(54) Title: MULTIPLE INSTANCE IMPLEMENTATION OF SPEECH CODECS

(57) Abstract: A method for multiple instance implementation of speech codecs is described. By partitioning the data memory into ROM, local temporary RAM, and static RAM segments, a memory efficient multiple instance codec can be implemented. All the static memory segments are accessed by indirect addressing mode using index registers. A plurality of different codecs can also be implemented using the multiple-instance scheme. The described method provides a relatively easy way in which to implement multiple instance codecs or modify existing non-multiple instance implementations with the multiple instance feature for increased performance.
MULTIPLE INSTANCE IMPLEMENTATION OF SPEECH CODECS

Field of the Invention

This invention relates to audio coding, and is particularly applicable in the field of telecommunication and the internet, for example, in which multi-channel speech coders are implemented using a single digital signal processing (DSP) device.

Background

Because of the computationally expensive nature of encoding and decoding real-time audio, traditionally audio coders/decoders ("codecs") have been implemented by specialized integrated circuit chips. An alternative is to provide the audio codec functions in software (firmware, micro-code, etc.) for operation on a more general purpose Digital Signal Processor ("DSP"). With the deployment of more powerful Digital Signal Processors, it can be possible for more than one codec to be real-time implemented using a single DSP chip. For example, it may be possible for a powerful DSP to process a plurality of different audio signals or channels in real-time, to thereby implement a plurality of voice coders ("vocoders") using a single processing device.

Summary of the Invention

In accordance with the present invention, there is provided a method for implementing a plurality of encoders and/or decoders (codecs) using a single digital signal processing (DSP) device, wherein the function of each codec is performed by the DSP according to an instruction code program, the method comprising the steps of:

- providing an instruction code program stored in a first memory for controlling the DSP to function as a codec;
- providing a second memory including a plurality of memory segments;
implementing a plurality of codecs using the DSP by running said instruction code program in the first memory a plurality of times in re-entrant instances, wherein each codec instance is provided access to a respective separate memory segment in the second memory for storing data used in encoding/decoding a respective separate data stream.

5

The present invention also provides a data coding and/or decoding system in which a plurality of encoders and/or decoders (codecs) are implemented using a single digital signal processing (DSP) device, comprising:

a digital signal processor (DSP);

10 a first memory coupled to the DSP and containing an instruction code program, the function of each codec being performed by the DSP, in use, according to the instruction code program;

a second memory coupled to the DSP and partitioned to include a plurality of separate memory segments;

wherein a plurality of codecs are implemented using the DSP by running the instruction code program in the first memory a plurality of times in re-entrant instances, and wherein each codec instance is provided access to a respective separate memory segment in the second memory for storing data used in encoding/decoding a respective separate data stream.

Preferably a third memory is also provided which is accessible by each of the codec instances for shared storage of temporary variables and data buffering in encoding/decoding said respective separate data streams.

Each codec instance preferably accesses the corresponding memory segment using indirect addressing based on at least one index register, the at least one index register being set for each codec instance to modify addressing of variables for that codec instance to the corresponding memory segment.

In a preferred form of the invention the plurality of memory segments are contiguous in the second memory, and the at least one index register is set for each codec instance according to
an offset based on the difference in address from a first of said memory segments to the memory segment corresponding to that codec instance. Preferably each of the memory segments in said second memory is the same size.

In one form of the invention, the first memory is provided with a plurality of instruction code programs for implementing different kinds of codecs, wherein different codec instances may be selected from the different kinds of codec. Preferably, then, each of the memory segments in the second memory is the same size, and the size of the memory segments is selected according to the maximum memory required by any of the plurality of different kinds of codec.

This methodology can be used to modify the existing DSP assembly code or to implement a new algorithm with a multiple instance feature. The multiple-instance implementation can be used to process multi-channel signals using one software module.

Brief Description of the Drawings

The invention is described in greater detail hereinafter, by way of example only, with reference to preferred embodiments thereof and the accompanying drawings, in which:

- Figure 1 is a block diagram of a simple audio encoding system employing a DSP;
- Figure 2 is a block diagram of a data memory structure for a first embodiment of the present invention; and
- Figure 3 is a block diagram of a data memory structure for a second embodiment of the invention employing a plurality of different codec types.

Detailed Description of the Preferred Embodiments

The embodiments of the invention described hereinafter are in the context of audio coders implemented by instruction codes in the form of software, firmware or micro-code operating
on a general purpose digital signal processor chip. In particular, the described embodiments relate to implementation of speech codecs of the type which is the subject of ITU-T Recommendation G.729. However, it will be appreciated by those of ordinary skill in the art that the present invention is not necessarily limited to such an environment, and may further be used to implement coders for other forms of real-time data streams including other forms of voice and/or facsimile transmission or storage coding.

A simple audio encoding system 10 based on a general purpose DSP is illustrated in block diagram form in Figure 1. The audio coding system 10 comprises a digital signal processor (DSP) 12 which is coupled to receive input data and produce coded output signals. The DSP 10 is coupled to a storage memory 14. The memory 14 provides data to the DSP 12 to enable coding of the received input data to take place. The memory 14 may contain various different forms of data, including read-only data which is permanently stored in the memory, and temporary data which is transiently stored during coding operations. The memory 14 may also contain stored instruction codes used by the DSP to perform the coding, which would ordinarily be permanently stored in read-only form.

One of the considerations which must be dealt with in implementing multiple codecs on a single DSP by operating multiple instances of the DSP instruction codes which control the codec operation is the arrangement of storage memory so that each instance of the codec can have efficient memory usage and not interfere with other codec instances in use at the same time. In accordance with an embodiment of the present invention, this is achieved by arranging the data memory as illustrated in the block diagram of Figure 2. This exemplary embodiment relates to implementation of a 4-channel multiple instance vocoder on a single DSP. As shown in Figure 2, the data memory is partitioned into different parts, in this case comprising read-only memory (ROM), local RAM, and static RAM. The ROM is used to store all the read only data, which may include the program instruction codes and the like. Local RAM is used for storage of temporary variables and for data buffering. The static RAM, on the other hand, is used for storage of all the global and historical variables required for the coding operations, for example
data which will be used for processing the next frame of output. As shown in the block diagram, in this case the static RAM is partitioned into separate areas for each DSP codec instance. Thus, static RAM is constrained for use only by the \(i^{th} \) coder (\(i = 1, 2, 3, 4 \)), while the data ROM and local RAM are shared by all four channels.

The preferred form of the present invention involves partitioning the data memory based on their properties and using an index register or index modifier to modify the address of the static RAM segment data used for each codec instance. The program code memory can be arranged as usual. If, however, program memory is used for data accessing, this part of memory also needs to be partitioned in the same way as data memory such as X or Y. This methodology allows the easy management of the operating system or real-time kernel due to the facility of opening and closing the various instances.

First, the partition of the data memory according to its accessing property is obtained, for example in the embodiment shown in Figure 2 involving ROM data, temporary local RAM, and static or global RAM segments. The data ROM and temporary local RAM are shared for every instance. Only the static RAM segments are used exclusively by corresponding codec instances. This static RAM segment is accessed using an index register by adding an offset value to address the static RAM segment for a particular instance. This is the basis of method to implement a new algorithm for multiple codec instances on a single DSP. Using this method, as described in greater detail below, existing DSP program instructions can be modified relatively easily to operate multiple codec instances.

When modifying existing DSP codes for multiple instance operation, it is not necessary to change all of the existing variable names using the arrangement of the data memory with partitions as described above. For static data memory access, it is only necessary to modify the existing addressing mode to obtain an indirect addressing scheme using the index and address registers. One example is shown in the Table below using a D950 DSP made by STMicroelectronics. For other DSPs, a similar approach can be employed. In the Table, ax0
is one of the address registers and ix1 and ix2 are index registers.

<table>
<thead>
<tr>
<th>Before (non-re-entrance)</th>
<th>Modified (re-entrance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>Indirect</td>
</tr>
<tr>
<td>var1.x = Register1</td>
<td>ax0 = #var1</td>
</tr>
<tr>
<td></td>
<td>*(ax0 + ix2) = Register1</td>
</tr>
<tr>
<td></td>
<td>(note #1)</td>
</tr>
<tr>
<td></td>
<td>(note #2)</td>
</tr>
<tr>
<td></td>
<td>(note #3)</td>
</tr>
<tr>
<td>Indirect</td>
<td></td>
</tr>
<tr>
<td>ax0 = #var10</td>
<td>ax0 = #var10</td>
</tr>
<tr>
<td>Rep N times loop1</td>
<td>ax0 = ax0+ix2</td>
</tr>
<tr>
<td>Register = *ax0+ix1</td>
<td>Rep (N-1) times loop1</td>
</tr>
<tr>
<td>...</td>
<td>Register = *ax0+ix1</td>
</tr>
<tr>
<td>loop1</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(note #5)</td>
</tr>
<tr>
<td></td>
<td>(note #6)</td>
</tr>
<tr>
<td></td>
<td>(note #7)</td>
</tr>
</tbody>
</table>

In order to pass the addressing information to every channel vocoder, two index registers should be reserved for this reentrant purpose, say IX2 and IY2 if using a D950 DSP. By doing so, the address of all the static variables stored in the respective static RAM segments will be modified by these two index registers from the beginning.

There are two methods by which stored data can be access from the static RAMs. One is direct addressing and the other is indirect addressing. However, for reentrant implementations, access to the static RAM must be through indirect addressing. Therefore, to achieve the reentrant feature and run multiple instance codecs, the existing instruction codes for the DSP should be modified accordingly, using the index register, indicated as an example in the Table above.

If the addressing instruction codes are modified accordingly and data memory is arranged as shown in the Figure 2, the multiple-instance 4-channel system can operate as follows.
Repeat following codes

/* first instance */
Ix2 = #offsetx1
Iy2 = #offsety1

Call coder

/* second instance */
Ix2 = #offsetx2
Iy2 = #offsety2

Call coder

/* third instance */
Ix2 = #offsetx3
Iy2 = #offsety3

Call coder

/* fourth instance */
Ix2 = #offsetx4
Iy2 = #offsety4

Call coder

where offsetx1 = offsety1 = 0, offseti = addressx1-addressx1, offseti = addressy1-addressy1, for i = 1, 2, 3. Address x_i does not necessarily equal address y_i. One example of the static RAM size is about 1560 words in X memory and 256 words in Y memory for a codec operating according to ITU-T G.729. The static RAM size would typically be the same for each instance of the G.729 vocoder.

This is applicable for a new implementation or for converting existing DSP instruction coding to a re-entrant multiple instance implementation. Since this method does not require a change of the variable names in the DSP coding, it is efficient in both MIPS and porting
effort if compared to using pointers.

If there are more than one kind of speech codec in a system, the method described herein is still applicable. For a system using a plurality of different codecs, the memory may be arranged as illustrated in Figure 3, for which the multiple-instance accessing procedures are described below.

In Figure 3 the memory map for a 4-channel system is shown, in which the 4 active channels could be any possible combination of codecs operating according to ITU-T G729, G723.1 and FAX. In this case, the size of ROM segment comprises ROM data for all of the codec types. The size of the temporary local RAM segment is the maximum local RAM size used by any of the codecs. All of the different codecs share the local RAM segment. Similarly, each of the static RAM segments are of a size to accommodate the frame processing storage requirements of any one of the possible codecs implementations. This enables different codecs to make use of different static RAM segments.

One example is a 4-channel system with two different speech codecs, say G723.1 and G729. The program instruction codes are, in this example, stored separately in a program memory (not shown). The data memory is arranged as shown in Figure 3. Such a 4-channel system multiple instance system can operate as follows,

```
Repeat following codes
/*first instance*/
Ix2 = #offsetx1
Iy2 = #offsety1
If (codec_flag1 = CODEC1)
  Call coder1
Else
  Call coder2
```
/*second instance*/
Ix2=#offsetx2
Iy2=#offsety2
If (codec_flag != CODECI)
 Call coder1
Else
 Call coder2

/*third instance*/
Ix2=#offsetx3
Iy2=#offsety3
If (codec_flag != CODECI)
 Call coder1
Else
 Call coder2

/*fourth instance*/
Ix2=#offsetx4
Iy2=#offsety4
If (codec_flag != CODECI)
 Call coder1
Else
 Call coder2

25 where offsetx1=offsety1=0, offsetx2=addressx1-addressx1, offsety2=addressy1-addressy1 for i=1, 2, 3. The flag variable codec_flag is writeable by an operating system or system controller, so as to dictate which type of codec is used for each instance.

The foregoing detailed description of the present invention has been presented by way of
example only, and many variations to the specific details therein may be apparent to those of ordinary skill in the art without departing from the scope of the invention. Accordingly, such specifics are not intended to be considered limiting to the scope of the invention which is defined in the appended claims.
Claims

1. A method for implementing a plurality of encoders and/or decoders (codecs) using a single digital signal processing (DSP) device, wherein the function of each codec is performed by the DSP according to an instruction code program, the method comprising the steps of:

 providing an instruction code program stored in a first memory for controlling the DSP to function as a codec;
 providing a second memory including a plurality of memory segments;
 implementing a plurality of codecs using the DSP by running said instruction code program in said first memory a plurality of times in re-entrant instances, wherein each codec instance is provided access to a respective separate memory segment in said second memory for storing data used in encoding/decoding a respective separate data stream.

2. A method as claimed in claim 1, wherein a third memory is provided which is accessible by each of the codec instances for shared storage of temporary variables and data buffering in encoding/decoding said respective separate data streams.

3. A method as claimed in claim 1 or 2, wherein each codec instance accesses the corresponding memory segment using indirect addressing based on at least one index register, the at least one index register being set for each codec instance to modify addressing of variables for that codec instance to the corresponding memory segment.

4. A method as claimed in claim 3, wherein the plurality of memory segments are contiguous in said second memory, and said at least one index register is set for each codec instance according to an offset based on the difference in address from a first of said memory segments to the memory segment corresponding to that codec instance.

5. A method as claimed in any one of claims 1 to 4, wherein each of the memory segments in said second memory is the same size.
6. A method as claimed in claim 1, 2, 3, or 4, wherein said first memory is provided with a plurality of instruction code programs for implementing different kinds of codecs, and wherein different codec instances may be selected from the different kinds of codec.

7. A method as claimed in claim 6, wherein each of the memory segments in said second memory is the same size, and the size of the memory segments is selected according to the maximum memory required by any of the plurality of different kinds of codec.

8. A data coding and/or decoding system in which a plurality of encoders and/or decoders (codecs) are implemented using a single digital signal processing (DSP) device, comprising:
 a digital signal processor (DSP);
 a first memory coupled to the DSP and containing an instruction code program, the function of each codec being performed by the DSP, in use, according to said instruction code program;
 a second memory coupled to the DSP and partitioned to include a plurality of separate memory segments;
 wherein a plurality of codecs are implemented using the DSP by running said instruction code program in said first memory a plurality of times in re-entrant instances, and wherein each codec instance is provided access to a respective separate memory segment in said second memory for storing data used in encoding/decoding a respective separate data stream.

9. A system as claimed in claim 8, including a third memory coupled to said DSP which is accessible by each of the codec instances for shared storage of temporary variables and data buffering in encoding/decoding said respective separate data streams.

10. A system as claimed in claim 8 or 9, wherein each codec instance accesses the corresponding memory segment using indirect addressing based on at least one index register, the at least one index register being set for each codec instance to modify addressing of variables for that codec instance to the corresponding memory segment.
11. A system as claimed in claim 10, wherein the plurality of memory segments are contiguous in said second memory, and said at least one index register is set for each codec instance according to an offset based on the difference in address from a first of said memory segments to the memory segment corresponding to that codec instance.

12. A system as claimed in any one of claims 8 to 11, wherein each of the memory segments in said second memory is the same size.

13. A system as claimed in any one of claims 8 to 11, wherein said first memory is provided with a plurality of instruction code programs for implementing different kinds of codecs, and wherein different codec instances may be selected from the different kinds of codec.

14. A system as claimed in claim 13, wherein each of the memory segments in said second memory is the same size, and the size of the memory segments is selected according to the maximum memory required by any of the plurality of different kinds of codec.

15. A method for implementing a plurality of encoders and/or decoders (codecs) using a single digital signal processing (DSP) device, wherein the function of each codec is performed by the DSP according to an instruction code program, the method comprising the steps of:

- providing an instruction code program stored in a first memory for controlling the DSP to function as a codec;
- providing a second memory including a plurality of memory segments;
- implementing a plurality of codecs using the DSP by running said instruction code program in said first memory a plurality of times in re-entrant instances, wherein each codec instance is provided access to a respective separate memory segment using an indirect addressing mode based on at least one index register in said second memory for storing data used in encoding/decoding a respective separate data stream.
16. A data coding and/or decoding system in which a plurality of encoders and/or decoders (codecs) are implemented using a single digital signal processing (DSP) device, comprising:

a digital signal processor (DSP);
a first memory coupled to the DSP and containing an instruction code program, the function of each codec being performed by the DSP, in use, according to said instruction code program;
a second memory coupled to the DSP and partitioned to include a plurality of separate memory segments;
wherein a plurality of codecs are implemented using the DSP by running said instruction code program in said first memory a plurality of times in re-entrant instances, and wherein each codec instance is provided access to a respective separate memory segment using an indirect addressing mode based on at least one index register in said second memory for storing data used in encoding/decoding a respective separate data stream.
Figure 1
Data

\[\sum \text{ROM}_i \]

RAM
(Maximum RAM space used by any codec)

Static RAM_1
(Maximum static RAM used by any codec)

Static RAM_2

Static RAM_3

Static RAM_4

Figure 3
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 G06F9/40

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 99 10807 A (CIRRUS LOGIC INC) 4 March 1999 (1999-03-04) page 6, line 24 - page 10, line 9</td>
<td>1-3,8-10</td>
</tr>
<tr>
<td>Y</td>
<td>US 5 285 264 A (MATSUSHITA AKIRA) 8 February 1994 (1994-02-08) column 1, line 36 - column 2, line 3</td>
<td>6,13</td>
</tr>
<tr>
<td>A</td>
<td>column 8, line 17 - line 52</td>
<td>4,5,7, 11,12, 14-16</td>
</tr>
<tr>
<td>X</td>
<td>US 3 789 368 A (DERVILLE D) 29 January 1974 (1974-01-29) column 2, line 34 - column 3, line 6</td>
<td>1,3,8, 10,15,16</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>4-7, 11-14</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Date of the actual completion of the international search

11 August 2000

Date of mailing of the international search report

21/08/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL – 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 851 epo nl
Fax: (+31-70) 340-3016

Authorized officer

Bijn, K

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5 687 105 A (KATO MITSUMI ET AL) 11 November 1997 (1997-11-11) column 2, line 54 -column 3, line 33; figure 4</td>
<td>1-16</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 9910807 A</td>
<td>04-03-1999</td>
<td>AU 8501998 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1004074 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2038457 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69115962 D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69115962 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0449075 A</td>
</tr>
<tr>
<td>US 3789368 A</td>
<td>29-01-1974</td>
<td>FR 2134805 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BE 780135 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 2219070 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1344203 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 953967 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 52035505 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 7205128 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6348262 A</td>
</tr>
</tbody>
</table>