Title: WIND POWER MACHINE PROVIDED WITH AN ARTICULATED MAST

Abstract: The invention provides a wind power machine comprising a mast that is articulated so as to adopt an upright position above a foundation anchored into the ground and a folded-up position close to the ground. The mast is made up of substantially straight parts articulated together so as to pivot in order to bring the mast into the upright position or into the folded-up position. The wind power machine furthermore includes a locking device placed at least one of the articulations between two of these parts in order to lock the mast in the upright position. The locking device (14) comprises a radially movable clamping ring (1400), placed at the end of one of the two parts of said articulation (56) inside the mast and actuation means (1401, 1403, 1405, 1407) that are capable of moving the clamping ring (1400) radially so as to produce an intimate male/female-type connection between the two parts of the articulation.
En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

Publiée :
— avec rapport de recherche internationale
— avant l’expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont reçues.

(57) Abrégé : Éolienne comprenant un mât articulé de manière à prendre une position dressée au dessus d’une fondation ancrée au sol et une position repliée proche du sol. Le mât est composé de parties sensiblement rectilignes articulées entre elles de manière à pivoter pour amener le mât dans la position dressée ou dans la position repliée. L’éolienne comprend en outre un dispositif de blocage agencé à l’une au moins des articulations entre deux de ces parties pour verrouiller le mât dans la position dressée. Le dispositif de blocage (14) comprend : un collier de serrage (1400) mobile radialement, agencé à l’extrémité de l’une des deux parties de ladite articulation (56) à l’intérieur du mât; et des moyens d’actionnement (1401, 1403, 1405) aptes à déplacer le collier de serrage (1400) radialement de manière à réaliser un raccord étroit de type mâle/femelle entre les deux parties de l’articulation.
Eolienne munie d'un mât articulé

L'invention concerne une éolienne munie d'un mât articulé de manière à prendre une position dressée verticale au dessus d'une fondation ancrée au sol et une position repliée proche du sol.

Un tel mât est composé de parties sensiblement rectilignes articulées entre elles de manière à pivoter entre la position dressée dans laquelle elles sont sensiblement alignées verticalement et la position repliée.

En général, l'éolienne est amenée dans la position repliée pour éviter qu'elle ne subisse des dommages en cas de vent violent.

Un système de contrôle est classiquement prévu pour assurer le maintien du mât en position dressée et pour coordonner le pivotement des différentes parties articulées afin de faire passer le mât de la position dressée à la position repliée, et inversement.

FR2 823 674 A propose un système de contrôle permettant de dresser le mât de support d'une éolienne en position verticale et de le rabattre en position horizontale à des fins de maintenance. Ce système de contrôle comporte un mât de levage relié au mât de support par des câbles de type haubans. Le mât de levage supporte à son extrémité au sol un treuil d'enroulement des câbles de levage actionné par le dispositif de commande pour pouvoir coucher l'éolienne de tout son long sur le sol. Le mât de support et le mât auxiliaire sont articulés en un même point sur un pied fixé au sol.

Le système de contrôle décrit dans FR2 823 674 est adapté pour maintenir le mât en position dressée et pour le rabattre en agissant sur les câbles. Cependant, le maniement des câbles est dangereux par grand vent. Les haubans génèrent de
plus un encombrement important autour de l'éléolienne, qui limite l'implantation d'équipements ou le diamètre du rotor de la nacelle de l'éléolienne.

On connaît également d'après JP 62282167 une éléolienne équipée d'un système de contrôle pour dresser le mât de support en position verticale et pour le rabattre en position horizontale à des fins de maintenance. Le mât de support de l'éléolienne est relié par un câble à un mât de levage et est articulé sur un socle. Le mât de levage présente une extrémité reliée à un treuil sur lequel agit le dispositif de commande pour permettre le basculement du mât de support et du mât de levage, de la position verticale vers la position horizontale. Une telle éléolienne nécessite toutefois d'utiliser des mâts de faible hauteur. Par ailleurs, le maniement de l'éléolienne est également très dangereux par grand vent et le dispositif de commande occupe un espace important autour de l'éléolienne, ce qui est pénalisant pour l'implantation d'équipements.

L'invention vient améliorer la situation.

A cet effet, l'invention propose une éléolienne comprenant un mât articulé de manière à prendre une position dressée au dessus d'une fondation ancrée au sol et une position repliée proche du sol. Le mât est composé de parties sensiblement rectilignes articulées entre elles de manière à pivoter pour amener le mât dans la position dressée ou dans la position repliée. L'éléolienne comprend en outre un dispositif de blocage agencé à l'une au moins des articulations entre deux desdites parties pour verrouiller le mât dans la position dressée. L'invention prévoit que le dispositif de blocage comprend :
- un collier de serrage mobile radialement, agencé à l'extrémité de l'une des deux parties de ladite articulation à l'intérieur du mât, et
- des moyens d'actionnement aptes à déplacer le collier de serrage radialement de manière à réaliser un raccord étroit
de type mâle/femelle entre les deux parties de l'articulation.

Le blocage de l'éolienne en position dressée ne nécessite ainsi aucun élément externe. L'encombrement autour du mât est alors réduit. L'invention permet donc de verrouiller le mât en position verticale sans interférer avec les dispositifs de pivotement du mât.

L'invention assure également un raccord robuste entre les parties articulées, dont le verrouillage ou le déverrouillage est actionnable à distance. Il est donc sans danger pour le personnel technique.

Selon l'invention, il est possible de ramener l'éolienne en position repliée horizontale en très peu de temps, par exemple en cas d'alerte cyclonique.

Des caractéristiques optionnelles de l'invention, complémentaires ou de substitution, sont énoncées ci-après:

- Le collier de serrage est constitué de portions de collier mobiles radialement.

- Les moyens d'actionnement comprennent des vérins hydrauliques aptes à piloter le déplacement radial de deux portions de collier adjacentes.

- Les vérins hydrauliques opèrent sensiblement dans la direction radiale.

- Les vérins hydrauliques s'étendent sensiblement radialement à partir de l'axe du mât tandis que chaque vérin comprend une tige mobile dans l'axe du vérin, la tige étant reliée aux deux portions de collier adjacentes associées au vérin.

- Chacune des deux portions de collier adjacentes est reliée à la tige du vérin associé par l'intermédiaire d'une branche de raccord respective, selon une liaison pivot, le point de
pivotement sur la tige des deux branches de raccord étant commun.

- Le dispositif de blocage comprend en outre une entretoise fixée à l'extrémité de la tige de chaque vérin, tandis que ladite entretoise est adaptée pour venir se loger entre les deux portions de collier adjacentes reliées au vérin, lorsque le mât est verrouillé.

- L'entretoise a une forme sensiblement trapézoïdale tandis que les bords libres des deux portions de collier adjacentes tournés l'un vers l'autre sont biseauté de manière à loger l'entretoise entre elles, lorsque le mât est verrouillé.

- Le dispositif de blocage comprend trois vérins hydrauliques placés sensiblement à 120°C l'un de l'autre, reliés à un pied de support commun placé au centre du mât.

- L'éolienne comprend en outre au moins un dispositif de pivotement principal apte à coordonner le pivotement entre une partie inférieure et une partie supérieure, la partie supérieure et la partie inférieure s'étendant sensiblement horizontalement l'une sur l'autre, dans la position repliée de l'éolienne.

- le dispositif de pivotement principal est piloté par un ensemble de vérins hydrauliques parallèles s'étendant dans le plan transversal du mât.

- le mât comporte des éléments de support de vérins agencés au niveau de l'articulation entre la partie supérieure et la partie inférieure, pour supporter lesdits vérins.

- Les vérins du dispositif de pivotement principal comprennent chacun une tige apte à se déplacer dans l'axe du vérin vers l'avant de l'éolienne, lorsque le vérin est comprimé.

- Le dispositif de pivotement principal comprend deux biellettes articulées selon un axe horizontal perpendicu-
laire à l'axe des vérins, les extrémités de chaque biellette étant fixées d'une part sur la partie supérieure et d'autre part sur la partie inférieure, de chaque côté du mât.

5 - Les biellettes sont articulées sur une pièce de raccord tandis que la tige de chaque vérin est reliée à ladite pièce de raccord.

10 - Les extrémités supérieures des biellettes sont raccordées entre elles par une pièce de raccord fixée à la paroi interne du mât, tandis que la tige de chaque vérin est reliée à l'une des articulations des biellettes.

15 - Le mât comprend une partie de base fixe et orientée sensiblement verticalement à l'extrémité de l'éolienne, la partie de base étant articulée sur une partie inférieure du mât, tandis que l'éolienne comprend un dispositif de pivotement auxiliaire apte à coordonner le pivotement entre la partie inférieure du mât et la partie de base.

20 - Le dispositif de pivotement auxiliaire comprend un vérin hydraulique agencé à l'intérieur du mât, le vérin étant relié d'une part à la partie de base et d'autre part à la paroi interne de la partie inférieure du mât, à l'avant du mât.

25 - Le vérin comprend une tige mobile dans l'axe du vérin, tandis que le vérin est relié à la partie de base au niveau de l'extrémité libre de la tige.

30 - Le dispositif de pivotement principal et le dispositif de pivotement auxiliaire opèrent en synchronisme.

Les caractéristiques et avantages de l'invention sont exposés plus en détail dans la description ci-après, avec référence aux dessins annexés sur lesquels:
- Les figures 1 et 2 sont des vues en perspective d'une éolienne selon l'invention dont le mât est respectivement en position dressée et repliée;

- Les figures 3A à 3D sont des vues en perspectives en élévation du dispositif de blocage conforme à l'invention, dans différents états de fonctionnement;

- Les figures 4A et 4B sont des vues du dessus du dispositif de blocage conforme à l'invention, dans deux états de fonctionnement différents;

- La figure 5 est un organigramme illustrant les différentes étapes mises en œuvre pour la mise en position de sécurité de l'éolienne;

- La figure 6 est un organigramme illustrant les différentes étapes mises en œuvre pour la mise en position de secours de l'éolienne;

- La figure 7 est un organigramme illustrant les différentes étapes mises en œuvre pour la mise en production de l'éolienne;

- Les figures 8A à 8D illustrent les différentes étapes de repliement de l'éolienne;

- Les figures 9 et 10 sont des schémas de côté et de face de l'éolienne, montrant les dispositifs de pivotement principal et auxiliaire, selon une première forme de réalisation de l'invention;

- La figure 11 est une vue éclatée de l'éolienne montrant les dispositifs de pivotement principal et auxiliaire, selon la première forme de réalisation de l'invention;

- La figure 12 est une vue en coupe de l'éolienne au niveau de l'articulation haute montrant le dispositif de pivotement
principal, selon la première forme de réalisation de l'invention;

- La figure 13 est un schéma de côté de l' éolienne dans une position intermédiaire de repli, selon la première forme de réalisation de l'invention;

- La figure 14 est un schéma de côté de l' éolienne en position de repli, selon la première forme de réalisation de l'invention;

- les figures 15 à 20 sont des figures analogues aux figures 9 à 14, selon une deuxième forme de réalisation de l'invention; et

- La figure 21 est un schéma représentant les bielles du système de pivotement supérieur.

L' éolienne illustrée comprend de manière classique une fondation 2 destinée à être ancrée au sol, un mât 1 qui, dans l'état représenté sur la figure 1 s'élève verticalement au-dessus de la fondation 2, un support 3, appelé classiquement nacelle, monté au sommet du mât et supportant un rotor 4 propre à tourner autour d'un axe A approximativement horizontal. Le rotor représenté comprend trois pales 45, 46, 47 qui décrivent un cercle lors de la rotation du rotor. L'invention sera décrite en référence à un tel rotor. Toutefois, d'autres types de rotor sont possibles, comme par exemple un rotor à deux pales. La fondation 2 peut se présenter sous la forme d'une couronne ancrée dans le sol.

L' éolienne peut advantageousement présenter un angle de tilt de quelques degrés avec l'horizontale qui permet d' éloigner les pales du mât.

Un exemple de mât d' éolienne articulé auquel peut s' appliquer l'invention a été décrit dans la demande de brevet français No0312184. La suite de l'invention sera faite en référence à une telle éolienne à titre d' exemple non limitatif.
Le mât 1 représenté sur les figures est constitué de trois parties articulées 5, 6 et 7.

La première partie fixe 7 ou partie de base, solidaire de la fondation 2, est articulée autour d'un axe horizontal d1 avec une seconde partie 6 ou partie inférieure. La partie inférieure 6 est articulée autour d'un axe horizontal d2 avec une troisième partie 5 ou partie supérieure portant la nacelle 3.

En particulier, les parties inférieure 6 et supérieure 5 se présentent sous la forme de tronçons coniques ou cylindriques de hauteur relativement importante, tandis que la partie de base 7 se présente sous la forme d'un tronçon cylindrique de faible hauteur. Des viroles de forme adaptée, c'est-à-dire conique ou cylindrique selon le cas sont agencées sur les parties 5 à 7 pour les renforcer.

L'invention s'applique notamment, sans y être limitée, à des éoliennes dont le mât 1 comporte :
- une partie de base 7 se présentant sous la forme d'un tronçon cylindrique de 3 200 mm de diamètre, de 2 330 mm de hauteur et de 32 mm d'épaisseur;
- une partie inférieure 6 se présentant sous la forme d'un tronçon conique de 3 200/2800 mm de diamètre et de 18700 mm de hauteur; et
- une partie supérieure 5 se présentant sous forme d'un tronçon conique de 2800/2050 mm de diamètre, et de 32050 mm de hauteur.

Les parties 5, 6 et 7 sont articulées entre elles autour des axes horizontaux d1 et d2, qui sont parallèles entre eux et perpendiculaires à l'axe du rotor A.

Ainsi, le mât présente deux articulations, une articulation supérieure 56 et une articulation inférieure 67 autour des axes horizontaux d1 et d2. L'axe d2 de l'articulation 56 se situe à l'avant de l'éolienne, tandis que l'axe d1 de l'articulation 67 se situe à l'arrière de l'éolienne.
Ici et dans la suite de la description, les expressions "avant de l'éolienne" ou "arrière de l'éolienne", ou encore "côté de l'éolienne" sont utilisées en référence à l'orientation du rotor 4. Ainsi, "l'avant" de l'éolienne se situe du côté des pâles du rotor.

La partie de base 7 est fixe et orientée verticalement. Chacune des autres parties 5 et 6, à partir de la partie de base 7, est adaptée pour pivoter dans un sens donné par rapport à la partie précédente à partir de la position dressée du mât. Le sens de pivotement est inversé d'une articulation à la suivante.

Il est maintenant fait référence à la figure 2 qui montre l'éolienne dans la position repliée. L'orientation des axes d1 et d2 des articulations 56 et 67 permet à la partie inférieure 6 de pivoter vers l'arrière de l'éolienne et à la partie supérieure 5 de pivoter vers l'avant de l'éolienne tandis que la face de raccord inférieure 100, initialement horizontale, de chaque partie 5 et 6 forme un angle de plus en plus ouvert avec la face de raccord supérieure 102 de la partie de mât sous-jacent 6 et 7.

L'invention prévoit un système de contrôle de l'éolienne pour contrôler le blocage de l'éolienne dans la position dressée, au niveau des articulations, et contrôler le pivotement de l'éolienne de la position dressée (figure 1) à la position repliée (figure 2) et inversement.

Le système de contrôle comprend un dispositif de blocage 14 agencé à l'une au moins des articulations 56 et 67 pour bloquer le mât 1 de l'éolienne en position dressée. Le dispositif de blocage 14 est piloté par des moyens d'actionnement adaptés. Ces moyens d'actionnement peuvent être des vérins hydrauliques internes au mât. En variante, le dispositif de blocage 14 peut être piloté par des vérins électriques. La suite de la description sera faite en référence à un
pilotage du dispositif de blocage 14 par vérins hydrauliques à titre d'exemple non limitatif.

Le système de contrôle comprend en outre un dispositif de pivotement principal 200 au niveau de l'articulation haute 56, et un dispositif de pivotement auxiliaire 202 au niveau de l'articulation basse 67 pour coordonner le mouvement de pivotement des différentes parties de l'éolienne. Le pivotement de l'éolienne peut se poursuivre jusqu'à la position montrée sur la figure 2, dans laquelle les parties inférieure et supérieure 6 et 5 s'étendent sensiblement horizontalement pour une prise au vent minimale tandis que la partie de base 7 s'étend sensiblement verticalement. Dans l'exemple illustré sur la figure 2, les pales sont situées sensiblement entre la partie supérieure 5, et la partie inférieure 6.

Les dispositifs de pivotement 200 et 202 sont pilotés par des moyens d'actionnement adaptés, en particulier des vérins hydrauliques 26.

Dans une première forme de réalisation représentée sur les figures 9 à 14, les vérins 26 du dispositif de pivotement principal 200 sont supportés par des éléments de support 265 placés au niveau de la charnière de l'articulation 56, entre la partie supérieure 5 et la partie inférieure 6.

Dans une deuxième forme de réalisation représentée sur les figures 1, 2, et 15 à 20, une partie de support de vérins 2650 est prévue pour supporter les vérins 26 du dispositif de pivotement principal 200, entre la partie supérieure 5 et la partie inférieure 6.

Le système de contrôle peut comporter en outre des centrales hydrauliques et une armoire électrique munie d'un coffret d'automatisme permettant la commande des distributeurs et servo-distributeurs, la gestion des mouvements des vérins asservis, ainsi que la gestion des sécurités propres à l'installation hydraulique.
Chaque articulation 56 ou 67 est formée par deux demi vireuses de forme adaptée (conique ou cylindrique selon le cas) fixées respectivement sur les deux parties de part et d'autre de l'articulation. Ces demi vireuses renforcent les extrémités des tronçons de mât.

Les figures 3A à 3D, 4A, et 4B sont des vues d'un dispositif de blocage 14 conforme à l'invention.

La suite de la description sera faite spécifiquement en référence au dispositif de blocage agencé au niveau de l'articulation 56 entre la partie supérieure 5 et la partie inférieure 6. Bien entendu, un tel dispositif de blocage peut être agencé de manière analogue au niveau de l'articulation 67 entre la partie inférieure 6 et la partie de base 7.

Le dispositif de blocage 14 comprend un collier de serrage 1400 monté à l'extrémité de la partie inférieure 6 sur un support de collier 142. La paroi du collier de serrage 1400 s'étend dans l'axe du mât, à l'intérieur de la partie supérieure 5, lorsque le mât est assemblé.

Le dispositif de blocage comporte en outre des moyens d'actionnement 1401, 1403 et 1405, aptes à déplacer radialement le collier de serrage entre deux positions de manière à pousser la paroi du collier de serrage contre la paroi interne de la partie supérieure 5 du mât 1 et à réaliser ainsi un raccord de type mâle/femelle étroitement serré entre la partie supérieure 5 et la partie inférieure 6. Le collier de serrage 1400 emprisonne 2 demi couronnes l'une fixée sur la partie supérieure 5 et l'autre fixée sur la partie inférieure 6.

Plus précisément, le collier 1400 est constitué de 3 portions de collier 1402, 1404 et 1406, mobiles radialement entre une position de serrage et une position de desserrage. Dans la position de serrage, représentée sur les figures 3A, 3C et 4A, le diamètre du collier 1400 est
sensiblement égal au diamètre interne de la partie supérieure 5 du mât de sorte que le mât dressé est verrouillé. Dans la position de desserrage, représentée sur les figures 3B, 3D et 4B, le diamètre du collier 1400 est inférieur au diamètre interne de la partie supérieure 5 du mât de sorte que le mât dressé est déverrouillé, par exemple pour être replié.

Les moyens d'actionnement du collier de serrage comprennent trois vérins hydrauliques 1401, 1403 et 1405, dont chacun commande le déplacement radial de deux portions de collier adjacentes. Ainsi le vérin 1401 agit simultanément sur les portions de collier 1402 et 1404, le vérin 1403 agit simultanément sur les portions de collier 1404 et 1406, et le vérin 1405 agit simultanément sur les portions de collier 1402 et 1406.

Comme on le voit plus en détail sur les figures 4A et 4B, chaque vérin 1401, 1403 et 1405 est équipé d'une tige radiale 1407 qui pousse simultanément les portions de collier adjacentes (figure 4A) pour verrouiller l'articulation ou les tire vers l'axe du mât (figure 4B) pour déverrouiller l'articulation.

La tige 1407 de chaque vérin 1401, 1403 et 1405 s'étend sensiblement radialement à partir de l'axe du mât 1 et est mobile vers l'extérieur du mât lorsqu'elle est comprimée.

Chaque vérin, par exemple 1401, est par ailleurs relié aux deux portions de collier adjacentes, 1402 et 1404, par deux branches de raccord 1408. L'une des extrémités de chaque branche de raccord 1408 est reliée à l'une des deux portions adjacentes de collier selon une liaison pivot, tandis que l'autre extrémité des branches est reliée au vérin hydraulique 1401 également selon une liaison pivot. Les deux branches de raccord 1408 ont un point de pivotement commun sur le vérin.
Ainsi lorsque les vérins hydrauliques, 1401, 1403 et 1407, sont comprimés, leurs tiges 1407 sont poussées radialement vers l'extérieur du mât 1 de manière synchrone, de sorte que les deux branches de raccord 1408 reliées à chaque vérin écartent simultanément les deux portions de collier adjacentes associées, 1402/1404, 1404/1406, ou 1406/1402, l'une de l'autre pour amener le collier 1400 en position de serrage (figure 3A, 3C et 4A). Le mouvement des trois vérins 1401, 1403 ou 1405 est synchronisé de telle sorte que les portions de collier soient toujours alignées selon un cercle. Dans la position de serrage, représentée par exemple sur la figure 4A, les deux branches 1408 associées à un vérin sont sensiblement perpendiculaires à la tige 1407 du vérin.

Lorsque les vérins hydrauliques, 1401, 1403 et 1407, sont relâchés, leurs tiges 1407 reviennent radialement vers l'intérieur du mât 1 de manière synchrone, de sorte que les deux branches de raccord 1408 associées à chaque vérin sont ramenées vers l'intérieur du mât simultanément, ce qui provoque un déplacement radial des portions de collier adjacentes (1402/1404, 1404/1406, ou 1406/1402) vers l'axe du mât jusqu'à ce que le collier 1400 arrive en position desserrage (figure 3B, 3D et 4B). Dans la position de desserrage, représentée par exemple sur la figure 4B, les deux branches 1408 associées à un vérin forment entre elles un angle tel que les bords des deux portions de collier adjacentes reliées aux branches soient rapprochés l'un de l'autre.

En référence à la figure 4B, une entretoise 1409 peut être prévue à l'extrémité libre de la tige 1407 de chaque vérin. Ainsi, lorsque la tige 1407 d'un vérin, par exemple 1401, est poussée radialement vers l'extérieur, l'entretoise 1409 vient se loger entre les deux portions de collier adjacentes reliées, 1402 et 1404, dans la position de serrage (figure 4A).
L'entretoise 1409 compense ainsi l'écartement entre les portions de collier adjacentes (1402/1404, 1404/1406, ou 1406/1402), ce qui renforce le verrouillage du mât.

Chaque entretoise 1409 d'un vérin, par exemple 1401, présente une forme conjuguée à celle des bords libres des deux portions de collier adjacentes, 1402 et 1404. En particulier, l'entretoise 1409 présente une forme sensiblement trapézoïdale tandis que les bords des deux portions de collier adjacentes, tournés l'un vers l'autre, sont biseautés.

Un organe de renfort 1410 peut être également associé à chaque vérin 1401, 1403 ou 1405 pour les supporter. Cet organe 1410 délimite le mouvement radial des portions de collier 1402, 1404 ou 1406 entre la position de serrage et la position de desserrage. Sur les dessins, chaque organe de renfort 1410 comprend une paroi transversale 1411 agencée en amont de la tige 1407 du vérin associé, par exemple 1401, et s'étendant perpendiculairement à l'axe du vérin, ainsi que deux parois latérales 1412. Chaque paroi latérale 1412 est reliée d'une part à la paroi transversale 1411.

Ainsi, l'organe de renfort 1410 entoure l'extrémité de la tige 1407 du vérin et la zone de jonction entre les deux portions de collier adjacentes 1402 et 1404, tout en étant solidaire de la partie fixe du vérin 1401.

Les parois latérales 1412 de l'organe de renfort présentent chacune une rainure de guidage sensiblement radiale 1413, tandis que la tige 1407 du vérin 1401 porte une barre de coulissement 1414 perpendiculaire à l'axe du vérin. La barre de coulissement 1414 est conformée de sorte que ses deux extrémités coulissent simultanément dans les rainures de guidage 1413 des deux parois latérales 1412, pendant le mouvement radial du collier de serrage. Les parois latérales 1412 forment en particulier un angle obtus avec la paroi transversale 1411 de l'organe de renfort. Ainsi, en
position de serrage, la barre de coulissement 1414 vient sensiblement en butée contre la face interne du collier de serrage, tandis qu'en position de desserrage, la barre de coulissement 1414 vient sensiblement en butée contre le fond des rainures 1413. L'organe de renfort 1410 permet ainsi non seulement de délimiter le mouvement radial du collier, mais aussi de renforcer le dispositif de blocage et de guider le mouvement radial du collier 1400.

Les bords d'extrémité des parois latérales 1412 qui sont reliées au collier de serrage présentent en outre une découpe 1415 adaptée pour le déplacement radial des portions de collier adjacentes respectivement.

Comme représenté plus en détail sur les figures 3A-3D, 4A et 4B, le support de collier 142 comporte en outre un plateau de support 1420 fixé à l'extrémité de raccord de la partie inférieure 6 du mât et un ensemble d'éléments de support 1422 agencés sur le pourtour du plateau de support pour raccorder le collier de serrage 1400 à la partie inférieure 6 du mât, tout en autorisant le déplacement radial du collier 1400.

Chaque élément de support 1422 a une forme sensiblement de U, les branches du U s'étendant radialement dans la direction opposée à l'axe du mât. Les éléments de support 1422 sont plus précisément conformés de manière à permettre le déplacement radial du collier de serrage 1400. Ainsi, le collier de serrage 1400 vient coulisser entre les branches de la forme en U pendant son mouvement radial.

Dans la forme de réalisation représentée sur les dessins, le dispositif de blocage 14 comporte trois vérins hydrauliques 1401, 1403 et 1405 placés sensiblement à 120°C l'un de l'autre, et reliés à un pied de support 1424 commun faisant saillie à partir du plateau de support 1420 et s'étendant dans l'axe du mât. Bien entendu, l'invention n'est pas limitée à cette forme de réalisation à trois vérins.
Le système de contrôle peut être commandé à distance en fonction des conditions extérieures et des besoins de production.

En particulier, le système de contrôle de l'invention est adapté pour mettre l'éolienne en position de sécurité, par exemple en cas de vent fort, en position de secours si l'opération de mise en position de sécurité n'est pas possible, ou encore en position de production.

Un exemple de procédé de mise en position de sécurité va maintenant être décrit, en référence à la figure 5 conjointement avec la figure 8. Sur la figure 8, le dispositif de pivotement principal 200 est supporté par une partie de support 2650 conformément à la deuxième forme de réalisation de l'invention.

L'éolienne est initialement en position dressée, comme représenté sur la figure 8A.

À l'étape 501, le système de contrôle déclenche un arrêt automatique de l'éolienne par mise en drapeau des pales de la nacelle.

À l'étape 502, le système de contrôle déclenche un arrêt complet du rotor en position spécifique.

À l'étape 503, le rotor est verrouillé manuellement ou automatiquement en position.

À l'étape 504, le système de contrôle oriente automatiquement la nacelle en position de descente.

À l'étape 505, la nacelle est verrouillée manuellement en position.

À l'étape 506, le système de contrôle actionne les dispositifs de blocage 14 pour déverrouiller les articulations 56, et 67.
A l'étape 507, le système de contrôle actionne les dispositifs de pivotement 200 et 202 pour lancer et contrôler la descente au sol de l'éolienne. Les figures 8A à 8C illustrent les positions intermédiaires dans lesquelles passent l'éolienne pour se replier.

A l'étape 508, le système de contrôle agit sur les dispositifs de pivotement 200 et 202 pour verrouiller les articulations 56 et 67 de l'éolienne en position finale complètement repliée.

En complément, l'éolienne peut être sécurisée manuellement (plots d'attache pales, nacelle et articulation).

Le procédé de mise en position de sécurité se termine par une mise hors tension des systèmes électriques, et une mise hors réseau de l'éolienne.

Un procédé de mise en position de secours peut également être prévu, si l'opération de mise en sécurité n'est pas possible, par exemple si le vent est déjà supérieur à une valeur limite de 15 m/s ou si les générateurs de secours sont hors service. Le procédé de mise en position de secours peut par exemple comporter les étapes décrites ci-dessous, en référence à la figure 6.

A l'étape 601, le système de contrôle déclenche un arrêt automatique de la machine par mise en drapeau des pales tandis que le rotor est laissé libre en rotation.

A l'étape 602, le système de contrôle oriente automatiquement la nacelle en position sous le vent ("downwind"), tandis que la machine est laissée libre en rotation.

A l'étape 603, le système de contrôle déclenche une mise en drapeau des pales pour la position de la nacelle sous le vent.
À l'étape 604, le système de contrôle met les systèmes électriques hors circuit et l'éolienne hors réseau.

Un exemple de procédé de mise en position de production va maintenant être décrit en référence à la figure 7 conjointement avec la figure 8D. La mise en position de production n'est possible que si le vent est inférieur à une valeur prédéfinie, par exemple de 15m/s.

À l'étape initiale, l'éolienne est totalement repliée comme représenté sur la figure 8D.

À l'étape 701, le système de contrôle déclenche une mise sous tension des systèmes électriques, et une mise sur le réseau de l'éolienne.

À l'étape 702, les protections des parties du mât exposées sont démontées.

À l'étape 703, les éléments de sécurisation de l'éolienne au sol sont démontés (plots d'attache pales, nacelle et articulation).

À l'étape 704, le système de contrôle agit sur les dispositifs de pivotement 200 et 202 pour déverrouiller les articulations 56 et 67 de l'éolienne qui est en position complètement repliée.

À l'étape 705, le système de contrôle actionne les dispositifs de pivotement 200 et 202 pour lancer et contrôler la remontée de l'éolienne.

L'éolienne passe alors de la position repliée représentée sur la figure 8D à une position dressée comme représenté sur la figure 8A, en passant par les positions intermédiaires illustrées sur les figures 8C et 8B.
A l'étape 706, le système de contrôle actionne les dispositifs de blocage 14 pour verrouiller les articulations 56 et 67 de l'éolienne en position dressée.

A l'étape 707, la nacelle est déverrouillée manuellement ou automatiquement en position.

A l'étape 708, le système de contrôle oriente automatiquement la nacelle en position suivant la direction du vent.

A l'étape 709, le rotor est déverrouillé manuellement ou automatiquement en position, puis le frein hydraulique du rotor est relâché.

Enfin, à l'étape 710, l'éolienne est lancée automatiquement en production.

Le système de contrôle de l'invention est autonome en énergie, en service, même en cas de perte réseau. Il permet donc un actionnement en toute sécurité pour les techniciens et pour les équipements, y compris en cas de perte d'alimentation électrique ou de problèmes hydrauliques ou mécaniques.

L'invention propose également des dispositifs de pivotement principal et auxiliaire 200 et 202 pilotés par vérins.

Le dispositif de pivotement principal 200 est prévu pour coordonner le pivotement entre la partie inférieure 6 et la partie supérieure 5, qui s'étendent sensiblement horizontalement l'une sur l'autre, dans la position repliée de l'éolienne tandis que le dispositif de pivotement auxiliaire 202 est prévu pour coordonner le pivotement entre la partie inférieure du mât 6 et la partie de base fixe 7.

Il est maintenant fait référence aux figures 9 et 10 qui sont respectivement une vue de côté et une vue de face du mât 1, selon la première forme de réalisation de l'invention.
Le dispositif de pivotement principal 200 représenté en traits pleins est agencé au niveau de l'articulation haute 56 à l'extérieur du mât, à l'avant de l'éolienne. Le dispositif de pivotement principal 200 présente des vérins hydrauliques 26 fixés au mât au niveau de l'articulation 56. Dans la première forme de réalisation, les vérins 26 sont fixés à des éléments de support 265, agencés à l'avant du mât, au niveau de l'articulation 56. La description va tout d'abord être faite en référence à cette première forme de réalisation.

Le dispositif de pivotement auxiliaire 202 représenté en pointillés est agencé au niveau de l'articulation basse 67 à l'intérieur du mât, sur la paroi interne avant de l'éolienne.

Le dispositif de pivotement principal 200 et le dispositif de pivotement auxiliaire 202 peuvent être commandés en synchronisme.

Plus précisément, le dispositif de pivotement principal 200 est agencé à l'extérieur du mât pour contrôler le repliement de la partie supérieure 5 par rapport à la partie inférieure 6, au moyen d'un ensemble de biellettes articulées 24, pilotées par des vérins hydrauliques. Le dispositif de pivotement auxiliaire 202 est agencé à l'intérieur du mât pour contrôler le repliement de la partie inférieure 6 par rapport à la partie de base 7 au moyen d'un vérin hydraulique interne.

Le dispositif de pivotement principal 200 va maintenant être décrit en référence à la figure 11.

Le dispositif de pivotement principal 200 comprend un ensemble de biellettes 24 comprenant deux biellettes 240 et 242 articulées autour d'un axe horizontal, ainsi qu'un ensemble de vérins parallèles 26, constitué ici de deux vérins 260 et 262, pour piloter le mouvement des bielett-
tes. L'axe des vérins est perpendiculaire à l'axe d'articulation d4 des biellettes 24.

Les biellettes 240 et 242 sont symétriques entre elles par rapport à un plan passant par l'axe du mât et perpendiculaire au plan des pâles de la nacelle 3. Les vérins 260 et 262 présentent la même symétrie.

Les deux vérins 260 et 262 s'étendent dans le plan transversal du mât, à l'extérieur du mât, et de part et d'autre de son axe. Chaque vérin 260 ou 262 présente une tige 261 apte à se déplacer dans l'axe du vérin vers l'avant de l'éolienne, lorsque le vérin est comprimé.

Les vérins 260 et 262 sont fixés à travers les éléments de support de vérins 265. En particulier, un élément de support 265 est prévu pour supporter chaque vérin 260 ou 262. Ces éléments de support 265 sont avantageusement fixés de chaque côté du mât sur la partie supérieure 5.

Les vérins 26 sont raccordés aux biellettes 24 au niveau de leur articulation 24F. Les deux biellettes 24 sont par ailleurs reliées entre elles, au niveau de leurs extrémités supérieures 24B, par l'intermédiaire d'une pièce de raccord 21 sensiblement tubulaire qui est fixée aux parois du mât 1, à l'intérieur de celui-ci. La pièce de raccord 21 est perpendiculaire aux deux vérins et s'étend dans le plan de la section du mât. Les biellettes sont plus spécifiquement reliées à la tige des vérins 260 et 262.

Dans la deuxième forme de réalisation représentée sur les figures 15 à 17, les vérins 26 sont raccordés à une partie de support 2650 du mât prévue entre la partie supérieure 5 et la partie inférieure 6. Les vérins traversent ainsi la partie de support 2650 pour venir se raccorder aux biellettes 24. Les vérins 26 sont raccordés aux biellettes 24 par l'intermédiaire d'une pièce de raccord 210 sensiblement tubulaire qui définit l'axe d'articulation d4 des biellettes. La pièce de raccord 210 est perpendiculaire aux deux
vérins et s'étend dans le plan de la section du mât. Une pièce de raccord est reliée à la tige des vérins 260 et 262. Dans cette forme de réalisation, il n'est pas prévu de pièce de raccord additionnelle entre les deux extrémités supérieures 24B des bielettés. Au cours du repliement du mât 1, la partie de support 2650 reste sensiblement verticale.

Les bielettés sont représentées plus en détail sur la figure 21. Chaque bielette 240 ou 242 est constituée de deux tubes 24A articulés entre eux en un point d'articulation 24F. Les extrémités supérieures 24B des bielettés 24 ou 242 sont raccordées à la partie supérieure 5 de chaque côté du mât selon une liaison pivot, tandis que les extrémités inférieures 24C sont raccordées à la partie inférieure 6 de chaque côté du mât, selon une liaison pivot. Par ailleurs, les points d'articulation 24F de chaque bielette 240 ou 242 sont raccordés directement au vérin 26, dans la première forme de réalisation de l'invention, soit à l'une de l'extrémité de la pièce de raccord 210, également selon une liaison pivot, dans la deuxième forme de réalisation de l'invention. Les deux tubes 24A de chaque bielette 240 ou 242 sont adaptés pour pivoter l'un vers l'autre en phase de repli, et de manière à s'écarte en phase de redressement de l'éolienne. Le pivotement de deux bielettés est synchronisé et dans le même sens.

Les figures 12 et 18 montrent la position des vérins 260 et 262 lorsque l'éolienne est en position dressée, dans le deux formes de réalisation de l'invention. Dans cette position, la tige 261 de chaque vérin n'est pas sortie.

Les deux vérins sont commandés en synchronisme de sorte, lorsqu'ils sont comprimés, leurs tiges respectives 26 poussent les bielettés vers l'avant et provoquent leur repliement. Ce repliement synchronisé des deux bielettés 240 et 242 ramène progressivement la partie inférieure 6 et la partie supérieure 5 du mât l'une vers l'autre, comme représenté sur la figure 13, conforme à la première forme.
de réalisation de l'invention, et sur la figure 19, conforme à la deuxième forme de réalisation de l'invention. Ce mouvement est en outre synchronisé avec le pivotement au niveau de l'articulation 67, qui se fait en sens inverse de manière à ramener le mât en position repliée sensiblement horizontale, comme représenté sur la figure 14 conforme à la première forme de réalisation de l'invention, et sur la figure 20, conforme à la deuxième forme de réalisation de l'invention.

La suite de la description sera faite en référence à la première forme de réalisation, à titre d'exemple non limitatif.

Le dispositif de pivotement auxiliaire 202 va maintenant être décrit en référence à la figure 11.

Le dispositif de pivotement auxiliaire comporte un vérin d'articulation 25 agencé à l'intérieur du mât, sur la paroi interne avant de ce dernier. Il est relié d'une part à la partie de base 7 du mât à l'opposé à l'articulation 67, et d'autre part à la paroi interne de la partie inférieure 6 du mât. Le vérin 25 comporte une tige 250 mobile en translation dans l'axe du vérin. Le vérin 25 est fixé par cette tige 250 à la partie de base 7, comme représenté sur les figures 13 et 14. Le vérin 25 peut être en particulier un vérin à double effet, dont la course est contrôlée par une pression de chaque coté du vérin.

Lorsque le dispositif de pivotement auxiliaire 202 est actionné pour replier le mât, le vérin 25 est comprimé, ce qui pousse la tige 250 à l'extérieur du vérin. La longueur du vérin augmente alors progressivement de manière à contrôler l'angle d'ouverture entre la partie de base 7 et la partie inférieure 6. Ce mouvement est synchronisé avec celui des vérins 260 et 262 du dispositif de pivotement principal 200, ce qui permet de replier le mât en position sensiblement horizontale.
Lorsque le dispositif de pivotement auxiliaire 202 est actionné pour redresser le mât, la tige 250 est ramenée à l'intérieur du vérin. La longueur du vérin diminue donc progressivement de manière à contrôler la diminution de l'angle entre la partie de base 7 et la partie inférieure 6. Ce mouvement est là encore synchronisé avec celui des vérins 260 et 262 du dispositif de pivotement principal 200 pour redresser le mât.

Le mouvement des 3 vérins des dispositifs de pivotement 200 et 202 est piloté en consigne de déplacement avec rampe d'accélération progressive pour suivre la loi de mouvement du déploiage et repliement de l'éolienne.

Le système de contrôle de l'invention permet de verrouiller ou de déverrouiller le mât en position dressée, et de replier le mât en position sensiblement horizontale de manière autonome, même par vents importants, sans risques pour la sécurité des techniciens.

L'invention est particulièrement adaptée pour des mâts de hauteur et de poids important.

Elle permet en outre de replier ou de redresser le mât en un temps relativement court, ce qui est particulièrement utile en cas d'alerte cyclonique.

Par ailleurs, le dispositif de blocage interne de l'invention assure un verrouillage efficace du mât, sans augmenter l'encombrement autour de l'éolienne. Il est notamment compatible avec l'implantation du dispositif de pivotement principal 200.

Certains éléments décrits dans le cadre de la présente invention peuvent avoir un intérêt particulier lorsqu'ils sont considérés séparément. C'est le cas notamment du dispositif de pivotement principal 200, ou encore du dispositif de pivotement auxiliaire 202.
L'invention n'est pas limitée aux formes de réalisation décrites ci-dessus. En particulier, elle n'est pas limitée à la forme du mât représenté sur les dessins à titre d'exemple non limitatif. D'autres formes de mât articulés sont possibles, par exemple un mât ayant la forme générale d'un tronc de pyramide à base carrée.

Par ailleurs, le dispositif de blocage 14 de l'invention peut être aménagé sur un mât articulé présentant moins de quatre parties. En outre, l'invention n'est pas non plus limitée à un dispositif de blocage 14 muni de trois vérins et de trois portions de collier de serrage. D'autres agencements de vérins et de portions de collier sont possibles.

Le mât peut également comporter plus de trois articulations, les parties étant disposés en zigzag au cours du repliement. Dans une telle variante, le mât peut présenter plusieurs dispositifs de pivotement principaux 200 pour coordonner le pivotement entre deux parties se repliant l'une sur l'autre en position horizontale. Des éléments de support de vérins 262 sont alors prévus entre ces deux parties.

L'invention a été décrite en référence à un dispositif de pivotement principal 200 équipé de deux vérins 260 et 262. Toutefois elle s'applique également à un dispositif de pivotement principal 200 équipé d'un ou de plus de deux vérins 26.

Plus généralement, l'invention a été décrite en référence à des moyens d'actionnement de type vérin pour piloter les dispositifs de pivotement 200 et 202, et le dispositif de blocage 14. Cependant, tous types de moyens d'actionnement adaptés peuvent être utilisés pour piloter ces dispositifs.
Recommandations

1. Éolienne comprenant un mât (1) articulé de manière à prendre une position dressée au dessus d'une fondation ancrée au sol et une position repliée proche du sol, le mât étant composé de parties (5, 6, 7) sensiblement rectilignes articulées entre elles de manière à pivoter pour amener le mât dans la position dressée ou dans la position repliée, l'éolienne comprenant en outre un dispositif de blocage agencé à l'une au moins des articulations (56, 67) entre deux desdites parties pour verrouiller le mât dans la position dressée, caractérisée en ce que le dispositif de blocage (14) comprend :
- un collier de serrage (1400) mobile radialement, agencé à l'extrémité de l'une des deux parties (6) de ladite articulation (56) à l'intérieur du mât, et
- des moyens d'actionnement (1401, 1403, 1405) aptes à déplacer le collier de serrage (1400) radialement de manière à réaliser un raccord étroit de type mâle/femelle entre les deux parties (5, 6) de l'articulation.

2. Éolienne selon la revendication 1, caractérisée en ce que le collier de serrage est constitué de portions de collier mobiles radialement (1402, 1404, 1406).

3. Éolienne selon la revendication 2, caractérisée en ce que les moyens d'actionnement comprennent des vérins (1401, 1403, 1405) aptes à piloter le déplacement radial de deux portions de collier adjacentes.

4. Éolienne selon la revendication 3, caractérisée en ce que les vérins (1401, 1403, 1405) des moyens d'actionnement sont des vérins hydrauliques.

5. Éolienne selon la revendication 4, caractérisée en ce que les vérins hydrauliques (1401, 1403, 1405) opèrent sensiblement dans la direction radiale.
6). Eolienne selon la revendication 5, caractérisée en ce que les vérins hydrauliques (1401, 1403, 1405) s'étendent sensiblement radialement à partir de l'axe du mât et en ce que chaque vérin (1401) comprend une tige (1407) mobile dans l'axe du vérin, la tige étant reliée aux deux portions de collier adjacentes (1402, 1404) associées au vérin.

7). Eolienne selon la revendication 6, caractérisée en ce que chacune des deux portions de collier adjacentes (1402, 1404) est reliée à la tige (1407) du vérin associé (1401) par l'intermédiaire d'une branche de raccord respective (1408), selon une liaison pivot, le point de pivotement sur la tige des deux branches de raccord (1408) étant commun.

8). Eolienne selon l'une des revendications 6 et 7, caractérisée en ce que le dispositif de blocage comprend en outre une entretoise (1409) fixée à l'extrémité de la tige (1407) de chaque vérin (1401), et en ce que ladite entretoise est adaptée pour venir se loger entre les deux portions de collier adjacentes reliées au vérin (1401), lorsque le mât est verrouillé.

9). Eolienne selon la revendication 8, caractérisée en ce que l'entretoise a une forme sensiblement trapézoïdale et en ce que les bords libres des deux portions de collier adjacentes, tournés l'un vers l'autre, sont biseautés de manière à loger l'entretoise entre elles, lorsque le mât est verrouillé.

10). Eolienne selon l'une des revendications 4 à 9, caractérisée en ce que le dispositif de blocage comprend trois vérins hydrauliques placés sensiblement à 120°C l'un de l'autre, reliés à un pied de support commun (1424) placé au centre du mât.

11). Eolienne selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend en outre au moins un dispositif de pivotement principal (200) apte à coordonner le pivotement entre une partie inférieure (6) et une partie
supérieure (5), la partie supérieure et la partie inférieure s'étendant sensiblement horizontalement l'une sur l'autre, dans la position repliée de l'éolienne.

12). Eolienne selon la revendication 11, caractérisée en ce que le dispositif de pivotement principal (200) est piloté par un ensemble de vérins hydrauliques parallèles (260, 262) s'étendant dans le plan transversal du mât.

13). Eolienne selon la revendication 12, caractérisée en ce que le mât comporte des éléments de support de vérins (265, 2650) agencés au niveau de l'articulation entre la partie supérieure et la partie inférieure, pour supporter lesdits vérins.

14). Eolienne selon la revendication 13, caractérisée en ce que les vérins du dispositif de pivotement principal (200) comprennent chacun une tige (261) apte à se déplacer dans l'axe du vérin vers l'avant de l'éolienne, lorsque le vérin est comprimé.

15). Eolienne selon la revendication 14, caractérisée en ce que le dispositif de pivotement principal comprend deux bielettes (240, 242) articulées selon un axe horizontal perpendiculaire à l'axe des vérins, les extrémités (24B, 24C) de chaque bielette étant fixées d'une part sur la partie supérieure (5) et d'autre part sur la partie inférieure (7), de chaque côté du mât.

16). Eolienne selon la revendication 15, caractérisée en ce que les bielettes (24) sont articulées sur une pièce de raccord (21), et en ce que la tige (261) de chaque vérin est reliée à ladite pièce de raccord (21).

17). Eolienne selon la revendication 15, caractérisée en ce que les extrémités supérieures des bielettes (24) sont raccordées entre elles par une pièce de raccord (210) fixée à la paroi interne du mât, et en ce que la tige (261) de
chacune vérin est reliée à l'une des articulations (24F) des bielettes (24).

18). Éolienne selon l'une des revendications 11 à 17, caractérisée en ce que le mât comprend une partie de base (7) fixe et orientée sensiblement verticalement à l'extrémité de l'éolienne, la partie de base (7) étant articulée sur la partie inférieure (6) du mât, et en ce qu'elle comprend un dispositif de pivotement auxiliaire (202) apte à coordonner le pivotement entre la partie inférieure du mât (6) et la partie de base (7).

19). Éolienne selon la revendication 18, caractérisée en ce que le dispositif de pivotement auxiliaire (202) comprend un vérin hydraulique (25) agencé à l'intérieur du mât, le vérin étant relié d'une part à la partie de base (7) et d'autre part à la paroi interne de la partie inférieure du mât (6), à l'avant du mât.

20). Éolienne selon la revendication 19, caractérisée en ce que le vérin (25) comprend une tige (261) mobile dans l'axe du vérin, et en ce que le vérin est relié à la partie de base (7) au niveau de l'extrémité libre de la tige (251).

21). Éolienne selon l'une des revendications 17 à 20, caractérisée en ce que le dispositif de pivotement principal (200) et le dispositif de pivotement auxiliaire (202) opèrent en synchronisme.
FIG. 5
DECLINEMENT ARRET AUTOMATIQUE DE L'EOLIENNE

ORIENTATION AUTOMATIQUE DE LA NACELLE SOUS LE VENT

MISE EN DRAPEAU DES PALES

MISE DES SYSTEMES ELECTRIQUES HORS CIRCUIT ET DE L'EOLIENNE HORS RESEAU

FIG. 6
MISE SOUS TENSION DES SYSTEMES ELECTRIQUES ET MISE SUR RESEAU DE L'EOLIENNE

DEMONTEAGE DES PROTECTIONS DES PARTIES DU MAT EXPOSEES

DEMONTEAGE DES ELEMENTS DE SECURISATION DE L'EOLIENNE AU SOL

DEVERROUILLAGE DES ARTICULATIONS DE L'EOLIENNE

LANCEMENT ET CONTROLE DE LA REMONTEE DE L'EOLIENNE

VERROUILLAGE DES ARTICULATIONS DE L'EOLIENNE EN POSITION DRESSEE

DEVERROUILLAGE DE LA NACELLE

ORIENTATION AUTOMATIQUE DE LA NACELLE

DEVERROUILLAGE DU ROTOR

LANCEMENT DE L'EOLIENNE EN PRODUCTION

FIG. 7
FIG. 21
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. F03D11/04 F03D7/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
F03D E04H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 26 46 353 B1 (HUETTER U PROF DR; VOITH GETRIEBE KG) 6 April 1978 (1978-04-06) column 5, lines 26-34 column 6, lines 1-34 figures</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
* A* document defining the general state of the art which is not considered to be of particular relevance
* E* earlier document but published on or after the international filing date
* L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
* O* document referring to an oral disclosure, use, exhibition or other means
* P* document published prior to the international filing date but later than the priority date claimed

IT later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

XT document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

YT document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

XT document member of the same patent family

Date of the actual completion of the international search
9 novembre 2007

Date of mailing of the international search report
19/11/2007

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax. (+31-70) 940-3016

Authorized officer
Rini, Pietro

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 1 400 688 A1 (LAHUERTA ANTOUNE IVAN [ES]; LAHUERTA ANTOUNE SEBASTIAN MAN [ES]; LAHUE) 24 March 2004 (2004-03-24) abstract claims 1-4 figures</td>
<td>1-21</td>
</tr>
<tr>
<td>A</td>
<td>DE 103 21 850 A1 (VOS UWE [DE]) 2 December 2004 (2004-12-02) abstract page 5, paragraph 36 - paragraph 37 figures</td>
<td>1-21</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>DE 2646353 B1</td>
<td>06-04-1978</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1524432 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005121030 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005095130 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1526054 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60210279 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 02101234 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2179785 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA03011528 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 1400688 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004120801 A1</td>
</tr>
<tr>
<td>DE 10321850 A1</td>
<td>02-12-2004</td>
<td>NONE</td>
</tr>
</tbody>
</table>
A. CLASSEMENT DE L’OBJET DE LA DEMANDE

INV. F03D11/04

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB.

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

F03D E04H

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche.

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche utilisés)

EPO-Internal

C. DOCUMENTS CONSIDERÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie*</th>
<th>Identification des documents cités, avec, le cas échéant, l’indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 26 46 353 B1 (HUETTER U PROF DR; VOITH GETRIEBE KG) 6 avril 1978 (1978-04-06) colonne 5, ligne 26-34 colonne 6, ligne 1-34 figures</td>
<td>1-21</td>
</tr>
<tr>
<td>A</td>
<td>FR 2 861 141 A1 (FR DES ALIZES SOC [FR]) 22 avril 2005 (2005-04-22) cité dans la demande abrégé revendication 1 figures</td>
<td>1-21</td>
</tr>
</tbody>
</table>

*Catégories spéciales de documents cités:

*"A" document définissant l’état général de la technique, non considéré comme particulièrement pertinent

*"E" document antérieur, mais publié à la date de dépôt international ou après cette date

*"L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d’une autre citation ou pour une raison spéciale (telle qu’indiquée)

*"O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens

*"P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

*"T" document ultérieur publié après la date de dépôt international ou la date de priorité et n’appartenant pas à l’état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l’invention

*"X" document particulièrement pertinent, l’invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément

*"Y" document particulièrement pertinent, l’invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier

*"&" document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

9 novembre 2007

Les documents de familles de brevets sont indiqués en annexe

Nom et adresse postale de l’administration chargée de la recherche internationale

Office Européen des Brevets, P.B. 5618 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax. (+31-70) 340-3016

Fonctionnaire autorisé

Rini, Pietro
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document brevet cité au rapport de recherche</td>
<td>Date de publication</td>
<td>Membre(s) de la famille de brevet(s)</td>
</tr>
<tr>
<td>--</td>
<td>--------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>DE 2646353</td>
<td>06-04-1978</td>
<td>AUCUN</td>
</tr>
<tr>
<td>FR 2861141</td>
<td>22-04-2005</td>
<td>AU 2004220754 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1524432 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005121030 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005095130 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1526054 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60210279 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 02101234 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2179785 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA03011528 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 1400688 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004120801 A1</td>
</tr>
<tr>
<td>DE 10321850</td>
<td>02-12-2004</td>
<td>AUCUN</td>
</tr>
</tbody>
</table>