07/044388 A2 |0 00 0O OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
19 April 2007 (19.04.2007)

PO

(10) International Publication Number

WO 2007/044388 A2

(51) International Patent Classification:
GOG6F 12/14 (2006.01)

(21) International Application Number:
PCT/US2006/038768
(22) International Filing Date: 4 October 2006 (04.10.2006)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
60/723,726
11/537,900

Us
Us

4 October 2005 (04.10.2005)
2 October 2006 (02.10.2006)

(71) Applicant (for all designated States except US): EEYE
DIGITAL SECURITY [US/US]; 1 Columbia, Suite 100,
Aliso Viejo, California 92656 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): COPLEY, Drew
[US/US]; 19 Edmonton Place, Aliso Viejo, California
92656 (US).

(74) Agent: COUSINS, Clifford, G.; MACPHERSON
KWOK CHEN & HEID LLP, 2033 Gateway Place, Suite
400, San Jose, California 95110 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ,
NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU,
SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: COMPUTER BEHAVIORAL MANAGEMENT USING HEURISTIC ANALYSIS

PRE-EXECUTION BEHAVIOR MANAGEMENT FLOW

106

r 102 s 104 e CUTABL
SELECT ANALYZE THE FILE FOR BEFAVI 013 o E >
AFILE AN EXECUTABLE UND?
BEHAVIOR
120 | Y
122
__ — 1" =
i 108 112 ;
: W(IDTOI-I;A 15 WHI%EZ[%IFSI{: %F APE{LCI;:\}ZD? ENABLE EXECUTION OF ' :
APPROVED FILES ? THE APPROVED FILE | !
[114 118 ‘
: COMPARE THE DISABLE EXECUTION OF| |
: EXECUTABLE THE FILE IF THE :
: BEHAVIOR WITH A LIST BEHAVIOR IS EXECUTABLE :
: OF PROHIBITED PROHIBITED? '"| BEHAVIORISONTHE | !
' BEHAVIORS | | | PROHIBITED BEHAVIOR | |
{ LIST :
100 /

& (57) Abstract: In accordance with an embodiment of the present invention, a method of managing computer process execution may
include selecting a computer file prior to execution of the computer file, analyzing the selected computer file to determine at least one
executable behavior, identifying the analyzed computer file as one of harmful or harmless, and disposing of the identified computer
file as one of executable or non-executable, where the selected computer file is disposed as non-executable when the selected file is

=
=

identified as harmful.

10

15

20

25

WO 2007/044388 PCT/US2006/038768

COMPUTER BEHAVIORAL MANAGEMENT USING HEURISTIC ANALYSTS

CROSS-REFERENCE TO RELATED APPLICATION

This application relies for priority upon a Provisional
Patent Application No. 60/723,726 filed in the United States
Patent and Trademark Office, on October 4, 2005, the entire

content of which is incorporated by reference.

TECHNICAL FIELD

The present invention relates to computer systems, and
more particularly to behavioral management of computer

processes.

BACKGROUND

The proliferation of computer viruses and other
malevolent software (malware) has increased dramatically in
recent years. A primary fault of traditional anti-virus
software has been that generally it has relied almost
exclusively on the detection of static, binary signatures.
Generic attempts to protect against both known and unknown
malicious files have included the use of an "API Firewall" or
an "Application Firewall". Such systems are typically
designed to hook into the underlying Operating System so that
when behaviors are called by an executing process those
behaviors are then compared against a database of rules, in a
variety of ways, to determine whether or not such a file
should be allowed to run. Application Firewalls geherally
operate in a network environment by examining server and
client process calls.

Firewall systems tend to introduce a large number of
false positives, or false alarms, which then may have to be

manually examined by a human operator. This manual step

1

10

15

20

25

30

WO 2007/044388 PCT/US2006/038768

introduces the possibility that true alarms may escape
detection because of the proliferation of false alarms.
Further, systems that perform anti-malicious related
activities such as logging often introduce corrective or
preventive measures against legitimate file execution. While
sorting through the false alarms, the sudden consumption of
system resources, such as central processing unit (CPU) and
memory bandwidth, can also introduce a wide range of problems
including increased response time, halting of important
services, interruption to essential sefvicesL and so forth.
In spite of the high cost of detection by a firewall system,
there are several ways malicious executables may evade an
active inspection. For example, a malicious executable may
perform certain operations that access non-traditional APIs
and bypass the regular APIs entirely. In this manner, the
malicious executables will not be stopped by the firewall
since all of these systems operate after the offending
process has already been executed.

Another attempt to protect against unknown malicious
files includes the underlying Access Control System of the OS
itself, as defined by the Department of Defense (DoD)
publication “Trusted Computer System Evaluation Criteria™,
also known as the "Orange Book Standard". 1In fact, a
"Privilege Mahagement System" (PMS) and a Access Control
System (ACS) are largely synonymous, with the exception that
an ACS implies, by DoD definition, a more abstract control
system then the level at which the BMS operates. The BMS is
not an Access Control System, but rather it is designed to
complement a type of Access Control System called a
"Discretionary Access Control” (DAC) System, in contrast to a
Mandatory Access Control (MAC) framework. In a DAC system,
any user with access can propagate information. In a MAC
system, an administrator can restrict propagation. Most

2

10

15

20

25

30

WO 2007/044388 PCT/US2006/038768

modern Operating Systems are rated as DAC systems, which
means that a user can adjust the level of access on the
system, as opposed to a system where access is granted or
denied apart from the granular user. In a more secure OS,
you may see a MAC system employed. In these systems, the
user cannot define how some resources or information might be
accessed.

In the BMS, the 0S underlying the Access Control System
is typically modified to include new capabilities at a more
granular level. For example, a DAC system can utilize Access
Control Lists (ACLs) that apply to objects on a system and
which define access by user for that object. These types of
behaviors may therefore be defined, for instance: to Read,
Write, Create, Execute, Modify, Delete, and/or Rename. The
BMS may include an additional layer which may be activated on
a mandatory level. This provides all users, as so defined by
the System though editable on an administrative level, the
further granularity to ensure that an application which has
the capability, for instance, to access a remote resource on
a network device may not be run. The BMS need not,
therefore, stop an application from performing this action
when it attempts to do so. 1Instead, the BMS may stop the
application from running in the first place because it was
ascertained that it has this inherent capability wifhin
itself to do this. The motivation for this is because in
such a Discretionary System many attacks are possible which
allow for the "discretion™ of the user to be surmounted by a
malicious process improperly taking control of privileges it
should not have control of. Further, a corrupt user may use
their advanced discretion to subvert the underlying system.
The BMS provides a level of dynamic, mandatory access control

to the 0S8 without forcing the whole system into a MAC type

10

15

20

25

30

WO 2007/044388 PCT/US2006/038768

system which is highly user unfriendly and primarily designed

for classified systems.

SUMMARY

Apparatuses, systems, and methods are disclosed herein
which may provide management of potentially harmful computer
processes in an intelligent, efficient, and cost—-effective
manner.

In accordance with an embodiment of the present
invention, a method of managing computer process execution
may include selecting a computer file prior to execution of
the computer file, analyzing the selected computer file to
determine at least one executable behavior, identifying the
analyzed computer file as one of harmful or harmless, and
disposing of the identified computer file as one of
executable or non-executable, where the identified computer
file is disposed as non-executable when identified as
harmful.

In accordance with another embodiment of the present
invention, a computer readable medium on which is stored a
computer program for executing the following instructions may
include selecting a computer file prior to execution of the
computer file, analyzing the selected computer file to
determine at least one executable behavior, identifying the
analyzed computer filelas one of harmful or harmless, and
disposing of the identified computer file as one of
executable or non-executable, where the identified computer
file is disposed as non-executable when identified as
harmful.

In yet another embodiment of the present invention, a
pre—-execution computer behavioral management system may
include a memory and a processor. The memory is configured

to store and retrieve information. The memory includes a

10

15

20

25

30

WO 2007/044388 PCT/US2006/038768

rule database and at least one selected computer file
containing ét least one file behavior. The rule database
includes at least one prohibited behavior for the computer
file. The processor is configured to execute an algorithm to
compare the unexecuted computer file behavior to the rule
database to determine a match. The processor disables
execution of the selected computer file if the identified
file behavior matches a prohibited behavior in the rule
database. ’ 7

The scope of the present invention is defined by the
claims, which are incorporated into this section by

reference. A more complete understanding of embodiments of

the prééent invention will be afforded to those skilled in

the art, as well as a realization of additional advantages
thereof, by a consideration of the following detailed

description. Reference will be made to the appended sheets

of drawings that will first be described briefly.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows an exemplary pre-execution behavior
management flow, in accordance with an embodiment of the
present invention.

Figure 2 shows an exemplary network cluster including a
computer and a file server that can communicate through an
interconnection network, in accordance with an embodiment of
the present invention.

Figure 3 shows an exemplary computer file containing one
or more behaviors, in accordance with an embodiment of the
present invention.

Figure 4 shows an exemplary rule database containing one

or more prohibited behaviors, in accordance with an

" embodiment of the present invention.

10

15

20

25

30

WO 2007/044388 PCT/US2006/038768

Embodiments of the present invention and their
advantages are best understood by referring to the detailed
description that follows. It should be appreciated that like
reference numerals are used to identify like elements

illustrated in one or more of the figures.

DETATILED DESCRIPTION
Apparatuses, systems and methods are disclosed herein,

in accordance with one or more embodiments of the present

'invention, that may provide for behavioral management of

computer process execution by selectively prohibiting
execution of a file capable of potentially malicious
behaviors found within the file through heuristic analysis.
The disclosed behavioral management system (BMS) may engage
in a heuristic or investigative analysis on a file to
identify what behaviors are enabled within the file. In this
disclosure, any reference to the BMS may be drawn to one or
more embodiments of the present invention. Also, the term
heuristics includes an intelligent process by which defensive
software examines potentially harmful software, termed
malware. Malware can include any type of spying agent
including traditional spyware, adware, and rootkits, for
example.

Since a primary fault of traditional anti-virus software
has been that they have relied almost exclusively on the
detection of static, binary signatures, the traditional
detection methods have removed the intelligence from the
analysis. In this manner, many non-heuristic methods rely on
static, dumb, or blind signatures. Malware files may also be
encrypted, ‘packed, or otherwise obfuscated so as to hide
their true nature or capabilities. A suspect file may need
to be decrypted, unpacked, or both during analysis.

Heuristic modules may be used where each has a specific

6

10

15

20

25

30

WO 2007/044388 PCT/US2006/038768

focus, including an emulation heuristic module configured to
deal with emulation, a static analysis heuristic module
configured to utilize static analysis, and a packed and/or
encrypted file heuristic module configured to deal with
obfuscated files. While emulation is typically more complex
than static analysis, emulation may be more effective and
have a lower risk. Conversely, static analysis offers
advantages both in speed and in discovering anti-emulator
tricks including mollasses code, fuse functionality, and
improper operation code (OP code) handling. Other heuristic
modules may also be used. As a learning or adapting system,
heuristics can reduce false positives, as well as provide
protection against classes of code attacks and families of
malware.

In a selected file, the identified behaviors may be
compared against a rule database that can be managed by a
user or administrator so that particular rules or rule
classes may be enabled or disabled. If a malicious behavior
identified by a rule is found, and that behavior is disabled,
then the file containing the malicious behavior will not be
allowed to execute. In this manner, the malicious behavior
may be identified prior to execution in order to have a
higher capacity for blocking the unwanted behavior.

The BMS is designed to operate separately from an
Operating System's underlying Access Control System and at
the file analysis level instead of at the execution level,
fhereby preventing files with prohibited or harmful
capabilities from being executed, rather then just attempting
to prevent the prohibited capability from being used. This
system may also operate with a checksum white list so that
finer granularity and control may be given to the user or
administrator of the computer system. Typically, the
checksum values are protected cryptographically. A checksum

7

10

15

20

25

30

WO 2007/044388 PCT/US2006/038768

white list is a table for relating the checksum values for
various known-good files with at least one of the name, size,
and location of the known-good file. More generally, a white
listing system can include descriptions of approved
executable files, even if the approved executables include
one or more behaviors that would be prohibited by a rule or
rule class. However, white listing has several limitations
including the difficulty of keeping the white list current.
Another attempt to protect against unknown malicious files
may include the application of a generic, heuristic Anti-
Virus System. Such systems are designed to look at run-time
behaviors and judge files based on these behaviors. Such
systems are designed to automatically analyze files to
ascertain whether or not the file is malicious or harmful.

In the BMS, boundaries are set for the capabilities of files
as found through an investigative analysis of those files to
allow a file to execute or not execute based on whether it
has the potential for malicious behaviors, as so defined by
the administrator of a system.

A Heuristic Anti-Virus (HAV) system typically differs
from a BMS largely in the way they approach "maliciousness".
HAV systems are typically designed to look for maliciousness
that identifies a suspect file as being malicious in a way
similiar to fingerprint signature analysis systems. In this
manner, a suspect file may be determined to be malicious or
harmful if it is similiar to previously identified malicious
files. For example, a HAV system might examine a suspect
file and determine if the suspect file may attempt to scan a
local disk system for email addresses and then attempt to
Create a client to send itself to these email addresses.
This pattern of activity would be considered
characteristically malicious. A BMS is typically not
concerned with making distinctions about behavior based on

8

10

15

20

25

30

WO 2007/044388 PCT/US2006/038768

previous observations of maliciousness in this manner, rather
it allows for administrators to positively say, for instance,
'"do not allow for any executable file to scan the local disk
system for email addresses', or 'do not allow for any
executable to send itself out automatically over email
channels'. .

Using the ubiquitous Disc Operating System (DOS)
filename extension paradigm, systems and methods according to
one oOr more embodiments of the present invention examine
executable code that may be contained within a directly
executable program (*.EXE), a command file containing a
memory image of executable program (*.COM), a Dynamic Linked

Library (*.DLL), system driver file (*.SYS or *.DRV), cabinet

file (*.CAB), a batch file (*.BAT), a binary file, a portable

executable file Windows-32 file (*.EXE or *.SCR) or other
executable file that may be executed either directly by a
user or indirectly by calling out from a process. Executing
processes within an Operating System (0OS) generally depends
on the underlying libraries contained in system files for a
traditional OS. It is possible to hook into the process
calls to these libraries, or the Application Programming
Interface (API), to examine, allow, block, modify, and/oxr
observe the process calls. Other mechanisms may allow
bypassing of the API or a raw execution operation that does
not require the use of APIs. Such mechanisms may be
considered behaviors that are found through a variety of
analysis techniques such as reversing back the raw binary
code to the Assembly Language instruction codes, as in
disassembly, and then comparing the disassembled code pieces
with a database of similar code pieces.

According to one or more embodiments of the present
invention, the systems and methods disclosed herein approach
these problems differently than the previous attempts, by

9

10

15

20

25

30

WO 2007/044388 PCT/US2006/038768

addressing them at the file level rather then at the system
or process call level that may be further configurable by a
rule or class database, where the database may be modified
manually, by executing a script, or through an operator
application. Rather then hooking into the OS or into every
individual process in order to manage API calls, we examine
an executable file for its inherent behaviors and then we
either allow execution of this file or do not allow execution
according to the potential behaviors discerned within the
file. For.example, an Import Table (IT) can be examined to
determine if certain network libraries would be called or
whether they can be called by this file. If an administrator
does not wish for a user to execute any file with such
capabilities then that file will be judged as "unacceptable”

and the file will be denied execution rights and further

- disciplinary action may or may not be taken, such as a

logging of the incident, or a destruction, or containment of
the file in question.

Such systems which define access control based on
whether a file actually performs the action or not are
considered to be behaviorally based and are often referred to

as "System Integrity" (SI) systems, or simply "Access

‘Control" (AC) systems. These SI or AC systems are different

from BMS because these systems require that a suspected
malicious behavior is identified when it attempts to execute
the suspected malicious behavior, as opposed to identifying
the suspected malicious behavior before it can be executed
through static, analytical discovery of the behavior found
within the file.

One motivation for finding hidden behaviors within
suspect files before the suspect file may be executed is
because detection of a malicious behavior at runtimé can
often be difficult to ascertain. There are often many ways

10

10

15

20

25

30

WO 2007/044388 PCT/US2006/038768

to surmount runtime detection systems, and the definition of
"behavior" and particularly "malicious behavior" has become
increasingly subtle. For example, it is not very difficult
to require a system perform a check for privilege anytime a
"delete" behavior is called, but it can be much more
difficult to perform a check for a more complicated behavior
such as 'is a file scanning the system for email addresses'
and intercept that type of behavior before it executes.
Alternatively, a malicious behavior such as 'an executable
file setting up the system to format itself on reboot' might
be a more illuminating behavior a system would want to stop.

In another example, an administrator or user may not
want files to execute that have the capability to more
specifically perform certain behaviors, such as to operate as
a network client or server. Alternatively, the system
administrator may not permit a user to execute files that
have the capability within them to inject into other
processes or read another process's memory oOr in any way spy
or control another process. An administrator may not permit
execufables to overcome, or surmount privilege powers or to
write to disk, write to the registry, or to access the disk
or the registry in certain ways. Systems that operate on the
hooking level cannot prevent behavior that is disguised in
some manner to overcome the protection of said systems, as
discussed above. As described, the BMS may be designed to
supersede the Operating Systems privilege system, enhancing
and further securing its value and thereby inqreasing the
entire security of the system. Unlike the underlying
privilege system of the Operating System, a wider range of
behavioral checks are allowed, which may be expanded by using
a configurable rules database enabling a wide variety of
capabilities that may be used and expanded by a vendor,
administrator, and user of the system.

11

10

15

20

25

30

WO 2007/044388 PCT/US2006/038768

Figure 1 shows a pre-execution behavior management flow
100 that may include one or more of the following operations,
including selecting a file in operation 102, analyzing the
selected file for an executable behavior in operation 104,
and determining whether an executable behavior is found in
the selected file in operation 106. If no executable
behavior is found in operation 106, the result of the
determination is 'N' and flow 100 terminates. However, if an
executable behavior is found in operation 106, the result of
the determination is 'Y' and flow 100 continues with
comparing the selected file with a list of approved files in
operation 108, and determining whether the selected file is
approved in operation 110. When the selected file includes
an executable behavior and is approved, the result of the
determination is 'Y', and flow 100 continues with enabling
the execution of the approved file in operation 112, and flow
100 terminates. However, i1f the selected file is not
approved, the result of thé determination is 'N', and flow
100 continues with comparing the executable behavior with a
list of prohibited behaviors on a prohibited behavior list in
operation 114, and determining if the executable behavior is
prohibited in operation 116.

If the detected behavior is prohibited, the result of
the determination is 'Y', and flow 100 continues with
disabling execution of the selected file in operation 118.
Disabling execution of the selected file may include setting
a do-not-run bit on the file or file record itself, removing
a necessary executable attribute of the selected file,
listing the selected file on a do-no-run list, or some other
mechanism to prevent execution of the selected file. The
detected behavior is prohibited i1f the executable behavior
found in the selected file is found on the prohibited
behavior list. If the detected behavior is not prohibited,

12

10

15

20

25

30

WO 2007/044388 PCT/US2006/038768

the result of the determination is 'No', and flow 100
terminates. Flow 100 can be repeated for any number of
selected files. In this manner, operations 108, 110, 114,
and 116 may be grouped into identifying the analyzed computer
file in operation 120, while operations 112 and 118 may be
grouped into disposing of the identified computer file in
operation 122. 1In general terms, the operations of comparing
the file with a white list of approved file in operation 108
and/or comparing the executable behavior with a list of
prohibited behaviors in operation 114 identifies the selected
file (i.e. provides an identity of the selected file) as
harmful or harmless prior to execution of the selected file.
Similarly, the operations of enabling execution of the

approved file in operation 112 and/or disabling the execution

. of the selected file in operation 118 provides a disposition

of (i.e. disposes of) the selected file as executable or non-
executable. If a selected file is designated as non-
executable, the entire selected file may be non-executable.
Figure 2 shows an exemplary network cluster 200 showing
a computer 202 and a file server 204 that can communicate
through an interconnection network 206, in accordance with an
embodiment of the present invention. Computer 202 may be a
general-purpose computer system such as a desktop, laptop, or
rack-mounted system, and may include a processor 208, a
processor memory 210, an instruction memory 212, a network
transceiver 214, a (removable) computer media 216 configured
to store and receive data and/or instructions, and a local
memory 218 which can include a disc memory. Processor 208
can be any suitably programmed computer processor, such as a
microprocessor, that can execute instructions and operate on
data, stored within a built-in or external processor memory
210 and/or instruction memory 212. The instructions and/or
data may comprise an algorithm to implement some or all of

13

10

15

20

25

30

WO 2007/044388 PCT/US2006/038768

the pre-execution behavior management flow 100, as discussed
in reference to Figure 1.

File server 204 may be a general-purpose computer system
that may be used to receive, store, and/or distribute
computer files. The file server 204 may include a general-
purpose computer system such as a desktop, laptop, or rack-
mounted system, and may include a processor 230, a processdr
memory 232, an instruction memory 234, a network transceiver
236, a (removable) computer media 238 configured to store and
receive data and/or instructions, and a file system memory
240 which can include a disc memory. The file system memory
240 can store and retrieve one or more computer files.
Processor 230 can be any suitably programmed computer
procéssor, such as a microprocessor, that can execute
instructions and operate on data, stored within a built-in or
external processor memory 232 and/or instruction memory 234.

Computer 202 may communicate with file server 204 over
interconnection network 206 to perform one or more of the
operations associated with flow 100 so that the analysis is
performed remotely. In this manner, a selected file on a
remote computer system may be analyzed to determine if it is
harmful or harmless prior to execution of the selected file.
Alternatively, the analysis may be performed locally on the
file server 204. In this manner, either computer 202 or file
server 204 may comprise a pre-execution computer behavioral
management system configured to detect malicious executable
behavior prior to execution. The disposition of a selected
computer file may be stored in memory systems (210, 212, 216,
and 218) associated with computer 202 and/or may be stored in
memory systems (232, 234, 238, and 240) associated with file
system 204.

Figure 3 shows an exemplary computer file 222 containing
one or more executable behaviors (302-306), in accordance

14

10

15

WO 2007/044388 PCT/US2006/038768

with an embodiment of the present invention. Each behavior
includes the execution of a particular command or series of
commands to move, store, or change information either in
computer 202 or another network node such as file server 204.
The executable behaviors can include any operation that
reads, writes, or moves data or instructions within a
computer system or over a communications network.

Figure 4 shows an exemplary rule database 220 containing
information related to one or more prohibited behaviors (402-
406), in accordance wifh an embodiment of the present
invention. When a file behavior (302, 304) matches a
prohibited behavior (402-408) execution of the selected file
222 is disabled.

Although the invention has been described with respect
to particular embodiments, these descriptions are only
examples of the invention’s application and should not be
taken as limitations. Accordingly, the scope of the

invention is defined only by the following claims.

15

O W W oy W N

=
}__X

(€2 - GV RN AV I > W NP w

I.._l

WO 2007/044388 PCT/US2006/038768

CLAIMS

I claim:

1. A method of managing computer process execution,

comprising the operations of:

selecting a computer file prior to execution of the
computer file;

analyzing the selected computer file to determine
at least one executable behavior;

identifying the analyzed computer file as one of
harmful or harmless; and

disposing of the identified computer file as one of
executable or non-executable, the identified computer file

being disposed as non-executable when identified as harmful.

2. The method of claim 1, wherein the operation of
selecting a computer file includes accessing an application

programming interface.

3. The method of claim 1, wherein the selected file is
at least one of a directly executable program, a command
file, a dynamic linked library file, a system driver file, a

cabinet file, a batch file, and a binary file.

4. The method of claim 1, wherein the operation of
analyzing the executable file includes at least one of
disassembling the executable code, decrypting at least a
portion of the selected file, and unpacking at least a

portion of the selected file.

5. The method of claim 1, wherein the selected file is

located on a remote computer system.

16

| oo W N

N

g w N R g o w N

Y OB W N

WO 2007/044388 PCT/US2006/038768

6. The method of claim 1, wherein the operation of
identifying the analyzed computer file further comprises the
operation of:

comparing the selected file with a list of approved

files.

7. The method of claim 6, wherein the list of approved

files is included in a white list based on checksum values.

>8. The method of claim 7, wherein the while list

checksum values are cryptographically protected.

9. The method of claim 6, wherein the operation of
disposing of the identified computer file further comprises
the operation of:

enabling the execution of the selected file when

the selected file is on the list of approved files.

10. The method of claim 1, wherein the operation of

. 1dentifying the analyzed computer file further comprises the

operation of:
comparing the executable behavior to a list of

prohibited behaviors in a prohibited behavior database.

11. The method of claim 10, wherein the operation of
disposing of the identified computer file further comprises
the operation of:

disabling the execution of the identified computer
file when the executable behavior is listed in the prohibited

behavior database.

17

=
o NS B R IURY R oo W N e B O W oy s W N

[2aad

w

a W N

WO 2007/044388 PCT/US2006/038768

12. A computer readable medium on which is stored a

computer program for executing the following instructions:

selecting a computer file prior to execution of the
computer file;

analyzing the selected computer file to determine
at least one executable behavior;

identifying the analyzed computer file as one of
harmful or harmless; and

disposing of the identified computer file as one of
executable or non-executable, the identified computer file

being disposed as non-executable when identified as harmful.

13. The medium of claim 12, wherein the operation of
identifying the analyzed computer file further comprises the
operation of:

comparing the executable behavior to a list of

prohibited behaviors in a prohibited behavior database.

14. The medium of claim 13, wherein the operation of
"disposing of the identified computer file further comprises
the operation of:

disabling the execution of the identified computer
file when the executable behavior is listed in the prohibited

behavior database.

15. The medium of claim 12, wherein at least one of the
selected computer file and the prohibited behaviors is found

through heuristic analysis.

16. A pre-execution computer behavioral management
system, comprising:
a memory, the memory being configured to store and
retrieve information, the memory including a rule database

and at least one selected computer file containing at least

18

O W 1o

10
11
12
13

O 0 ~J oy U W N W

o
=

Sow N R

WO 2007/044388 PCT/US2006/038768

one file behavior, the rule database include at least one
prohibited behavior for the computer file; and

a processor, the processor being configured to
execute an algorithm to compare the unexecuted computer file'
behavior to the rule database to determine a match, the
processor disabling execution of the selected computer file
if the identified file behavior matches a prohibited behavior

in the rule database.

17. The system of claim 16, wherein at least one of the
selected computer file and the prohibited behaviors is found

through heuristic analysis. -

18. The system of claim 16, wherein the computer file
containing at least one file behavior is located on a remote

computer system.

19. The system of claim 16, wherein the algorithm

includes operations comprising:

selecting a computer file prior to execution of the
computer file;

analyzing the selected computer file to determine
at least one executable behavior;

identifying the analyzed computer file as one of
harmful or harmless; and

disposing of the identified computer file as one of
executable or non-executable, the identified computer file

being disposed as non-executable when identified as harmful.

20. The system of claim 19, wherein the algorithm
includes operations comprising:
comparing the executable behavior to a list of

prohibited behaviors in a prohibited behavior database; and

19

WO 2007/044388 PCT/US2006/038768

5 disabling the execution of the selected file when
6 the executable behavior is listed in the prohibited behavior

7 database.

20

PCT/US2006/038768
1/3

WO 2007/044388

001
[DIA e
| ISIT .
| |¥o1AVHEE qaLIgIHONd | | ! Qmmwwww%mw o
;| THLNO SIMOIAVHAY | | ¢AHLIEIHOUd LSI'TV HLIM 4OIAVHAS
“ TIEVINDEXT T ST YOIAVHAY TV LIS «
m AHL 47 T4 9L » X
| |40 NotLnoaxH a1avsia) | | dHL 2V 5
" - ST AAAOUddY
i | JT4 AIAOHddV JHL | ; LadAO¥ddY 40 ISITALHM V HIIM
m A0 NOLLNDAXH m&u%% “ m X SI 911 T GHL Y00 <
i 48 B g01 -/
" » 0T
L v 77 e e -
w1
x| ozt
NOIAVHAH
. IIGV.INDEXA NV TIAY
¢aNNOL JOIAVHAE MO T AL AZATYNY [¢— 10ATAS
N TGV INDEXA ;i .
701 , 01

901
MOTd INAWHDVNVIN dOIAVHHY NOLLNDHAXHA-Hdd

PCT/US2006/038768

WO 2007/044388

2/3

¢ 914

00¢ \/
VIQdN
VIAIW YALNJNOD
YELOJNOD HTIVAONTA)
(ATEVAONTY) 7
91¢C
3¢
N# T4
MAATEOSNVYL vz MWMM%%H
TIOMIAN * —
N# AT 9cz ~ * 444
757 *
" AMOWNAN AMOWAN
% ZOHHUDMHM@ J | T# T ZOHHODM,Hm@
N d _/
* vee 007 J e 4y
XIOWAN HSVEvIivd KJIOWAN
T# AT JOSSAD0Ud d1Nd - JOSSADOUd
05T ~ ze7 0cc 01z ~
AIOWAN AMOWAN
WHLSAS TT1d MOSSADOUd TVO0T YOSSHD0Ud
0z~ 0z — 31z~ 07
YAAYES T YA.LOdINOD
0z~ 20z~

PCT/US2006/038768

WO 2007/044388

3/3

v 9IL4d

£ 914

N - JOIAVHHY AHLI9IHO Y]

N# HOIAVHHY .

« 90~

*
*k

90¢ ~

*
*
*

¢ - JOIAVHAYH d4.LIGIHO U]

¢# JOIAVHHEL

I

v0g —

1 - JOIAVHHY A4 LIHIHOUd

1# YOIAVHHY

0
HASVIEVIVA A1Nd

z0€
T#dTId

02z —

T

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings

