R^7, C(=O)OR^5\) или \(-C(=O)NR^5R^6;

каждый из R^5, R^7, R^5_a, R^5_b, R^6, R^7 и R^7_независимо представляет собой водород, C_1-
12алкил, -(CH_2_2_3NH_2, C_2_8алкинил, C_2_8алкин, C_3_12карбоциклическую группу, C_2_20
gетероциклическую группу, C_6_20арили или C_1_20гетероарили, или R^5, R^6 вместе с атомами
азота или углерода, к которым они непосредственно присоединены, образуют
gетероциклическое кольцо или циклоалкил, или R^7, R^7_независимо с атомом азота, к которому
R^7 непосредственно присоединен, образуют гетероциклическое кольцо; указаные
gетероциклическое кольцо или циклоалкил предпочитительно возможно заменены
заместителем, выбранным из группы, состоящей из: оксо, -(CH_2_mOR^7, -NR^7R^7, -CF_3,
gалогена, SO_2R^7, C(=O)R^7, NR^7C(=Y)R^7, NR^7S(O)_2R^7, C(=Y)NR^7R^7, C_1_12алкила, C_2_8
алкин, C_2_8алкина, C_3_12карбоциклической группы, C_2_20гетероциклической группы,
C_6_20арили или C_1_20гетероарили;

(CR^8R^9_m означает, что от 0 до m групп (CR^8R^9) соединены между собой друг с другом,
R^8 и R^9 представляют собой заместители, присоединенные к образованной углеродной
цепи, где каждый R^8 и R^9 является одинаковым или отличным друг от друга, и каждый
независимо представляет собой водород, дейтерий, галоген, -CN, гидроксид, алькин,
C_1_12алкил, C_2_12алкин, C_2_12алкин, C_3_12циклолкил, C_6_20арили, 3-12-членный
gетероциклоалкил или 5-12-членный гетероарили; или R^8, R^9 вместе с атомами, к которым
они присоединяны, образуют насыщенное или частично ненасыщенное C_3_12углеродное
кольцо или C_2_20гетероциклическое кольцо;

gде указанные алкил, алькин, алькинил, алкинил, циклоалкил, карбоциклическое
кольцо, гетероциклическое кольцо, гетероциклоалкил, арил или гетероциклическая
группа возможно могут быть замещены заместителем, выбранным из группы, состоящей
из: галогена, гидроксила, -CN, -CF_3, -NO_2, оксо, R^5, C(=Y)R^5, C(=Y)OR^5, C(=Y)NR^5R^6
, -OC(=Y)R^5, -OC(=Y)OR^5, -OC(=Y)NR^5R^6, -OC(=Y)OR^5, -OC(=Y)NR^5R^6, -OC(=Y)OR^5,
-OC(=Y)NR^5R^6, -OS(O)_2
(OR^5), -OP(=Y)(OR^5)(OR^6), -OP(OR^5)(OR^6), -SR^5, -S(O)R^5, -S(O)_2R^5, -S(O)_2R^5,
-SC(=Y)R^5, -SC(=Y)OR^5, -SC(=Y)NR^5R^6, C_1_12алкила, C_2_8алкина, C_3_12карбоциклической группы, C_2_20гетероциклической группы,
C_6_20арили или C_1_20гетероарили;

Y представляет собой O, S или NR^7;
m, k или k_1 независимо равны 0, 1, 2, 3, 4, 5 или 6.
2. Конденсированные гетероциклические соединение, его фармацевтически приемлемая
соль, гидрат, сольват, полиморф или пролекарство по п. 1, где в формуле I
A_1 представляет собой N;
A_2 представляет собой N;
R^2 представляет собой -O(CR^8R^9_mNR^5R^6, -O(CR^8R^9_mCR^5R^6 или -O(CR^8R^9_mNR^5R^6;

Стр.: 3
R³ представляет собой водород, дейтерий, галоген или C₁-залкил;
A представляет собой CR²⁴; R⁴ представляет собой водород, галоген или C₁-залкил;
D представляет собой N или CR²⁴; R⁴ представляет собой -NR⁷S(O)₂R⁵;
E представляет собой CR²⁴; R⁴ представляет собой водород, C₁-залкокси или -NR⁵R⁶;
G представляет собой N или CR²⁴; R⁴ представляет собой -NR⁷S(O)₂R⁵;
J представляет собой CR²⁴; R⁴ представляет собой водород, галоген или C₁-залкил;
или R⁴ и R⁴ вместе с атомами, к которым они присоединены, образуют ненасыщенное, ненасыщенное или частично ненасыщенное 5- или 6-членное гетероциклическое кольцо,
где 5- или 6-членное гетероциклическое кольцо конденсировано с 6-членным кольцом,
содержащим A, D, E, G и J; 5-членное гетероциклическое кольцо представляет собой 5-
членное азотсодержащее гетероциклическое кольцо;
A, D, E, G и J одновременно не являются N;
колько Q представляет собой бензол;
(R¹)ₖ₁ означает, что атомы водорода, к которым присоединено кольцо Q, замещены
R¹ в количестве 0-k₁, где в каждом случае R¹ являются одинаковыми или отличными
друг от друга, и каждый независимо представляет собой галоген;
каждый из R⁵, R⁶ и R⁷ независимо представляет собой водород, -(CH₂)₂-NH₂ или
C₁₆-алкил, или R⁵, R⁶ вместе с атомом или атомом углерода, к которому они
непосредственно присоединены, образуют гетероциклическое кольцо или циклопантил,
где гетероциклическое кольцо или циклопантил предпочтительно возможно замещены
заместителем, выбранным из группы, состоящей из -(CH₂)ₘOR⁷, -SO₂R⁷, -(C=O)R⁷,
C₁₃-алкил, C₃-6-карбоксициклической группы и C₂₅-гетероциклической группы; где
указанное гетероциклическое кольцо представляет собой азотсодержащее или
кислородсодержащее 4-6-членное гетероциклическое кольцо, циклопантил
представляет собой 4-6-членный циклопантил;
(CR⁸R⁹)ₘ означает, что от 0 до m групп (CR⁸R⁹) соединены между собой, R⁸ и R⁹
представляют собой заместители, присоединенные к образованной углеродной цепи,
geдя каждый R⁸ и R⁹ является одинаковым или отличным друг от друга, и каждый
независимо представляет собой водород, дейтерий, галоген или
C₁₃-алкил;
m, k или k₁ независимо представляет собой 0 или 1.
3. Конденсированное гетероциклическое соединение, его фармацевтически приемлемая
соль, гидрат, сольват, полиморф или пролекарство по п. 1, где в формуле I
A₁ и A₂ одновременно представляют собой N;
R² имеет структуру, выбранную из группы, состоящей из
R³ представляет собой водород;
A представляет собой CR⁴a; R⁴a представляет собой водород;
D представляет собой N;
E представляет собой CR⁴e; R⁴e представляет собой водород, метокси или -NH₂;
G представляет собой N или CR⁴g; R⁴g представляет собой \(\text{SO}_₂ \);
J представляет собой CR⁴j; R⁴j представляет собой водород;
или R⁴j и R⁴g вместе с атомами, к которым они присоединены, образуют насыщенное, ненасыщенное или частично ненасыщенное 5- или 6-лученное гетероциклическое кольцо, где 5- или 6-лученное гетероциклическое кольцо конденсировано с 6-лученным кольцом, содержащим A, D, E, G и J;
A, D, E, G и J одновременно не являются N;
кольцо Q представляет собой бензол;
(R¹)k1 означает, что атомы водорода, присоединенные к кольцу Q, замещены R¹ в количестве 0-k1, где в каждом случае R¹ являются одинаковыми или отличными друг от друга, и каждый независимо представляет собой фтор;
m, k или k1 независимо представляет собой 0 или 1.
4. Конденсированное гетероциклическое соединение, его фармацевтически приемлемая соль, гидрат, сольват, полиморф или пролекарство по п. 2, где в формуле I
R⁴j и R⁴g вместе с атомами, к которым они присоединены, образуют насыщенное, ненасыщенное или частично насыщенное 5-лученное гетероциклическое кольцо, где
указанное 5-членное гетероциклическое кольцо конденсировано с 6-членным кольцом, содержащим A, D, E, G и J; 5-членное гетероциклическое кольцо представляет собой 5-членное азотсодержащее гетероциклическое кольцо; указанное 5-членное азотсодержащее гетероциклическое кольцо представляет собой пиразол или пиррол;

гетероциклическое кольцо, образованное \(R^5, R^6 \) вместе с атомом азота, к которому они непосредственно присоединены, представляет собой азотсодержащее 6-членное гетероциклическое кольцо; указанное азотсодержащее 6-членное гетероциклическое кольцо представляет собой пиридин или пиперазидин.

5. Конденсированное гетероциклическое соединение, его фармацевтически приемлемая соль, гидрат, сольват, полиморф или пролекарство по п. 1, где формула I представляет собой соединение, выбранное из группы, состоящей из:

Стр. 6
6. Конденсированное гетероциклическое соединение, его фармацевтически приемлемая соль, гидрат, сольват, полиморф или пролекарство по п. 1, где в формуле II
A₁ представляет собой N или CH;
A₂ представляет собой N или CH;
A₃ представляет собой N или C;
A₄ представляет собой N или C;
A₅ представляет собой N;
A₆ представляет собой CR₁b; R¹b представляет собой водород или дейтерий;
R² представляет собой -(CR⁸R⁹)ₘNR²R⁶;
(R³kₖ)ₖ означает, что атомы водорода, присоединенные к морфолиновому кольцу,
замещены R³ в количестве 0-k, где в каждом случае R³ являются одинаковыми или
отличными друг от друга, и каждый независимо представляет собой водород, дейтерий,
галоген или C₁-алкил;
A представляет собой CR⁴d; R⁴d представляет собой водород, галоген или C₁-алкил;
D представляет собой N или CR⁴d; R⁴d представляет собой водород, галоген или
C₁-алкил;
E представляет собой CR⁴e; R⁴e представляет собой водород, галоген или C₁-алкил;
G представляет собой CR⁴g; R⁴g представляет собой -NR⁷S(O)₂R⁵;
J представляет собой CR¹j; R¹j представляет собой водород;
или R⁴d и R⁴g вместе с атомами, к которым они присоединены, образуют насыщенное,
ненасыщенное или частично ненасыщенное 5-членное гетероциклическое кольцо, где
5-членное гетероциклическое кольцо конденсировано с 6-членным кольцом, содержащим
A, D, E, G и J; где 5-членное гетероциклическое кольцо представляет собой 5-членное
азотсодержащее гетероциклическое кольцо;
каждый из R⁵, R⁶ и R⁷ независимо представляет собой водород, C₁-алкил,
(CH₂)₂·NH₂, C₂-алкил или C₂-алкинил, или R⁵, R⁶ вместе с атомом азота, к которому
они присоединены, образуют гетероциклическое кольцо, которое предпочитительно
возможно заменено заместителем, выбранным из группы, состоящей из оксо,
(CH₂)ₘOR⁷, CF₃, галогена, -SO₂R⁷, -C(=O)R⁷, C₁-алкила, C₃-карбоциклической группы
или C₂-5гетероциклической группы; где указанное гетероциклическое кольцо,
образованное R⁵, R⁶ и атомом азота, к которому они присоединены, представляет собой
азотсодержащее 6-членное гетероалициклическое кольцо;
(CR⁸R⁹)ₘ означает, что от 0 до m групп (CR⁸R⁹) соединены между собой, где R⁸ и R⁹
представляют собой заместители, присоединенные к образованной углеродной цепи, где каждый из R₈ и R₉ является одинаковым или отличным друг от друга, и каждый независимо представляет собой водород, дейтерий, галоген, -CN, гидроксил или C₁₃алкил;

где указанные алкил, алкенил, алкинил, карбоциклическая группа, гетероциклическое кольцо или гетероциклическое группа предпочтительно возможно замещены заместителями, выбранными из группы, состоящей из галогена, гидроксила, -CN, -CF₃, -NO₂ или оксо;

m или k независимо представляет собой 0 или 1.

7. Конденсированное гетероциклическое соединение, его фармацевтически приемлемая соль, гидрат, сольват, полиморф или пролекарство по п. 6, где в формуле II A₁, A₃ и A₅, или A₂, A₄ и A₅ одновременно представляют собой N;

когда A₁, A₃ и A₅ представляют собой N, тогда A₂, A₄ и A₆ одновременно представляют собой CH;

когда A₂, A₄ и A₅ представляют собой N, тогда A₁, A₃ и A₆ одновременно представляют собой CH;

R² представляет собой -(CR₈R₉)ₘNR₅R₆;

(R₃)ₖ означает, что атомы водорода, присоединенные к морфолиновому кольцу, замещены R³ в количестве 0-k, где в каждом случае R³ являются одинаковыми или отличными друг от друга, и каждый независимо представляет собой водород или дейтерий;

A представляет собой CR₄⁻; R⁴⁻ представляет собой водород;

D представляет собой N или CR₄⁺; R⁴⁺ представляет собой водород;

E представляет собой CR₄⁻; R⁴⁻ представляет собой водород;

G представляет собой CR₄⁺; R⁴⁺ представляет собой -NR⁷S(O)₂R⁵;

J представляет собой CR₄⁻; R⁴⁻ представляет собой водород;

или R⁴⁻ и R⁴⁺ вместе с атомами, к которым они присоединены, образуют насыщенное, ненасыщенное или частично ненасыщенное 5-членное азотсодержащее гетероциклическое кольцо, где 5-членное азотсодержащее гетероциклическое кольцо конденсировано с 6-членным кольцом, содержащим A, D, E, G и J; где указанное 5-

членное азотсодержащее гетероциклическое кольцо представляет собой пиразол или пиррол;

каждый из R⁵, R⁶ и R⁷ независимо представляет собой водород, C₁₃алкил, -(CH₂)₂NH₂,

или R⁵, R⁶ с атомом азота, к которому они непосредственно присоединены, образуют гетероциклическое кольцо, которое предпочтительно возможно замещено группой, состоящей из -SO₂R⁷ или C₁₃алкила; где гетероциклическое кольцо, образованное R⁵, R⁶ и атомом азота, к которому они непосредственно присоединены, представляет собой азотсодержащее 6-членное гетероциклическое кольцо, представляющее собой пиперидин или пириразидин;

(CR₈R₉)ₘ означает, что от 0 до m групп (CR₈R₉) соединены между собой, R₈ и R₉ представляют собой заместители, присоединенные к образованной углеродной цепи, где каждый из R₈ и R₉ является одинаковым или отличным друг от друга, и каждый
независимо представляет собой водород или дейтерий;
где указанные алкил, гетероциклическое кольцо или гетероциклическая группа
предпочтительно возможно замещены заместителем, выбранным из группы, состоящей
из галогена, гидроксила, -CN, -CF₃, -NO₂ или оксо;
m или k независимо представляет собой 0 или 1.
8. Конденсированное гетероциклическое соединение, его фармацевтически приемлемая
соль, гидрат, сольват, полиморф или пролекарство по п. 7, где в формуле II
A₁, A₃ и A₅, или A₂, A₄ и A₅ одновременно представляют собой N;
когда A₁, A₃ и A₅ представляют собой N, тогда A₂, A₄ и A₆ одновременно
представляют собой CH;
когда A₂, A₄ и A₅ представляют собой N, тогда A₁, A₃ и A₆ одновременно
представляют собой CH;

(R³)ₖ означает, что атомы водорода, присоединенные к морфолиновому кольцу,
замещены R³ в количестве 0-k, где в каждом случае R³ являются одинаковыми или
отличными друг от друга, и каждый независимо представляет собой водород или
dейтерий;
A представляет собой CR⁴ₐ; R⁴ₐ представляет собой водород;
D представляет собой N или CR⁴₈; R⁴₈ представляет собой водород;
E представляет собой CR⁴ₑ; R⁴ₑ представляет собой водород;
G представляет собой CR⁴ₑ; R⁴ₑ представляет собой -NR⁷S(O)₂R⁵;
J представляет собой CR⁴ᵢ; R⁴ᵢ представляет собой водород;
или R⁴ᵢ и R⁴ᵢ вместе с атомами, к которым они присоединены, образуют насыщенное,
ненасыщенное или частично насыщенное 5-членное азотсодержащее
гетероциклическое кольцо, где 5-членное азотсодержащее гетероциклическое кольцо
конденсировано с 6-членным циклом, содержащим A, D, E, G и J; где указанное 5-
членное азотсодержащее гетероциклическое кольцо представляет собой пиразол или
пирирол;
каждый из R⁵ и R⁷ независимо представляет собой водород или C₁-этил;
(CR⁸R⁹)ₘ означает, что от 0 до m групп (CR⁸R⁹) соединены между собой, R⁸ и R⁹
представляют собой заместители, присоединенные к образованной углеродной цепи,
gде каждый из R⁸ и R⁹ является одинаковым или отличным друг от друга и независимо
представляет собой водород или дейтерий;
ge алькил замещен гидроксидом;
m или k независимо представляет собой 0 или 1.
9. Конденсированное гетероциклическое соединение, его фармацевтически приемлемая
соль, гидрат, сольват, полиморф или пролекарство по п. 1, где
формула II представляет собой соединение, выбранное из группы, состоящей из
10. Конденсированное гетероциклическое соединение, его фармацевтически приемлемая соль, гидрат, сольват, полиморф или пролекарство по п. 1, где в формуле III

A₁ представляет собой N;
A₂ представляет собой N;
R² представляет собой -(CR⁸R⁹)ₘNR₅R₆ или -(CR⁸R⁹)ₘOR₅;

(R₃)ₖ означает, что атомы водорода, присоединенные к морфолиновому кольцу, заменены R³ в количестве 0-₁, где в каждом случае R³ являются одинаковыми или отличными друг от друга, и каждый независимо представляет собой водород, дейтерий, галоген или C₁-алкил;

A представляет собой CR⁴ₐ; R⁴ₐ представляет собой водород, галоген или C₁-алкил;
Е представляет собой CR⁴₉; R⁴₉ представляет собой C₆-алкикоекси;
J представляет собой CR⁴ₐ; R⁴ₐ представляет собой водород;
кольцо Q представляет собой бензол или 5-членное гетероциклическое кольцо: (R₁)ₖₙ означает, что атомы водорода, присоединенные к кольцу Q, заменены R₁ в количестве 0-₁, где в каждом случае R₁ являются одинаковыми или отличными друг от друга, и каждый независимо представляет собой галоген, -CN или C₁₂-алкил;

каждый из R⁵, R⁶, R⁷ и R⁷ независимо представляет собой водород, C₆-алкил, -(CH₂)₂₃NH₂, C₃₆-карбоксиликовую группу или C₅₆-гетероциклическую группу, или R⁵, R⁶ и атом азота, к которому они непосредственно присоединены, образуют гетероциклическое кольцо, которое предпочтительно возможно замещено заместителем, выбранным из группы, состоящей из -NR₇R₇, C₁-алкила, C₃₆-карбоксиликовой группы или C₅₆-гетероциклической группы;
(CR₈R₉)mₐ означает, что от 0 до m групп (CR₈R₉) соединены между собой, R₈ и R₉ представляют собой заместители, присоединенные к образованной углеродной цепи, где каждый R₈ и R₉ является одинаковым или отличным друг от друга, и каждый независимо представляет собой водород, дейтерий или C₁₋₃алкил;
m, k или k₁ независимо представляет собой 0 или 1.
11. Конденсированное гетероциклическое соединение, его фармацевтически приемлемая соль, гидрат, сольват, полиморф или пролекарство по п. 10, где в формуле III
A₁ представляет собой N;
A₂ представляет собой N;
R² представляет собой -(CR₈R₉)mₐNR₈R₆ или -(CR₈R₉)mₐOR₅;
(R₃)ₖ₁ означает, что атомы водорода, присоединенные к морфолиновому кольцу, замещены R₃ в количестве 0-k₁, где в каждом случае R₃ являются одинаковыми или отличными друг от друга, и каждый независимо представляет собой водород или дейтерий;
A представляют собой CR₄ₐ; R₄ₐ представляет собой водород;
E представляет собой CR₄₉; R₄₉ представляет собой C₁₋₃алкокси;
J представляет собой CR₄₃; R₄₃ представляет собой водород;
кольцо Q представляет собой бензол или 5-членное гетероциклическое кольцо, где 5-членное гетероциклическое кольцо представляет собой тиофер или имидазол;
(R¹)ₖ₁ означает, что атомы водорода, присоединенные к кольцу Q’, замещены R¹ в количестве 0-k₁, где в каждом случае R¹ являются одинаковыми или отличными друг от друга, и каждый независимо представляет собой C₁₋₃алкил;
каждый из R₅, R₆, R₇ и R₇ независимо представляет собой водород, C₁₋₃алкил, -(CH₂)₂₃NH₂, C₃₋₆карбоциклическую группу или C₂₋₅гетероциклическую группу, или R₅, R₆ и атом азота, к которому они непосредственно присоединены, образуют гетероциклическое кольцо, которое предпочтительно возможно замещено заместителем, выбранным из группы, состоящей из -(NR₇R₇'), C₁₋₃алкила, C₃₋₆карбоциклической группы или C₂₋₅гетероциклической группы; где C₂₋₅гетероциклическая группа представляет собой пиридин, пиран, тетрагидропирирол или оксетан;
(CR₈R₉)mₐ означает, что от 0 до m групп (CR₈R₉) соединены между собой, R₈ и R₉ представляют собой заместители, присоединенные к образованной углеродной цепи, где каждый из R₈ и R₉ является одинаковым или отличным друг от друга, и каждый независимо представляет собой водород или дейтерий;
m, k или k₁ независимо представляет собой 0 или 1.
12. Конденсированное гетероциклическое соединение, его фармацевтически приемлемая соль, гидрат, сольват, полиморф или пролекарство по п. 11, где в формуле III
A₁ представляет собой N;
A₂ представляет собой N;
(R^3)_k означает, что атомы водорода, присоединенные к морфолиновому кольцу, замещены R^3 в количестве 0-k, где в каждом случае R^3 являются одинаковыми или отличными друг от друга, и каждый независимо представляет собой водород или дейтерий;

A представляет собой CR^{4a}; R^{4a} представляет собой водород;
E представляет собой CR^{4e}; R^{4e} представляет собой метокси;
J представляет собой CR^{3i}; R^{3j} представляет собой водород;
кольцо Q представляет собой бензол или 5-членное гетероциклическое кольцо, где 5-членное гетероциклическое кольцо представляет собой тиофен или имидазол; (R^1)_{k1} означает, что атомы водорода, присоединенные к кольцу Q', замещены R^1 в количестве 0-k1, где в каждом случае R^1 являются одинаковыми или отличными друг от друга, и каждый независимо представляет собой метил;
m, k или k1 независимо представляет собой 0 или 1.

13. Конденсированное гетероциклическое соединение, его фармацевтически приемлемая соль, гидрат, сольват, полиморф или пролекарство по п. 1, где формула III представляет собой соединение, выбранное из группы, состоящей из
14. Способ получения конденсированного гетероциклического соединения, его фармацевтически приемлемой соли, гидрата, сольвата, полиморфа или пролекарства по любому из пп. 1-13, где
реакционный путь I включает следующие стадии:

реакционный путь II включает следующие стадии:

реакционный путь III включает следующие стадии:

реакционный путь IV включает следующие стадии:

где, когда R² представляет собой -O(CR^8R^9)_mCR^5R^6 или -O(CR^8R^9)_mNR^5R^6 в формуле I, для синтеза используют реакционный путь IV, когда R² не является -O(CR^8R^9)_mCR^5R^6
или \(-O(CR^8 R^9)_m N R^5 R^6\) в формуле I, для синтеза используют реакционный путь I: \(X^1\) представляет собой Cl, Br или I.

15. Соединение, как показано ниже

16. Фармацевтическая композиция, содержащая терапевтически эффективную дозировку конденсированного гетероцикллического соединения, его фармацевтически приемлемой соли, гидрата, сольваты, полиморфа и пролекарства по любому из пп. 1-13 и фармацевтически приемлемый носитель.

17. Применение конденсированного гетероцикллического соединения, его фармацевтически приемлемой соли, гидрата, сольвата, полиморфа или пролекарства по любому из пп. 1-13, или фармацевтической композиции по п. 16, в изготовлении ингибитора киназы.

18. Применение по п. 17, где киназа представляет собой киназу Р13.

19. Применение по п. 18, где киназа представляет собой подтип p110 \(\delta\) киназы Р13.

20. Применение конденсированного гетероцикллического соединения, его фармацевтически приемлемой соли, гидрата, сольвата, полиморфа или пролекарства по любому из пп. 1-13 или фармацевтической композиции по п. 16 в изготовлении лекарственного средства для лечения и/или предупреждения заболевания, связанного с киназой.

22. Применение по п. 21, где киназа представляет собой подтип p110 \(\delta\) киназы Р13.

23. Применение по п. 20, где "заболевание, связанное с киназой" представляет собой заболевание, выбранное из группы, состоящей из рака, иммунологических заболеваний, метаболической и/или эндокринной дисфункции, ангиоардиопатии, вирусных инфекций и воспалений, и нервных заболеваний.

24. Применение по п. 23, где иммунологическое заболевание представляет собой заболевание, выбранное из группы, состоящей из ревматоидного артрита, псориаза, неспецифического язвенного колита, болезни Крона и системной красной волчанки; ангиоардиопатия представляет собой неопластическое гематологическое расстройство; вирусная инфекция и воспаление представляет собой астму и/или атопический дерматит.