

(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 200039435 B2
(10) Patent No. 737726

(54) Title
Compact microwave terrestrial radio utilizing monolithic microwave integrated circuits

(51)⁶ International Patent Classification(s)
H04B 001/06 H01Q 023/00

(21) Application No: 200039435 (22) Application Date: 2000.06.13

(43) Publication Date : 2000.08.24
(43) Publication Journal Date : 2000.08.24
(44) Accepted Journal Date : 2001.08.30

(62) Divisional of:
199742351

(71) Applicant(s)
Raytheon Company

(72) Inventor(s)
Jeffery A Paul; Raymond Santos Jr.; Chaim Warzman; Roy Wien; Steve Blacketer; Richard T Hennegan; Richard F Mintzlaff

(74) Agent/Attorney
GRIFFITH HACK, GPO Box 3125, BRISBANE QLD 4001

(56) Related Art
GULLOCK, W ETAL "DEV. LINK", IEEE MTS INT. MICRO.SYMP.
DIGEST, JUNE 14-18, 1993, V2, 14JUNE 1993, P681-684
PODOLAK, T "ALCATEL 9400UL:NFC ET TRA, V16, N2 1JAN94 P53-60

COMPACT MICROWAVE TERRESTRIAL RADIO UTILIZING
MONOLITHIC MICROWAVE INTEGRATED CIRCUITS

ABSTRACT OF THE DISCLOSURE

An integrated point-to-point microwave radio frequency unit/antenna
5 (60) has a housing (62), a microwave antenna (68) affixed to the front face of
the housing (62), and a microwave radio frequency transceiver electronics
package (66) within the housing (62). The transceiver electronics package (66)
includes a circuit board having transmitter and receiver intermediate frequency
processors (124,138). The transceiver electronics package (66) further includes
10 a microwave transmitter (102) and a microwave receiver (104), each utilizing
monolithic microwave integrated circuit architecture. The signals of the
microwave transmitter (102) and microwave receiver (104) are preferably of
different frequencies and are diplexed for communication with the antenna (68).

AUSTRALIA

Patents Act 1990

COMPLETE SPECIFICATION

STANDARD PATENT

Applicant(s):

RAYTHEON COMPANY

Invention Title:

COMPACT MICROWAVE TERRESTRIAL RADIO UTILIZING
MONOLITHIC MICROWAVE INTEGRATED CIRCUITS

The following statement is a full description of this
invention, including the best method of performing it known to
me/us:

COMPACT MICROWAVE TERRESTRIAL RADIO UTILIZING
MONOLITHIC MICROWAVE INTEGRATED CIRCUITS

BACKGROUND OF THE INVENTION

This invention relates to microwave radios, and, more particularly, to a
5 radio frequency unit for a microwave radio.

Microwave radio communications are widely used to transfer large amounts of data, such as in earth and space microwave long-distance communications links. They are also of interest for shorter-range, lower-power applications such as the basic voice, video, and data links between a cellular
10 base station and a central telephone office. In such applications, the microwave transmission distance is typically about 1/2-5 miles, the microwave signal is at a specific frequency in the range of about 2-94 GHz, and the power output of the microwave transmitter is about 100 milliwatts. Such microwave communications system are generally termed "point-to-point" systems.
15 Corresponding to the high-power microwave communications systems, a conventional point-to-point system has three basic physical parts: a signal processing unit (SPU), sometimes termed an "indoor" unit having the baseband radio components, a radio frequency (RF) unit (RFU), sometimes termed an "outdoor" unit having the microwave-frequency radio components, and an
20 antenna. Because a microwave feed is required between the components operating at microwave frequency, the radio frequency unit is located within a few feet of the antenna, which ordinarily is mounted outside and aimed at another point-to-point terminal located some distance away. The antenna is typically a parabolic antenna of the cassegrain type. The signal processing unit
25 may be located quite some distance from the radio frequency unit. An ordinary coaxial cable set extends between the signal processing unit and the radio frequency unit, but a microwave coaxial feed is required between the radio frequency unit and the antenna.

As point-to-point microwave systems become more popular, their

physical packing and aesthetic appearance become more important. The existing radio frequency units and antennas are bulky, heavy, visually obtrusive, and, in many cases, difficult to mount, align, and maintain in alignment. With 5 the proliferation of point-to-point systems in large cities, new mounting space on existing masts and elsewhere has become more difficult to find. Installers must hoist the subsequently installed radio frequency unit and antenna to evermore-precarious locations in order to establish 10 line-of-sight contact with the remote terminal. The radio frequency unit and the antenna must be mounted in close proximity to each other.

To overcome these problems, the assignee of the present invention is developing an integrated point-to-point 15 microwave radio frequency unit and antenna, which is much more compact, lighter in weight, and visually less obtrusive than conventional systems. However, the size and weight of the microwave signal processing components provides a significant barrier to achieving these 20 objectives, and there is accordingly a need for such microwave signal processing components and an architecture which results in smaller size and less weight. The present invention fulfills this need, and further provides related advantages.

25 SUMMARY OF THE INVENTION

The present invention preferably provides an integrated point-to-point microwave radio frequency unit and antenna that is compact and light in weight. In a preferred embodiment the microwave electronics package 30 within the device is considerably smaller and lighter than in existing microwave radio frequency units, an important advantage that allows the entire radio frequency unit to be made smaller and lighter. The radio frequency unit using this approach is visually less obtrusive, and is easier to 35 hoist, mount, align, and replace (if necessary) than conventional units.

According to one aspect of the present invention

there is provided a microwave antenna affixed to and integral with the housing and having an antenna input/output feed contained entirely within the housing; and a microwave radio frequency transceiver electronics package within the housing, the transceiver electronics package comprising

- 5 a transmitter intermediate frequency processor having a baseband-frequency input and a microwave output,
- 10 a receiver intermediate frequency processor having a microwave input and a baseband-frequency output,
- 15 a microwave transmitter having a monolithic microwave integrated circuit architecture, the microwave transmitter having an input in communication with the microwave output of the transmitter intermediate frequency processor and an output in microwave communication with the antenna input/output feed and
- 20 a microwave receiver having a monolithic microwave integrated circuit architecture, the microwave receiver having an input in communication with the antenna input/output feed and an output in microwave communication with the microwave input of the receiver intermediate frequency processor.

According to another aspect of the present invention there is provided a housing having a front face;

- 25 a microwave antenna affixed to, integral with, and forming a portion of the front face of the housing and having an antenna input/output feed contained entirely within the housing;
- 30 a microwave diplexer within the housing and having a monolithic microwave integrated circuit architecture, the microwave diplexer having as an input/output the antenna input/output feed, a microwave transmitter input, and a microwave receiver output;
- 35 a microwave radio frequency transceiver electronics package within the housing, the transceiver electronic package comprising a circuit board having a transmitter intermediate frequency processor

having a baseband-frequency input and a microwave output, and

a receiver intermediate frequency processor having a microwave input and a baseband-frequency output;

5 a microwave transmitter having a monolithic microwave integrated circuit architecture, the microwave transmitter having an input in communication with the microwave output of the transmitter intermediate frequency processor and an output in microwave communication with the 10 microwave transmitter input of the microwave diplexer.

a microwave receiver having monolithic microwave integrated circuit architecture, the microwave receiver having an input in communication with the antenna input/output feed and an output in microwave communication 15 with the microwave receiver input of the microwave diplexer;

a power supply within the housing, the power supply having power leads to the circuit board, the microwave transmitter, and the microwave receiver; and

20 a controller within the housing, the controller being in communication with the circuit board, the microwave transmitter, and the microwave receiver.

In conventional microwave processing technology, discrete components are typically used in those parts of 25 the signal processor that operate in the microwave frequency range. These discrete components and the bulky waveguides separating them result in heavy, bulky structures. In the present approach, monolithic microwave integrated circuit (MMIC) technology has been utilized in 30 the transmitter and receiver microwave-frequency circuits that process the microwave signals. Consequently, these circuits may be made in a modular form that is compact and light in weight.

These features, in combination with the use of 35 the preferred integrated flat antenna, allow the integrated point-to-point microwave radio frequency unit/antenna to

have a rectangular prismatic shape with size of about 12 inches by about 12 inches by about 3 inches thick and a weight of less than about 15 pounds. The integrated radio frequency unit and antenna therefore are much easier to

5 install in precarious locations than conventional non-integrated radio frequency units and parabolic antennas. The integrated radio frequency unit and antenna are less aesthetically objectionable than prior systems and requires less support structure.

10 In accordance with the invention, an integrated point-to-point microwave radio frequency unit/antenna comprises a microwave antenna having an antenna input/output feed, a housing, and a microwave radio frequency transceiver electronics package within the

15 housing. The transceiver electronics package comprises a transmitter intermediate frequency processor having a baseband-frequency input and a microwave output, and a receiver intermediate frequency processor having a microwave input and a baseband-frequency output. The

20 transceiver electronics package further includes a microwave transmitter and a microwave receiver, each having a monolithic microwave integrated circuit architecture. The microwave transmitter has an input in communication with the microwave output of the transmitter intermediate

25 frequency processor and an output in microwave communication with the antenna input/output feed. The microwave receiver has an input in communication with the antenna input/output feed and an output in microwave communication with the microwave input of the receiver

30 intermediate frequency processor. The transceiver electronics package also preferably includes a diplexer between the antenna and the microwave transmitter and the microwave receiver, to enable simultaneous transmission and reception of microwave signals at two different

35 frequencies. A power supply and controller for the transceiver electronics package are also normally provided within the housing.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic diagram of a microwave radio transmitter and receiver;

5 Figure 2 is a perspective view of a conventional microwave radio frequency unit and antenna;

Figure 3 is a perspective view of an integrated radio frequency unit/antenna according to the invention;

10 Figure 4 is a partially sectioned front elevational view of an preferred integrated radio frequency unit/antenna according to the invention;

Figure 5 is an exploded side elevational view of the integrated radio frequency unit/antenna according to the invention;

15 Figure 6 is an electronic circuit block diagram of the preferred implementation of the radio frequency unit;

Figure 7 is an electronic circuit block diagram of the preferred implementation of the transmitter IF processor;

20 Figure 8 is an electronic circuit block diagram of the preferred implementation of the receiver IF processor;

Figure 9 is an electronic circuit block diagram of the preferred implementation of the microwave-frequency transmitter module;

25 Figure 10 is an electronic circuit block diagram of the preferred implementation of the microwave-frequency receiver module; and

30 Figure 11 is a schematic perspective view of a conventional radio frequency unit and antenna and an integrated radio frequency unit/antenna mounted to a mast.

DETAILED DESCRIPTION OF THE INVENTION

Figure 1 is a schematic diagram of a microwave radio transceiver system 20. The general electronic structure of such systems 20 as shown in Figure 1 is known in the art and is described in greater detail, for example, in "RF Components for PCS Base Stations", published by Strategies Unlimited, 1996. The present invention resides in part in an improved architecture for the implementation of this basic electronics approach.

The system 20 includes a signal processing unit 22 (also known as the "indoor unit") that processes baseband signals, a radio frequency unit 24 (also known as the "outdoor unit") that processes microwave signals, and a microwave antenna 26. The signal processing unit 22 has an input/output of voice, video, and/or data link information through a cable 28. This information is processed through baseband circuitry 30 and a modulator/demodulator 32. A controller 34 and a power supply 36 are also provided. The signal processing unit 22 communicates with the radio frequency unit 24 at low frequencies through a conventional signal cable 38.

The radio frequency unit 24 includes a microwave transceiver 40 that includes circuitry for both intermediate frequency processing and microwave frequency processing within a selected narrower range of the broad band extending from about 2 to about 94 GHz (Gigahertz), by converting the low-frequency signal operable in the signal processing unit 22. The implementation of the architecture of the radio frequency unit 24 is a key feature of the invention and will be discussed in more detail subsequently. A controller 42 and a power supply 44 are also provided within the radio frequency unit 24.

The microwave transceiver 40 has an antenna connection 46 into which a microwave radio frequency feed 48 is connected to provide a signal to the antenna 26, or to receive a signal from the antenna 26. The feed 48 is typically a coaxial cable or waveguide which cannot be more than a few feet long without suffering substantial signal attenuation.

Figure 2 depicts the implementation of a conventional prior radio frequency unit 24 and antenna 26, connected by the microwave feed 48, which utilizes the electronics approach of Figure 1. The radio frequency unit 24

typically has measurements of 12 inches by 12 inches by 12 inches and weighs about 35 pounds. The antenna 26 is a cassegrain parabolic antenna having a dish diameter of about 12 inches or more and a weight of about 15 pounds. Both components must be mounted at a location such that the antenna 26 may 5 be aimed at a similar but remotely located terminal. The installer must find a way to mount the antenna 26 so that it is aligned with the antenna of the remote unit, and to mount the radio frequency unit 24 so that it is secure yet is within the range permitted by the length of the microwave feed 48. Other 10 versions of the prior approach of Figure 2 are known wherein the parabolic antenna is affixed directly to the radio frequency unit, but such a combined approach remains awkward to handle and heavy.

Figure 3 shows an integrated radio frequency unit/antenna of the present invention in perspective view. Figure 4 illustrates a preferred form of the present invention in partially sectioned front elevational exterior view, and 15 Figure 5 is an exploded side view of the preferred apparatus. This apparatus uses the general electronics approach of Figure 1, but with a different architecture and antenna that offer important advantages. An integrated radio frequency unit/antenna 60 includes a housing 62 having an exterior wall 64. A handle 65, which may be integral or detachable, extends from the housing 20 62 and permits the radio frequency unit/antenna 60 to be easily carried. A microwave radio frequency transceiver electronics package 66 is fixed within the housing 62. The electronics package 66 includes the microwave transceiver 40, the controller 42, and the power supply 44. Part of the exterior wall 64 is formed as an integral flat antenna 68. The flat antenna 68 may be formed 25 separately and attached to the wall 64, as illustrated, or it may be formed as part of the wall itself. That portion of the wall 64 which is not the antenna 68 may be made of any operable material, such as a metal or a plastic. A radome 70 in the form of a plastic sheet is mounted over the face of the flat antenna 68 to protect it.

30 The flat antenna 68 is preferably a continuous transverse stub (CTS) antenna. The CTS microwave antenna is known in the art and is described, for example, in US Patent 5,266,961, whose disclosure is incorporated by reference. In general terms, and as illustrated in Figures 3 and 5, the CTS

antenna has a dielectric element with a first portion and a second portion extending generally transversely to the first portion. The second portion forms a transverse stub that protrudes from a first surface of the first portion. A first conductive element is disposed coextensively with the dielectric element along 5 a second surface of the first portion. A second conductive element is disposed along the first surface of the dielectric element and is along transversely extending edgewalls formed by the second portion of the dielectric element. Further details of construction are disclosed in the '961 patent.

The CTS antenna has particular advantages when used in the present 10 application. The CTS antenna is planar, small in lateral dimensions and thickness, and light in weight. The output signal of the CTS antenna may be steered slightly electronically. During mounting, the radio frequency unit/antenna 60 must be aligned generally toward the remote unit with which communication is established. However, that alignment may be slightly 15 disrupted due to weather or temperature effects on the mounting structure. In that case, the small deviation from proper alignment may be compensated for electronically to maintain a high signal strength aimed at the remote unit.

The integrated radio frequency unit/antenna 60 has an antenna connection and a microwave radio frequency feed cable extending from the 20 antenna connection to the back side of the flat antenna 68, although the antenna connection and feed cable are not visible in Figures 3-5. The radio frequency feed is at most 1-2 inches long and contained entirely within the housing 62. There is very little microwave attenuation as the signal passes through this 25 short feed. The installer is only required to position and fix in place the single integrated radio frequency unit/antenna 60, and is not concerned with moving and positioning two units in a compatible manner.

Figures 6-10 illustrate the implementation of the electronic circuitry of the radio frequency unit 24. Figure 6 shows the complete circuit, and Figures 30 7-10 illustrate the transmitter IF processor, the receiver IF processor, the microwave-frequency transmitter module, and the microwave-frequency receiver module, respectively. The principal function of this circuitry is to communicate signal information between the antenna 68, operating at about 37-40 GHz in the preferred embodiment, and the signal processing unit 22,

operating at about 70-310 MHz in the preferred embodiment. This communication requires extensive upshifting and downshifting of the frequency of the signal.

As seen in Figure 6, the electronic circuitry of the radio frequency unit 24 includes an IF processor card 100 that communicates at its low-frequency side through a multiplexer 101 with the signal processing unit 22 over the communication cable 38. The high-frequency side of the IF processor card 100 communicates with a microwave transmitter module 102 and a microwave receiver module 104. These microwave-frequency modules 102 and 104, which operate at different frequencies, communicate with the CTS antenna 68 through a diplexer 106. The diplexer 106, a known device, contains filters which permit the simultaneous transmission and receipt of microwave signals of different frequencies. Constant-frequency signals required in the signal processing are synthesized on a synthesizer card 108, which includes a transmitter synthesizer 110, a receiver synthesizer 112, and a common local oscillator (LO) synthesizer 114.

Control and power functions are supplied from a control/power card 116, which includes a central processing unit 118, a power supply 120, and a telemetry unit 122. The telemetry unit 122 monitors and reports the status of the radio frequency unit 24 to the signal processing unit 22 and receives command signals from the signal processing unit 22. The central processing unit 118 monitors and reports the status of the radio frequency unit 24 to the telemetry unit 122, and also controls functions such as automatic gain and levelling, maintenance of transmitter output power at a constant level, and maintenance of receiver signal output at a constant level.

Figure 7 illustrates the components of a transmitter IF processor 124 on the IF processor card 100. Signals to be transmitted by microwave are received from the signal processing unit 22, at 310 MHz in the preferred embodiment. The input signals are amplified as necessary by an amplifier 126. The output signal of the amplifier is mixed by a mixer 128 with the signal produced by the LO synthesizer 114 to create an intermediate frequency signal that is filtered by a filter 130 and amplified as necessary by an amplifier 132. The amplified signal is mixed in a mixer 134 with the signal produced by the transmitter

synthesizer 110 to create another intermediate frequency signal that is filtered by a filter 136. The final output signal is provided to the transmitter module 102. In the preferred embodiment, the output is a signal in the about 5 GHz range.

5 A receiver IF processor 138 operates in a similar matter to the transmitter IF processor 124, except to reduce frequencies. As shown in Figure 8, signals received by microwave transmission are provided from the receiver module 104, at about 5 GHz in the preferred embodiment. The input signals are amplified as necessary by an amplifier 140. The output of the amplifier 10 is filtered by a filter 142 and then mixed in a mixer 144 with the output signal of the receiver synthesizer 112. The mixed signal is amplified by an amplifier 146, filtered by a filter 148, and mixed with the output signal of the LO synthesizer 114 by a mixer 150. The mixed signal is filtered by a filter 152 and amplified by an amplifier 154. In the preferred embodiment, the 15 output is a signal in the 70 MHz range and is fed to the signal processing unit 22 over the cable 38.

All of the components and of the IF processors 124 and 138 are available commercially or known. In a prototype embodiment of the invention, the amplifiers are preferably RF2304 amplifiers made by RF Microdevices, the 20 filters are ceramic resonator filters made by Lark Engineering, and the mixers are doubly balanced mixers made by RF Prime. These components are placed on the circuit board of the IF processor card 100 mounted within the housing 62 and interconnected in the manner illustrated.

Figure 9 illustrates the components of the microwave transmitter module 102. A mixing signal is generated by providing a transmitter LO input 160 from the transmitter synthesizer 110. In the preferred embodiment, the transmitter LO input 160 is about 3.5-3.9 GHz. The transmitter LO input 160 is amplified as necessary by an amplifier 162, frequency multiplied by an integer factor, 3 in the preferred embodiment, by a frequency multiplier 164, 25 filtered to remove undesired frequency components by a harmonic filter 166, amplified as necessary by an amplifier 168, again frequency multiplied by an integer factor, 3 in the preferred embodiment, by a frequency multiplier 170, 30 amplified as necessary by an amplifier 172, and again filtered to remove

undesired frequency components by a harmonic filter 174. In the preferred embodiment, the output of the harmonic filter 174 is at about 32 GHz.

A transmitter IF input 176 is supplied from the transmitter IF processor as the output of the filter 138, at about 5 GHz in the preferred embodiment.

- 5 This input signal 176 is mixed with the output of the harmonic filter 174 in a mixer 180, filtered to remove sideband components in a filter 182, amplified as necessary by an amplifier 184, again sideband filtered in a filter 186, amplified as necessary by an amplifier 188, and frequency filtered by a filter 190 to obtain a single-frequency output signal that is provided as an input to
- 10 the diplexer 106. In the preferred embodiment, the output of the filter 190 is selectable within the range of 37-40 GHz.

The microwave receiver module 104, illustrated in Figure 10, operates in a similar fashion to the microwave transmitter module. A receiver LO input 200 generated by the receiver synthesizer 112 is amplified as necessary by an

- 15 amplifier 202, frequency multiplied by a constant integer, 3 in the preferred embodiment, by a frequency multiplier 204, filtered to remove frequency components other than that desired by a harmonic filter 206, again amplified as necessary by an amplifier 208, again frequency multiplied by a constant integer, 3 in the preferred embodiment, by a frequency multiplier 210,
- 20 amplified as necessary by an amplifier 212, and again filtered to remove frequency components other than that desired by a harmonic filter 214. In the preferred embodiment, the receiver LO input 200 is at about 3.5-3.9 GHz, and the output of the harmonic filter 214 is at about 32 GHz.

- 25 A receiver input 216 is received from the diplexer 106. In a preferred embodiment, the receiver input 216 is at about 37-40 GHz. That signal is amplified as necessary by an amplifier 218, image filtered by a filter 220 to remove image components (at 27-30 GHz in the preferred embodiment), and mixed with the output signal of the harmonic filter 214 in a mixer 222. The output signal of the mixer 222 is at a frequency that is the difference between
- 30 that of the input signal 216 and the mixing signal output from the harmonic filter 214, in the preferred case about 5 GHz. This signal is amplified as necessary by an amplifier 224 and supplied as the input 48 to the receiver IF processor 140.

The transmitter module 102, the receiver module 104, and the diplexer 106 are implemented using monolithic microwave integrated circuit (MMIC) architecture. This integrated circuit approach for microwave circuits and its processing procedures are known generally in the art for other applications and 5 are described, for example, George Vendelin, "Microwave Circuit Design Using Linear and Nonlinear Techniques", John Wiley, 1990. US Patents 4,837,530; 4,890,077; 4,947,136; and 5,319,329, whose disclosures are incorporated by reference, describe the use of MMIC techniques. Commercial components using MMIC technology are available, such as various amplifiers made by 10 Alpha Industries. In this approach, the components of Figures 9 and 10 are fabricated as thin-film elements, preferably based on gallium-arsenide technology, separated by trace-type waveguides rather than conventional hollow or stripline waveguides.

Figure 11, which is schematic and not drawn to scale, illustrates the 15 mounting of a conventional radio frequency unit 80 and its antenna 82, connected by their microwave feed 84, on a mast 86. Also shown is an integrated radio frequency unit/antenna 60 of the invention. The integrated radio frequency unit/antenna 60 has a mounting bracket 88 attached to one of the exterior walls 64 other than the one to which the integrated flat antenna 68 20 is attached, and the mounting bracket permits straightforward adjustable attachment to the mast 86. It is apparent that the approach of the invention is much more convenient for installation and alignment than the conventional approach. The integrated radio frequency unit/antenna 60 can also be mounted 25 in locations and places which are largely not usable with the conventional device. For example, the integrated radio frequency unit/antenna 60 is readily mounted to a window frame in much the same manner as a room air conditioner.

The inventors have developed a prototype design for the integrated radio 30 frequency unit/antenna 60, shown in Figures 3-5, for operation at a microwave frequency of 37-40 GHz, using the approach of the invention. The flat antenna has a width W of about 10-1/2 inches, a length L of about 10-1/2 inches, and a thickness T_A of about 1 inch. The remaining components, the microwave transceiver 40, controller 42, and power supply 44 fit into a housing having the

same length and width, and a thickness T_B of about 2 inches. The total size of the housing and antenna package is about 12 inches by 12 inches by 3 inches. The weight of the integrated radio frequency unit/antenna 60 is about 13 pounds. It is desirable that the weight of the radio frequency unit/antenna 5 be less than about 15 pounds, so as to be readily lifted and handled by an installer.

Although a particular embodiment of the invention has been described in detail for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the invention. 10 Accordingly, the invention is not to be limited except as by the appended claims.

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
44100
44101
44102
44103
44104
44105
44106
44107
44108
44109
44110
44111
44112
44113
44114
44115
44116
44117
44118
44119
44120
44121
44122
44123
44124
44125
44126
44127
44128
44129
44130
44131
44132
44133
44134
44135
44136
44137
44138
44139
44140
44141
44142
44143
44144
44145
44146
44147
44148
44149
44150
44151
44152
44153
44154
44155
44156
44157
44158
44159
44160
44161
44162
44163
44164
44165
44166
44167
44168
44169
44170
44171
44172
44173
44174
44175
44176
44177
44178
44179
44180
44181
44182
44183
44184
44185
44186
44187
44188
44189
44190
44191
44192
44193
44194
44195
44196
44197
44198
44199
44200
44201
44202
44203
44204
44205
44206
44207
44208
44209
44210
44211
44212
44213
44214
44215
44216
44217
44218
44219
44220
44221
44222
44223
44224
44225
44226
44227
44228
44229
44230
44231
44232
44233
44234
44235
44236
44237
44238
44239
44240
44241
44242
44243
44244
44245
44246
44247
44248
44249
44250
44251
44252
44253
44254
44255
44256
44257
44258
44259
44260
44261
44262
44263
44264
44265
44266
44267
44268
44269
44270
44271
44272
44273
44274
44275
44276
44277
44278
44279
44280
44281
44282
44283
44284
44285
44286
44287
44288
44289
44290
44291
44292
44293
44294
44295
44296
44297
44298
44299
44300
44301
44302
44303
44304
44305
44306
44307
44308
44309
44310
44311
44312
44313
44314
44315
44316
44317
44318
44319
44320
44321
44322
44323
44324
44325
44326
44327
44328
44329
44330
44331
44332
44333
44334
44335
44336
44337
44338
44339
44340
44341
44342
44343
44344
44345
44346
44347
44348
44349
44350
44351
44352
44353
44354
44355
44356
44357
44358
44359
44360
44361
44362
44363
44364
44365
44366
44367
44368
44369
44370
44371
44372
44373
44374
44375
44376
44377
44378
44379
44380
44381
44382
44383
44384
44385
44386
44387
44388
44389
44390
44391
44392
44393
44394
44395
44396
44397
44398
44399
44400
44401
44402
44403
44404
44405
44406
44407
44408
44409
44410
44411
44412
44413
44414
44415
44416
44417
44418
44419
44420
44421
44422
44423
44424
44425
44426
44427
44428
44429
44430
44431
44432
44433
44434
44435
44436
44437
44438
44439
44440
44441
44442
44443
44444
44445
44446
44447
44448
44449
44450
44451
44452
44453
44454
44455
44456
44457
44458
44459
44460
44461
44462
44463
44464
44465
44466
44467
44468
44469
44470
44471
44472
44473
44474
44475
44476
44477
44478
44479
44480
44481
44482
44483
44484
44485
44486
44487
44488
44489
44490
44491
44492
44493
44494
44495
44496
44497
44498
44499
44500
44501
44502
44503
44504
44505
44506
44507
44508
44509
44510
44511
44512
44513
44514
44515
44516
44517
44518
44519
44520
44521
44522
44523
44524
44525
44526
44527
44528
44529
44530
44531
44532
44533
44534
44535
44536
44537
44538
44539
44540
44541
44542
44543
44544
44545
44546
44547
44548
44549
44550
44551
44552
44553
44554
44555
44556
44557
44558
44559
44560
44561
44562
44563
44564
44565
44566
44567
44568
44569
44570
44571
44572
44573
44574
44575
44576
44577
44578
44579
44580
44581
44582
44583
44584
44585
44586
44587
44588
44589
44590
44591
44592
44593
44594
44595
44596
44597
44598
44599
44600
44601
44602
44603
44604
44605
44606
44607
44608
44609
44610
44611
44612
44613
44614
44615
44616
44617
44618
44619
44620
44621
44622
44623
44624
44625
44626
44627
44628
44629
44630
44631
44632
44633
44634
44635
44636
44637
44638
44639
44640
44641
44642
44643
44644
44645
44646
44647
44648
44649
44650
44651
44652
44653
44654
44655
44656
44657
44658
44659
44660
44661
44662
44663
44664
44665
44666
44667
44668
44669
44670
44671
44672
44673
44674
44675
44676
44677
44678
44679
44680
44681
44682
44683
44684
44685
44686
44687
44688
44689
44690
44691
44692
44693
44694
44695
44696
44697
44698
44699
44700
44701
44702
44703
44704
44705
44706
44707
44708
44709
44710
44711
44712
44713
44714
44715
44716
44717
44718
44719
44720
44721
44722
44723
44724
44725
44726
44727
44728
44729
44730
44731
44732
44733
44734
44735
44736
44737
44738
44739
44740
44741
44742
44743
44744
44745
44746
44747
44748
44749
44750
44751
44752
44753
44754
44755
44756
44757
44758
44759
44760
44761
44762
44763
44764
44765
44766
44767
44768
44769
44770
44771
44772
44773
44774
44775
44776
44777
44778
44779
44780
44781
44782
44783
44784
44785
44786
44787
44788
44789
44790
44791
44792
44793
44794
44795
44796
44797
44798
44799
44800
44801
44802
44803
44804
44805
44806
44807
44808
44809
44810
44811
44812
44813
44814
44815
44816
44817
44818
44819
44820
44821
44822
44823
44824
44825
44826
44827
44828
44829
44830
44831
44832
44833
44834
44835
44836
44837
44838
44839
44840
44841
44842
44843
44844
44845
44846
44847
44848
44849
44850
44851
44852
44853
44854
44855
44856
44857
44858
44859
44860
44861
44862
44863
44864
44865
44866
44867
44868
44869
44870
44871
44872
44873
44874
44875
44876
44877
44878
44879
44880
44881
44882
44883
44884
44885
44886
44887
44888
44889
44890
44891
44892
44893
44894
44895
44896
44897
44898
44899
44900
44901
44902
44903
44904
44905
44906
44907
44908
44909
44910
44911
44912
44913
44914
44915
44916
44917
44918
44919
44920
44921
44922
44923
44924
44925
44926
44927
44928
44929
44930
44931
44932
44933
44934
44935
44936
44937
44938
44939
44940
44941
44942
44943
44944
44945
44946
44947
44948
44949
44950
44951
44952
44953
44954
44955
44956
44957
44958
44959
44960
44961
44962
44963
44964
44965
44966
44967
44968
44969
44970
44971
44972
44973
44974
44975
44976
44977
44978
44979
44980
44981
44982
44983
44984
44985
44986
44987
44988
44989
44990
44991
44992
44993
44994
44995
44996
44997
44998
44999
441000
441001
441002
441003
441004
441005
441006
441007
441008
441009
441010
441011
441012
441013
441014
441015
441016
441017
441018
441019
441020
441021
441022
441023
441024
441025
441026
441027
441028
441029
441030
441031
441032
441033
441034
441035
441036
441037
441038
441039
441040
441041
441042
441043
441044
441045
441046
441047
441048
441049
441050
441051
441052
441053
441054
441055
441056
441057
441058
441059
441060
441061
441062
441063
441064
441065
441066
441067
441068
441069
441070
441071
441072
441073
441074
441075
441076
441077
441078
441079
441080
441081
441082
441083
441084
441085
441086
441087
441088
441089
441090
441091
441092
441093
441094
441095
441096
441097
441098
441099
441100
441101
441102
441103
441104
441105
441106
441107
441108
441109
441110
441111
441112
441113
441114
441115
441116
441117
441118
441119
441120
441121
441122
441123
441124
441125
441126
441127
441128
441129
441130
441131
441132
441133
441134
441135
441136
441137
441138
441139
441140
441141
441142
441143
441144
441145
441146
441147
441148
441149
441150
441151
441152
441153
441154
441155
441156
441157
441158
441159
441160
441161
441162
441163
441164
441165
441166
441167
441168
441169
441170
441171
441172
441173
441174
441175
441176
441177
441178
441179
441180
441181
441182
441183
441184
441185
441186
441187
441188
441189
441190
441191
441192
441193
441194
441195
441196
441197
441198
441199
441200
441201
441202
441203
441204
441205
441206
441207
441208
441209
441210
441211
441212
441213
441214
441215
441216
441217
441218
441219
441220
441221
441222
441223
441224
441225
441226
441227
441228
441229
441230
441231
441232
441233
441234
441235
441236
441237
441238
441239
441240
441241
441242
441243
441244
441245
441246
441247
441248
441249
441250
441251
441252
441253
441254
441255
441256
441257
441258
441259
441260
441261
441262
441263
441264
441265
441266
441267
441268
441269
441270
441271
441272
441273
441274
441275
441276
441277
441278
441279
441280
441281
441282
441283
441284
441285
441286
441287
441288
441289
441290
441291
441292
441293
441294
441295
441296
441297
441298
441299
441300
441301
441302
441303
441304
441305
441306
441307
441308
441309
441310
441311
441312
441313
441314
441315
441316
441317
441318
441

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. An integrated point-to-point microwave radio frequency unit/antenna, comprising:
 - a housing;
 - 5 a microwave antenna which is adapted to form a part of a wall of the housing and having an antenna input/output feed contained entirely within the housing; and
 - 10 a microwave radio frequency transceiver electronics package within the housing, the transceiver electronics package comprising:
 - a transmitter intermediate frequency processor having a baseband-frequency input and a microwave output,
 - 15 a receiver intermediate frequency processor having a microwave input and a baseband-frequency output, a microwave transmitter having a monolithic microwave integrated circuit architecture, the microwave transmitter having an input in communication with the
 - 20 microwave output of the transmitter intermediate frequency processor and an output in microwave communication with the antenna input/output feed and
 - 25 a microwave receiver having a monolithic microwave integrated circuit architecture, the microwave receiver having an input in communication with the antenna input/output feed and an output in microwave communication with the microwave input of the receiver intermediate frequency processor.
2. The integrated point-to-point microwave radio frequency unit/antenna of claim 1, further including:
 - a microwave diplexer having a monolithic microwave integrated circuit architecture, the microwave diplexer having as an input/output the antenna input/output feed, as an input the output of the microwave transmitter,
 - 35 and as an output the input of the microwave receiver.

3. The integrated point-to-point microwave radio frequency unit/antenna of claim 1, further including: a power supply within the housing, the power supply having power leads

卷之三

to the transmitter intermediate frequency processor, the receiver intermediate frequency processor, the microwave transmitter, and the microwave receiver.

4. The integrated point-to-point microwave radio frequency unit/antenna of claim 1, further including:

a controller within the housing, the controller being in communication with the transmitter intermediate frequency processor, the receiver intermediate

5 frequency processor, the microwave transmitter, and the microwave receiver.

5. The integrated point-to-point microwave radio frequency unit/antenna of claim 1, wherein the transmitter intermediate frequency processor comprises

5 at least one frequency mixer operable to increase the frequency of the baseband frequency input,

at least one filter in series with the frequency mixer, and

at least one amplifier in series with the filter.

6. The integrated point-to-point microwave radio frequency unit/antenna of claim 1, wherein the receiver intermediate frequency processor comprises

5 at least one frequency mixer operable to decrease the frequency of the microwave input,

at least one filter in series with the frequency mixer, and

at least one amplifier in series with the filter.

7. The integrated point-to-point microwave radio frequency unit/antenna of claim 1, wherein the microwave transmitter comprises

at least one frequency mixer operable to increase the frequency of the microwave output of the transmitter intermediate frequency processor,

5 at least one filter in series with the frequency mixer, and
at least one amplifier in series with the filter.

8. The integrated point-to-point microwave radio frequency unit/antenna of claim 1, wherein the microwave receiver comprises

at least one frequency mixer operable to decrease the frequency of the antenna input/output feed,

at least one filter in series with the frequency mixer, and

5 at least one amplifier in series with the filter.

9. The integrated point-to-point microwave radio frequency unit/antenna of claim 1, wherein the housing has a size of no more than about 12 inches by 12 inches by about 3 inches.

10 10. The integrated point-to-point microwave radio frequency unit/antenna of claim 1, wherein the housing, the antenna, and the electronics package together weigh less than about 15 pounds.

11. The integrated point-to-point microwave 15 radio frequency unit/antenna of claim 1, wherein the microwave transmitter is operable to transmit at a first microwave frequency and the microwave receiver is operable to receive a second microwave frequency different from the first microwave frequency.

20 12. An integrated point-to-point microwave radio frequency unit/antenna, comprising:

a housing having a front face;
a microwave antenna affixed to, integral with, and forming a portion of the front face of the housing and 25 having an antenna input/output feed contained entirely within the housing;

a microwave diplexer within the housing and having a monolithic microwave integrated circuit architecture, the microwave diplexer having as an 30 input/output the antenna input/output feed, a microwave transmitter input, and a microwave receiver output;

a microwave radio frequency transceiver electronics package within the housing, the transceiver electronics package comprising

35 a transmitter intermediate frequency processor having a baseband-frequency input and a microwave output and,

a receiver intermediate frequency processor having a microwave input and a baseband-frequency output;

a microwave transmitter having a monolithic microwave integrated circuit architecture, the microwave

5 transmitter having an input in communication with the microwave output of the transmitter intermediate frequency processor and an output in microwave communication with the microwave transmitter input of the microwave diplexer;

10 a microwave receiver having a monolithic microwave integrated circuit architecture, the microwave receiver having an input in communication with the antenna input/output feed and an output in microwave communication with the microwave receiver input of the microwave diplexer;

15 a power supply within the housing, the power supply having power leads to the circuit board, the microwave transmitter, and the microwave receiver, and a controller within the housing, the controller being in communication with the circuit board, 20 the microwave transmitter, and the microwave receiver.

13. An integrated point-to-point microwave radio frequency unit/antenna substantially as herein before described with reference to the accompanying drawings excluding figure 2.

25 Dated this 13th day of June 2000

RAYTHEON COMPANY

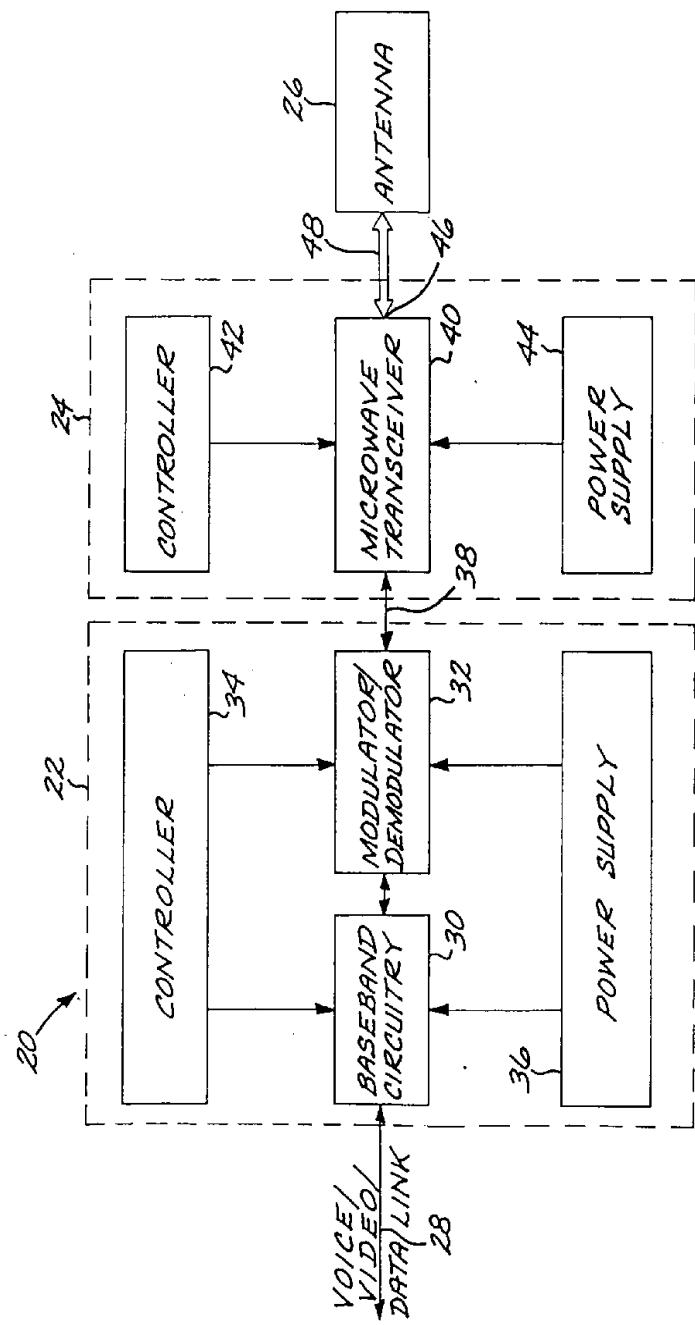
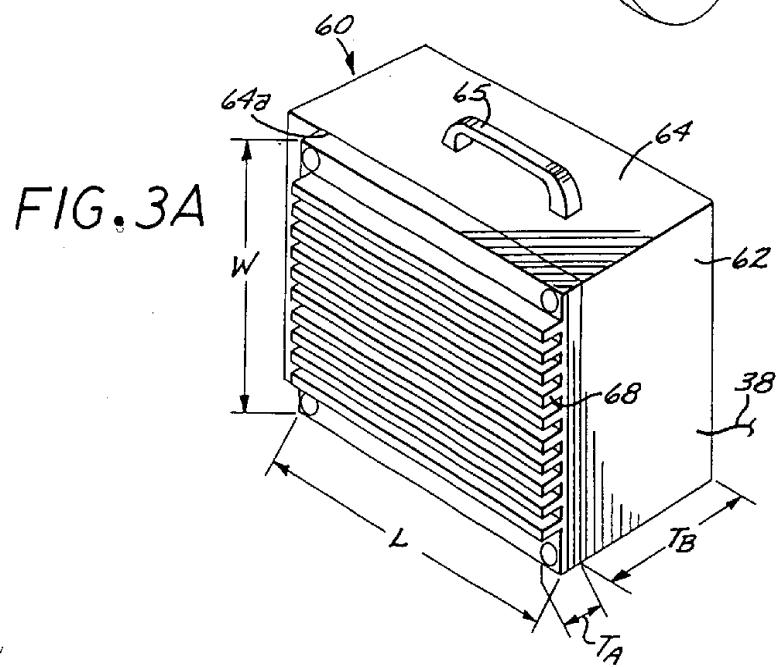
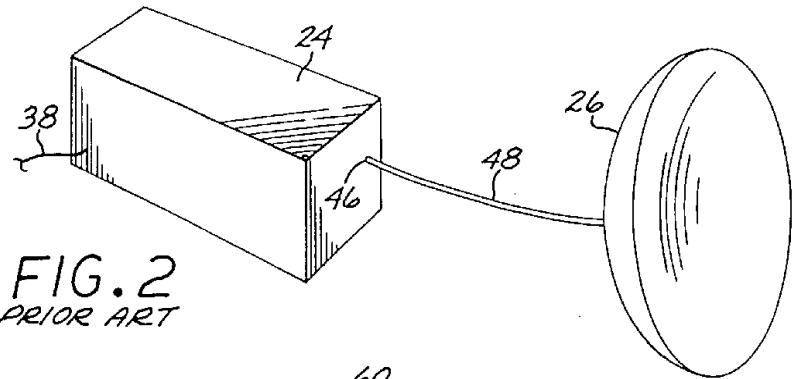
By their Patent Attorneys

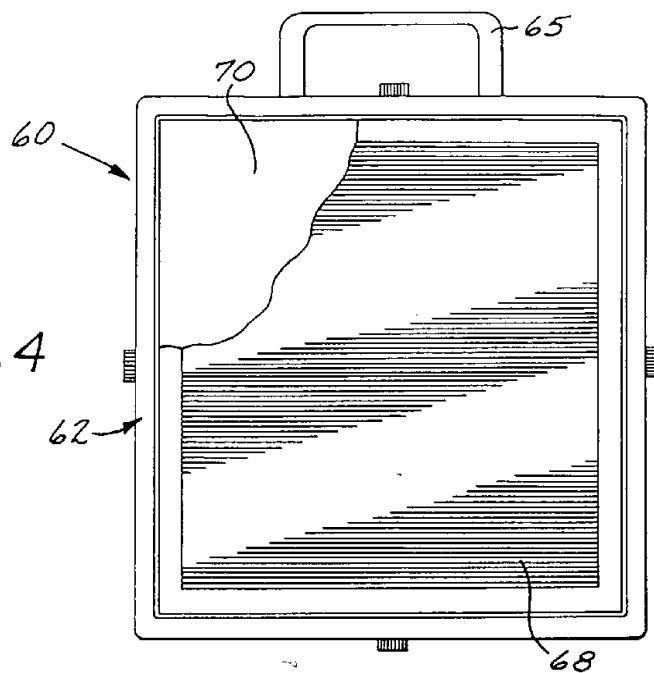
GRIFFITH HACK

30 Fellows Institute of Patent and
Trade Mark Attorneys of Australia

卷之三

1/8


FIG. I

218

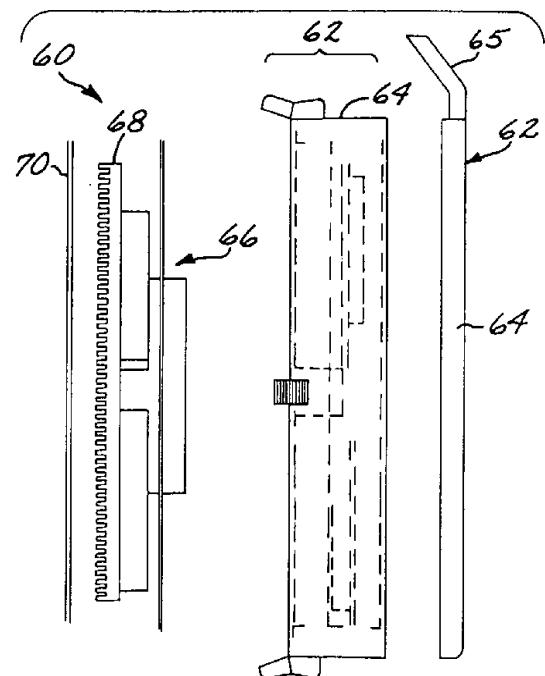

3/8

FIG. 4

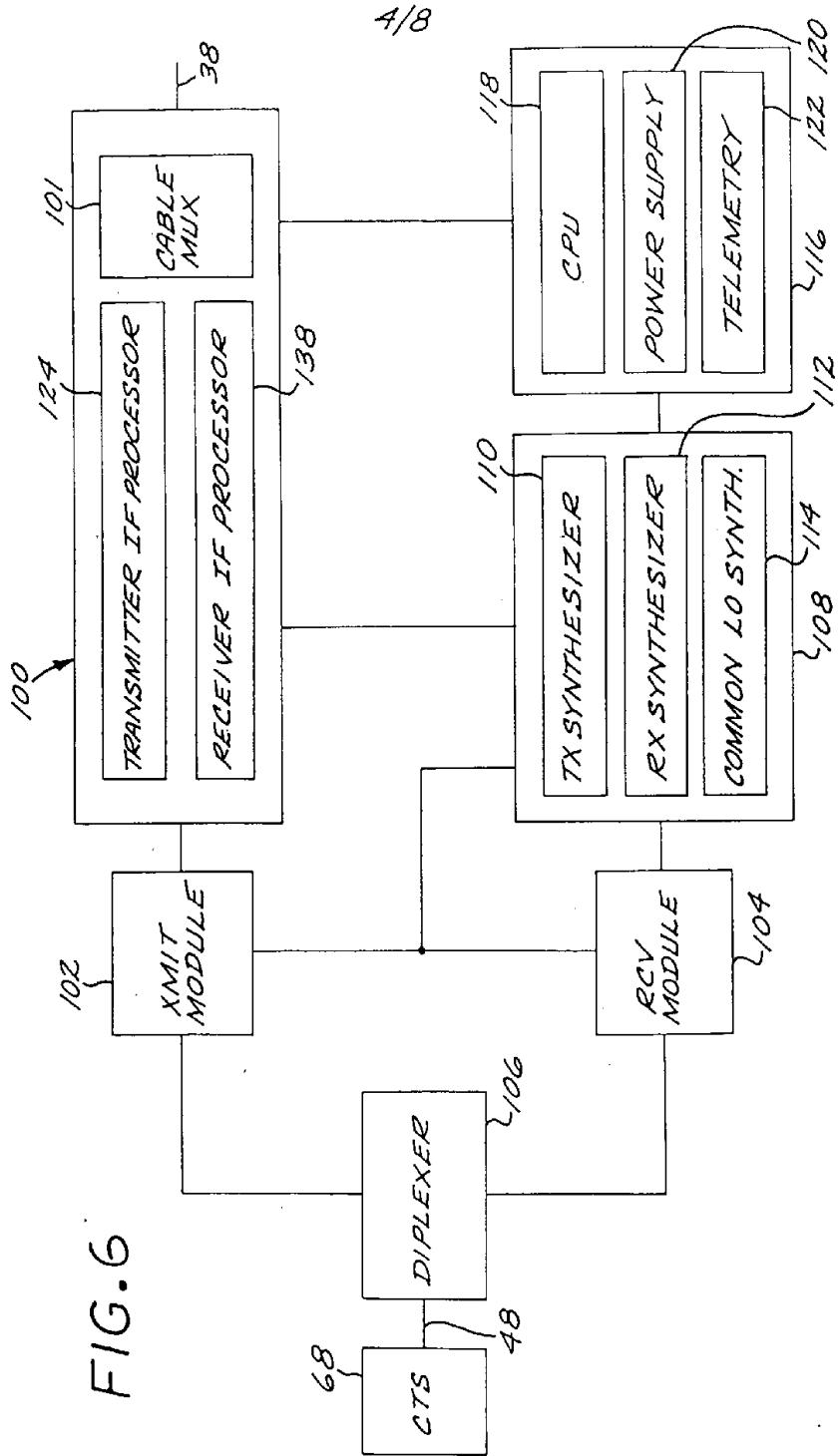

10
9
8
7
6
5
4
3
2

FIG. 5

100 102 104 106 108 110 112 114 116 118 120

FIG. 6

115 116 117 118 119

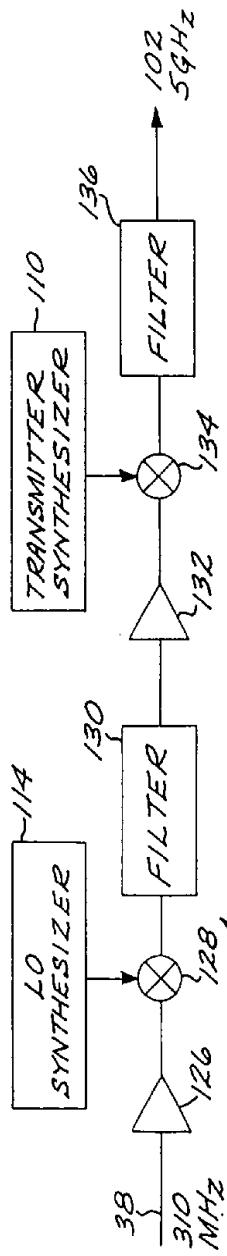


FIG. 7

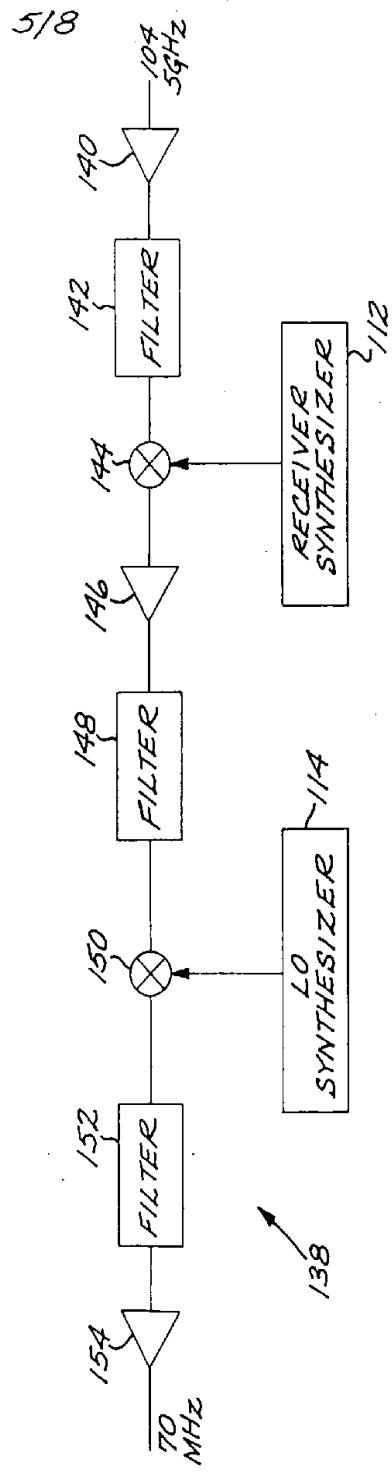


FIG. 8

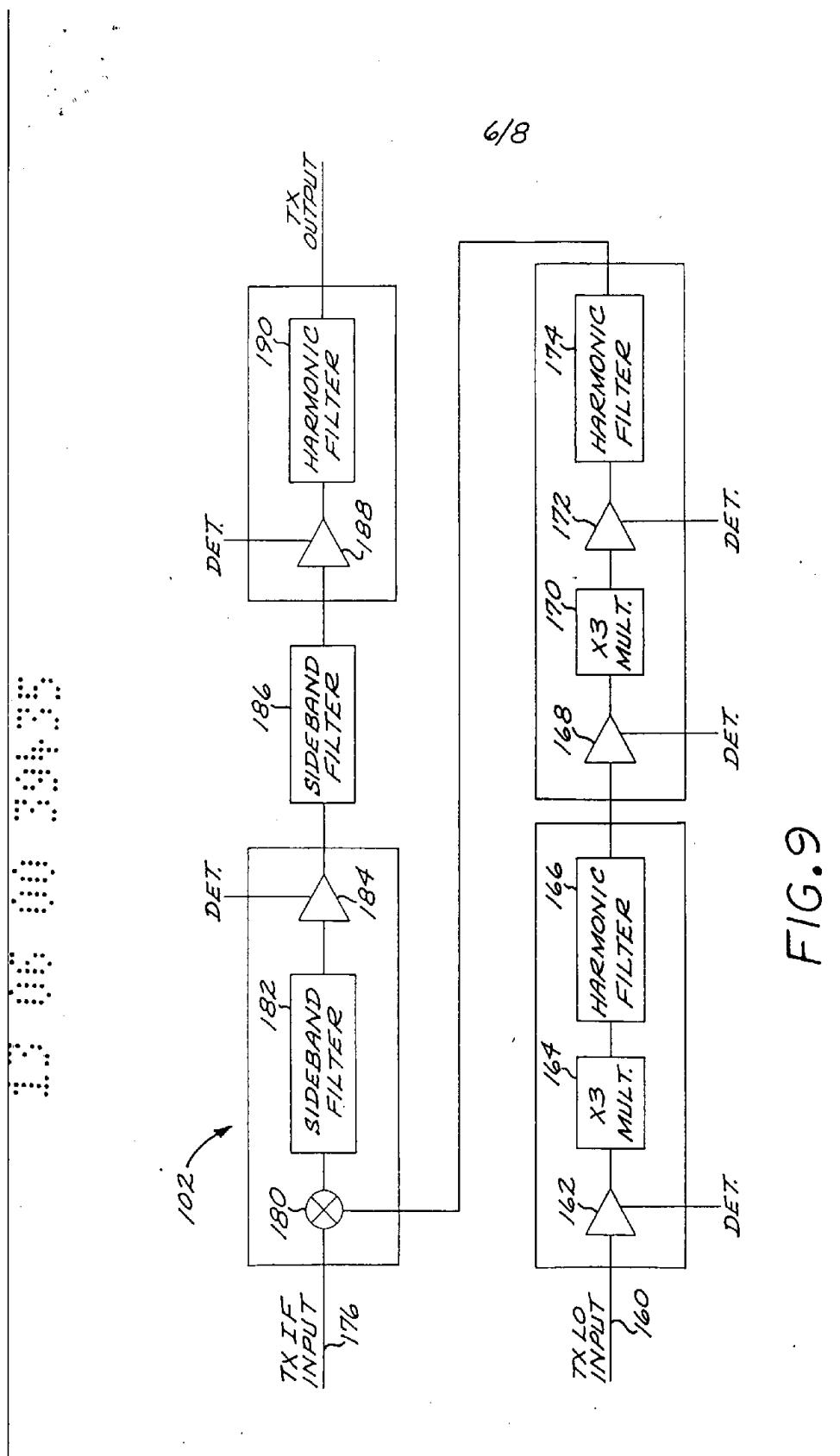


FIG. 9

104 100 100 734 36

7/8

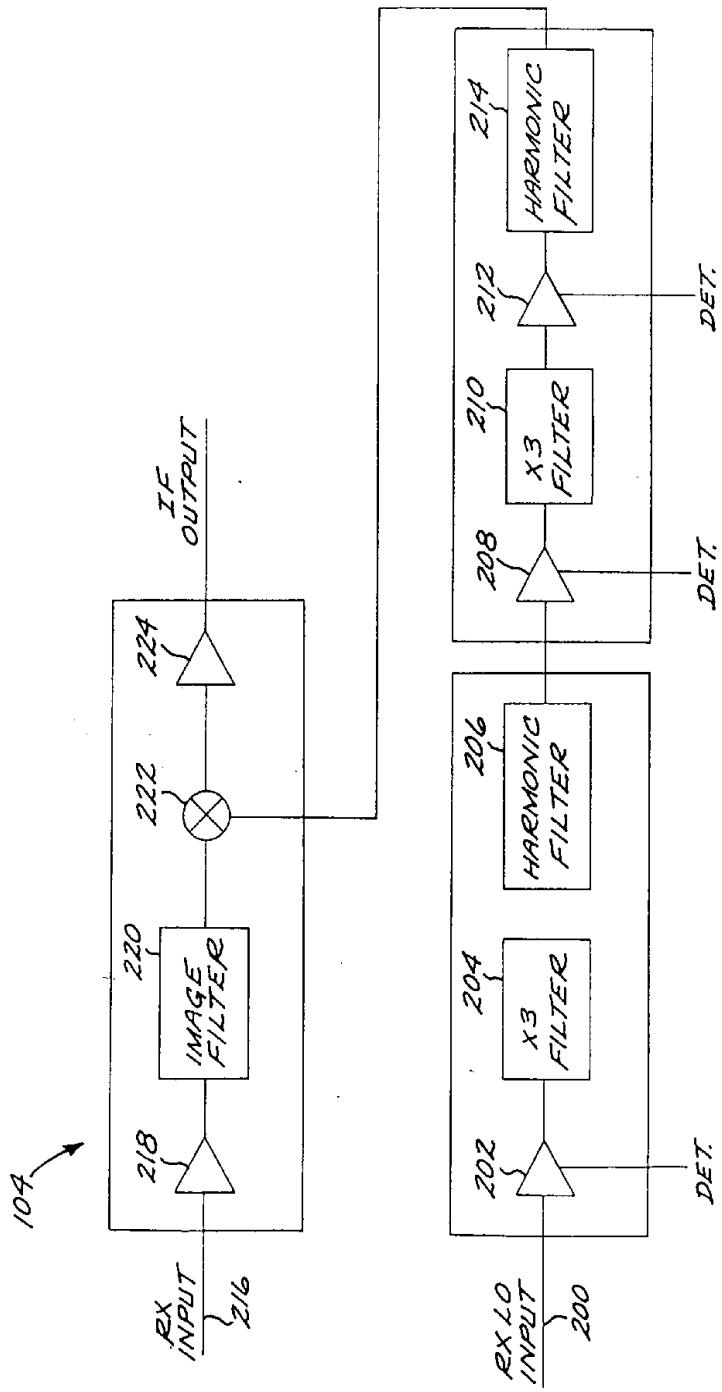


FIG. 10

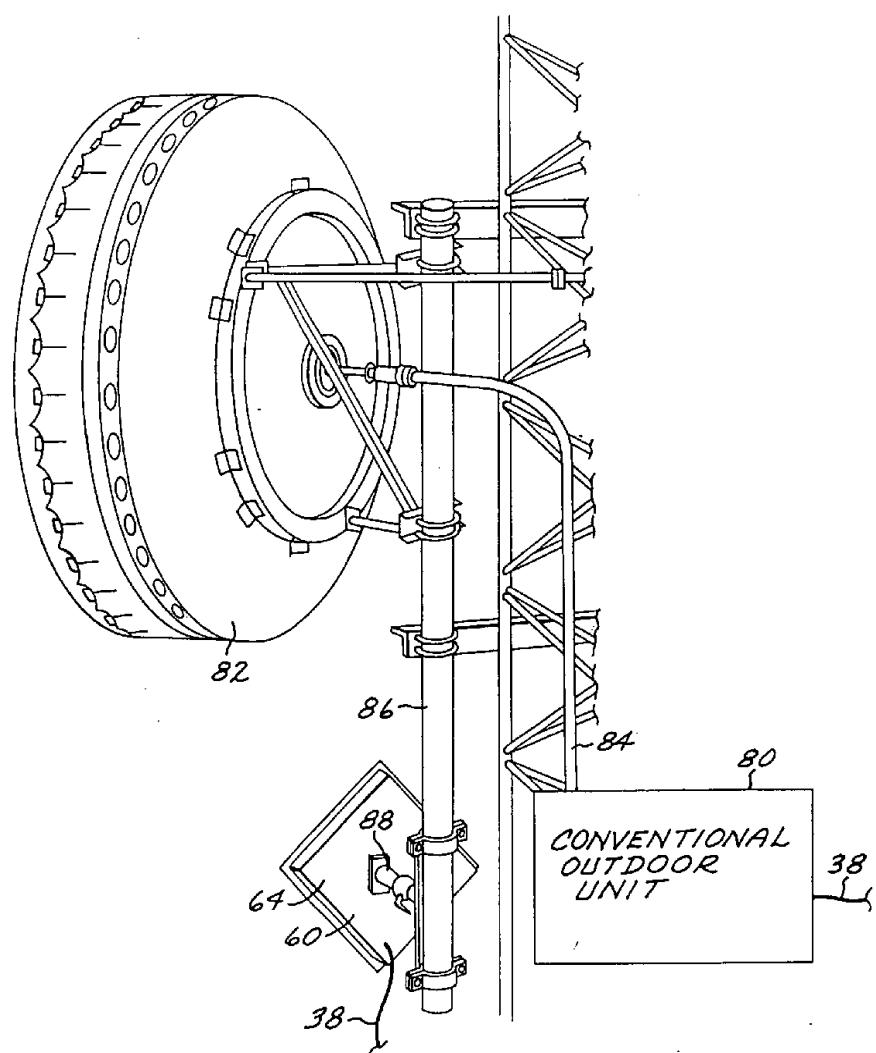


FIG. 11