(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property Organization
International Bureau
(43) International Publication Date

12 December 2019 (12.12.2019)
|||
(51) International Patent Classification:

C12N 9/22 (2006.01)
C12N 15/I13 (2010.01)
(21) International Application Number:

PCT/US2019/036021
(22) International Filing Date:

07 June 2019 (07.06.2019)
(25) Filing Language:

English
(26) Publication Language:

English
(30) Priority Data:

62/682,271 08 June 2018 (08.06.2018)
US
(71) Applicant: LOCANA, INC. [US/US]; 7770 Regents Road, San Diego, CA 92122 (US).
(72) Inventors: NELLES, David A.; 7770 Regents Road, San Diego, California 92122 (US). BATRA, Ranjan; 7770 Regents Road, San Diego, California 92122 (US). YEO, Gene; 7770 Regents Road, San Diego, California 92122 (US).
(74) Agent: BROWN, Fraser et al.; COOLEY LLP, 1299 Pennsylvania Avenue, NW Suite 700, Washington, District of Columbia 20004-2400 (US).
(81) Designated States (unless otherwise indicated, for every kind of national protection available): $\mathrm{AE}, \mathrm{AG}, \mathrm{AL}, \mathrm{AM}$, $\mathrm{AO}, \mathrm{AT}, \mathrm{AU}, \mathrm{AZ}, \mathrm{BA}, \mathrm{BB}, \mathrm{BG}, \mathrm{BH}, \mathrm{BN}, \mathrm{BR}, \mathrm{BW}, \mathrm{BY}, \mathrm{BZ}$, $\mathrm{CA}, \mathrm{CH}, \mathrm{CL}, \mathrm{CN}, \mathrm{CO}, \mathrm{CR}, \mathrm{CU}, \mathrm{CZ}, \mathrm{DE}, \mathrm{DJ}, \mathrm{DK}, \mathrm{DM}, \mathrm{DO}$, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

(54) Title: RNA-TARGETING FUSION PROTEIN COMPOSITIONS AND METHODS FOR USE

FIGURE 1

(57) Abstract: Disclosed are compositions comprising: (a) a sequence comprising a guide RNA (gRNA) that specifically binds a target sequence within an RNA molecule and (b) a sequence encoding a fusion protein, the sequence comprising a sequence encoding a first RNA-binding polypeptide and a sequence encoding a second RNA-binding polypeptide, wherein neither the first RNA-binding polypeptide nor the second RNA-binding polypeptide comprises a significant DNA-nuclease activity, wherein the first RNA-binding polypeptide and the second RNA-binding polypeptide are not identical, and wherein the second RNA-binding polypeptide comprises an RNA-nuclease activity. Methods of making and methods of using compositions of the disclosure are also provided. For example, compositions of the disclosure may be used in the treatment of a disease or disorder in a subject. Exemplary disease or disorders of the disclosure include genetic and epigenetic diseases or disorders.

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

RNA-TARGETING FUSION PROTEIN COMPOSITIONS AND METHODS FOR USE

FIELD OF THE DISCLOSURE

[01] The disclosure is directed to molecular biology, and more, specifically, to compositions and methods for modifying expression and activity of RNA molecules.

RELATED APPLICATIONS

[02] This application claims priority to U.S. Patent Application No. 62/682,271, filed June 8, 2018, the contents of which are herein incorporated by reference in their entirety. The contents of U.S. Patent Application No. 62/682,276, filed June 8, 2018, are herein incorporated by reference in their entirety.

INCORPORATION OF SEQUENCE LISTING

[03] The contents of the text file named "LOCN_002_001WO_SeqList_ST25", which was created on June 6, 2019 and is 773 KB in size, are hereby incorporated by reference in their entirety.

BACKGROUND

[04] There has been a long-felt but unmet need in the art for a method of specifically binding target RNA molecules for modification of expression or activity of the RNA molecule or a protein encoded by the RNA molecule. The disclosure provides compositions and methods for specifically targeting RNA molecules in sequence-specific manner that further precludes modification of DNA sequences.

SUMMARY

[05] The disclosure provides a composition comprising (a) a sequence comprising a guide RNA (gRNA) that specifically binds a target sequence within an RNA molecule and (b) a sequence encoding a fusion protein, the sequence comprising a sequence encoding a first RNAbinding polypeptide and a sequence encoding a second RNA-binding polypeptide, wherein
neither the first RNA-binding polypeptide nor the second RNA-binding polypeptide comprises a significant DNA-nuclease activity, wherein the first RNA-binding polypeptide and the second RNA-binding polypeptide are not identical, and wherein the second RNA-binding polypeptide comprises an RNA-nuclease activity wherein the first RNA-binding polypeptide and the second RNA-binding polypeptide are not identical, and wherein the second RNA-binding polypeptide comprises an RNA-nuclease activity.
[06] The disclosure also provides a composition comprising a sequence encoding an RNAguided target RNA-binding fusion protein comprising (a) a sequence encoding a first RNAbinding polypeptide or portion thereof; and (b) a sequence encoding a second RNA-binding polypeptide, wherein the first RNA-binding polypeptide binds a target RNA guided by a gRNA sequence, and wherein the second RNA-binding polypeptide comprises RNA-nuclease activity [07] The disclosure additionally provides a composition comprising a sequence encoding a target RNA-binding fusion protein comprising (a) a sequence encoding a first RNA-binding polypeptide or portion thereof; and (b) a sequence encoding a second RNA-binding polypeptide, wherein the first RNA-binding polypeptide binds a target RNA without a gRNA sequence, and wherein the second RNA-binding polypeptide comprises RNA-nuclease activity.
[08] In some embodiments of the compositions of the disclosure, the target sequence comprises at least one repeated sequence.
[09] In some embodiments of the compositions of the disclosure, the sequence comprising the gRNA further comprises a sequence encoding a promoter capable of expressing the gRNA in a eukaryotic cell.
[010] In some embodiments of the compositions of the disclosure, the eukaryotic cell is an animal cell. In some embodiments, the animal cell is a mammalian cell. In some embodiments, the animal cell is a human cell.
[011] In some embodiments of the compositions of the disclosure, the promoter is a constitutively active promoter. In some embodiments, the promoter sequence is isolated or derived from a promoter capable of driving expression of an RNA polymerase. In some embodiments, the promoter sequence is isolated or derived from a U6 promoter. In some embodiments, the promoter is a sequence isolated or derived from a promoter capable of driving expression of a transfer RNA (tRNA). In some embodiments, the promoter is isolated or derived
from an alanine tRNA promoter, an arginine tRNA promoter, an asparagine tRNA promoter, an aspartic acid tRNA promoter, a cysteine tRNA promoter, a glutamine tRNA promoter, a glutamic acid tRNA promoter, a glycine tRNA promoter, a histidine tRNA promoter, an isoleucine tRNA promoter, a leucine tRNA promoter, a lysine tRNA promoter, a methionine tRNA promoter, a phenylalanine tRNA promoter, a proline tRNA promoter, a serine tRNA promoter, a threonine tRNA promoter, a tryptophan tRNA promoter, a tyrosine tRNA promoter, or a valine tRNA promoter. In some embodiments, the promoter is isolated or derived from a valine tRNA promoter.
[012] In some embodiments of the compositions of the disclosure, the sequence comprising the gRNA further comprises a spacer sequence that specifically binds to the target RNA sequence. In some embodiments, the spacer sequence has at least $50 \%, 55 \%, 60 \%, 65 \%, 70 \%$, $75 \%, 80 \%, 87 \%, 90 \%, 95 \%, 97 \%, 99 \%$ or any percentage in between of complementarity to the target RNA sequence. In some embodiments, the spacer sequence has 100% complementarity to the target RNA sequence. In some embodiments, the spacer sequence comprises or consists of 20 nucleotides. In some embodiments, the spacer sequence comprises or consists of 21 nucleotides. In some embodiments, the spacer sequence comprises or consists of the sequence
UGGAGCGAGCAUCCCCCAAA (SEQ ID NO: 1), GUUUGGGGGAUGCUCGCUCCA (SEQ ID NO: 2), CCCUCACUGCUGGGGAGUCC (SEQ ID NO: 3),
GGACUCCCCAGCAGUGAGGG (SEQ ID NO: 4), GCAACUGGAUCAAUUUGCUG (SEQ ID NO: 5), GCAGCAAAUUGAUCCAGUUGC (SEQ ID NO: 6), GCAUUCUUAUCUGGUCAGUGC (SEQ ID NO: 7), GCACUGACCAGAUAAGAAUG (SEQ ID NO: 8), GAGCAGCAGCAGCAGCAGCAG (SEQ ID NO: 9),
GCAGGCAGGCAGGCAGGCAGG (SEQ ID NO: 10), GCCCCGGCCCCGGCCCCGGC (SEQ ID NO: 11), or GCTGCTGCTGCTGCTGCTGC (SEQ ID NO: 12), GGGGCCGGGGCCGGGGCCGG (SEQ ID NO: 74), GGGCCGGGGCCGGGGCCGGG (SEQ ID NO: 75), GGCCGGGGCCGGGGCCGGGG (SEQ ID NO: 76), GCCGGGGCCGGGGCCGGGGC (SEQ ID NO: 77), CCGGGGCCGGGGCCGGGGCC (SEQ ID NO: 78), or CGGGGCCGGGGCCGGGGCCG (SEQ ID NO: 79).
[013] In some embodiments of the compositions of the disclosure, the sequence comprising the gRNA further comprises a spacer sequence that specifically binds to the target RNA
sequence. In some embodiments, the spacer sequence has at least $50 \%, 55 \%, 60 \%, 65 \%, 70 \%$, $75 \%, 80 \%, 87 \%, 90 \%, 95 \%, 97 \%, 99 \%$ or any percentage in between of complementarity to the target RNA sequence.
[014] In some embodiments, the spacer sequence has 100% complementarity to the target RNA sequence. In some embodiments, the spacer sequence comprises or consists of 20 nucleotides. In some embodiments, the spacer sequence comprises or consists of 21 nucleotides. In some embodiments, the spacer sequence comprises or consists of the sequence GUGAUAAGUGGAAUGCCAUG (SEQ ID NO: 14), CUGGUGAACUUCCGAUAGUG (SEQ ID NO: 15), or GAGATATAGCCTGGTGGTTC (SEQ ID NO: 16).
[015] In some embodiments of the compositions of the disclosure, the sequence comprising the gRNA further comprises a spacer sequence that specifically binds to the target RNA sequence. In some embodiments, the spacer sequence has at least $50 \%, 55 \%, 60 \%, 65 \%, 70 \%$, $75 \%, 80 \%, 87 \%, 90 \%, 95 \%, 97 \%, 99 \%$ or any percentage in between of complementarity to the target RNA sequence. In some embodiments, the spacer sequence has 100% complementarity to the target RNA sequence. In some embodiments, the spacer sequence comprises or consists of 20 nucleotides. In some embodiments, the spacer sequence comprises or consists of 21 nucleotides. In some embodiments, the spacer sequence comprises or consists of a sequence comprising at least $1,2,3,4,5,6$, or 7 repeats of the sequence CUG (SEQ ID NO: 18), CCUG (SEQ ID NO: 19), CAG (SEQ ID NO: 80), GGGGCC (SEQ ID NO: 81) or any combination thereof.
[016] In some embodiments of the compositions of the disclosure, the sequence comprising the gRNA further comprises a scaffold sequence that specifically binds to the first RNA binding protein. In some embodiments, the scaffold sequence comprises a stem-loop structure. In some embodiments, the scaffold sequence comprises or consists of 90 nucleotides. In some embodiments, the scaffold sequence comprises or consists of 93 nucleotides. In some embodiments, the scaffold sequence comprises or consists of the sequence GUUUAAGAGCUAUGCUGGAAACAGCAUAGCAAGUUUAAAUAAGGCUAGUCCGUU AUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUUUUU (SEQ ID NO: 13). In some embodiments, the scaffold sequence comprises or consists of the sequence GGACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGG CACCGAGUCGGUGCUUUUU (SEQ ID NO: 17). In some embodiments, the scaffold
sequence comprises or consists of the sequence
GUUUAAGAGCUAUGCUGGAAACAGCAUAGCAAGUUUAAAUAAGGCUAGUCCGUU AUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUUUUU (SEQ ID NO: 82) or GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGA AAAAGUGGCACCGAGUCGGUGCUUUUUUU (SEQ ID NO: 83).
[017] In some embodiments of the compositions of the disclosure, the gRNA does not bind or does not selectively bind to a second sequence within the RNA molecule.
[018] In some embodiments of the compositions of the disclosure, an RNA genome or an RNA transcriptome comprises the RNA molecule.
[019] In some embodiments of the compositions of the disclosure, the first RNA binding protein comprises a CRISPR-Cas protein. In some embodiments, the CRISPR-Cas protein is a Type II CRISPR-Cas protein. In some embodiments, the first RNA binding protein comprises a Cas9 polypeptide or an RNA-binding portion thereof. In some embodiments, the CRISPR-Cas protein comprises a native RNA nuclease activity. In some embodiments, the native RNA nuclease activity is reduced or inhibited. In some embodiments, the native RNA nuclease activity is increased or induced. In some embodiments, the CRISPR-Cas protein comprises a native DNA nuclease activity and the native DNA nuclease activity is inhibited. In some embodiments, the CRISPR-Cas protein comprises a mutation. In some embodiments, a nuclease domain of the CRISPR-Cas protein comprises the mutation. In some embodiments, the mutation occurs in a nucleic acid encoding the CRISPR-Cas protein. In some embodiments, the mutation occurs in an amino acid encoding the CRISPR-Cas protein. In some embodiments, the mutation comprises a substitution, an insertion, a deletion, a frameshift, an inversion, or a transposition. In some embodiments, the mutation comprises a deletion of a nuclease domain, a binding site within the nuclease domain, an active site within the nuclease domain, or at least one essential amino acid residue within the nuclease domain.
[020] In some embodiments of the compositions of the disclosure, the first RNA binding protein comprises a CRISPR-Cas protein. In some embodiments, the CRISPR-Cas protein is a Type V CRISPR-Cas protein. In some embodiments, the first RNA binding protein comprises a Cpf1 polypeptide or an RNA-binding portion thereof. In some embodiments, the CRISPR-Cas protein comprises a native RNA nuclease activity. In some embodiments, the native RNA
nuclease activity is reduced or inhibited. In some embodiments, the native RNA nuclease activity is increased or induced. In some embodiments, the CRISPR-Cas protein comprises a native DNA nuclease activity and the native DNA nuclease activity is inhibited. In some embodiments, the CRISPR-Cas protein comprises a mutation. In some embodiments, a nuclease domain of the CRISPR-Cas protein comprises the mutation. In some embodiments, the mutation occurs in a nucleic acid encoding the CRISPR-Cas protein. In some embodiments, the mutation occurs in an amino acid encoding the CRISPR-Cas protein. In some embodiments, the mutation comprises a substitution, an insertion, a deletion, a frameshift, an inversion, or a transposition. In some embodiments, the mutation comprises a deletion of a nuclease domain, a binding site within the nuclease domain, an active site within the nuclease domain, or at least one essential amino acid residue within the nuclease domain.
[021] In some embodiments of the compositions of the disclosure, the first RNA binding protein comprises a CRISPR-Cas protein. In some embodiments, the CRISPR-Cas protein is a Type VI CRISPR-Cas protein. In some embodiments, the first RNA binding protein comprises a Cas13 polypeptide or an RNA-binding portion thereof. In some embodiments, the first RNA binding protein comprises a CasRx/Cas13d polypeptide or an RNA-binding portion thereof. In some embodiments, the CRISPR-Cas protein comprises a native RNA nuclease activity. In some embodiments, the native RNA nuclease activity is reduced or inhibited. In some embodiments, the native RNA nuclease activity is increased or induced. In some embodiments, the CRISPRCas protein comprises a native DNA nuclease activity and the native DNA nuclease activity is inhibited. In some embodiments, the CRISPR-Cas protein comprises a mutation. In some embodiments, a nuclease domain of the CRISPR-Cas protein comprises the mutation. In some embodiments, the mutation occurs in a nucleic acid encoding the CRISPR-Cas protein. In some embodiments, the mutation occurs in an amino acid encoding the CRISPR-Cas protein. In some embodiments, the mutation comprises a substitution, an insertion, a deletion, a frameshift, an inversion, or a transposition. In some embodiments, the mutation comprises a deletion of a nuclease domain, a binding site within the nuclease domain, an active site within the nuclease domain, or at least one essential amino acid residue within the nuclease domain.
[022] In some embodiments of the compositions of the disclosure, the first RNA binding protein comprises a Pumilio and FBF (PUF) protein or an RNA binding portion thereof. In some
embodiments, the first RNA binding protein comprises a Pumilio-based assembly (PUMBY) protein or an RNA binding portion thereof.
[023] In some embodiments of the compositions of the disclosure, the first RNA binding protein does not require multimerization for RNA-binding activity. In some embodiments, the first RNA binding protein is not a monomer of a multimer complex. In some embodiments, a multimer protein complex does not comprise the first RNA binding protein.
[024] In some embodiments of the compositions of the disclosure, the first RNA binding protein selectively binds to a target sequence within the RNA molecule. In some embodiments, the first RNA binding protein does not comprise an affinity for a second sequence within the RNA molecule. In some embodiments, the first RNA binding protein does not comprise a high affinity for or selectively bind a second sequence within the RNA molecule.
[025] In some embodiments of the compositions of the disclosure, an RNA genome or an RNA transcriptome comprises the RNA molecule.
[026] In some embodiments of the compositions of the disclosure, the first RNA binding protein comprises between 2 and 1300 amino acids, inclusive of the endpoints.
[027] In some embodiments of the compositions of the disclosure, the sequence encoding the first RNA binding protein further comprises a sequence encoding a nuclear localization signal (NLS), a nuclear export signal (NES) or tag. In some embodiments, the sequence encoding a nuclear localization signal (NLS) is positioned 3 ' to the sequence encoding the first RNA binding protein. In some embodiments, the first RNA binding protein comprises an NLS at a Cterminus of the protein.
[028] In some embodiments of the compositions of the disclosure, the sequence encoding the first RNA binding protein further comprises a first sequence encoding a first NLS and a second sequence encoding a second NLS. In some embodiments, the sequence encoding the first NLS or the second NLS is positioned 3^{\prime} to the sequence encoding the first RNA binding protein. In some embodiments, the first RNA binding protein comprises the first NLS or the second NLS at a Cterminus of the protein.
[029] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a nuclease domain. In some embodiments, the second RNA
binding protein binds RNA in a manner in which it associates with RNA. In some embodiments, the second RNA binding protein associates with RNA in a manner in which it cleaves RNA. [030] In some embodiments of the compositions of the disclosure, the sequence encoding the second RNA binding protein comprises or consists of an RNAse. In some embodiments, the second RNA binding protein comprises or consists of an RNAse 1. In some embodiments, the RNAse1 comprises or consists of SEQ ID NO: 20. In some embodiments, the second RNA binding protein comprises or consists of an RNAse4. In some embodiments, the RNAse 4 comprises or consists of SEQ ID NO: 21. In some embodiments, the second RNA binding protein comprises or consists of an RNAse6. In some embodiments, the RNAse6 comprises or consists of SEQ ID NO: 22. In some embodiments, the second RNA binding protein comprises or consists of an RNAse7. In some embodiments, the RNAse7 comprises or consists of SEQ ID NO: 23. In some embodiments, the second RNA binding protein comprises or consists of an RNAse8. In some embodiments, the RNAse8 protein comprises or consists of SEQ ID NO: 24. In some embodiments, the second RNA binding protein comprises or consists of an RNAse2. In some embodiments, the RNAse2 protein comprises or consists of SEQ ID NO: 25. In some embodiments, the second RNA binding protein comprises or consists of an RNAse6PL. In some embodiments, the RNAse6PL protein comprises or consists of SEQ ID NO: 26. In some embodiments, the second RNA binding protein comprises or consists of an RNAseL. In some embodiments the RNAseL protein comprises or consists of SEQ ID NO: 27. In some embodiments, the second RNA binding protein comprises or consists of an RNAseT2. In some embodiments, the RNAseT2 protein comprises or consists of SEQ ID NO: 28. In some embodiments, the second RNA binding protein comprises or consists of an RNAse11. In some embodiments, the RNAse11 protein comprises or consists of SEQ ID NO: 29. In some embodiments, the second RNA binding protein comprises or consists of an RNAseT2-like. In some embodiments, the RNAseT2-like protein comprises or consists of SEQ ID NO: 30.
[031] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a mutated RNAse. In some embodiments, the second RNA binding protein comprises or consists of a mutated Rnasel (Rnasel(K41R)) polypeptide. In some embodiments, the Rnase1 (K41R) polypeptide comprises or consists of SEQ ID NO: 116. In some embodiments, the second RNA binding protein comprises or consists of a mutated

Rnasel (Rnase1(K41R, D121E)) polypeptide. In some embodiments, the Rnase1 (Rnase1(K41R, D121E)) polypeptide comprises or consists of SEQ ID NO: 66. In some embodiments, the second RNA binding protein comprises or consists of a mutated Rnasel (Rnase1(K41R, D121E, H119N)) polypeptide. In some embodiments, the Rnase1 (Rnase1(K41R, D121E, H119N)) polypeptide comprises or consists of SEQ ID NO: 118. In some embodiments, the second RNA binding protein comprises or consists of a mutated Rnase1. In some embodiments, the second RNA binding protein comprises or consists of a mutated Rnase1 (Rnase1(H119N)) polypeptide. In some embodiments, the Rnase (Rnase1(H119N)) polypeptide comprises or consists SEQ ID NO: 119. In some embodiments, the second RNA binding protein comprises or consists of a mutated Rnase 1 (Rnase1(R39D, N67D, N88A, G89D, R91D, H119N)) polypeptide. In some embodiments, the Rnasel (Rnase1(R39D, N67D, N88A, G89D, R91D, H119N)) polypeptide comprises or consists of SEQ ID NO: 120. In some embodiments, the second RNA binding protein comprises or consists of a mutated Rnasel (Rnasel(R39D, N67D, N88A, G89D, R91D, H119N)) polypeptide. In some embodiments, the Rnasel (Rnase1(R39D, N67D, N88A, G89D, R91D, H119N, K41R, D121E)) polypeptide comprises or consists of SEQ ID NO: 121. In some embodiments, the second RNA binding protein comprises or consists of a mutated Rnasel (Rnase1(R39D, N67D, N88A, G89D, R91D, H119N)) polypeptide. In some embodiments, the Rnase1 (Rnase1(R39D, N67D, N88A, G89D, R91D)) polypeptide comprises or consists of SEQ ID NO: 122 .
[032] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a NOB1 polypeptide. In some embodiments, the NOB1 polypeptide comprises or consists of SEQ ID NO: 31.
[033] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of an endonuclease. In some embodiments, the second RNA binding protein comprises or consists of an endonuclease V (ENDOV). In some embodiments, the ENDOV protein comprises or consists of SEQ ID NO: 32. In some embodiments, the second RNA binding protein comprises or consists of an endonuclease G (ENDOG). In some embodiments, the ENDOG protein comprises or consists of SEQ ID NO: 33. In some embodiments, the second RNA binding protein comprises or consists of an endonuclease D1 (ENDOD1). In some embodiments, the ENDOD1 protein comprises or consists of SEQ ID NO:
34. In some embodiments, the second RNA binding protein comprises or consists of a Human flap endonuclease-1 (hFEN1). In some embodiments, the hFEN1 protein comprises or consists of SEQ ID NO: 35. In some embodiments, the second RNA binding protein comprises or consists of a DNA repair endonuclease XPF (ERCC4) polypeptide. In some embodiments, the ERCC4 protein comprises or consists of SEQ ID NO: 64.
[034] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of an Endonuclease III-like protein 1 (NTHL) polypeptide. In some embodiments, the NTHL polypeptide comprises or consists of SEQ ID NO: 123
[035] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a human Schlafen 14 (hSLFN14) polypeptide. In some embodiments, the hSLFN14 polypeptide comprises or consists of SEQ ID NO: 36.
[036] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a human beta-lactamase-like protein 2 (hLACTB2) polypeptide. In some embodiments, the hLACTB2 polypeptide comprises or consists of SEQ ID NO: 37.
[037] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of an apurinic/apyrimidinic (AP) endodeoxyribonuclease (APEX) polypeptide. In some embodiments, the second RNA binding protein comprises or consists of an apurinic/apyrimidinic (AP) endodeoxyribonuclease (APEX2) polypeptide. In some embodiments, the APEX2 polypeptide comprises or consists of SEQ ID NO: 38. In some embodiments, the APEX2 polypeptide comprises or consists of SEQ ID NO: 39. In some embodiments, the second RNA binding protein comprises or consists of an apurinic or apyrimidinic site lyase (APEX1) polypeptide. In some embodiments, the APEX1 polypeptide comprises or consists of SEQ ID NO: 125.
[038] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of an angiogenin (ANG) polypeptide. In some embodiments, the ANG polypeptide comprises or consists SEQ ID NO: 40.
[039] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a heat responsive protein 12 (HRSP12) polypeptide. In some embodiments, the HRSP12 polypeptide comprises or consists of SEQ ID NO: 41.
[040] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a Zinc Finger CCCH-Type Containing 12A (ZC3H12A) polypeptide. In some embodiments, the ZC3H12A polypeptide comprises or consists of SEQ ID NO: 42. In some embodiments, the ZC3H12A polypeptide comprises or consists of SEQ ID NO: 43.
[041] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a Reactive Intermediate Imine Deaminase A (RIDA) polypeptide. In some embodiments, the RIDA polypeptide comprises or consists of SEQ ID NO 44.
[042] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a Phospholipase D Family Member 6 (PDL6) polypeptide. In some embodiments, the PDL6 polypeptide comprises or consists of SEQ ID NO: 126
[043] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a mitochondrial ribonuclease P catalytic subunit (KIAA0391) polypeptide. In some embodiments, the KIAA0391 polypeptide comprises or consists of SEQ ID NO: 127
[044] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of an argonaute 2 (AGO2) polypeptide.

In some embodiments of the compositions of the disclosure, the AGO2 polypeptide comprises or consists of SEQ ID NO: 128 .
[045] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a mitochondrial nuclease EXOG (EXOG) polypeptide. In some embodiments, the EXOG polypeptide comprises or consists of SEQ ID NO: 129.
[046] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a Zinc Finger CCCH-Type Containing 12D (ZC3H12D) polypeptide. In some embodiments, the ZC3H12D polypeptide comprises or consists of SEQ ID NO: 130.
[047] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of an endoplasmic reticulum to nucleus signaling 2 (ERN2)
polypeptide. In some embodiments, the ERN2 polypeptide comprises or consists of SEQ ID NO: 131.
[048] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a pelota mRNA surveillance and ribosome rescue factor (PELO) polypeptide. In some embodiments, the PELO polypeptide comprises or consists of SEQ ID NO: 132.
[049] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a YBEY metallopeptidase (YBEY) polypeptide. In some embodiments, the YBEY polypeptide comprises or consists of SEQ ID NO: 133.
[050] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a cleavage and polyadenylation specific factor 4 like (CPSF4L) polypeptide. In some embodiments, the CPSF4L polypeptide comprises or consists of SEQ ID NO: 134.
[051] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of an hCG_2002731polypeptide. In some embodiments, the hCG_2002731 comprises or consists of SEQ ID NO: 135. In some embodiments, the hCG_2002731 polypeptide comprises or consists of SEQ ID NO: 136.
[052] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of an Excision Repair Cross-Complementation Group 1 (ERCC1) polypeptide. In some embodiments, the ERCC1 polypeptide comprises or consists of SEQ ID NO: 137
[053] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a ras-related C 3 botulinum toxin substrate 1 isoform (RAC1) polypeptide. In some embodiments, the RAC1 polypeptide comprises or consists of SEQ ID NO: 138.
[054] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a Ribonuclease A A1 (RAA1) polypeptide. In some embodiments, the RAA1 polypeptide comprises or consists of SEQ ID NO: 139.
[055] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a Ras Related Protein (RAB1) polypeptide. In some embodiments, the RAB1 polypeptide comprises or consists of SEQ ID NO: 140.
[056] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a DNA Replication Helicase/Nuclease 2 (DNA2) polypeptide. In some embodiments, the DNA2 polypeptide comprises or consists of SEQ ID NO: 141.
[057] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a FLJ35220 polypeptide. In some embodiments, the FLJ35220 polypeptide comprises or consists of SEQ ID NO: 142.
[058] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a FLJ13173 polypeptide. In some embodiments, the FLJ13173 polypeptide comprises or consists of SEQ ID NO: 143.
[059] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of Teneurin Transmembrane Protein (TENM) polypeptide. In some embodiments, the second RNA binding protein comprises or consists of Teneurin Transmembrane Protein 1 (TENM1) polypeptide. In some embodiments, the TENM1 polypeptide comprises or consists of SEQ ID NO: 144. In some embodiments, the second RNA binding protein comprises or consists of Teneurin Transmembrane Protein 2 (TENM2) polypeptide. In some embodiments, the TENM2 polypeptide comprises or consists of SEQ ID NO: 145
[060] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a Ribonuclease Kappa (RNAseK) polypeptide. In some embodiments, the RNAseK polypeptide comprises or consists of SEQ ID NO: 204
[061] In some embodiments, the fusion proteins of the disclosure are used in methods for treating a subject in need thereof, the methods comprising contacting a target RNA with a fusion protein or the sequence encoding the fusion protein

BRIEF DESCRIPTION OF THE DRAWINGS

[062] The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
[063] Figure 1A-B is a schematic diagram of an exemplary embodiment of a composition of the disclosure. (A) An RNA-targeting Cas9 system fused to an endonuclease targets and cleaves a disease-causing RNA. (B) Depicts an application of (A) in the context of myotonic dystrophy type 1, wherein an RNA-targeting Cas9 system fused to an endonuclease targets and cleaves a repetitive RNA composed of repeating CUG units. In the absence of the RNA-targeting Cas9 system, the repetitive RNA composed of repeating CUG units binds to a splicing factor MBNL and causes pathology via dysfunctional RNA splicing. Cleavage of this repetitive RNA ameliorates disease.
[064] Figure 2 is a schematic diagram depicting an exemplary modular therapeutic platform for treating genetic disease by targeting RNA molecules.
[065] Figure 3A-B is a pair of schematic diagrams depicting (A) a "high expression" control system (also referred to as "pos control") comprising a two plasmid system comprising a cytomegalovirus promoter driving expression of the RNA endonuclease/Cas9 fusion and (B) a "low expression" control system (also referred to as "P13") comprising a single plasmid system comprising a lower-expression promoter (pEFS) driving expression of the RNA endonuclease/Cas9 fusion.
[066] Figure 4A is a pair of schematic diagrams depicting an exemplary RNA EndonucleaseC. jejuni Cas9 fusion protein (left) and a vector comprising an exemplary RNA Endonuclease-S. pyogenes Cas9 fusion protein (right)
[067] Figure 4B is a graph depicting the ability of a variety of fusion proteins comprising either C. jejuni Cas9 or S. pyogenes Cas9, as shown in Figure 4A, to cleave repetitive RNA molecules.
[068] Figure 5 A is a pair of schematic diagrams depicting an exemplary RNA EndonucleaseC. jejuni Cas9 fusion protein (left) and a vector comprising an exemplary RNA Endonuclease-S. pyogenes Cas9 fusion protein (right)
[069] Figure 5B is a graph depicting the ability of a variety of fusion proteins comprising either C. jejuni Cas9 or S. pyogenes Cas9, as shown in Figure 5A, to cleave mRNA molecules encoding a luciferase protein
[070] Figure 6 is a table providing a key to the endonucleases shown in Figures 4B, 5B, and 9.
[071] Figure 7A is a schematic diagram depicting an exemplary RNA Endonuclease-C. jejuni Cas9 fusion protein.
[072] Figure 7B is a graph depicting changes in expression levels of Zika NS5 in the presence of both E43 and E67 CjeCas9-endonuclease fusions with sgRNAs containing the various NS5targeting spacer sequences as indicated in Table 2. Zika NS5 expression is displayed as fold change relative to the endonuclease loaded with an sgRNA containing a control (Lambda) spacer sequence.
[073] Figure 8A is a fluorescence microscopy image of cells transfected with CjeCas9endonuclease fusions loaded with an sgRNA containing a Zika NS5-targeting spacer sequence. [074] Figure 8B is a graph depicting changes of expression of Zika NS5 in the presence of CjeCas9-endonuclease fusions loaded with the appropriate Zika NS5-targeting sgRNA as compared to a CjeCas9-endonuclease fusions loaded with a non-Zika NS5 targeting sgRNA [075] Figure 9 is a graph depicting the cleavage efficiencies of a variety of exemplary fusion proteins (SpyCas9 fused to the annotated endonuclease).

DETAILED DESCRIPTION

[076] The disclosure provides an RNA-guided fusion protein that selectively binds and, optionally, cleaves RNA molecules. The disclosure provides vectors, compositions and cells comprising the RNA-guided fusion protein. The disclosure provides methods of using the RNAguided fusion protein, vectors, compositions and cells of the disclosure to treat a disease or disorder.

Guide RNA

[077] The terms guide RNA (gRNA) and single guide RNA (sgRNA) are used interchangeably throughout the disclosure
[078] Guide RNAs (gRNAs) of the disclosure may comprise of a spacer sequence and a scaffolding sequence. In some embodiments, a guide RNA is a single guide RNA (sgRNA)
comprising a contiguous spacer sequence and scaffolding sequence. In some embodiments, the spacer sequence and the scaffolding sequence are not contiguous. In some embodiments, a scaffold sequence comprises a "direct repeat" (DR) sequence. DR sequences refer to the repetitive sequences in the CRISPR locus (naturally-occurring in a bacterial genome or plasmid) that are interspersed with the spacer sequences. It is well known that one would be able to infer the DR sequence of a corresponding Cas protein if the sequence of the associated CRISPR locus is known. In some embodiments, a sequence encoding a guide RNA or single guide RNA of the disclosure comprises or consists of a spacer sequence and a scaffolding sequence, that are separated by a linker sequence. In some embodiments, the linker sequence may comprise or consist of $1,2,3,4,5,6,7,8,9,10,15,20,25,30,35,40,45,50$ or any number of nucleotides in between. In some embodiments, the linker sequence may comprise at least $1,2,3,4,5,6,7,8$, $9,10,15,20,25,30,35,40,45,50$ or any number of nucleotides in between.
[079] Guide RNAs (gRNAs) of the disclosure may comprise non-naturally occurring nucleotides. In some embodiments, a guide RNA of the disclosure or a sequence encoding the guide RNA comprises or consists of modified or synthetic RNA nucleotides. Exemplary modified RNA nucleotides include, but are not limited to, pseudouridine (Ψ), dihydrouridine (D), inosine (I), and 7-methylguanosine (m7G), hypoxanthine, xanthine, xanthosine, 7methylguanine, 5, 6-Dihydrouracil, 5-methylcytosine, 5-methylcytidine, 5hydropxymethylcytosine, isoguanine, and isocytosine.
[080] Guide RNAs (gRNAs) of the disclosure may bind modified RNA within a target sequence. Within a target sequence, guide RNAs (gRNAs) of the disclosure may bind modified RNA. Exemplary epigenetically or post-transcriptionally modified RNA include, but are not limited to, 2^{\prime}-O-Methylation (2^{\prime}-OMe) (2^{\prime}-O-methylation occurs on the oxygen of the free 2^{\prime} 'OH of the ribose moiety), N6-methyladenosine (m6A), and 5-methylcytosine (m5C).
[081] In some embodiments of the compositions of the disclosure, a guide RNA of the disclosure comprises at least one sequence encoding a non-coding C/D box small nucleolar RNA (snoRNA) sequence. In some embodiments, the snoRNA sequence comprises at least one sequence that is complementary to the target RNA, wherein the target sequence of the RNA molecule comprises at least one 2^{\prime}-OMe. In some embodiments, the snoRNA sequence comprises at least one sequence that is complementary to the target RNA, wherein the at least
one sequence that is complementary to the target RNA comprises a box C motif (RUGAUGA) and a box D motif (CUGA).
[082] Spacer sequences of the disclosure bind to the target sequence of an RNA molecule. Spacer sequences of the disclosure may comprise a CRISPR RNA (crRNA). Spacer sequences of the disclosure comprise or consist of a sequence having sufficient complementarity to a target sequence of an RNA molecule to bind selectively to the target sequence. Upon binding to a target sequence of an RNA molecule, the spacer sequence may guide one or more of a scaffolding sequence and a fusion protein to the RNA molecule. In some embodiments, a sequence having sufficient complementarity to a target sequence of an RNA molecule to bind selectively to the target sequence has at least $50 \%, 55 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%$, $95 \%, 96,97 \%, 98 \%, 99 \%$, or any percentage identity in between to the target sequence. In some embodiments, a sequence having sufficient complementarity to a target sequence of an RNA molecule to bind selectively to the target sequence has 100% identity the target sequence.
[083] Scaffolding sequences of the disclosure bind the first RNA-binding polypeptide of the disclosure. Scaffolding sequences of the disclosure may comprise a trans acting RNA (tracrRNA). Scaffolding sequences of the disclosure comprise or consist of a sequence having sufficient complementarity to a target sequence of an RNA molecule to bind selectively to the target sequence. Upon binding to a target sequence of an RNA molecule, the scaffolding sequence may guide a fusion protein to the RNA molecule. In some embodiments, a sequence having sufficient complementarity to a target sequence of an RNA molecule to bind selectively to the target sequence has at least $50 \%, 55 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%, 95 \%, 96$, $97 \%, 98 \%, 99 \%$, or any percentage identity in between to the target sequence. In some embodiments, a sequence having sufficient complementarity to a target sequence of an RNA molecule to bind selectively to the target sequence has 100% identity the target sequence. Alternatively, or in addition, in some embodiments, scaffolding sequences of the disclosure comprise or consist of a sequence that binds to a first RNA binding protein or a second RNA binding protein of a fusion protein of the disclosure. In some embodiments, scaffolding sequences of the disclosure comprise a secondary structure or a tertiary structure. Exemplary secondary structures include, but are not limited to, a helix, a stem loop, a bulge, a tetraloop and a pseudoknot. Exemplary tertiary structures include, but are not limited to, an A-form of a helix,
a B-form of a helix, and a Z-form of a helix. Exemplary tertiary structures include, but are not limited to, a twisted or helicized stem loop. Exemplary tertiary structures include, but are not limited to, a twisted or helicized pseudoknot. In some embodiments, scaffolding sequences of the disclosure comprise at least one secondary structure or at least one tertiary structure. In some embodiments, scaffolding sequences of the disclosure comprise one or more secondary structure(s) or one or more tertiary structure(s).
[084] In some embodiments of the compositions of the disclosure, a guide RNA or a portion thereof selectively binds to a tetraloop motif in an RNA molecule of the disclosure. In some embodiments, a target sequence of an RNA molecule comprises a tetraloop motif. In some embodiments, the tetraloop motif is a "GRNA" motif comprising or consisting of one or more of the sequences of GAAA, GUGA, GCAA or GAGA.
[085] In some embodiments of the compositions of the disclosure, a guide RNA or a portion thereof that binds to a target sequence of an RNA molecule hybridizes to the target sequence of the RNA molecule. In some embodiments, a guide RNA or a portion thereof that binds to a first RNA binding protein or to a second RNA binding protein covalently binds to the first RNA binding protein or to the second RNA binding protein. In some embodiments, a guide RNA or a portion thereof that binds to a first RNA binding protein or to a second RNA binding protein non-covalently binds to the first RNA binding protein or to the second RNA binding protein.
[086] In some embodiments of the compositions of the disclosure, a guide RNA or a portion thereof comprises or consists of between 10 and 100 nucleotides, inclusive of the endpoints. In some embodiments, a spacer sequence of the disclosure comprises or consists of between 10 and 30 nucleotides, inclusive of the endpoints. In some embodiments, a spacer sequence of the disclosure comprises or consists of $15,16,17,18,19,20,21,22,23,24,25,26,27,28,29$ or 30 nucleotides. In some embodiments, the spacer sequence of the disclosure comprises or consists of 20 nucleotides. In some embodiments, the spacer sequence of the disclosure comprises or consists of 21 nucleotides. In some embodiments, a scaffold sequence of the disclosure comprises or consists of between 10 and 100 nucleotides, inclusive of the endpoints. In some embodiments, a scaffold sequence of the disclosure comprises or consists of $30,35,40,45,50$, $55,60,65,70,76,80,87,90,95,100$ or any number of nucleotides in between. In some embodiments, the scaffold sequence of the disclosure comprises or consists of between 85 and

95 nucleotides, inclusive of the endpoints. In some embodiments, the scaffold sequence of the disclosure comprises or consists of 85 nucleotides. In some embodiments, the scaffold sequence of the disclosure comprises or consists of 90 nucleotides. In some embodiments, the scaffold sequence of the disclosure comprises or consists of 93 nucleotides.
[087] In some embodiments of the compositions of the disclosure, a guide RNA or a portion thereof does not comprise a nuclear localization sequence (NLS).
[088] In some embodiments of the compositions of the disclosure, a guide RNA or a portion thereof does not comprise a sequence complementary to a protospacer adjacent motif (PAM).
[089] Therapeutic or pharmaceutical compositions of the disclosure do not comprise a PAMmer oligonucleotide. In other embodiments, optionally, non-therapeutic or nonpharmaceutical compositions may comprise a PAMmer oligonucleotide. The term "PAMmer" refers to an oligonucleotide comprising a PAM sequence that is capable of interacting with a guide nucleotide sequence-programmable RNA binding protein. Non-limiting examples of PAMmers are described in O'Connell et al. Nature 516, pages 263-266 (2014), incorporated herein by reference. A PAM sequence refers to a protospacer adjacent motif comprising about 2 to about 10 nucleotides. PAM sequences are specific to the guide nucleotide sequenceprogrammable RNA binding protein with which they interact and are known in the art. For example, Streptococcus pyogenes PAM has the sequence 5 '-NGG-3', where "N" is any nucleobase followed by two guanine ("G") nucleobases. Cas9 of Francisella novicida recognizes the canonical PAM sequence 5^{\prime}-NGG-3', but has been engineered to recognize the PAM 5'-YG-3' (where " Y " is a pyrimidine), thus adding to the range of possible Cas 9 targets. The Cpfl nuclease of Francisella novicida recognizes the PAM 5'-TTTN-3' or 5'-YTN-3' [090] In some embodiments of the compositions of the disclosure, a guide RNA or a portion thereof comprises a sequence complementary to a protospacer flanking sequence (PFS). In some embodiments, including those wherein a guide RNA or a portion thereof comprises a sequence complementary to a PFS, the first RNA binding protein may comprise a sequence isolated or derived from a Cas 13 protein. In some embodiments, including those wherein a guide RNA or a portion thereof comprises a sequence complementary to a PFS, the first RNA binding protein may comprise a sequence encoding a Cas13 protein or an RNA-binding portion thereof. In some
embodiments, the guide RNA or a portion thereof does not comprise a sequence complementary to a PFS.
[091] In some embodiments of the compositions of the disclosure, guide RNA sequence of the disclosure comprises a promoter sequence to drive expression of the guide RNA. In some embodiments, a vector comprising a guide RNA sequence of the disclosure comprises a promoter sequence to drive expression of the guide RNA. In some embodiments, the promoter to drive expression of the guide RNA is a constitutive promoter. In some embodiments, the promoter sequence is an inducible promoter. In some embodiments, the promoter is a sequence is a tissue-specific and/or cell-type specific promoter. In some embodiments, the promoter is a hybrid or a recombinant promoter. In some embodiments, the promoter is a promoter capable of expressing the guide RNA in a mammalian cell. In some embodiments, the promoter is a promoter capable of expressing the guide RNA in a human cell. In some embodiments, the promoter is a promoter capable of expressing the guide RNA and restricting the guide RNA to the nucleus of the cell. In some embodiments, the promoter is a human RNA polymerase promoter or a sequence isolated or derived from a sequence encoding a human RNA polymerase promoter. In some embodiments, the promoter is a U6 promoter or a sequence isolated or derived from a sequence encoding a U6 promoter. In some embodiments, the promoter is a human tRNA promoter or a sequence isolated or derived from a sequence encoding a human tRNA promoter. In some embodiments, the promoter is a human valine tRNA promoter or a sequence isolated or derived from a sequence encoding a human valine tRNA promoter.
[092] In some embodiments of the compositions of the disclosure, a promoter to drive expression of the guide RNA further comprises a regulatory element. In some embodiments, a vector comprising a promoter sequence to drive expression of the guide RNA further comprises a regulatory element. In some embodiments, a regulatory element enhances expression of the guide RNA. Exemplary regulatory elements include, but are not limited to, an enhancer element, an intron, an exon, or a combination thereof.
[093] In some embodiments of the compositions of the disclosure, a vector of the disclosure comprises one or more of a sequence encoding a guide RNA, a promoter sequence to drive expression of the guide RNA and a sequence encoding a regulatory element. In some
embodiments of the compositions of the disclosure, the vector further comprises a sequence encoding a fusion protein of the disclosure

Fusion Proteins

[094] Fusion proteins of the disclosure comprise a first RNA binding protein and a second RNA binding protein. In some embodiments, along a sequence encoding the fusion protein, the sequence encoding the first RNA binding protein is positioned 5^{\prime} of the sequence encoding the second RNA binding protein. In some embodiments, along a sequence encoding the fusion protein, the sequence encoding the first RNA binding protein is positioned 3' of the sequence encoding the second RNA binding protein.
[095] In some embodiments of the compositions of the disclosure, the sequence encoding the first RNA binding protein comprises a sequence isolated or derived from a protein capable of binding an RNA molecule. In some embodiments, the sequence encoding the first RNA binding protein comprises a sequence isolated or derived from a protein capable of selectively binding an RNA molecule and not binding a DNA molecule, a mammalian DNA molecule or any DNA molecule. In some embodiments, the sequence encoding the first RNA binding protein comprises a sequence isolated or derived from a protein capable of binding an RNA molecule and inducing a break in the RNA molecule. In some embodiments, the sequence encoding the first RNA binding protein comprises a sequence isolated or derived from a protein capable of binding an RNA molecule, inducing a break in the RNA molecule, and not binding a DNA molecule, a mammalian DNA molecule or any DNA molecule. In some embodiments, the sequence encoding the first RNA binding protein comprises a sequence isolated or derived from a protein capable of binding an RNA molecule, inducing a break in the RNA molecule, and neither binding nor inducing a break in a DNA molecule, a mammalian DNA molecule or any DNA molecule.
[096] In some embodiments of the compositions of the disclosure, the sequence encoding the first RNA binding protein comprises a sequence isolated or derived from a protein with no DNA nuclease activity.
[097] In some embodiments of the compositions of the disclosure, the sequence encoding the first RNA binding protein comprises a sequence isolated or derived from a protein having DNA nuclease activity, wherein the DNA nuclease activity does not induce a break in a DNA
molecule, a mammalian DNA molecule or any DNA molecule when a composition of the disclosure is contacted to an RNA molecule or introduced into a cell or into a subject of the disclosure
[098] In some embodiments of the compositions of the disclosure, the sequence encoding the first RNA binding protein comprises a sequence isolated or derived from a protein having DNA nuclease activity, wherein the DNA nuclease activity is inactivated and wherein the DNA nuclease activity does not induce a break in a DNA molecule, a mammalian DNA molecule or any DNA molecule when a composition of the disclosure is contacted to an RNA molecule or introduced into a cell or into a subject of the disclosure. In some embodiments, the sequence encoding the first RNA binding protein comprises a mutation that inactivates or decreases the DNA nuclease activity to a level at which the DNA nuclease activity does not induce a break in a DNA molecule, a mammalian DNA molecule or any DNA molecule when a composition of the disclosure is contacted to an RNA molecule or introduced into a cell or into a subject of the disclosure. In some embodiments, the sequence encoding the first RNA binding protein comprises a mutation that inactivates or decreases the DNA nuclease activity and the mutation comprises one or more of a substitution, inversion, transposition, insertion, deletion, or any combination thereof to a nucleic acid sequence or amino acid sequence encoding the first RNA binding protein or a nuclease domain thereof.
[099] In some embodiments of the compositions of the disclosure, the sequence encoding the first RNA binding protein of an RNA-guided fusion protein disclosed herein comprises a sequence isolated or derived from a CRISPR Cas protein. In some embodiments, the CRISPR Cas protein comprises a Type II CRISPR Cas protein. In some embodiments, the Type II CRISPR Cas protein comprises a Cas9 protein. Exemplary Cas9 proteins of the disclosure may be isolated or derived from any species, including, but not limited to, a bacteria or an archaea. Exemplary Cas 9 proteins of the disclosure may be isolated or derived from any species, including, but not limited to, Streptococcus pyogenes, Haloferax mediteranii, Mycobacterium tuberculosis, Francisella tularensis subsp. novicida, Pasteurella multocida, Neisseria meningitidis, Campylobacter jejune, Streptococcus thermophilus, Campylobacter lari CF89-12, Mycoplasma gallisepticum str. F, Nitratifractor salsuginis str. DSM 16511, Parvibaculum lavamentivorans, Roseburia intestinalis, Neisseria cinerea, a Gluconacetobacter diazotrophicus,
an Azospirillum B510, a Sphaerochaeta globus str. Buddy, Flavobacterium columnare, Fluviicola taffensis, Bacteroides coprophilus, Mycoplasma mobile, Lactobacillus farciminis, Streptococcus pasteurianus, Lactobacillus johnsonii, Staphylococcus pseudintermedius, Filifactor alocis, Treponema denticola, Legionella pneumophila str. Paris, Sutterella wadsworthensis, Corynebacter diphtherias, Streptococcus aureus, and Francisella novicida. [0100] Exemplary wild type S. pyogenes Cas9 proteins of the disclosure may comprise or consist of the amino acid sequence

1 MDKKYSIGLD IGTNSVGWAV ITDEYKVPSK KFKVLGNTDR HSIKKNLIGA LLFDSGETAE
61 ATRLKRTARR RYTRRKNRIC YLQEIFSNEM AKVDDSFFHR LEESFLVEED KKHERHPIFG
121 NIVDEVAYHE KYPTIYHLRK KLVDSTDKAD LRLIYLALAH MIKFRGHFLI EGDLNPDNSD
181 VDKLFIQLVQ TYNQLFEENP INASGVDAKA ILSARLSKSR RLENLIAQLP GEKKNGLFGN
241 LIALSLGLTP NFKSNFDLAE DAKLQLSKDT YDDDLDNLLA QIGDQYADLF LAAKNLSDAI
301 LLSDILRVNT EITKAPLSAS MIKRYDEHHQ DLTLLKALVR QQLPEKYKEI FFDQSKNGYA
361 GYIDGGASQE EFYKFIKPIL EKMDGTEELL VKLNREDLLR KQRTFDNGSI PHQIHLGELH
421 AILRRQEDFY PFLKDNREKI EKILTFRIPY YVGPLARGNS RFAWMTRKSE ETITPWNFEE
481 VVDKGASAQS FIERMTNFDK NLPNEKVLPK HSLLYEYFTV YNELTKVKYV TEGMRKPAFL
541 SGEQKKAIVD LLFKTNRKVT VKQLKEDYFK KIECFDSVEI SGVEDRFNAS LGTYHDLLKI
601 IKDKDFLDNE ENEDILEDIV LTLTLFEDRE MIEERLKTYA HLFDDKVMKQ LKRRRYTGWG
661 RLSRKLINGI RDKQSGKTIL DFLKSDGFAN RNFMQLIHDD SLTFKEDIQK AQVSGQGDSL
721 HEHIANLAGS PAIKKGILQT VKVVDELVKV MGRHKPENIV IEMARENQTT QKGQKNSRER
781 MKRIEEGIKE LGSQILKEHP VENTQLQNEK LYLYYLQNGR DMYVDQELDI NRLSDYDVDH
841 IVPQSFLKDD SIDNKVLTRS DKNRGKSDNV PSEEVVKKMK NYWRQLLNAK LITQRKFDNL
901 TKAERGGLSE LDKAGFIKRQ LVETRQITKH VAQILDSRMN TKYDENDKLI REVKVITLKS
961 KLVSDFRKDF QFYKVREINN YHHAHDAYLN AVVGTALIKK YPKLESEFVY GDYKVYDVRK
1021 MIAKSEQEIG KATAKYFFYS NIMNFFKTEI TLANGEIRKR PLIETNGETG EIVWDKGRDF
1081 ATVRKVLSMP QVNIVKKTEV QTGGFSKESI LPKRNSDKLI ARKKDWDPKK YGGFDSPTVA
1141 YSVLVVAKVE KGKSKKLKSV KELLGITIME RSSFEKNPID FLEAKGYKEV KKDLIIKLPK
1201 YSLFELENGR KRMLASAGEL QKGNELALPS KYVNFLYLAS HYEKLKGSPE DNEQKQLFVE
1261 QHKHYLDEII EQISEFSKRV ILADANLDKV LSAYNKHRDK PIREQAENII HLFTLTNLGA
1321 PAAFKYFDTT IDRKRYTSTK EVLDATLIHQ SITGLYETRI DLSQLGGD (SEQ ID NO: 147).
[0101] Nuclease inactivated S. pyogenes Cas9 proteins may comprise a substitution of an Alanine (A) for an Aspartic Acid (D) at position 10 and an alanine (A) for a Histidine (H) at position 840. Exemplary nuclease inactivated S. pyogenes Cas9 proteins of the disclosure may comprise or consist of the amino acid sequence (D10A and H840A bolded and underlined):

```
    1 MDKKYSIGLA IGTNSVGWAV ITDEYKVPSK KFKVLGNTDR HSIKKNLIGA LLEDSGETAE
    6 1 ~ A T R L K R T A R R ~ R Y T R R K N R I C ~ Y L Q E I F S N E M ~ A K V D D S F F H R ~ L E E S F L V E E D ~ K K H E R H P I F G ~
1 2 1 ~ N I V D E V A Y H E ~ K Y P T I Y H L R K ~ K L V D S T D K A D ~ L R L I Y L A L A H ~ M I K F R G H F L I ~ E G D L N P D N S D ~
1 8 1 \text { VDKLFIQLVQ TYNQLFEENP INASGVDAKA ILSARLSKSR RLENLIAQLP GEKKNGLFGN}
2 4 1 ~ L I A L S L G L T P ~ N F K S N F D L A E ~ D A K L Q L S K D T ~ Y D D D L D N L L A ~ Q I G D Q Y A D L F ~ L A A K N L S D A I ~
3 0 1 ~ L L S D I L R V N T ~ E I T K A P L S A S ~ M I K R Y D E H H Q ~ D L T L L K A L V R ~ Q Q L P E K Y K E I ~ F F D Q S K N G Y A ~
361 GYIDGGASQE EFYKFIKPIL EKMDGTEELL VKLNREDLLR KQRTFDNGSI PHQIHLGELH
4 2 1 ~ A I L R R Q E D F Y ~ P F L K D N R E K I ~ E K I L T F R I P Y ~ Y V G P L A R G N S ~ R F A W M T R K S E ~ E T I T P W N F E E ~
4 8 1 ~ V V D K G A S A Q S ~ F I E R M T N F D K ~ N L P N E K V L P K ~ H S L L Y E Y F T V ~ Y N E L T K V K Y V ~ T E G M R K P A F L ~
5 4 1 ~ S G E Q K K A I V D ~ L L E K T N R K V T ~ V K Q L K E D Y F K ~ K I E C F D S V E I ~ S G V E D R F N A S ~ L G T Y H D L L K I ~
6 0 1 ~ I K D K D F L D N E ~ E N E D I L E D I V ~ L T L T L F E D R E ~ M I E E R L K T Y A ~ H L F D D K V M K Q ~ L K R R R Y T G W G ~
661 RLSRKLINGI RDKQSGKTIL DFLKSDGFAN RNFMQLIHDD SLTFKEDIQK AQVSGQGDSL
7 2 1 ~ H E H I A N L A G S ~ P A I K K G I L Q T ~ V K V V D E L V K V ~ M G R H K P E N I V ~ I E M A R E N Q T T ~ Q K G Q K N S R E R ~
7 8 1 \text { MKRIEEGIKE LGSQILKEHP VENTQLQNEK LYLYYLQNGR DMYVDQELDI NRLSDYDVDA}
841 IVPQSFLKDD SIDNKVLTRS DKNRGKSDNV PSEEVVKKMK NYWRQLLNAK LITQRKFDNL
901 TKAERGGLSE LDKAGFIKRQ LVETRQITKH VAQILDSRMN TKYDENDKLI REVKVITLKS
961 KLVSDFRKDF QFYKVREINN YHHAHDAYLN AVVGTALIKK YPKLESEFVY GDYKVYDVRK
1 0 2 1 ~ M I A K S E Q E I G ~ K A T A K Y F F Y S ~ N I M N F F K T E I ~ T L A N G E I R K R ~ P L I E T N G E T G ~ E I V W D K G R D F '
1081 ATVRKVLSMP QVNIVKKTEV QTGGFSKESI LPKRNSDKLI ARKKDWDPKK YGGFDSPTVA
1 1 4 1 ~ Y S V L V V A K V E ~ K G K S K K L K S V ~ K E L L G I T I M E ~ R S S E E K N P I D ~ F L E A K G Y K E V ~ K K D L I I K L P K ~
1 2 0 1 ~ Y S L F E L E N G R ~ K R M L A S A G E L ~ Q K G N E L A L P S ~ K Y V N F L Y L A S ~ H Y E K L K G S P E ~ D N E Q K Q L F V E ~
1261 QHKHYLDEII EQISEFSKRV ILADANLDKV LSAYNKHRDK PIREQAENII HLFTLTNLGA
1321 PAAFKYFDTT IDRKRYTSTK EVLDATLIHQ SITGLYETRI DLSQLGGD (SEQ ID NO: 148).
```

[0102] Nuclease inactivated S. pyogenes Cas9 proteins may comprise deletion of a RuvC nuclease domain or a portion thereof, an HNH domain, a DNAse active site, a $\beta \beta \alpha$-metal fold or a portion thereof comprising a DNAse active site or any combination thereof.
[0103] Other exemplary Cas9 proteins or portions thereof may comprise or consist of the following amino acid sequences.
[0104] In some embodiments the Cas9 protein can be S. pyogenes Cas9 and may comprise or consist of the amino acid sequence:

MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRR YTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLV DSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSAR LSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQY ADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNG

YAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYP FLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLP NEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIE CFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDK VMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQ GDSLHEHIANLAGSPATKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEG IKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLT RSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQIT KHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALI KKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETG EIVWDKGRDFATVRKVLSMPQVNTVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVA YSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKR MLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILAD ANLDKVLSAYNKHRDKPIREQAENITHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYE TRIDLSQLGGD (SEQ ID NO: 149)
[0105] In some embodiments the Cas9 protein can be S. aureus Cas9 and may comprise or consist of the amino acid sequence:

MKRNYILGLDIGITSVGYGIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRRRRHRIQRVKKLLF DYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSAALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSK ALEEKYVAELQLERLKKDGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEG PGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKLEYYEKFQII ENVFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIENAELLDQIAKILTIY QSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDELWHTNDNQIAIFNRLKLVPKKVDLS QQKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKKYGLPNDIIELAREKNSKDAQKMINEMQKRNRQTNERIE EIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVKQEE NSKKGNRTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVDTRYA TRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHHAEDALIANADFIFKEWKKLD KAKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHIKDFKDYKYSHRVDKKPNRELINDTLYSTRKD DKGNTLIVNNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLYKYYEETGN YLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVKLSLKPYRFDVYLDNGVYKFVTVKNLD VIKKENYYEVNSKCYEEAKKLKKISNQAEFIASFYNNDLIKINGELYRVIGVNNDLLNRIEVNMIDITYREYL ENMNDKRPPRIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIKKG (SEQ ID NO:150)
[0106] In some embodiments the Cas 9 protein can be S. thermophiles CRISPRI Cas 9 and may comprise or consist of the amino acid sequence:

MSDLVLGLDIGIGSVGVGILNKVTGEIIHKNSRIFPAAQAENNLVRRTNRQGRRLARRKKHRRVRLNRLFEE

SGLITDFTKISINLNPYQLRVKGLTDELSNEELFIALKNMVKHRGISYLDDASDDGNSSVGDYAQIVKENSK QLETKTPGQIQLERYQTYGQLRGDFTVEKDGKKHRLINVFPTSAYRSEALRILQTQQEFNPQITDEFINRYLE ILTGKRKYYHGPGNEKSRTDYGRYRTSGETLDNIFGILIGKCTFYPDEFRAAKASYTAQEFNLLNDLNNLTV PTETKKLSKEQKNQIINYVKNEKAMGPAKLFKYIAKLLSCDVADIKGYRIDKSGKAEIHTFEAYRKMKTLE TLDIEQMDRETLDKLAYVLTLNTEREGIQEALEHEFADGSFSQKQVDELVQFRKANSSIFGKGWHNFSVKL MMELIPELYETSEEQMTILTRLGKQKTTSSSNKTKYIDEKLLTEEIYNPVVAKSVRQAIKIVNAAIKEYGDFD NIVIEMARETNEDDEKKAIQKIQKANKDEKDAAMLKAANQYNGKAELPHSVFHGHKQLATKIRLWHQQG ERCLYTGKTISIHDLINNSNQFEVDHILPLSITFDDSLANKVLVYATANQEKGQRTPYQALDSMDDAWSFRE LKAFVRESKTLSNKKKEYLLTEEDISKFDVRKKFIERNLVDTRYASRVVLNALQEHFRAHKIDTKVSVVRG QFTSQLRRHWGIEKTRDTYHHHAVDALIIAASSQLNLWKKQKNTLVSYSEDQLLDIETGELISDDEYKESVF KAPYQHFVDTLKSKEFEDSILFSYQVDSKFNRKISDATIYATRQAKVGKDKADETYVLGKIKDIYTQDGYD AFMKIYKKDKSKFLMYRHDPQTFEKVIEPILENYPNKQINDKGKEVPCNPFLKYKEEHGYIRKYSKKGNGP EIKSLKYYDSKLGNHIDITPKDSNNKVVLQSVSPWRADVYFNKTTGKYEILGLKYADLQFDKGTGTYKISQ EKYNDIKKKEGVDSDSEFKFTLYKNDLLLVKDTETKEQQLFRFLSRTMPKQKHYVELKPYDKQKFEGGEA LIKVLGNVANSGQCKKGLGKSNISIYKVRTDVLGNQHIIKNEGDKPKLDF (SEQ ID NO: 151)
[0107] In some embodiments the Cas9 protein can be N. meningitidis Cas9 and may comprise or consist of the amino acid sequence:

MAAFKPNPINYILGLDIGIASVGWAMVEIDEDENPICLIDLGVRVFERAEVPKTGDSLAMARRLARSVRRLT RRRAHRLLRARRLLKREGVLQAADFDENGLIKSLPNTPWQLRAAALDRKLTPLEWSAVLLHLIKHRGYLS QRKNEGETADKELGALLKGVADNAHALQTGDFRTPAELALNKFEKESGHIRNQRGDYSHTFSRKDLQAEL ILLFEKQKEFGNPHVSGGLKEGIETLLMTQRPALSGDAVQKMLGHCTFEPAEPKAAKNTYTAERFIWLTKL NNLRILEQGSERPLTDTERATLMDEPYRKSKLTYAQARKLLGLEDTAFFKGLRYGKDNAEASTLMEMKAY HAISRALEKEGLKDKKSPLNLSPELQDEIGTAFSLFKTDEDITGRLKDRIQPEILEALLKHISFDKFVQISLKAL RRIVPLMEQGKRYDEACAEIYGDHYGKKNTEEKIYLPPIPADEIRNPVVLRALSQARKVINGVVRRYGSPAR IHIETAREVGKSFKDRKEIEKRQEENRKDREKAAAKFREYFPNFVGEPKSKDILKLRLYEQQHGKCLYSGKE INLGRLNEKGYVEIDHALPFSRTWDDSFNNKVLVLGSENQNKGNQTPYEYFNGKDNSREWQEFKARVETS RFPRSKKQRILLQKFDEDGFKERNLNDTRYVNRFLCQFVADRMRLTGKGKKRVFASNGQITNLLRGFWGL RKVRAENDRHHALDAVVVACSTVAMQQKITRFVRYKEMNAFDGKTIDKETGEVLHQKTHFPQPWEFFAQ EVMIRVFGKPDGKPEFEEADTPEKLRTLLAEKLSSRPEAVHEYVTPLFVSRAPNRKMSGQGHMETVKSAKR LDEGVSVLRVPLTQLKLKDLEKMVNREREPKLYEALKARLEAHKDDPAKAFAEPFYKYDKAGNRTQQVK AVRVEQVQKTGVWVRNHNGIADNATMVRVDVFEKGDKYYLVPIYSWQVAKGILPDRAVVQGKDEEDW QLIDDSFNFKFSLHPNDLVEVITKKARMFGYFASCHRGTGNINIRIHDLDHKIGKNGILEGIGVKTALSFQKY QIDELGKEIRPCRLKKRPPVR (SEQ ID NO: 152)
[0108] In some embodiments the Cas9 protein can be Parvibaculum. lavamentivorans Cas9 and may comprise or consist of the amino acid sequence:

MERIFGFDIGTTSIGFSVIDYSSTQSAGNIQRLGVRIFPEARDPDGTPLNQQRRQKRMMRRQLRRRRIRRKAL NETLHEAGFLPAYGSADWPVVMADEPYELRRRGLEEGLSAYEFGRAIYHLAQHRHFKGRELEESDTPDPD VDDEKEAANERAATLKALKNEQTTLGAWLARRPPSDRKRGIHAHRNVVAEEFERLWEVQSKFHPALKSE EMRARISDTIFAQRPVFWRKNTLGECRFMPGEPLCPKGSWLSQQRRMLEKLNNLAIAGGNARPLDAEERD AILSKLQQQASMSWPGVRSALKALYKQRGEPGAEKSLKFNLELGGESKLLGNALEAKLADMFGPDWPAH PRKQEIRHAVHERLWAADYGETPDKKRVIILSEKDRKAHREAAANSFVADFGITGEQAAQLQALKLPTGW EPYSIPALNLFLAELEKGERFGALVNGPDWEGWRRTNFPHRNQPTGEILDKLPSPASKEERERISQLRNPTV VRTQNELRKVVNNLIGLYGKPDRIRIEVGRDVGKSKREREEIQSGIRRNEKQRKKATEDLIKNGIANPSRDD VEKWILWKEGQERCPYTGDQIGFNALFREGRYEVEHIWPRSRSFDNSPRNKTLCRKDVNIEKGNRMPFEAF GHDEDRWSAIQIRLQGMVSAKGGTGMSPGKVKRFLAKTMPEDFAARQLNDTRYAAKQILAQLKRLWPD MGPEAPVKVEAVTGQVTAQLRKLWTLNNILADDGEKTRADHRHHAIDALTVACTHPGMTNKLSRYWQL RDDPRAEKPALTPPWDTIRADAEKAVSEIVVSHRVRKKVSGPLHKETTYGDTGTDIKTKSGTYRQFVTRKK IESLSKGELDEIRDPRIKEIVAAHVAGRGGDPKKAFPPYPCVSPGGPEIRKVRLTSKQQLNLMAQTGNGYAD LGSNHHIAIYRLPDGKADFEIVSLFDASRRLAQRNPIVQRTRADGASFVMSLAAGEAIMIPEGSKKGIWIVQ GVWASGQVVLERDTDADHSTTTRPMPNPILKDDAKKVSIDPIGRVRPSND (SEQ ID NO: 153)
[0109] In some embodiments the Cas9 protein can be Corynebacter diphtheria Cas 9 and may comprise or consist of the amino acid sequence:

MKYHVGIDVGTFSVGLAAIEVDDAGMPIKTLSLVSHIHDSGLDPDEIKSAVTRLASSGIARRTRRLYRRKRR RLQQLDKFIQRQGWPVIELEDYSDPLYPWKVRAELAASYIADEKERGEKLSVALRHIARHRGWRNPYAKV SSLYLPDGPSDAFKAIREEIKRASGQPVPETATVGQMVTLCELGTLKLRGEGGVLSARLQQSDYAREIQEIC RMQEIGQELYRKIIDVVFAAESPKGSASSRVGKDPLQPGKNRALKASDAFQRYRIAALIGNLRVRVDGEKRI LSVEEKNLVFDHLVNLTPKKEPEWVTIAEILGIDRGQLIGTATMTDDGERAGARPPTHDTNRSIVNSRIAPL VDWWKTASALEQHAMVKALSNAEVDDFDSPEGAKVQAFFADLDDDVHAKLDSLHLPVGRAAYSEDTLV RLTRRMLSDGVDLYTARLQEFGIEPSWTPPTPRIGEPVGNPAVDRVLKTVSRWLESATKTWGAPERVIIEHV REGFVTEKRAREMDGDMRRRAARNAKLFQEMQEKLNVQGKPSRADLWRYQSVQRQNCQCAYCGSPITF SNSEMDHIVPRAGQGSTNTRENLVAVCHRCNQSKGNTPFAIWAKNTSIEGVSVKEAVERTRHWVTDTGM RSTDFKKFTKAVVERFQRATMDEEIDARSMESVAWMANELRSRVAQHFASHGTTVRVYRGSLTAEARRA SGISGKLKFFDGVGKSRLDRRHHAIDAAVIAFTSDYVAETLAVRSNLKQSQAHRQEAPQWREFTGKDAEH RAAWRVWCQKMEKLSALLTEDLRDDRVVVMSNVRLRLGNGSAHKETIGKLSKVKLSSQLSVSDIDKASS EALWCALTREPGFDPKEGLPANPERHIRVNGTHVYAGDNIGLFPVSAGSIALRGGYAELGSSFHHARVYKI TSGKKPAFAMLRVYTIDLLPYRNQDLFSVELKPQTMSMRQAEKKLRDALATGNAEYLGWLVVDDELVVD TSKIATDQVKAVEAELGTIRRWRVDGFFSPSKLRLRPLQMSKEGIKKESAPELSKIIDRPGWLPAVNKLFSD GNVTVVRRDSLGRVRLESTAHLPVTWKVQ (SEQ ID NO: 154)
[0110] In some embodiments the Cas9 protein can be Streptococcus pasteuriamus Cas9 and may comprise or consist of the amino acid sequence:

MTNGKILGLDIGIASVGVGIIEAKTGKVVHANSRLFSAANAENNAERRGFRGSRRLNRRKKHRVKRVRDLF EKYGIVTDFRNLNLNPYELRVKGLTEQLKNEELFAALRTISKRRGISYLDDAEDDSTGSTDYAKSIDENRRL LKNKTPGQIQLERLEKYGQLRGNFTVYDENGEAHRLINVFSTSDYEKEARKILETQADYNKKITAEFIDDYV EILTQKRKYYHGPGNEKSRTDYGRFRTDGTTLENIFGILIGKCNFYPDEYRASKASYTAQEYNFLNDLNNLK VSTETGKLSTEQKESLVEFAKNTATLGPAKLLKEIAKILDCKVDEIKGYREDDKGKPDLHTFEPYRKLKFNL ESINIDDLSREVIDKLADILTLNTEREGIEDAIKRNLPNQFTEEQISEIIKVRKSQSTAFNKGWHSFSAKLMNE LIPELYATSDEQMTILTRLEKFKVNKKSSKNTKTIDEKEVTDEIYNPVVAKSVRQTIKIINAAVKKYGDFDKI VIEMPRDKNADDEKKFIDKRNKENKKEKDDALKRAAYLYNSSDKLPDEVFHGNKQLETKIRLWYQQGER CLYSGKPISIQELVHNSNNFEIDHILPLSLSFDDSLANKVLVYAWTNQEKGQKTPYQVIDSMDAAWSFREM KDYVLKQKGLGKKKRDYLLTTENIDKIEVKKKFIERNLVDTRYASRVVLNSLQSALRELGKDTKVSVVRG QFTSQLRRKWKIDKSRETYHHHAVDALIIAASSQLKLWEKQDNPMFVDYGKNQVVDKQTGEILSVSDDEY KELVFQPPYQGFVNTISSKGFEDEILFSYQVDSKYNRKVSDATIYSTRKAKIGKDKKEETYVLGKIKDIYSQ NGFDTFIKKYNKDKTQFLMYQKDSLTWENVIEVILRDYPTTKKSEDGKNDVKCNPFEEYRRENGLICKYSK KGKGTPIKSLKYYDKKLGNCIDITPEESRNKVILQSINPWRADVYFNPETLKYELMGLKYSDLSFEKGTGNY HISQEKYDAIKEKEGIGKKSEFKFTLYRNDLILIKDIASGEQEIYRFLSRTMPNVNHYVELKPYDKEKFDNVQ ELVEALGEADKVGRCIKGLNKPNISIYKVRTDVLGNKYFVKKKGDKPKLDFKNNKK (SEQ ID NO: 155)
[0111] In some embodiments the Cas9 protein can be Neisseria cinerea Cas9 and may comprise or consist of the amino acid sequence:

MAAFKPNPMNYILGLDIGIASVGWAIVEIDEEENPIRLIDLGVRVFERAEVPKTGDSLAAARRLARSVRRLT RRRAHRLLRARRLLKREGVLQAADFDENGLIKSLPNTPWQLRAAALDRKLTPLEWSAVLLHLIKHRGYLS QRKNEGETADKELGALLKGVADNTHALQTGDFRTPAELALNKFEKESGHIRNQRGDYSHTFNRKDLQAEL NLLFEKQKEFGNPHVSDGLKEGIETLLMTQRPALSGDAVQKMLGHCTFEPTEPKAAKNTYTAERFVWLTK LNNLRILEQGSERPLTDTERATLMDEPYRKSKLTYAQARKLLDLDDTAFFKGLRYGKDNAEASTLMEMKA YHAISRALEKEGLKDKKSPLNLSPELQDEIGTAFSLFKTDEDITGRLKDRVQPEILEALLKHISFDKFVQISLK ALRRIVPLMEQGNRYDEACTEIYGDHYGKKNTEEKIYLPPIPADEIRNPVVLRALSQARKVINGVVRRYGSP ARIHIETAREVGKSFKDRKEIEKRQEENRKDREKSAAKFREYFPNFVGEPKSKDLLKLRLYEQQHGKCLYSG KEINLGRLNEKGYVEIDHALPFSRTWDDSFNNKVLALGSENQNKGNQTPYEYFNGKDNSREWQEFKARVE TSRFPRSKKQRILLQKFDEDGFKERNLNDTRYINRFLCQFVADHMLLTGKGKRRVFASNGQITNLLRGFWG LRKVRAENDRHHALDAVVVACSTIAMQQKITRFVRYKEMNAFDGKTIDKETGEVLHQKAHFPQPWEFFA QEVMIR VFGKPDGKPEFEEADTPEKLRTLLAEKLSSRPEAVHKYVTPLFISRAPNRKMSGQGHMETVKSAK RLDEGISVLRVPLTQLKLKDLEKMVNREREPKLYEALKARLEAHKDDPAKAFAEPFYKYDKAGNRTQQV KAVRVEQVQKTGVWVHNHNGIADNATIVRVDVFEKGGKYYLVPIYSWQVAKGILPDRAVVQGKDEEDW TVMDDSFEFKFVLYANDLIKLTAKKNEFLGYFVSLNRATGAIDIRTHDTDSTKGKNGIFQSVGVKTALSFQ KYQIDELGKEIRPCRLKKRPPVR (SEQ ID NO: 156)
[0112] In some embodiments the Cas9 protein can be Campylobacter lari Cas9 and may comprise or consist of the amino acid sequence:
MRILGFDIGINSIGWAFVENDELKDCGVRIFTKAENPKNKESLALPRRNARSSRRRLKRRKARLIAIKRILAK ELKLNYKDYVAADGELPKAYEGSLASVYELRYKALTQNLETKDLARVILHIAKHRGYMNKNEKKSNDAK KGKILSALKNNALKLENYQSVGEYFYKEFFQKYKKNTKNFIKIRNTKDNYNNCVLSSDLEKELKLILEKQK EFGYNYSEDFINEILKVAFFQRPLKDFSHLVGACTFFEEEKRACKNSYSAWEFVALTKIINEIKSLEKISGEIV PTQTINEVLNLILDKGSITYKKFRSCINLHESISFKSLKYDKENAENAKLIDFRKLVEFKKALGVHSLSRQEL DQISTHITLIKDNVKLKTVLEKYNLSNEQINNLLEIEFNDYINLSFKALGMILPLMREGKRYDEACEIANLKP KTVDEKKDFLPAFCDSIFAHELSNPVVNRAISEYRKVLNALLKKYGKVHKIHLELARDVGLSKKAREKIEK EQKENQAVNAWALKECENIGLKASAKNILKLKLWKEQKEICIYSGNKISIEHLKDEKALEVDHIYPYSRSFD DSFINKVLVFTKENQEKLNKTPFEAFGKNIEKWSKIQTLAQNLPYKKKNKILDENFKDKQQEDFISRNLNDT RYIATLIAKYTKEYLNFLLLSENENANLKSGEKGSKIHVQTISGMLTSVLRHTWGFDKKDRNNHLHHALDA IIVAYSTNSIIKAFSDFRKNQELLKARFYAKELTSDNYKHQVKFFEPFKSFREKILSKIDEIFVSKPPRKRARR ALHKDTFHSENKIIDKCSYNSKEGLQIALSCGRVRKIGTKYVENDTIVRVDIFKKQNKFYAIPIYAMDFALGI LPNKIVITGKDKNNNPKQWQTIDESYEFCFSLYKNDLILLQKKNMQEPEFAYYNDFSISTSSICVEKHDNKF ENLTSNQKLLFSNAKEGSVKVESLGIQNLKVFEKYIITPLGDKIKADFQPRENISLKTSKKYGLR (SEQ ID NO: 157)
[0113] In some embodiments the Cas9 protein can be T. denticola Cas9 and may comprise or consist of the amino acid sequence:
MKKEIKDYFLGLDVGTGSVGWAVTDTDYKLLKANRKDLWGMRCFETAETAEVRRLHRGARRRIERRKK RIKLLQELFSQEIAKTDEGFFQRMKESPFYAEDKTILQENTLFNDKDFADKTYHKAYPTINHLIKAWIENKV KPDPRLLYLACHNIIKKRGHFLFEGDFDSENQFDTSIQALFEYLREDMEVDIDADSQKVKEILKDSSLKNSE KQSRLNKILGLKPSDKQKKAITNLISGNKINFADLYDNPDLKDAEKNSISFSKDDFDALSDDLASILGDSFEL LLKAKAVYNCSVLSKVIGDEQYLSFAKVKIYEKHKTDLTKLKNVIKKHFPKDYKKVFGYNKNEKNNNNY SGYVGVCKTKSKKLIINNSVNQEDFYKFLKTILSAKSEIKEVNDILTEIETGTFLPKQISKSNAEIPYQLRKME LEKILSNAEKHFSFLKQKDEKGLSHSEKIIMLLTFKIPYYIGPINDNHKKFFPDRCWVVKKEK SPSGKTTPWN FFDHIDKEKTAEAFITSRTNFCTYLVGESVLPKSSLLYSEYTVLNEINNLQIIIDGKNICDIKLKQKIYEDLFKK YKKITQKQISTFIKHEGICNKTDEVIILGIDKECTSSLKSYIELKNIFGKQVDEISTKNMLEEIRWATIYDEGE GKTILKTKIKAEYGKYCSDEQIKKILNLKFSGWGRLSRKFLETVTSEMPGFSEPVNIITAMRETQNNLMELLS SEFTFTENIKKINSGFEDAEKQFSYDGLVKPLFLSPSVKKMLWQTLKLVKEISHITQAPPKKIFIEMAKGAEL EPARTKTRLKILQDLYNNCKNDADAFSSEIKDLSGKIENEDNLRLRSDKLYLYYTQLGKCMYCGKPIEIGH VFDTSNYDIDHIYPQSKIKDDSISNRVLVCSSCNKNKEDKYPLKSEIQSKQRGFWNFLQRNNFISLEKLNRLT RATPISDDETAKFIARQLVETRQATKVAAKVLEKMFPETKIVYSKAETVSMFRNKFDIVKCREINDFHHAH DAYLNIVVGNVYNTKFTNNPWNFIKEKRDNPKIADTYNYYKVFDYDVKRNNITAWEKGKTIITVKDMLKR NTPIYTRQAACKKGELFNQTIMKKGLGQHPLKKEGPFSNISKYGGYNKVSAAYYTLIEYEEKGNKIRSLETI

PLYLVKDIQKDQDVLKSYLTDLLGKKEFKILVPKIKINSLLKINGFPCHITGKTNDSFLLRPAVQFCCSNNEV LYFKKIIRFSEIRSQREKIGKTISPYEDLSFRSYIKENLWKKTKNDEIGEKEFYDLLQKKNLEIYDMLLTKHKD TIYKKRPNSATIDILVKGKEKFKSLIIENQFEVILEILKLFSATRNVSDLQHIGGSKYSGVAKIGNKISSLDNCI LIYQSITGIFEKRIDLLKV (SEQ ID NO: 158)
[0114] In some embodiments the Cas9 protein can be S. mutans Cas9 and may comprise or consist of the amino acid sequence:

MKKPYSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIEKNLLGALLFDSGNTAEDRRLKRTAR RRYTRRRNRILYLQEIFSEEMGKVDDSFFHRLEDSFLVTEDKRGERHPIFGNLEEEVKYHENFPTIYHLRQYL ADNPEKVDLRLVYLALAHIIKFRGHFLIEGKFDTRNNDVQRLFQEFLAVYDNTFENSSLQEQNVQVEEILTD KISKSAKKDRVLKLFPNEKSNGRFAEFLKLIVGNQADFKKHFELEEKAPLQFSKDTYEEELEVLLAQIGDNY AELFLSAKKLYDSILLSGILTVTDVGTKAPLSASMIQRYNEHQMDLAQLKQFIRQKLSDKYNEVFSDVSKD GYAGYIDGKTNQEAFYKYLKGLLNKIEGSGYFLDKIEREDFLRKQRTFDNGSIPHQIHLQEMRAIIRRQAEF YPFLADNQDRIEKLLTFRIPYYVGPLARGKSDFAWLSRKSADKITPWNFDEIVDKESSAEAFINRMTNYDLY LPNQKVLPKHSLLYEKFTVYNELTKVKYKTEQGKTAFFDANMKQEIFDGVFKVYRKVTKDKLMDFLEKE FDEFRIVDLTGLDKENKVFNASYGTYHDLCKILDKDFLDNSKNEKILEDIVLTLTLFEDREMIRKRLENYSD LLTKEQVKKLERRHYTGWGRLSAELIHGIRNKESRKTILDYLIDDGNSNRNFMQLINDDALSFKEEIAKAQV IGETDNLNQVVSDIAGSPAIKKGILQSLKIVDELVKIMGHQPENIVVEMARENQFTNQGRRNSQQRLKGLTD SIKEFGSQILKEHPVENSQLQNDRLFLYYLQNGRDMYTGEELDIDYLSQYDIDHIIPQAFIKDNSIDNRVLTSS KENRGKSDDVPSKDVVRKMKSYWSKLLSAKLITQRKFDNLTKAERGGLTDDDKAGFIKRQLVETRQITKH VARILDERFNTETDENNKKIRQVKIVTLKSNLVSNFRKEFELYKVREINDYHHAHDAYLNAVIGKALLGVY PQLEPEFVYGDYPHFHGHKENKATAKKFFYSNIMNFFKKDDVRTDKNGEIIWKKDEHISNIKKVLSYPQVN IVKKVEEQTGGFSKESILPKGNSDKLIPRKTKKFYWDTKKYGGFDSPIVAYSILVIADIEKGKSKKLKTVKAL VGVTIMEKMTFERDPVAFLERKGYRNVQEENIIKLPKYSLFKLENGRKRLLASARELQKGNEIVLPNHLGT LLYHAKNIHKVDEPKHLDYVDKHKDEFKELLDVVSNFSKKYTLAEGNLEKIKELYAQNNGEDLKELASSFI NLLTFTAIGAPATFKFFDKNIDRKRYTSTTEILNATLIHQSITGLYETRIDLNKLGGD (SEQ ID NO: 159)
[0115] In some embodiments the Cas9 protein can be S. thermophilus CRISPR 3 Cas9 and may comprise or consist of the amino acid sequence:

MTKPYSIGLDIGTNSVGWAVTTDNYKVPSKKMKVLGNTSKKYIKKNLLGVLLFDSGITAEGRRLKRTARR RYTRRRNRILYLQEIFSTEMATLDDAFFQRLDDSFLVPDDKRDSKYPIFGNLVEEKAYHDEFPTIYHLRKYL ADSTKKADLRLVYLALAHMIKYRGHFLIEGEFNSKNNDIQKNFQDFLDTYNAIFESDLSLENSKQLEEIVKD KISKLEKKDRILKLFPGEKNSGIFSEFLKLIVGNQADFRKCFNLDEKASLHFSKESYDEDLETLLGYIGDDYS DVFLKAKKLYDAILLSGFLTVTDNETEAPLSSAMIKRYNEHKEDLALLKEYIRNISLKTYNEVFKDDTKNG YAGYIDGKTNQEDFYVYLKKLLAEFEGADYFLEKIDREDFLRKQRTFDNGSIPYQIHLQEMRAILDKQAKF YPFLAKNKERIEKILTFRIPYYVGPLARGNSDFAWSIRKRNEKITPWNFEDVIDKESSAEAFINRMTSFDLYL PEEKVLPKHSLLYETFNVYNELTKVRFIAESMRDYQFLDSKQKKDIVRLYFKDKRKVTDKDIIEYLHAIYGY

DGIELKGIEKQFNSSLSTYHDLLNIINDKEFLDDSSNEAIIEEIIHTLTIFEDREMIKQRLSKFENIFDKSVLKKL SRRHYTGWGKLSAKLINGIRDEKSGNTILDYLIDDGISNRNFMQLIHDDALSFKKKIQKAQIIGDEDKGNIKE VVKSLPGSPAIKKGILQSIKIVDELVKVMGGRKPESIVVEMARENQYTNQGKSNSQQRLKRLEKSLKELGS KILKENIPAKLSKIDNNALQNDRLYLYYLQNGKDMYTGDDLDIDRLSNYDIDHIIPQAFLKDNSIDNKVLVS SASNRGKSDDVPSLEVVKKRKTFWYQLLKSKLISQRKFDNLTKAERGGLSPEDKAGFIQRQLVETRQITKH VARLLDEKFNNKKDENNRAVRTVKIITLKSTLVSQFRKDFELYKVREINDFHHAHDAYLNAVVASALLKK YPKLEPEFVYGDYPKYNSFRERKSATEKVYFYSNIMNIFKKSISLADGRVIERPLIEVNEETGESVWNKESDL ATVRRVLSYPQVNVVKKVEEQNHGLDRGKPKGLFNANLSSKPKPNSNENLVGAKEYLDPKKYGGYAGIS NSFTVLVKGTIEKGAKKKITNVLEFQGISILDRINYRKDKLNFLLEKGYKDIELIIELPKYSLFELSDGSRRML ASILSTNNKRGEIHKGNQIFLSQKFVKLLYHAKRISNTINENHRKYVENHKKEFEELFYYILEFNENYVGAK KNGKLLNSAFQSWQNHSIDELCSSFIGPTGSERKGLFELTSRGSAADFEFLGVKIPRYRDYTPSSLLKDATLI HQSVTGLYETRIDLAKLGEG (SEQ ID NO: 160)
[0116] In some embodiments the Cas9 protein can be C. jejuni Cas9 and may comprise or consist of the amino acid sequence:

MARILAFDIGISSIGWAFSENDELKDCGVRIFTKVENPKTGESLALPRRLARSARKRLARRKARLNHLKHLI ANEFKLNYEDYQSFDESLAKAYKGSLISPYELRFRALNELLSKQDFARVILHIAKRRGYDDIKNSDDKEKG AILKAIKQNEEKLANYQSVGEYLYKEYFQKFKENSKEFTNVRNKKESYERCIAQSFLKDELKLIFKKQREFG FSFSKKFEEEVLSVAFYKRALKDFSHLVGNCSFFTDEKRAPKNSPLAFMFVALTRIINLLNNLKNTEGILYTK DDLNALLNEVLKNGTLTYKQTKKLLGLSDDYEFKGEKGTYFIEFKKYKEFIKALGEHNLSQDDLNEIAKDI TLIKDEIKLKKALAKYDLNQNQIDSLSKLEFKDHLNISFKALKLVTPLMLEGKKYDEACNELNLKVAINED KKDFLPAFNETYYKDEVTNPVVLRAIKEYRKVLNALLKKYGKVHKINIELAREVGKNHSQRAKIEKEQNE NYKAKKDAELECEKLGLKINSKNILKLRLFKEQKEFCAYSGEKIKISDLQDEKMLEIDHIYPYSRSFDDSYM NKVLVFTKQNQEKLNQTPFEAFGNDSAKWQKIEVLAKNLPTKKQKRILDKNYKDKEQKNFKDRNLNDTR YIARLVLNYTKDYLDFLPLSDDENTKLNDTQKGSKVHVEAKSGMLTSALRHTWGFSAKDRNNHLHHAID AVIIAYANNSIVKAFSDFKKEQESNSAELYAKKISELDYKNKRKFFEPFSGFRQKVLDKIDEIFVSKPERKKP SGALHEETFRKEEEFYQSYGGKEGVLKALELGKIRKVNGKIVKNGDMFRVDIFKHKKTNKFYAVPIYTMD FALKVLPNKAVARSKKGEIKDWILMDENYEFCFSLYKDSLILIQTKDMQEPEFVYYNAFTSSTVSLIVSKHD NKFETLSKNQKILFKNANEKEVIAKSIGIQNLKVFEKYIVSALGEVTKAEFRQREDFKK (SEQ ID NO: 161) [0117] In some embodiments the Cas9 protein can be P. multocida Cas9 and may comprise or consist of the amino acid sequence:

MQTTNLSYILGLDLGIASVGWAVVEINENEDPIGLIDVGVRIFERAEVPKTGESLALSRRLARSTRRLIRRRA HRLLLAKRFLKREGILSTIDLEKGLPNQAWELRVAGLERRLSAIEWGAVLLHLIKHRGYLSKRKNESQTNN KELGALLSGVAQNHQLLQSDDYRTPAELALKKFAKEEGHIRNQRGAYTHTFNRLDLLAELNLLFAQQHQF GNPHCKEHIQQYMTELLMWQKPALSGEAILKMLGKCTHEKNEFKAAKHTYSAERFVWLTKLNNLRILED GAERALNEEERQLLINHPYEKSKLTYAQVRKLLGLSEQAIFKHLRYSKENAESATFMELKAWHAIRKALEN

QGLKDTWQDLAKKPDLLDEIGTAFSLYKTDEDIQQYLTNKVPNSVINALLVSLNFDKFIELSLKSLRKILPL MEQGKRYDQACREIYGHHYGEANQKTSQLLPAIPAQEIRNPVVLRTLSQARKVINAIIRQYGSPARVHIETG RELGKSFKERREIQKQQEDNRTKRESAVQKFKELFSDFSSEPKSKDILKFRLYEQQHGKCLYSGKEINIHRL NEKGYVEIDHALPFSRTWDDSFNNKVLVLASENQNKGNQTPYEWLQGKINSERWKNFVALVLGSQCSAA KKQRLLTQVIDDNKFIDRNLNDTRYIARFLSNYIQENLLLVGKNKKNVFTPNGQITALLRSRWGLIKARENN NRHHALDAIVVACATPSMQQKITRFIRFKEVHPYKIENRYEMVDQESGEIISPHFPEPWAYFRQEVNIRVFD NHPDTVLKEMLPDRPQANHQFVQPLFVSRAPTRKMSGQGHMETIKSAKRLAEGISVLRIPLTQLKPNLLEN MVNKEREPALYAGLKARLAEFNQDPAKAFATPFYKQGGQQVKAIRVEQVQKSGVLVRENNGVADNASIV RTDVFIKNNKFFLVPIYTWQVAKGILPNKAIVAHKNEDEWEEMDEGAKFKFSLFPNDLVELKTKKEYFFGY YIGLDRATGNISLKEHDGEISKGKDGVYRVGVKLALSFEKYQVDELGKNRQICRPQQRQPVR (SEQ ID NO: 162)
[0118] In some embodiments the Cas9 protein can be F. novicida Cas9 and may comprise or consist of the amino acid sequence:

MNFKILPIAIDLGVKNTGVFSAFYQKGTSLERLDNKNGKVYELSKDSYTLLMNNRTARRHQRRGIDRKQL VKRLFKLIWTEQLNLEWDKDTQQAISFLFNRRGFSFITDGYSPEYLNIVPEQVKAILMDIFDDYNGEDDLDS YLKLATEQESKISEIYNKLMQKILEFKLMKLCTDIKDDKVSTKTLKEITSYEFELLADYLANYSESLKTQKFS YTDKQGNLKELSYYHHDKYNIQEFLKRHATINDRILDTLLTDDLDIWNFNFEKFDFDKNEEKLQNQEDKD HIQAHLHHFVFAVNKIKSEMASGGRHRSQYFQEITNVLDENNHQEGYLKNFCENLHNKKYSNLSVKNLVN LIGNLSNLELKPLRKYFNDKIHAKADHWDEQKFTETYCHWILGEWRVGVKDQDKKDGAKYSYKDLCNEL KQKVTKAGLVDFLLELDPCRTIPPYLDNNNRKPPKCQSLILNPKFLDNQYPNWQQYLQELKKLQSIQNYLD SFETDLKVLKSSKDQPYFVEYKSSNQQIASGQRDYKDLDARILQFIFDRVKASDELLLNEIYFQAKKLKQKA SSELEKLESSKKLDEVIANSQLSQILKSQHTNGIFEQGTFLHLVCKYYKQRQRARDSRLYIMPEYRYDKKLH KYNNTGRFDDDNQLLTYCNHKPRQKRYQLLNDLAGVLQVSPNFLKDKIGSDDDLFISKWLVEHIRGFKKA CEDSLKIQKDNRGLLNHKINIARNTKGKCEKEIFNLICKIEGSEDKKGNYKHGLAYELGVLLFGEPNEASKP EFDRKIKKFNSIYSFAQIQQIAFAERKGNANTCAVCSADNAHRMQQIKITEPVEDNKDKIILSAKAQRLPAIP TRIVDGAVKKMATILAKNIVDDNWQNIKQVLSAKHQLHIPIITESNAFEFEPALADVKGKSLKDRRKKALE RISPENIFKDKNNRIKEFAKGISAYSGANLTDGDFDGAKEELDHIIPRSHKKYGTLNDEANLICVTRGDNKN KGNRIFCLRDLADNYKLKQFETTDDLEIEKKIADTIWDANKKDFKFGNYRSFINLTPQEQKAFRHALFLADE NPIKQAVIRAINNRNRTFVNGTQRYFAEVLANNIYLRAKKENLNTDKISFDYFGIPTIGNGRGIAEIRQLYEK VDSDIQAYAKGDKPQASYSHLIDAMLAFCIAADEHRNDGSIGLEIDKNYSLYPLDKNTGEVFTKDIFSQIKIT DNEFSDKKLVRKKAIEGFNTHRQMTRDGIYAENYLPILIHKELNEVRKGYTWKNSEEIKIFKGKKYDIQQL NNLVYCLKFVDKPISIDIQISTLEELRNILTTNNIAATAEYYYINLKTQKLHEYYIENYNTALGYKKYSKEME FLRSLAYRSERVKIKSIDDVKQVLDKDSNFIIGKITLPFKKEWQRLYREWQNTTIKDDYEFLKSFFNVKSITK LHKKVRKDFSLPISTNEGKFLVKRKTWDNNFIYQILNDSDSRADGTKPFIPAFDISKNEIVEAIIDSFTSKNIF WLPKNIELQKVDNKNIFAIDTSKWFEVETPSDLRDIGIATIQYKIDNNSRPKVRVKLDYVIDDDSKINYFMN HSLLKSRYPDKVLEILKQSTIIEFESSGFNKTIKEMLGMKLAGIYNETSNN (SEQ ID NO: 163)
[0119] In some embodiments the Cas9 protein can be Lactobacillus buchneri Cas9 and may comprise or consist of the amino acid sequence:
MKVNNYHIGLDIGTSSIGWVAIGKDGKPLRVKGKTAIGARLFQEGNPAADRRMFRTTRRRLSRRKWRLKL LEEIFDPYITPVDSTFFARLKQSNLSPKDSRKEFKGSMLFPDLTDMQYHKNYPTIYHLRHALMTQDKKFDIR MVYLAIHHIVKYRGNFLNSTPVDSFKASKVDFVDQFKKLNELYAAINPEESFKINLANSEDIGHQFLDPSIRK FDKKKQIPKIVPVMMNDKVTDRLNGKIASEIIHAILGYKAKLDVVLQCTPVDSKPWALKFDDEDIDAKLEK ILPEMDENQQSIVAILQNLYSQVTLNQIVPNGMSLSESMIEKYNDHHDHLKLYKKLIDQLADPKKKAVLKK AYSQYVGDDGKVIEQAEFWSSVKKNLDDSELSKQIMDLIDAEKFMPKQRTSQNGVIPHQLHQRELDEIIEH QSKYYPWLVEINPNKHDLHLAKYKIEQLVAFRVPYYVGPMITPKDQAESAETVFSWMERKGTETGQITPW NFDEKVDRKASANRFIKRMTTKDTYLIGEDVLPDESLLYEKFKVLNELNMVRVNGKLLKVADKQAIFQDL FENYKHVSVKKLQNYIKAKTGLPSDPEISGLSDPEHFNNSLGTYNDFKKLFGSKVDEPDLQDDFEKIVEWST VFEDKKILREKLNEITWLSDQQKDVLESSRYQGWGRLSKKLLTGIVNDQGERIIDKLWNTNKNFMQIQSDD DFAKRIHEANADQMQAVDVEDVLADAYTSPQNKKAIRQVVKVVDDIQKAMGGVAPKYISIEFTRSEDRNP RRTISRQRQLENTLKDTAKSLAKSINPELLSELDNAAKSKKGLTDRLYLYFTQLGKDIYTGEPINIDELNKYD IDHILPQAFIKDNSLDNRVLVLTAVNNGKSDNVPLRMFGAKMGHFWKQLAEAGLISKRKLKNLQTDPDTIS KYAMHGFIRRQLVETSQVIKLVANILGDKYRNDDTKIIEITARMNHQMRDEFGFIKNREINDYHHAFDAYL TAFLGRYLYHRYIKLRPYFVYGDFKKFREDKVTMRNFNFLHDLTDDTQEKIADAETGEVIWDRENSIQQLK DVYHYKFMLISHEVYTLRGAMFNQTVYPASDAGKRKLIPVKADRPVNVYGGYSGSADAYMAIVRIHNKK GDKYRVVGVPMRALDRLDAAKNVSDADFDRALKDVLAPQLTKTKKSRKTGEITQVIEDFEIVLGKVMYR QLMIDGDKKFMLGSSTYQYNAKQLVLSDQSVKTLASKGRLDPLQESMDYNNVYTEILDKVNQYFSLYDM NKFRHKLNLGFSKFISFPNHNVLDGNTKVSSGKREILQEILNGLHANPTFGNLKDVGITTPFGQLQQPNGILL SDETKIRYQSPTGLFERTVSLKDL (SEQ ID NO: 164)
[0120] In some embodiments the Cas9 protein can be Listeria innocua Cas9 and may comprise or consist of the amino acid sequence:
MKKPYTIGLDIGTNSVGWAVLTDQYDLVKRKMKIAGDSEKKQIKKNFWGVRLFDEGQTAADRRMARTA RRRIERRRNRISYLQGIFAEEMSKTDANFFCRLSDSFYVDNEKRNSRHPFFATIEEEVEYHKNYPTIYHLREE LVNSSEKADLRLVYLALAHIIKYRGNFLIEGALDTQNTSVDGIYKQFIQTYNQVFASGIEDGSLKKLEDNKD VAKILVEKVTRKEKLERILKLYPGEKSAGMFAQFISLIVGSKGNFQKPFDLIEKSDIECAKDSYEEDLESLLA LIGDEYAELFVAAKNAYSAVVLSSIITVAETETNAKLSASMIERFDTHEEDLGELKAFIKLHLPKHYEEIFSN TEKHGYAGYIDGKTKQADFYKYMKMTLENIEGADYFIAKIEKENFLRKQRTFDNGAIPHQLHLEELEAILH QQAKYYPFLKENYDKIKSLVTFRIPYFVGPLANGQSEFAWLTRKADGEIRPWNIEEKVDFGKSAVDFIEKM TNKDTYLPKENVLPKHSLCYQKYLVYNELTKVRYINDQGKTSYFSGQEKEQIFNDLFKQKRKVKKKDLEL FLRNMSHVESPTIEGLEDSFNSSYSTYHDLLKVGIKQEILDNPVNTEMLENIVKILTVFEDKRMIKEQLQQFS DVLDGVVLKKLERRHYTGWGRLSAKLLMGIRDKQSHLTILDYLMNDDGLNRNLMQLINDSNLSFKSIIEK EQVTTADKDIQSIVADLAGSPAIKKGILQSLKIVDELVSVMGYPPQTIVVEMARENQTTGKGKNNSRPRYKS

LEKAIKEFGSQILKEHPTDNQELRNNRLYLYYLQNGKDMYTGQDLDIHNLSNYDIDHIVPQSFITDNSIDNL VLTSSAGNREKGDDVPPLEIVRKRKVFWEKLYQGNLMSKRKFDYLTKAERGGLTEADKARFIHRQLVETR QITKNVANILHQRFNYEKDDHGNTMKQVRIVTLKSALVSQFRKQFQLYKVRDVNDYHHAHDAYLNGVV ANTLLKVYPQLEPEFVYGDYHQFDWFKANKATAKKQFYTNIMLFFAQKDRIIDENGEILWDKKYLDTVKK VMSYRQMNIVKKTEIQKGEFSKATIKPKGNSSKLIPRKTNWDPMKYGGLDSPNMAYAVVIEYAKGKNKLV FEKKIIRVTIMERKAFEKDEKAFLEEQGYRQPKVLAKLPKYTLYECEEGRRRMLASANEAQKGNQQVLPN HLVTLLHHAANCEVSDGKSLDYIESNREMFAELLAHVSEFAKRYTLAEANLNKINQLFEQNKEGDIKAIAQ SFVDLMAFNAMGAPASFKFFETTIERKRYNNLKELLNSTIIYQSITGLYESRKRLDD (SEQ ID NO: 165)
[0121] In some embodiments the Cas9 protein can be L. pneumophilia Cas 9 and may comprise or consist of the amino acid sequence:

MESSQILSPIGIDLGGKFTGVCLSHLEAFAELPNHANTKYSVILIDHNNFQLSQAQRRATRHRVRNKKRNQF VKRVALQLFQHILSRDLNAKEETALCHYLNNRGYTYVDTDLDEYIKDETTINLLKELLPSESEHNFIDWFLQ KMQSSEFRKILVSKVEEKKDDKELKNAVKNIKNFITGFEKNSVEGHRHRKVYFENIKSDITKDNQLDSIKKK IPSVCLSNLLGHLSNLQWKNLHRYLAKNPKQFDEQTFGNEFLRMLKNFRHLKGSQESLAVRNLIQQLEQSQ DYISILEKTPPEITIPPYEARTNTGMEKDQSLLLNPEKLNNLYPNWRNLIPGIIDAHPFLEKDLEHTKLRDRKR IISPSKQDEKRDSYILQRYLDLNKKIDKFKIKKQLSFLGQGKQLPANLIETQKEMETHFNSSLVSVLIQIASAY NKEREDAAQGIWFDNAFSLCELSNINPPRKQKILPLLVGAILSEDFINNKDKWAKFKIFWNTHKIGRTSLKS KCKEIEEARKNSGNAFKIDYEEALNHPEHSNNKALIKIIQTIPDIIQAIQSHLGHNDSQALIYHNPFSLSQLYTI LETKRDGFHKNCVAVTCENYWRSQKTEIDPEISYASRLPADSVRPFDGVLARMMQRLAYEIAMAKWEQIK HIPDNSSLLIPIYLEQNRFEFEESFKKIKGSSSDKTLEQAIEKQNIQWEEKFQRIINASMNICPYKGASIGGQGE IDHIYPRSLSKKHFGVIFNSEVNLIYCSSQGNREKKEEHYLLEHLSPLYLKHQFGTDNVSDIKNFISQNVANI KKYISFHLLTPEQQKAARHALFLDYDDEAFKTITKFLMSQQKARVNGTQKFLGKQIMEFLSTLADSKQLQL EFSIKQITAEEVHDHRELLSKQEPKLVKSRQQSFPSHAIDATLTMSIGLKEFPQFSQELDNSWFINHLMPDEV HLNPVRSKEKYNKPNISSTPLFKDSLYAERFIPVWVKGETFAIGFSEKDLFEIKPSNKEKLFTLLKTYSTKNP GESLQELQAKSKAKWLYFPINKTLALEFLHHYFHKEIVTPDDTTVCHFINSLRYYTKKESITVKILKEPMPVL SVKFESSKKNVLGSFKHTIALPATKDWERLFNHPNFLALKANPAPNPKEFNEFIRKYFLSDNNPNSDIPNNG HNIKPQKHKAVRKVFSLPVIPGNAGTMMRIRRKDNKGQPLYQLQTIDDTPSMGIQINEDRLVKQEVLMDA YKTRNLSTIDGINNSEGQAYATFDNWLTLPVSTFKPEIIKLEMKPHSKTRRYIRITQSLADFIKTIDEALMIKP SDSIDDPLNMPNEIVCKNKLFGNELKPRDGKMKIVSTGKIVTYEFESDSTPQWIQTLYVTQLKKQP (SEQ ID NO: 166)
[0122] In some embodiments the Cas9 protein can be N. lactamica Cas9 and may comprise or consist of the amino acid sequence:
MAAFKPNPMNYILGLDIGIASVGWAMVEVDEEENPIRLIDLGVRVFERAEVPKTGDSLAMARRLARSVRRL TRRRAHRLLRARRLLKREGVLQDADFDENGLVKSLPNTPWQLRAAALDRKLTCLEWSAVLLHLVKHRGY LSQRKNEGETADKELGALLKGVADNAHALQTGDFRTPAELALNKFEKESGHIRNQRGDYSHTFSRKDLQA

ELNLLFEKQKEFGNPHVSDGLKEDIETLLMAQRPALSGDAVQKMLGHCTFEPAEPKAAKNTYTAERFIWL TKLNNLRILEQGSERPLTDTERATLMDEPYRKSKLTYAQARKLLGLEDTAFFKGLRYGKDNAEASTLMEM KAYHAISRALEKEGLKDKKSPLNLSTELQDEIGTAFSLFKTDKDITGRLKDRVQPEILEALLKHISFDKFVQIS LKALRRIVPLMEQGKRYDEACAEIYGDHYCKKNAEEKIYLPPIPADEIRNPVVLRALSQARKVINCVVRRY GSPARIHIETAREVGKSFKDRKEIEKRQEENRKDREKAAAKFREYFPNFVGEPKSKDILKLRLYEQQHGKCL YSGKEINLVRLNEKGYVEIDHALPFSRTWDDSFNNKVLVLGSENQNKGNQTPYEYFNGKDNSREWQEFKA RVETSRFPRSKKQRILLQKFDEEGFKERNLNDTRYVNRFLCQFVADHILLTGKGKRRVFASNGQITNLLRGF WGLRKVRTENDRHHALDAVVVACSTVAMQQKITRFVRYKEMNAFDGKTIDKETGEVLHQKAHFPQPWE FFAQEVMIRVFGKPDGKPEFEEADTPEKLRTLLAEKLSSRPEAVHEYVTPLFVSRAPNRKMSGQGHMETVK SAKRLDEGISVLRVPLTQLKLKGLEKMVNREREPKLYDALKAQLETHKDDPAKAFAEPFYKYDKAGSRTQ QVKAVRIEQVQKTGVWVRNHNGIADNATMVRVDVFEKGGKYYLVPIYSWQVAKGILPDRAVVAFKDEE DWTVMDDSFEFRFVLYANDLIKLTAKKNEFLGYFVSLNRATGAIDIRTHDTDSTKGKNGIFQSVGVKTALS FQKNQIDELGKEIRPCRLKKRPPVR (SEQ ID NO: 167)
[0123] In some embodiments the Cas 9 protein can be N. meningitides Cas 9 and may comprise or consist of the amino acid sequence:
MAAFKPNPINYILGLDIGIASVGWAMVEIDEDENPICLIDLGVRVFERAEVPKTGDSLAMARRLARSVRRLT RRRAHRLLRARRLLKREGVLQAADFDENGLIKSLPNTPWQLRAAALDRKLTPLEWSAVLLHLIKHRGYLS QRKNEGETADKELGALLKGVADNAHALQTGDFRTPAELALNKFEKESGHIRNQRGDYSHTFSRKDLQAEL ILLFEKQKEFGNPHVSGGLKEGIETLLMTQRPALSGDAVQKMLGHCTFEPAEPKAAKNTYTAERFIWLTKL NNLRILEQGSERPLTDTERATLMDEPYRKSKLTYAQARKLLGLEDTAFFKGLRYGKDNAEASTLMEMKAY HAISRALEKEGLKDKKSPLNLSPELQDEIGTAFSLFKTDEDITGRLKDRIQPEILEALLKHISFDKFVQISLKAL RRIVPLMEQGKRYDEACAEIYGDHYGKKNTEEKIYLPPIPADEIRNPVVLRALSQARKVINGVVRRYGSPAR IHIETAREVGKSFKDRKEIEKRQEENRKDREKAAAKFREYFPNFVGEPKSKDILKLRLYEQQHGKCLYSGKE INLGRLNEKGYVEIDHALPFSRTWDDSFNNKVLVLGSENQNKGNQTPYEYFNGKDNSREWQEFKARVETS RFPRSKKQRILLQKFDEDGFKERNLNDTRYVNRFLCQFVADRMRLTGKGKKRVFASNGQITNLLRGFWGL RKVRAENDRHHALDAVVVACSTVAMQQKITRFVRYKEMNAFDGKTIDKETGEVLHQKTHFPQPWEFFAQ EVMIRVFGKPDGKPEFEEADTPEKLRTLLAEKLSSRPEAVHEYVTPLFVSRAPNRKMSGQGHMETVKSAKR LDEGVSVLRVPLTQLKLKDLEKMVNREREPKLYEALKARLEAHKDDPAKAFAEPFYKYDKAGNRTQQVK AVRVEQVQKTGVWVRNHNGIADNATMVRVDVFEKGDKYYLVPIYSWQVAKGILPDRAVVQGKDEEDW QLIDDSFNFKFSLHPNDLVEVITKKARMFGYFASCHRGTGNINIRIHDLDHKIGKNGILEGIGVKTALSFQKY QIDELGKEIRPCRLKKRPPVR (SEQ ID NO: 168)
[0124] In some embodiments the Cas9 protein can be B. longum Cas9 and may comprise or consist of the amino acid sequence:
MLSRQLLGASHLARPVSYSYNVQDNDVHCSYGERCFMRGKRYRIGIDVGLNSVGLAAVEVSDENSPVRLL NAQSVIHDGGVDPQKNKEAITRKNMSGVARRTRRMRRRKRERLHKLDMLLGKFGYPVIEPESLDKPFEEW

HVRAELATRYIEDDELRRESISIALRHMARHRGWRNPYRQVDSLISDNPYSKQYGELKEKAKAYNDDATA AEEESTPAQLVVAMLDAGYAEAPRLRWRTGSKKPDAEGYLPVRLMQEDNANELKQIFRVQRVPADEWKP LFRSVFYAVSPKGSAEQRVGQDPLAPEQARALKASLAFQEYRIANVITNLRIKDASAELRKLTVDEKQSIYD QLVSPSSEDITWSDLCDFLGFKRSQLKGVGSLTEDGEERISSRPPRLTSVQRIYESDNKIRKPLVAWWKSAS DNEHEAMIRLLSNTVDIDKVREDVAYASAIEFIDGLDDDALTKLDSVDLPSGRAAYSVETLQKLTRQMLTT DDDLHEARKTLFNVTDSWRPPADPIGEPLGNPSVDRVLKNVNRYLMNCQQRWGNPVSVNIEHVRSSFSSV AFARKDKREYEKNNEKRSIFRSSLSEQLRADEQMEKVRESDLRRLEAIQRQNGQCLYCGRTITFRTCEMDH IVPRKGVGSTNTRTNFAAVCAECNRMKSNTPFAIWARSEDAQTRGVSLAEAKKRVTMFTFNPKSYAPREV KAFKQAVIARLQQTEDDAAIDNRSIESVAWMADELHRRIDWYFNAKQYVNSASIDDAEAETMKTTVSVFQ GRVTASARRAAGIEGKIHFIGQQSKTRLDRRHHAVDASVIAMMNTAAAQTLMERESLRESQRLIGLMPGER SWKEYPYEGTSRYESFHLWLDNMDVLLELLNDALDNDRIAVMQSQRYVLGNSIAHDATIHPLEKVPLGSA MSADLIRRASTPALWCALTRLPDYDEKEGLPEDSHREIRVHDTRYSADDEMGFFASQAAQIAVQEGSADIG SAIHHARVYRCWKTNAKGVRKYFYGMIRVFQTDLLRACHDDLFTVPLPPQSISMRYGEPRVVQALQSGNA QYLGSLVVGDEIEMDFSSLDVDGQIGEYLQFFSQFSGGNLAWKHWVVDGFFNQTQLRIRPRYLAAEGLAK AFSDDVVPDGVQKIVTKQGWLPPVNTASKTAVRIVRRNAFGEPRLSSAHHMPCSWQWRHE (SEQ ID NO: 169)
[0125] In some embodiments the Cas9 protein can be A. muciniphila Cas9 and may comprise or consist of the amino acid sequence

MSRSLTFSFDIGYASIGWAVIASASHDDADPSVCGCGTVLFPKDDCQAFKRREYRRLRRNIRSRRVRIERIG RLLVQAQIITPEMKETSGHPAPFYLASEALKGHRTLAPIELWHVLRWYAHNRGYDNNASWSNSLSEDGGN GEDTERVKHAQDLMDKHGTATMAETICRELKLEEGKADAPMEVSTPAYKNLNTAFPRLIVEKEVRRILELS APLIPGLTAEIIELIAQHHPLTTEQRGVLLQHGIKLARRYRGSLLFGQLIPRFDNRIISRCPVTWAQVYEAELK KGNSEQSARERAEKLSKVPTANCPEFYEYRMARILCNIRADGEPLSAEIRRELMNQARQEGKLTKASLEKAI SSRLGKETETNVSNYFTLHPDSEEALYLNPAVEVLQRSGIGQILSPSVYRIAANRLRRGKSVTPNYLLNLLKS RGESGEALEKKIEKESKKKEADYADTPLKPKYATGRAPYARTVLKKVVEEILDGEDPTRPARGEAHPDGEL KAHDGCLYCLLDTDSSVNQHQKERRLDTMTNNHLVRHRMLILDRLLKDLIQDFADGQKDRISRVCVEVG KELTTFSAMDSKKIQRELTLRQKSHTDAVNRLKRKLPGKALSANLIRKCRIAMDMNWTCPFTGATYGDHE LENLELEHIVPHSFRQSNALSSLVLTWPGVNRMKGQRTGYDFVEQEQENPVPDKPNLHICSLNNYRELVEK LDDKKGHEDDRRRKKKRKALLMVRGLSHKHQSQNHEAMKEIGMTEGMMTQSSHLMKLACKSIKTSLPD AHIDMIPGAVTAEVRKAWDVFGVFKELCPEAADPDSGKILKENLRSLTHLHHALDACVLGLIPYIIPAHHN GLLRRVLAMRRIPEKLIPQVRPVANQRHYVLNDDGRMMLRDLSASLKENIREQLMEQRVIQHVPADMGG ALLKETMQRVLSVDGSGEDAMVSLSKKKDGKKEKNQVKASKLVGVFPEGPSKLKALKAAIEIDGNYGVA LDPKPVVIRHIKVFKRIMALKEQNGGKPVRILKKGMLIHLTSSKDPKHAGVWRIESIQDSKGGVKLDLQRA HCAVPKNKTHECNWREVDLISLLKKYQMKRYPTSYTGTPR (SEQ ID NO: 170)
[0126] In some embodiments the Cas9 protein can be O. laneus Cas9 and may comprise or consist of the amino acid sequence:

METTLGIDLGTNSIGLALVDQEEHQILYSGVRIFPEGINKDTIGLGEKEESRNATRRAKRQMRRQYFRKKLR KAKLLELLIAYDMCPLKPEDVRRWKNWDKQQKSTVRQFPDTPAFREWLKQNPYELRKQAVTEDVTRPEL GRILYQMIQRRGFLSSRKGKEEGKIFTGKDRMVGIDETRKNLQKQTLGAYLYDIAPKNGEKYRFRTERVRA RYTLRDMYIREFEIIWQRQAGHLGLAHEQATRKKNIFLEGSATNVRNSKLITHLQAKYGRGHVLIEDTRITV TFQLPLKEVLGGKIEIEEEQLKFKSNESVLFWQRPLRSQKSLLSKCVFEGRNFYDPVHQKWIIAGPTPAPLSH PEFEEFRAYQFINNIIYGKNEHLTAIQREAVFELMCTESKDFNFEKIPKHLKLFEKFNFDDTTKVPACTTISQL RKLFPHPVWEEKREEIWHCFYFYDDNTLLFEKLQKDYALQTNDLEKIKKIRLSESYGNVSLKAIRRINPYLK KGYAYSTAVLLGGIRNSFGKRFEYFKEYEPEIEKAVCRILKEKNAEGEVIRKIKDYLVHNRFGFAKNDRAFQ KLYHHSQAITTQAQKERLPETGNLRNPIVQQGLNELRRTVNKLLATCREKYGPSFKFDHIHVEMGRELRSS KTEREKQSRQIRENEKKNEAAKVKLAEYGLKAYRDNIQKYLLYKEIEEKGGTVCCPYTGKTLNISHTLGSD NSVQIEHIIPYSISLDDSLANKTLCDATFNREKGELTPYDFYQKDPSPEKWGASSWEEIEDRAFRLLPYAKAQ RFIRRKPQESNEFISRQLNDTRYISKKAVEYLSAICSDVKAFPGQLTAELRHLWGLNNILQSAPDITFPLPVSA TENHREYYVITNEQNEVIRLFPKQGETPRTEKGELLLTGEVERKVFRCKGMQEFQTDVSDGKYWRRIKLSS SVTWSPLFAPKPISADGQIVLKGRIEKGVFVCNQLKQKLKTGLPDGSYWISLPVISQTFKEGESVNNSKLTSQ QVQLFGRVREGIFRCHNYQCPASGADGNFWCTLDTDTAQPAFTPIKNAPPGVGGGQIILTGDVDDKGIFHA DDDLHYELPASLPKGKYYGIFTVESCDPTLIPIELSAPKTSKGENLIEGNIWVDEHTGEVRFDPKKNREDQR HHAIDAIVIALSSQSLFQRLSTYNARRENKKRGLDSTEHFPSPWPGFAQDVRQSVVPLLVSYKQNPKTLCKI SKTLYKDGKKIHSCGNAVRGQLHKETVYGQRTAPGATEKSYHIRKDIRELKTSKHIGKVVDITIRQMLLKH LQENYHIDITQEFNIPSNAFFKEGVYRIFLPNKHGEPVPIKKIRMKEELGNAERLKDNINQYVNPRNNHHVMI YQDADGNLKEEIVSFWSVIERQNQGQPIYQLPREGRNIVSILQINDTFLIGLKEEEPEVYRNDLSTLSKHLYR VQKLSGMYYTFRHHLASTLNNEREEFRIQSLEAWKRANPVKVQIDEIGRITFLNGPLC (SEQ ID NO: 171). [0127]
[0128] In some embodiments of the compositions of the disclosure, the sequence encoding the first RNA binding protein comprises a sequence isolated or derived from a CRISPR Cas protein or portion thereof. In some embodiments, the CRISPR Cas protein comprises a Type V CRISPR Cas protein. In some embodiments, the Type V CRISPR Cas protein comprises a Cpf1 protein. Exemplary Cpf1 proteins of the disclosure may be isolated or derived from any species, including, but not limited to, a bacteria or an archaea. Exemplary Cpfl proteins of the disclosure may be isolated or derived from any species, including, but not limited to, Francisella tularensis subsp. novicida, Acidaminococcus sp. BV3L6 and Lachnospiraceae bacterium sp. ND2006. Exemplary Cpf1 proteins of the disclosure may be nuclease inactivated.
[0129] Exemplary wild type Francisella tularensis subsp. Novicida Cpf1 (FnCpf1) proteins of the disclosure may comprise or consist of the amino acid sequence:

```
    MSIYQEFVNK YSLSKTLRFE LIPQGKTLEN IKARGLILDD EKRAKDYKKA KQIIDKYHQF
    6 1 ~ F I E E I L S S V C ~ I S E D L L Q N Y S ~ D V Y F K L K K S D ~ D D N L Q K D E K S ~ A K D T I K K Q I S ~ E Y I K D S E K F K ~
121 NLFNQNLIDA KKGQESDLIL WLKQSKDNGI ELFKANSDIT DIDEALEIIK SFKGWTTYFK
181 GFHENRKNVY SSNDIPTSII YRIVDDNLPK FLENKAKYES LKDKAPEAIN YEQIKKDLAE
241 ELTFDIDYKT SEVNQRVFSL DEVFEIANFN NYLNQSGITK FNTIIGGKFV NGENTKRKGI
3 0 1 ~ N E Y I N L Y S Q Q ~ I N D K T L K K Y K ~ M S V L F K Q I L S ~ D T E S K S F V I D ~ K L E D D S D V V T ~ T M Q S F Y E Q I A ~
361 AFKTVEEKSI KETLSLLFDD LKAQKLDLSK IYFKNDKSLT DLSQQVFDDY SVIGTAVLEY
4 2 1 ~ I T Q Q I A P K N L ~ D N P S K K E Q E L ~ I A K K T E K A K Y ~ L S L E T I K L A L ~ E E F N K H R D I D ~ K Q C R F E E I L A ~
4 8 1 ~ N F A A I P M I F D ~ E I A Q N K D N L A ~ Q I S I K Y Q N Q G ~ K K D L L Q A S A E ~ D D V K A I K D L L ~ D Q T N N L L H K L ~
5 4 1 ~ K I F H I S Q S E D ~ K A N I L D K D E H ~ F Y L V F E E C Y F ~ E L A N I V P L Y N ~ K I R N Y I T Q K P ~ Y S D E K F K L N F '
6 0 1 ~ E N S T L A N G W D ~ K N K E P D N T A I ~ L F I K D D K Y Y L ~ G V M N K K N N K I ~ F D D K A I K E N K ~ G E G Y K K I V Y K ~
6 6 1 ~ L L P G A N K M L P ~ K V F F S A K S I K ~ F Y N P S E D I L R ~ I R N H S T H T K N ~ G S P Q K G Y E K F ~ E F N I E D C R K F ~
7 2 1 ~ I D F Y K Q S I S K ~ H P E W K D F G F R ~ F S D T Q R Y N S I ~ D E F Y R E V E N Q ~ G Y K L T F E N I S ~ E S Y I D S V N N Q ~
7 8 1 ~ G K L Y L F Q I Y N ~ K D F S A Y S K G R ~ P N L H T L Y W K A ~ L F D E R N L Q D V ~ V Y K L N G E A E L ~ F Y R K Q S I P K K ~
841 ITHPAKEAIA NKNKDNPKKE SVFEYDLIKD KRFTEDKFFF HCPITINFKS SGANKFNDEI
901 NLLLKEKAND VHILSIDRGE RHLAYYTLVD GKGNIIKQDT FNIIGNDRMK TNYHDKLAAI
961 EKDRDSARKD WKKINNIKEM KEGYLSQVVH EIAKLVIEYN AIVVFEDLNF GFKRGRFKVE
1021 KQVYQKLEKM LIEKLNYLVF KDNEFDKTGG VLRAYQLTAP FETFKKMGKQ TGIIYYVPAG
1081 FTSKICPVTG FVNQLYPKYE SVSKSQEFFS KFDKICYNLD KGYFEFSFDY KNFGDKAAKG
1141 KWTIASFGSR LINFRNSDKN HNWDTREVYP TKELEKLLKD YSIEYGHGEC IKAAICGESD
1201 KKFFAKLTSV LNTILQMRNS KTGTELDYLI SPVADVNGNF FDSRQAPKNM PQDADANGAY
1261 HIGLKGLMLL GRIKNNQEGK KLNLVIKNEE YFEFVQNRNN (SEQ ID NO: 172).
```

[0130] Exemplary wild type Lachnospiraceae bacterium sp. ND2006 Cpf1 (LbCpf1) proteins
of the disclosure may comprise or consist of the amino acid sequence:

```
1 AASKLEKFTN CYSLSKTLRF KAIPVGKTQE NIDNKRLLVE DEKRAEDYKG VKKLLDRYYL
61 SFINDVLHSI KLKNLNNYIS LFRKKTRTEK ENKELENLEI NLRKEIAKAF KGAAGYKSLF 121 KKDIIETILP EAADDKDEIA LVNSFNGFTT AFTGFFDNRE NMFSEEAKST SIAFRCINEN 181 LTRYISNMDI FEKVDAIFDK HEVQEIKEKI LNSDYDVEDF FEGEFFNFVL TQEGIDVYNA 241 IIGGFVTESG EKIKGLNEYI NLYNAKTKQA LPKFKPLYKQ VLSDRESLSF YGEGYTSDEE 301 VLEVFRNTLN KNSEIFSSIK KLEKLFKNFD EYSSAGIFVK NGPAISTISK DIFGEWNLIR 361 DKWNAEYDDI HLKKKAVVTE KYEDDRRKSF KKIGSFSLEQ LQEYADADLS VVEKLKEIII 421 QKVDEIYKVY GSSEKLFDAD FVLEKSLKKN DAVVAIMKDL LDSVKSFENY IKAFFGEGKE 481 TNRDESFYGD FVLAYDILLK VDHIYDAIRN YVTQKPYSKD KFKLYFQNPQ FMGGWDKDKE 541 TDYRATILRY GSKYYLAIMD KKYAKCLQKI DKDDVNGNYE KINYKLLPGP NKMLPKVFFS 601 KKWMAYYNPS EDIQKIYKNG TFKKGDMFNL NDCHKLIDFF KDSISRYPKW SNAYDFNFSE 661 TEKYKDIAGF YREVEEQGYK VSFESASKKE VDKLVEEGKL YMFQIYNKDF SDKSHGTPNL 721 HTMYFKLLFD ENNHGQIRLS GGAELFMRRA SLKKEELVVH PANSPIANKN PDNPKKTTTL 781 SYDVYKDKRF SEDQYELHIP IAINKCPKNI FKINTEVRVL LKHDDNPYVI GIDRGERNLL 841 YIVVVDGKGN IVEQYSLNEI INNFNGIRIK TDYHSLLDKK EKERFEARQN WTSIENIKEL 901 KAGYISQVVH KICELVEKYD AVIALEDLNS GFKNSRVKVE KQVYQKFEKM LIDKLNYMVD 961 KKSNPCATGG ALKGYQITNK FESFKSMSTQ NGFIFYIPAW LTSKIDPSTG FVNLLKTKYT 1021 SIADSKKFIS SFDRIMYVPE EDLFEFALDY KNFSRTDADY IKKWKLYSYG NRIRIFAAAK 1081 KNNVFAWEEV CLTSAYKELF NKYGINYQQG DIRALLCEQS DKAFYSSFMA LMSLMLQMRN 1141 SITGRTDVDF LISPVKNSDG IFYDSRNYEA QENAILPKNA DANGAYNIAR KVLWAIGQFK 1201 KAEDEKLDKV KIAISNKEWL EYAQTSVK (SEQ ID NO: 173).
```

[0131] Exemplary wild type Acidaminococcus sp. BV3L6 Cpf1 (AsCpf1) proteins of the disclosure may comprise or consist of the amino acid sequence:

```
MTQFEGFTNL YQVSKTLRFE LIPQGKTLKH IQEQGFIEED KARNDHYKEL KPIIDRIYKT
6 1 ~ Y A D Q C L Q L V Q ~ L D W E N L S A A I ~ D S Y R K E K T E E ~ T R N A L I E E Q A ~ T Y R N A I H D Y F ~ I G R T D N L T D A ~
121 INKRHAEIYK GLFKAELFNG KVLKQLGTVT TTEHENALLR SFDKFTTYFS GFYENRKNVF
1 8 1 ~ S A E D I S T A I P ~ H R I V Q D N F P K ~ F K E N C H I F T R ~ L I T A V P S L R E ~ H F E N V K K A I G ~ I F V S T S I E E V ~
2 4 1 ~ F S F P F Y N Q L L ~ T Q T Q I D L Y N Q ~ L L G G I S R E A G ~ T E K I K G L N E V ~ L N L A I Q K N D E ~ T A H I I A S L P H ~
3 0 1 ~ R F I P L F K Q I L ~ S D R N T L S F I L ~ E E F K S D E E V I ~ Q S F C K Y K T L L ~ R N E N V L E T A E ~ A L E N E L N S I D ~
361 LTHIFISHKK LETISSALCD HWDTLRNALY ERRISELTGK ITKSAKEKVQ RSLKHEDINL
4 2 1 ~ Q E I I S A A G K E ~ L S E A F K Q K T S ~ E I L S H A H A A L ~ D Q P L P T T L K K ~ Q E E K E I L K S Q ~ L D S L L G L Y H I ~
481 LDWFAVDESN EVDPEFSARL TGIKLEMEPS LSFYNKARNY ATKKPYSVEK FKLNEQMPTL
5 4 1 ~ A S G W D V N K E K ~ N N G A I L F V K N ~ G L Y Y L G I M P K ~ Q K G R Y K A L S F ~ E P T E K T S E G F ~ D K M Y Y D Y F P D ~
601 AAKMIPKCST QLKAVTAHFQ THTTPILLSN NFIEPLEITK EIYDLNNPEK EPKKFQTAYA
6 6 1 ~ K K T G D Q K G Y R ~ E A L C K W I D F T ~ R D F L S K Y T K T ~ T S I D L S S L R P ~ S S Q Y K D L G E Y ~ Y A E L N P L L Y H ~
7 2 1 ~ I S F Q R I A E K E ~ I M D A V E T G K L ~ Y L F Q I Y N K D F ~ A K G H H G K P N L ~ H T L Y W T G L E S ~ P E N L A K T S I K ~
7 8 1 ~ L N G Q A E L F Y R ~ P K S R M K R M A H ~ R L G E K M L N K K ~ L K D Q K T P I P D ~ T L Y Q E L Y D Y V ~ N H R L S H D L S D ~
841 EARALLPNVI TKEVSHEIIK DRRFTSDKFF FHVPITLNYQ AANSPSKFNQ RVNAYLKEHP
901 ETPIIGIDRG ERNLIYITVI DSTGKILEQR SLNTIQQFDY QKKLDNREKE RVAARQAWSV
9 6 1 ~ V G T I K D L K Q G ~ Y L S Q V I H E I V ~ D L M I H Y Q A V V ~ V L E N L N F G F K ~ S K R T G I A E K A ~ V Y Q Q F E K M L I ~
1021 DKLNCLVLKD YPAEKVGGVL NPYQLTDQFT SFAKMGTQSG FLFYVPAPYT SKIDPLTGFV
1081 DPFVWKTIKN HESRKHFLEG FDFLHYDVKT GDFILHFKMN RNLSFQRGLP GFMPAWDIVE
1141 EKNETQFDAK GTPFIAGKRI VPVIENHRFT GRYRDLYPAN ELIALLEEKG IVFRDGSNIL
1201 PKLLENDDSH AIDTMVALIR SVLQMRNSNA ATGEDYINSP VRDLNGVCED SRFQNPEWPM
1 2 6 1 ~ D A D A N G A Y H I ~ A L K G Q L L L N H ~ L K E S K D L K L Q ~ N G I S N Q D W L A ~ Y I Q E L R N ~ ( S E Q ~ I D ~ N O : ~
``` 174).
[0132] In some embodiments of the compositions of the disclosure, the sequence encoding the first RNA binding protein comprises a sequence isolated or derived from a CRISPR Cas protein. In some embodiments, the CRISPR Cas protein comprises a Type VI CRISPR Cas protein or portion thereof. In some embodiments, the Type VI CRISPR Cas protein comprises a Cas 13 protein or portion thereof. Exemplary Cas13 proteins of the disclosure may be isolated or derived from any species, including, but not limited to, a bacteria or an archaea. Exemplary Cas 13 proteins of the disclosure may be isolated or derived from any species, including, but not limited to, Leptotrichia wadei, Listeria seeligeri serovar 1/2b (strain ATCC 35967 / DSM 20751 / CIP 100100 / SLCC 3954), Lachnospiraceae bacterium, Clostridium aminophilum DSM 10710, Carnobacterium gallinarum DSM 4847, Paludibacter propionicigenes WB4, Listeria weihenstephanensis FSL R9-0317, Listeria weihenstephanensis FSL R9-0317, bacterium FSL M6-0635 (Listeria newyorkensis), Leptotrichia wadei F0279, Rhodobacter capsulatus SB 1003, Rhodobacter capsulatus R121, Rhodobacter capsulatus DE442 and Corynebacterium ulcerans. Exemplary Cas 13 proteins of the disclosure may be DNA nuclease inactivated. Exemplary Cas13 proteins of the disclosure include, but are not limited to, Cas13a, Cas13b, Cas13c, Cas13d
and orthologs thereof. Exemplary Cas13b proteins of the disclosure include, but are not limited to, subtypes 1 and 2 referred to herein as Csx27 and Csx28, respectively.
[0133] Exemplary Cas13a proteins include, but are not limited to:
\begin{tabular}{|c|c|c|c|c|}
\hline Cas13a number & Cas13a abbreviati on & Organism name & Accession number & Direct Repeat sequence \\
\hline Cas13al & LshCas13a & Leptotrichia shahii & WP_018451595.1 & CCACCCCAATATCGAAGGGGACTAA AAC (SEQ ID NO: 175) \\
\hline Cas13a2 & LwaCas13a & Leptotrichia wadei & WP_021746774.1 & GATTTAGACTACCCCAAAAACGAAG GGGACTAAAAC (SEQ ID NO: 176) \\
\hline Cas13a3 & LseCas13a & Listeria seeligeri & WP_012985477.1 & GTAAGAGACTACCTCTATATGAAAG AGGACTAAAAC (SEQ ID NO: 177) \\
\hline Cas13a4 & \[
\begin{aligned}
& \text { LbmCas } 13 \\
& \text { a }
\end{aligned}
\] & Lachnospiraceae bacterium MA2020 & WP_044921188.1 & GTATTGAGAAAAGCCAGATATAGTT GGCAATAGAC (SEQ ID NO: 178) \\
\hline Cas13a5 & LbnCas13a & Lachnospiraceae bacterium NK4A179 & WP_022785443.1 & GTTGATGAGAAGAGCCCAAGATAG AGGGCAATAAC (SEQ ID NO:
179) \\
\hline Cas13a6 & \[
\begin{aligned}
& \text { CamCas13 } \\
& \text { a }
\end{aligned}
\] & [Clostridium] aminophilum DSM 10710 & WP_031473346.1 & GTCTATTGCCCTCTATATCGGGCTGT TCTCCAAAC (SEQ ID NO: 180) \\
\hline Cas13a7 & CgaCas 13 a & Carnobacterium gallinarum DSM 4847 & WP_034560163.1 & ATTAAAGACTACCTCTAAATGTAAG AGGACTATAAC (SEQ ID NO: 181) \\
\hline Cas13a8 & \[
\begin{aligned}
& \text { Cga2Cas13 } \\
& \mathrm{a}
\end{aligned}
\] & Carnobacterium gallinarum DSM 4847 & WP_034563842.1 & AATATAAACTACCTCTAAATGTAAG AGGACTATAAC (SEQ ID NO: 182) \\
\hline Cas13a9 & Pprcas 13a & Paludibacter propionicigenes WB4 & WP_013443710.1 & CTTGTGGATTATCCCAAAATTGAAG GGAACTACAAC (SEQ ID NO: 183) \\
\hline Cas13a10 & LweCas13a & Listeria weihenstephanen sis FSL R9-0317 & WP_036059185.1 & GATTTAGAGTACCTCAAAATAGAAG AGGTCTAAAAC (SEQ ID NO: 184) \\
\hline Cas13a11 & LbfCas13a & Listeriaceae bacterium FSL M6-0635 (Listeria newyorkensis) & WP_036091002.1 & GATTTAGAGTACCTCAAAACAAAAG AGGACTAAAAC (SEQ ID NO: 185) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Cas13a12 & \begin{tabular}{l}
Lwa2cas13 \\
a
\end{tabular} & \begin{tabular}{l}
Leptotrichia \\
wadei F0279
\end{tabular} & WP_021746774.1 & \begin{tabular}{l}
GATATAGATAACCCCAAAAACGAA \\
GGGATCTAAAAC (SEQ ID NO: \\
186)
\end{tabular} \\
\hline Cas13a13 & RcsCas13a & \begin{tabular}{l}
Rhodobacter \\
capsulatus SB \\
1003
\end{tabular} & WP_013067728.1 & \begin{tabular}{l}
GCCTCACATCACCGCCAAGACGACG \\
GCGGACTGAAC (SEQ ID NO: 187)
\end{tabular} \\
\hline Cas13a14 & RcrCas13a & \begin{tabular}{l}
Rhodobacter \\
capsulatus R121
\end{tabular} & WP_023911507.1 & \begin{tabular}{l}
GCCTCACATCACCGCCAAGACGACG \\
GCGGACTGAAC (SEQ ID NO: \\
188)
\end{tabular} \\
\hline Cas13a15 & RcdCas13aa & \begin{tabular}{l}
Rhodobacter \\
capsulatus \\
DE442
\end{tabular} & WP_023911507.1 & \begin{tabular}{l}
GCCTCACATCACCGCCAAGACGACG \\
GCGGACTGAAC (SEQ ID NO: \\
\(189)\)
\end{tabular} \\
\hline
\end{tabular}
[0134] Exemplary wild type Cas 13a proteins of the disclosure may comprise or consist of the amino acid sequence:
```

1 MGNLFGHKRW YEVRDKKDFK IKRKVKVKRN YDGNKYILNI NENNNKEKID NNKFIRKYIN
6 1 ~ Y K K N D N I L K E ~ F T R K F H A G N I ~ L F K L K G K E G I ~ I R I E N N D D F L ~ E T E E V V L Y I E ~ A Y G K S E K L K A ~
121 LGITKKKIID EAIRQGITKD DKKIEIKRQE NEEEIEIDIR DEYTNKTLND CSIILRIIEN
181 DELETKKSIY EIFKNINMSL YKIIEKIIEN ETEKVFENRY YEEHLREKLL KDDKIDVILT
2 4 1 ~ N F M E I R E K I K ~ S N L E I L G F V K ~ F Y L N V G G D K K ~ K S K N K K M L V E ~ K I L N I N V D L T ~ V E D I A D F V I K ~
301 ELEFWNITKR IEKVKKVNNE FLEKRRNRTY IKSYVLLDKH EKFKIERENK KDKIVKFFVE
3 6 1 ~ N I K N N S I K E K ~ I E K I L A E F K I ~ D E L I K K L E K E ~ L K K G N C D T E I ~ F G I F K K H Y K V ~ N F D S K K F S K K ~
4 2 1 ~ S D E E K E L Y K I ~ I Y R Y L K G R I E ~ K I L V N E Q K V R ~ L K K M E K I E I E ~ K I L N E S I L S E ~ K I L K R V K Q Y T ' ~
4 8 1 ~ L E H I M Y L G K L ~ R H N D I D M T T V ~ N T D D F S R L H A ~ K E E L D L E L I T ~ F F A S T N M E L N ~ K I F S R E N I N N ~
541 DENIDFFGGD REKNYVIDKK ILNSKIKIIR DLDFIDNKNN ITNNFIRKFT KIGTNERNRI
6 0 1 ~ L H A I S K E R D L ~ Q G T Q D D Y N K V ~ I N I I Q N L K I S ~ D E E V S K A L N L ~ D V V F K D K K N I ~ I T K I N D I K I S ~
6 6 1 ~ E E N N N D I K Y L ~ P S F S K V L P E I ~ L N L Y R N N P K N ~ E P F D T I E T E K ~ I V L N A L I Y V N ~ K E L Y K K L I L E ~
7 2 1 ~ D D L E E N E S K N ~ I F L Q E L K K T L ~ G N I D E I D E N I ~ I E N Y Y K N A Q I ~ S A S K G N N K A I ~ K K Y Q K K V I E C ~
7 8 1 ~ Y I G Y L R K N Y E ~ E L F D E S D F K M ~ N I Q E I K K Q I K ~ D I N D N K T Y E R ~ I T V K T S D K T I ~ V I N D D F E Y I I ~
841 SIFALLNSNA VINKIRNRFF ATSVWLNTSE YQNIIDILDE IMQLNTLRNE CITENWNLNL
901 EEFIQKMKEI EKDFDDFKIQ TKKEIFNNYY EDIKNNILTE FKDDINGCDV LEKKLEKIVI
961 FDDETKFEID KKSNILQDEQ RKLSNINKKD LKKKVDQYIK DKDQEIKSKI LCRIIFNSDF
1021 LKKYKKEIDN LIEDMESENE NKFQEIYYPK ERKNELYIYK KNLFLNIGNP NFDKIYGLIS
1081 NDIKMADAKF LFNIDGKNIR KNKISEIDAI LKNLNDKLNG YSKEYKEKYI KKLKENDDFF
1141 AKNIQNKNYK SFEKDYNRVS EYKKIRDLVE FNYLNKIESY LIDINWKLAI QMAREERDMH
1201 YIVNGLRELG IIKLSGYNTG ISRAYPKRNG SDGFYTTTAY YKFEDEESYK KFEKICYGFG
1261 IDLSENSEIN KPENESIRNY ISHFYIVRNP FADYSIAEQI DRVSNLLSYS TRYNNSTYAS
1321 VFEVFKKDVN LDYDELKKKF KLIGNNDILE RLMKPKKVSV LELESYNSDY IKNLIIELIT
1381 KIENTNDTL (SEQ ID NO: 190).

```
[0135] Exemplary Cas13b proteins include, but are not limited to:
\begin{tabular}{|l|c|c|}
\hline Species & Cas13b Accession & Cas13b Size (aa) \\
\hline Paludibacter propionicigenes WB4 & WP 013446107.1 & 1155 \\
\hline Prevotella sp. P5-60 & WP 044074780.1 & 1091 \\
\hline Prevotella sp. P4-76 & WP 044072147.1 & 1091 \\
\hline Prevotella sp. P5-125 & WP 044065294.1 & 1091 \\
\hline Prevotella sp. P5-119 & WP 042518169.1 & 1091 \\
\hline Capnocytophaga canimorsus Cc5 & WP_013997271.1 & 1200 \\
\hline Phaeodactylibacter xiamenensis & WP_044218239.1 & 1132 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Porphyromonas gingivalis W83 & WP 005873511.1 & 1136 \\
\hline Porphyromonas gingivalis F0570 & WP 021665475.1 & 1136 \\
\hline Porphyromonas gingivalis ATCC 33277 & WP 012458151.1 & 1136 \\
\hline Porphyromonas gingivalis F0185 & ERJ81987.1 & 1136 \\
\hline Porphyromonas gingivalis F0185 & WP_021677657.1 & 1136 \\
\hline Porphyromonas gingivalis SJD2 & WP 023846767.1 & 1136 \\
\hline Porphyromonas gingivalis F0568 & ERJ65637.1 & 1136 \\
\hline Porphyromonas gingivalis W4087 & ERJ87335.1 & 1136 \\
\hline Porphyromonas gingivalis W4087 & WP 021680012.1 & 1136 \\
\hline Porphyromonas gingivalis F0568 & WP 021663197.1 & 1136 \\
\hline Porphyromonas gingivalis & WP 061156637.1 & 1136 \\
\hline Porphyromonas gulae & WP 039445055.1 & 1136 \\
\hline Bacteroides pyogenes F0041 & ERI81700.1 & 1116 \\
\hline Bacteroides pyogenes JCM 10003 & WP_034542281.1 & 1116 \\
\hline Alistipes sp. ZOR0009 & WP_047447901.1 & 954 \\
\hline Flavobacterium branchiophilum FL-15 & WP 014084666.1 & 1151 \\
\hline Prevotella sp. MA2016 & WP 036929175.1 & 1323 \\
\hline Myroides odoratimimus CCUG 10230 & EHO06562.1 & 1160 \\
\hline Myroides odoratimimus CCUG 3837 & EKB06014.1 & 1158 \\
\hline Myroides odoratimimus CCUG 3837 & WP 006265509.1 & 1158 \\
\hline Myroides odoratimimus CCUG 12901 & WP_006261414.1 & 1158 \\
\hline Myroides odoratimimus CCUG 12901 & EHO08761.1 & 1158 \\
\hline Myroides odoratimimus (NZ_CP013690.1) & WP_058700060.1 & 1160 \\
\hline Bergeyella zoohelcum ATCC 43767 & EKB54193.1 & 1225 \\
\hline Capnocytophaga cynodegmi & WP 041989581.1 & 1219 \\
\hline Bergeyella zoohelcum ATCC 43767 & WP 002664492.1 & 1225 \\
\hline Flavobacterium sp. 316 & WP 045968377.1 & 1156 \\
\hline Psychroflexus torquis ATCC 700755 & WP 015024765.1 & 1146 \\
\hline Flavobacterium columnare ATCC 49512 & WP_014165541.1 & 1180 \\
\hline Flavobacterium columnare & WP_060381855.1 & 1214 \\
\hline Flavobacterium columnare & WP 063744070.1 & 1214 \\
\hline Flavobacterium columnare & WP_065213424.1 & 1215 \\
\hline Chryseobacterium sp. YR477 & WP_047431796.1 & 1146 \\
\hline Riemerella anatipestifer ATCC \(11845=\) DSM 15868 & WP_004919755.1 & 1096 \\
\hline Riemerella anatipestifer RA-CH-2 & WP_015345620.1 & 949 \\
\hline Riemerella anatipestifer & WP 049354263.1 & 949 \\
\hline Riemerella anatipestifer & WP 061710138.1 & 951 \\
\hline Riemerella anatipestifer & WP 064970887.1 & 1096 \\
\hline Prevotella saccharolytica F0055 & EKY00089.1 & 1151 \\
\hline Prevotella saccharolytica JCM 17484 & WP_051522484.1 & 1152 \\
\hline Prevotella buccae ATCC 33574 & EFU31981.1 & 1128 \\
\hline Prevotella buccae ATCC 33574 & WP_004343973.1 & 1128 \\
\hline Prevotella buccae D17 & WP_004343581.1 & 1128 \\
\hline Prevotella sp. MSX73 & WP 007412163.1 & 1128 \\
\hline Prevotella pallens ATCC 700821 & EGQ18444.1 & 1126 \\
\hline Prevotella pallens ATCC 700821 & WP 006044833.1 & 1126 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline Prevotella intermedia ATCC 25611 = DSM 20706 & WP 036860899.1 & 1127 \\
\hline Prevotella intermedia & WP 061868553.1 & 1121 \\
\hline Prevotella intermedia 17 & AFJ07523.1 & 1135 \\
\hline Prevotella intermedia & WP 050955369.1 & 1133 \\
\hline Prevotella intermedia & BAU18623.1 & 1134 \\
\hline Prevotella intermedia ZT & KJJ86756.1 & 1126 \\
\hline Prevotella aurantiaca JCM 15754 & WP 025000926.1 & 1125 \\
\hline Prevotella pleuritidis F0068 & WP 021584635.1 & 1140 \\
\hline Prevotella pleuritidis JCM 14110 & WP 036931485.1 & 1117 \\
\hline Prevotella falsenii DSM 22864 = JCM 15124 & WP 036884929.1 & 1134 \\
\hline Porphyromonas gulae & WP 039418912.1 & 1176 \\
\hline Porphyromonas sp. COT-052 OH4946 & WP 039428968.1 & 1176 \\
\hline Porphyromonas gulae & WP 039442171.1 & 1175 \\
\hline Porphyromonas gulae & WP 039431778.1 & 1176 \\
\hline Porphyromonas gulae & WP 046201018.1 & 1176 \\
\hline Porphyromonas gulae & WP 039434803.1 & 1176 \\
\hline Porphyromonas gulae & WP 039419792.1 & 1120 \\
\hline Porphyromonas gulae & WP 039426176.1 & 1120 \\
\hline Porphyromonas gulae & WP 039437199.1 & 1120 \\
\hline Porphyromonas gingivalis TDC60 & WP 013816155.1 & 1120 \\
\hline Porphyromonas gingivalis ATCC 33277 & WP 012458414.1 & 1120 \\
\hline Porphyromonas gingivalis A7A1-28 & WP 058019250.1 & 1176 \\
\hline Porphyromonas gingivalis JCVI SC001 & EOA10535.1 & 1176 \\
\hline Porphyromonas gingivalis W50 & WP 005874195.1 & 1176 \\
\hline Porphyromonas gingivalis & WP 052912312.1 & 1176 \\
\hline Porphyromonas gingivalis AJW4 & WP 053444417.1 & 1120 \\
\hline Porphyromonas gingivalis & WP 039417390.1 & 1120 \\
\hline Porphyromonas gingivalis & WP 061156470.1 & 1120 \\
\hline
\end{tabular}
[0136] Exemplary wild type Bergeyella zoohelcum ATCC 43767 Cas13b (BzCas13b) proteins of the disclosure may comprise or consist of the amino acid sequence:
1 menktslgnn iyynpfkpqd ksyfagyfna amentdsvfr elgkrlkgke ytsenffdai
61 fkenislvey eryvkllsdy fpmarlldkk evpikerken fkknfkgiik avrdlrnfyt
121 hkehgeveit deifgvldem lkstvltvkk kkvktdktke ilkksiekql dilcqkkley
181 lrdtarkiee krrnqrerge kelvapfkys dkrddliaai yndafdvyid kkkdslkess
241 kakyntksdp qqeegdlkip iskngvvfll slfltkqeih afkskiagfk atvideatvs
301 eatvshgkns icfmatheif shlaykklkr kvrtaeinyg eaenaeqlsv yaketlmmqm
361 ldelskvpdv vyqnlsedvq ktfiedwney lkenngdvgt meeeqvihpv irkryedkfn
421 yfairfldef aqfptlrfqv hlgnylhdsr pkenlisdrr ikekitvfgr lselehkkal
481 fikntetned rehyweifpn pnydfpkeni svndkdfpia gsildrekqp vagkigikvk
541 llnqqyvsev dkavkahqlk qrkaskpsiq niieeivpin esnpkeaivf ggqptaylsm
601 ndihsilyef fdkwekkkek lekkgekelr keigkelekk ivgkiqaqiq qiidkdtnak
661 ilkpyqdgns taidkeklik dlkqeqnilq klkdeqtvre keyndfiayq dknreinkvr
721 drnhkqylkd nlkrkypeap arkevlyyre kgkvavwlan dikrfmptdf knewkgeqhs
781 llqkslayye qckeelknll pekvfqhlpf klggyfqqky lyqfytcyld krleyisglv
841
901
```

1021 lcdgkitven vklknvgdfi kyeydqrvqa flkyeeniew qaflikeske eenypyvver
1 0 8 1 ~ e i e q y e k v r r ~ e e l l k e v h l i ~ e e y i l e k v k d ~ k e i l k k g d n q ~ n f k y y i l n g l ~ l k q l k n e d v e
1 1 4 1 ~ s y k v f n l n t e ~ p e d v n i n q l k ~ q e a t d l e q k a ~ f v l t y i r n k f ~ a h n q l p k k e f ~ w d y c q e k y g k
1201 ektyaey faevfkkeke alik (SEQ ID NO: 191).

```
[0137] In some embodiments of the compositions of the disclosure, the sequence encoding the first RNA binding protein comprises a sequence isolated or derived from a CasRX/Cas13d protein. CasRX/Cas 13 d is an effector of the type VI-D CRISPR-Cas systems. In some embodiments, the CasRX/Cas13d protein is an RNA-guided RNA endonuclease enzyme that can cut or bind RNA. In some embodiments, the CasRX/Cas13d protein can include one or more higher eukaryotes and prokaryotes nucleotide-binding (HEPN) domains. In some embodiments, the CasRX/Cas13d protein can include either a wild-type or mutated HEPN domain. In some embodiments, the CasRX/Cas13d protein includes a mutated HEPN domain that cannot cut RNA but can process guide RNA. In some embodiments, the CasRX/Cas13d protein does not require a protospacer flanking sequence. Also see WO Publication No. WO2019/040664 \& US2019/0062724, which is incorporated herein by reference in its entirety, for further examples and sequences of CasRX/Cas13d protein, without limitation, specific reference is made to
[0138] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence: CasRX/Cas13d Gut_metagenome_contig6049000251:
```

LYLTSFGKGN AAVIEQKIEP ENGYRVTGMQ ITPSITVNKA TDESVRFRVK RKIAQKDEFI 60
ADNPMHEGRH RIEPSAGSDM LGLKTKLEKY YFGKEFDDNL HIQIIYNILD IEKILAVYST 120
NITA 124

```
(SEQ ID NO: 54).
[0139] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence: CasRX/Cas13d Gut_metagenome_contig546000275:
```

MDSYRPKLYK LIDFCIFKHY HEYTEISEKN VDTLRAAVSE EQKESFYADE AKRLWGIFDK 60
QFLGFCKKIN VWVNGSHEKE ILGYIDKDAY RKKSDVSYFS KFLYAMSFFL DGKEINDLLT 120
TLINKFDNIA SFISTAKELD AEIDRILEKK LDPVTGKPLK GKNSFRNFIA NNVIENKRFI }18
YVIKFCNPKN VLKLVKNTKV TEFVLKRMPE SQIDRYYSSC IDTEKNPSVD KKISDLAEMI 240
KKIAFDDFRN VRQKTRTREE SLEKERFKAV IGLYLTVVYL LIKNLVNVNS RYVMAFHCLE }30
RDAKLYGINI GKNYIELTED LCRENENSRS AYLARNKRLR DCVKQNIDNA KNMKSKEK 358

```
(SEQ ID NO: 57).
[0140] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas13d Gut_metagenome_contig4114000374:
```

DTKINPQTWL YQLENTPDLD NEYRDTLDHF FDERFNEINE HFVTQNATNL CIMKEVFPDE 60
DFKSIADLYY DFIVVKSYKN IGFSIKKLRE KMLELPEAKR VTSTEMDSVR SKLYKLIDFC 120
(SEQ ID NO: 61).
[0141] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence: CasRX/Cas13d Gut_metagenome_contig721000619:

| KEGSTMAKNE KKKSTAKALG | LKSSFVVNND | IYMTSFGKGN | KAVLEKKITE | NTIENKSDTT |
| :--- | :--- | :--- | :--- | ---: |$\quad 60$

(SEQ ID NO: 67).
[0142] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas13d Gut_metagenome_contig2002000411:

EKQNKAKYQA	IISLYLMVMY QIVKNMIYVN	SRYVIAFHCL	ERDSNQLLGR	FNSRDASMYN	60
KLTQKFITDK	$Y L N D G A Q G C S ~$	KKVGNYLSHN	ITCCSDELRK	EYRNQVDHFA	VVRMIGKYAA

(SEQ ID NO: 69).
[0143] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas13d Gut_metagenome_contig13552000311:

LIDFLIYDLY	YNRKPARIEE	IVDKLRESVN	DEEKESIYSA	ETKYVYEALG	KVLVRSLKKY	60
LNGATIRDLK	NRYDAKTANR	IWDISEHSKS	GHVNCFCKLI	YMMTLMLDGK	EINDLLTTLV	120
NKFDNIASFI	DVMDELGLEH	SFTDNYKMFA	DSKAICLDLQ	FINSEARMSK	IDDEKSKRQL	180
FRDALVVLDI	GDKNEDWIEK	YLTSDIFKRD	ENGNKIDGEK	RDFRNFIANN	VIKSARFKYL	240
VKYSSADGMI	KLKKNEKLIS	FVLEQLPETQ	IDRYYESCGL	DCAVADRKVR	IEKLTGLIRD	300
MRFDNFRGVN	YSNDACKKDK	QAKAKYQAII	SLYLMVLYQI	VKNMIYVNSR	YVIAFHCLER	360
DLLFFNIELD	NSYQYSNCNE	LTEKFIKDKY	MKEGALGFNM	KAGRYLTKNI	GNCSNELRKI	420
YRNQVDHFAV	VRKI GNYAAD	IASVGSWFE				449

(SEQ ID NO: 71).
[0144] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas13d Gut_metagenome_contig10037000527:
YMDQNFANSD AWAIHVYRNK IQHLDAVRHA DMYIGDIREF HSWFELYHYI IQRRIIDQYA 60
YESTPGSSRD GSAIIDEERL NPATRRYFRL ITTYKT 96
(SEQ ID NO: 72).
[0145] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas 13d Gut_metagenome_contig238000329:
RYDKDRSKIY TMMDFVIYRY YIDNNNDSID FINKLRSSID EKSKEKLYNE EANRLWNKLK 60

EYMLYIKEFN	GKLASRTPDR	DGNISEFVES	LPKIHRLLPR	GQKISNFSKL MYLLTMFLDG	120
KEINDLLTTL INKFENIQGF	LDIMPEINVN AKFEPEYVFF	NKSHEIAGEL KLIKGFAQMG	180		
EPAATLKLEM TADAIKILGT EKEDAELIKL AESLFKDENG	KLLGNKQHGM RNFIGNNVIK	240			
SKRFHYLIRY GDFAHLHKIA TNKNVVRFVL GRIADMQKKQ GQKGKNQIDR YYEVCVGNKD	300				
IKKTIEEKID ALTDIIVNMN YDQFEKKKAV IENQNRGKTF EEKNKYKRDN AEREKFKKII	360				
SLYLTVIYHI LKNIVNVNSR YILGFHCLER DKQLYIEKYN KDKLDGFVAL TKFCLGDEER	420				
$Y E D L K A K A Q A ~ S I Q A L E T A N P ~ K L Y A K Y M N Y S ~ D E E K K E E F K K ~ Q L N R E R V K N A ~ R N A Y L K N I K N ~$	480				
$Y I M I R L Q L R D ~ Q T D S S G Y L C G ~ E F R D K V A H L E ~ V A R H A H E Y I ~$	519				

(SEQ ID NO: 73).
[0146] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence: CasRX/Cas13d Gut_metagenome_contig2643000492:
$\left.\begin{array}{llllr}\text { NGEIVSLAEK EAFSAKIADK NIGCKIENKQ FRHPKGYDVI } & \text { ADNPIYKGSP } & \text { RQDMLGLKET } & 60 \\ \text { LEKRYFSPSD } & \text { SIDNVRVQVA } & \text { HNILDIEKIL AEYITNAVYS } & \text { FDNIAGFGKD } & \text { IIGDDFSPVY }\end{array}\right] 120$
(SEQ ID NO: 84).
[0147] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas13d Gut_metagenome_contig874000057:

| MSKNKESYAK | GMGLKSALVS GSKVYMTSFE GGNDAKLEKV VENSEIVSLA EKESFSAEIF | 60 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| KKNIGCKIEN | KKFKHPKRYD | VIADNPLYKG SVRQDMLGLK | ETLEKRYFNS ADGTDNVCIQ | 120 |
| VIHNILDIEK | ILAEYITNAV YSFDNIAGFG EDIIGMGGFK PIYTYKQFKE PDKYNKKFDD | 180 |  |  |
| ILNNSRLGYY GKAFFEKNDL KHNPNKKKRD | KNPYILKYDN | ECYYIIALLS | GLRHWNIHSH | 240 |
| AKDDLVSYRW | LYNLDSILNR EYISTLNYLY DDIADELTES | FSKNSSANVN | YIAETLNIDP | 300 |
| SEFAQQYFRF SIMKEQKNMG FNVSKLREIM LDRKELSDIR | DNHRVFDSIR | SKLYTMMDFV | 360 |  |
| IYRYYIEEAA | KTEAENRNLP ENEKKISEKD FFVINLRGSF | DENQKEKLYI | EEAKRLWEKL | 420 |
| KDIMLKIKEF RGEKVKEYKK |  |  | 440 |  |

(SEQ ID NO: 85)
[0148] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas13d Gut_metagenome_contig4781000489:

LDKQLDYEYI RTLNYMFNDI ADELTRTFSK NSAANVNYIA ETLNIDPNKF AEQYFRFSIM	60	
KEQKNLGFNL TKLRESMLDR RELSDIRDNH NVFDSIRPKL YTMMDFVIYK HYIDEAKKTE	120	
AENKSLPDDR KNLSEKD		137

(SEQ ID NO: 86).
[0149] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas13d Gut_metagenome_contig12144000352:

| RMGEPVANTK RVMMIDAVKI LGTDLSDDEL KEMADSFFKD | SDGNLLKKGK HGMRNFITNN | 60 |
| :--- | :--- | :--- | :--- |
| VIKNKRFHYL IRYGDPAHLH EIAKNEA |  | 87 |

(SEQ ID NO: 87).
[0150] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas13d Gut_metagenome_contig5590000448:

(SEQ ID NO: 88).
[0151] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas13d Gut_metagenome_contig525000349:

MSKKENRKSY	VKGLGLKSTL VSDSKVYLTT	FADGSNAKLE KCVENNKIIC	ISNDKEAFAA	60
SIANKNVGYK	IKNDEKFRHP	KGYDIISNNP	LLHNNSVQQD MLGLKNVLEK RYFGKSSGGD	120
NNLCIQIIHN	IIDIEKILSE YIPNVVYAFN	NIAGFKDEHN	NIIDIIGTQT YNSSYTYADF	180
SKDKSDKKYI EFQKLLKNKR LGYWGKAFFT GQGNNAKVRQ ENQCFHIIAL LISLRNWATH	240			
SNELDKHTKR	TWLYKLDDTN	ILNAEYVKTL NYLYDTIADE LTKSFSKNGA	VNVNYLAKKY	300
NIKDDLPGFS	EQYFRFSIMK	EQKNLGFNIS	KLRENMLDFK DMSVI	345

(SEQ ID NO: 89).
[0152] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas13d Gut_metagenome_contig7229000302:

| KKISSLTKFC LGESDEKKLK ALAKKSLEEL KTTNSKLYEN YIKYSDERKA EEAKRQINRE | 60 |  |
| :--- | :--- | :--- | :--- |
| RAKTAMNAHL RNTKWNDIMY GQLKDLADSK SRICSEFRNK AAHLEVARYA HMYINDISEV | 120 |  |
| KSYFRLYHYI MQRRIIDVIE NNPKAKYEGK VKVYFEDVKK NKKYNKNLLK LMCVPFGYCI | 180 |  |
| PRFKNLSIEQ MFDMNETDNS DKKKEK |  | 206 |

(SEQ ID NO: 90).
[0153] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence: CasRX/Cas13d Gut_metagenome_contig3227000343:

```
IGDISEVNSY FQLYHYIMQR ILIDKIGSKT TGKAKEYFDS VIVNKKYDDR LLKLLCSPLG 60
YCLTRYKDLS IEALFDMNEA AKYDKLNKER KNKKK 95
```

(SEQ ID NO: 91).
[0154] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence: CasRX/Cas13d Gut_metagenome_contig7030000469:

SIRSKLYTMM	DFVIYRYYIE	ESAKAAAENK	PSESDSFVIR	LRGSFNENQK	EELYIEEAER	60
LWKKFGEIML	KIKEFRGEKV	KEYKKEVPRI	ERILPHGKDI SAFSKLMYML	SMELD	115	

(SEQ ID NO: 92).
[0155] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:

(SEQ ID NO: 93).
[0156] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas13d Metagenomic hit (no protein accession): contig emb|OBVH01003037.1, human gut metagenome sequence (also found in WGS contigs emb|OBXZ01000094.1| and emb|OBJF01000033.1|):

MAKKKRITAK	ERKQNHRELL	MKKADSNAEK	EKAKKPVVEN	KPDTAISKDN	TPKPNKEIKK	60
SKAKLAGVKW	VIKANDDVAY	ISSFGKGNNS	VLEKRIMGDV	SSNVNKDSHM	YVNPKYTKKN	120
YEI KNGFSSG	SSLVTYPNKP	DKNSGMDALC	LKPYFEKDFF	GHI FTDNMHI	QAIYNIFDIE	180
KILAKHITNI	IYTVNSFDRN	YNQSGNDTIG	FGLNYRVPYS	EYGGGKDSNG	EPKNQSKWEK	240
RDNFIKFYNE	SKPHLGYYEN	IFYDHGEPIS	EEKFYNYLNI	LNEIRNNTFH	YKDDDIELYS	300
ENYSEEFVFI	NCLNKFVKNK	FKNVNKNFIS	NEKNNLYIIL	NAYGKDTENV	EVVKKYSKEL	360
YKL,SVLKTNK	NLGVNVKKLR	ESAIEYGYCP	LPYDKEKEVA	KLSSVKHKLY	KTYDFVITHY	420
LNSNDKLLLE	IVETLRLSKN	DDEKENVYKK	YAEKLFKADD	VINPIKAISK	LFARKGNKLF	480
KEKIIIKKEY	IEDVSIDKNI	YDFTKVIFFM	TCFLDGKEIN	DLLTNIISKL	QVIEDHNNVI	540
KFI SNNKDAV	YKDYSDKYAI	FRNAGKIATE	LEAIKS IARM	ENKIENAPQE	PLLKDALLSL	600
GVSDDTKVLE	NTYNKYFDSK	EKTDKQSQKV	STFLMNNVIN	NNREKYVIKY	INPADINGLA	660
KNRYLVKFVL	SKIPEEQIDS	YYKLFSNEEE	PGCEEKIKLL	TKKISKLNFQ	TLFENNKI PN	720
VEKEKKKAII	TLYFTIVYIL	VKNLVNINGL	YTLALYFVER	DGYFYKDICG	KKDKKKSYND	780
VDYLLLPEIF	SGSKYREETK	NLKLPKEKDR	DIMKKYLPND	KDREKYNKFF	TAYRNNIVHL	840
NIIAKLSELT	KNIDKDINSY	FDIYHYCTQR	VMFNYCKEKN	DVVLAKMKDL	AHIKSDCNEF	900
SSKHTYPFSS	AVLREMNLPF	AYNVPREKNL	SYKKFFDKQ			939

(SEQ ID NO: 94).
[0157] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas13d Metagenomic hit (no protein accession): contig tpg|DJXD01000002.1| (uncultivated Ruminococcus assembly, UBA7013, from sheep gut metagenome):

| MKKQKSKKTV SKTSGLKEAL SVQGTVIMTS FGKGNMANLS YKIPSSQKPQ NLNSSAGLKN | 60 |
| :--- | :--- | :--- | :--- | :--- |
| VEVSGKKIKF QGRHPKIATT DNPLFKPQPG MDLLCLKDKL EMHYFGKTFD DNIHIQLIYQ | 120 |
| ILDIEKILAV HVNNIVFTLD NVLHPQKEEL TEDFIGAGGW RINLDYQTLR GQTNKYDRFK | 180 |
| NYIKRKELLY FGEAFYHENE RRYEEDIFAI LTLLSALRQF CFHSDLSSDE SDHVNSFWLY | 240 |
| QLEDQLSDEF KETLSILWEE VTERIDSEFL KTNTVNLHIL CHVFPKESKE TIVRAYYEFL | 300 |
| IKKSFKNMGF SIKKLREIML EQSDLKSFKE DKYNSVRAKL YKLFDFIITY YYDHHAFEKE | 360 |
| ALVSSLRSSL TEENKEEIYI KTARTLASAL GADFKKAAAD VNAKNIRDYQ KKANDYRISF | 420 |


EDIKIGNTGI	GYFSELIYML TLLLDGKEIN	DLLTTLINKF	DNIISFIDIL KKLNLEFKFK	480
PEYADFFNMT	NCRYTLEELR VINSIARMQK PSADARKIMY RDALRILGMD NRPDEEIDRE	540		
LERTMPVGAD GKFIKGKQGF RNFIASNVIE SSRFHYLVRY NNPHKTRTLV KNPNVVKFVL	600			
EGIPETQIKR YFDVCKGQEI PPTSDKSAQI DVLARIISSV DYKIFEDVPQ SAKINKDDPS	660			
RNFSDALKKQ RYQAIVSLYL TVMYLITKNL VYVNSRYVIA FHCLERDAFL HGVTLPKMNK	720			
KIVYSQLTTH LLTDKNYTTY GHLKNQKGHR KWYVLVKNNL QNSDITAVSS FRNIVAHISV	780			
VRNSNEYISG IGELHSYFEL YHYLVQSMIA KNNWYDTSHQ PKTAEYLNNL KKHHTYCKDF	840			
VKAYCIPFGY VVPRYKNLTI NELFDRNNPN PEPKEEV		877		

(SEQ ID NO: 95).
[0158] An exemplary direct repeat sequence of CasRX/Cas13d Metagenomic hit (no protein accession): contig $\operatorname{tpg}|D J X D 01000002.1|$ (uncultivated Ruminococcus assembly, UBA7013, from sheep gut metagenome) (SEQ ID NO: 95) comprises or consists of the nucleic acid sequence:

## CasRX/Cas13d DR:

caactacaac cccgtaaaaa tacggggttc tgaaac
36
[0159] (SEQ ID NO: 96).
[0160] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas13d Metagenomic hit (no protein accession): contig OGZC01000639.1 (human gut metagenome assembly):

MKKKNIRATR	EALKAQKIKK	SQENEALKKQ	KLAEEAAQKR	REELEKKNLA	QWEETSAEGR	60
RSRVKAVGVK	SVFVVGDDLY	LATFGNGNET	VLEKKITPDG	KITTEPEEET	FTAKLKFAQT	120
EPTVATSIGI	SNGRIVLPEI	SVDNPLHTTM	QKNTIKRSAG	EDILQLKDVL	ENRYFDRS FN	180
DDLHIRLIYN	ILDIEKILAE	YTTNAVFAID	NVSGCSDDFL	SNESTRNQWD	EFQNPEQHRE	240
HFGNKDNVIC	SVKKQQDLFF	NFFKNNRIGY	FGKAFFHAES	ERKIVKKTEK	EVYHILTLIG	300
SLRQWITHST	EGGISRLWLY	QLEDALSREY	QETMNNCYNS	TIYGLQKDFE	KTNAPNLNFL	360
AEI LGKNASE	LAEPYFRFII	TKEYKNLGFS	IKTLREMLLD	QPDLQEIREN	HNVYDSIRSK	420
LYKMIDFVLV	YAYSNERKSK	ADALASNLRS	AITEDAKKRI	YQNEADQLWT	SYQELFKRIR	480
GEKGAQVKEY	SSKNMPIPIQ	KQIQNILKPA	EQVTYFTKLM	YLLTMFLDGK	EINDLLTTLI	540
NKFDNISSLL	KTMEQLELQT	TFKEDYTFFQ	QSSRLCKEIT	QLKSEARMGN	PISNLKEVMM	600
VDAIQILGTE	KSEQELQSMA	CFFFRDKNGK	KLNTGEHGMR	NFI GNNVISN	TRFQYLIRYG	660
NPQKLHTLSQ	NETVVRFVLS	RIAKNQRVQG	MNGKNQIDRY	YETCGGTNSW	SVSEEEKINF	720
LCKILTNMSY	DQFQDVKQSG	AEITAEEKRK	KERYKAIISL	YLTVLYQLIK	NLVNINARYI	780
IAFHCLERDA	ILYSSKFNTS	INLKKRYTAL	TEMILGYETD	EKARRKDTRT	VYEKAEAAKN	840
RHLKNVKWNC	KTRENLENAD	KNAIVAFRNI	VAHLWIIRDA	DRFITGMGAM	KRYFDCYHYL	900
LQRELGYILE	KSNQGSEYTK	KSLEKVQQYH	SYCKDFLHML	CLPFAYCIPR	YKNLSIAELF	960
DRHEPEAEPK	EEASSVNNSQ	FITT				984

(SEQ ID NO: 97).
[0161] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:

CasRX/Cas13d Metagenomic hit (no protein accession): contig emb|OHBM01000764.1 (human gut metagenome assembly):

XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX $\quad 60$
XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX 120
XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX 180
XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXHPLQKRYR YLTSTNLKSF 240
ETYKNNLVNK KKFDLDRVKK IPQLAYFGSA FYNTPEDTSA KITKTKIKSN EEIYYTEMLL 300
STARNFSAHY LDRNRAKSSD AEDFDGTSVI MYNLDNEELY KKLYNKKVHM ALTGMKKVLD 360
ANFNKKVEHL NNSFIKNSAK DFVILCEVLG IKSRDEKTKF VKDYYDFVVR KNYKHLGFSV 420
KELRELLFAN HDSNKYIKEF DKISNKKFDS VRSRLNRLAD YIIYDYYNKN NAKVSDLVKY 480
LRAAADDEQK KKIYLNESIN LVKSGILERI KKILPKLNGK IIGNMQPDST ITASMLHNTG 540
KDWHPISENA HYFTKWIYTL TLFMDGKEIN DLVTTLINKF DNIASFIEVL KSQSVCTHFS 600
EERKMFIDSA EICSELSAMN SFARMEAPGA SSKRAMFVEA ARILGDNRSK EELEEYFDTL 660
FDKSASKKEK GFRNFIRNNV VDSNRFKYLT RYTDTSSVKA FSNNKALVKF AIKDIPQEQI 720
LRYYNSCFGA SERYYNDGMS DKLVEAIGKI NLMQFNGVIQ QADRNMLPEE KKKANAQKEK 780
YKSIIRLYLT VCYLFEKNLV YVNSRYYSAF YNLEKDRSLF EINGELKPTG KFDEGHYTGL 840
VKLFIDNGWI NPRASAYLTV NLANSDETAI RTFRNTAEHL EALRNADKYL NDLKQFDSYF 900
EIYHYITQRN IKEKCEMLKE QTVKYNNDLL KYHGYSKDFV KALCVPFGYN LPRFKNLSID 960
ALFDKNDKRE KLKKGFED 978
(SEQ ID NO: 98).
[0162] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas13d Metagenomic hit (no protein accession): contig emb|OHCP01000044.1 (human gut metagenome assembly):

MAKKITAKQK REEKERLNKQ KWAKNDSVII VPETKEEIKT GEIQDNNRKR SRQKSQAKAM 60 GLKAVLSFDN KIAIASFVSS KNAKSSHIER ITDKEGTTIS VNSKMFESSV NKRDINIEKR 120 ITIEEPQQDG TIKKEEKGVK STTCNPYFKV GGKDYIGIKE IAEEHFFGRA FPNENLRVQI 180 AYNIFDVQKI LGTFVNNIIY SFYNLSRDEV QSDNDVIGML YSISDYDRQK ETETFLQAKS 240 LLKQTEAYYA YFDDVFKKNK KPDKNKEGDN SKQYQENLRH NFNILRVLSF LRQICMHAEV 300 HVSDDEGCTR TQNYTDSLEA LFNISKAFGK KMPELKTLID NIYSKGINAI NDEFVKNGKN 360 NLYILSKVYP NEKREVLLRE YYNFVVCKEG SNIGISTRKL KETMIAQNMP SLKEENTYRN 420 KLYTVMNFIL VRELKNCATI REQMIKELRA NMDEEEGRDR IYSKYAKEIY LYVKDKLKLM 480 LNVFKEEAEG IIIPGKEDPV KFSHGKLDKK EIESFCLTTK NTEDITKVIY FLCKFLDGKE 540 INELCCAMMN KLDGISDLIE TAKQCGEDVE FVDQFKCLSK CATMSNQIRI VKNISRMKKE 600 MTIDNDTIFL DALELLGRKI EKYQKDKNGD YVKDEKGKKV YTKDYNNFQD MFFEGKNHRV 660 RNFVSNNVIK SKWFSYVVRY NKPAECQALM RNSKLVKEAL DELPDSQIEK YYISVFGEKS 720 SSSNEEMRRE LLKKLCDESV RGFLDEIVLL SEDEMKQKDK FSEKEKKKSL IRLYLTIVYL 780 ITKSMVKINT RESIACATYE RDYILLCQSE KAERAWEKGA TAFALTRKFL NHDKPTFEQY 840 YTREREISAM PQEKRKELRK ENDQLLKKTH YSKHAYCYIV DNVNNLTGAV ANDNGRGLPC 900 LSEKNDNANL FLEMRNKIVH LNVVHDMVKY INEIKNITSY YAFFCYVLQR MIIGNNSNEQ 960 NKFKAKYSKT LQEFGTYSKD LMWVLNLPFA YNLPRYKNLS NEQLFYDEEE RMEKIVGRKN 1020
99).
[0163] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas13d Metagenomic hit (no protein accession): contig emb|OGDF01008514.1| (human gut metagenome assembly):

MTETKPKRED	IAKTPAAKSR SKAAGLKSTF AVNGSVLLTS	FGRGNDAVPE KLITEKAVSE	60		
INTVKPRFSV	EKPATSYSSS	FGIKSHISAT ADNPLAGRAP	VGEDAIHAKE VLEQRVFGKT	120	
FSDDNIHIQL	IYNILDIRKI	LSTYANNVVF	TINSMRRLDE	YDREQDYLGY	LYTGNSYERL

[0164] (SEQ ID NO: 100).
[0165] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas13d Metagenomic hit (no protein accession): contig emb|OGPN01002610.1 (human gut metagenome assembly):


RKFLNHDREV FDRYCAREAE IARLPSEERK	PLRKANDKLL KQTHYTNHSY	TYIVNNLNSF	900	
TDIDYCAKDV GLPAPNDKND NASILGEMRN	DIAHLNIVHD	MVKYIEELKD	ISSYYAFYCY	960
VLQRRLVGKD PNCQNKFKAK YAKELNDYGT YNKNLMWMLN	LPFAYNLPRY	KNLSSEFLFY	1020	
DMEYNKKDDE			1030	

(SEQ ID NO: 101).
[0166] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas13d Metagenomic hit (no protein accession): from contig emb|OBLI01020244 and emb|OBLI01038679 (from pig gut metagenome):

(SEQ ID NO: 102).
[0167] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas13d Metagenomic hit (no protein accession): contig OIZX01000427.1:

MAKKKKTARQ LREEMQQQRK QAIQKQQEQR QEKAAAARET AAPEQPAAAP VPKRQRKSLA	60				
KAAGLKSNFI	LDPQRRTTVM	TAFGQGSTAI	LEKQIVDRAI	SDLQPVQQFQ	VEPASAAKYR


| QLASNKKLVR FVLSSIPDTQ INRYYETCGQ TRLAGRAAKV EFLTDMIAAI RFDQFRDVNQ | 720 |  |
| :--- | :--- | :--- | :--- | :--- |
| KERGANTQKE RYKAMLGLYQ TVLYLAVKNL VNINARYVMA FHCVERDMFL YDGELTDPKG | 780 |  |
| ESVSAFLAVN GKKGVQPQYL LLTQLFIRRD YLKRSACEQI QHNMENISDR LLREYRNAVA | 840 |  |
| HLNVIAHLAD YSADMREITS YYGLYHYLMQ RHLFKRHAWQ IRQPERPTEE EQKLIEQEQK | 900 |  |
| QLAWEKALFD KTLQYHSYNK DLVKALNAPF GYNLARYKNL SIEPLFSKEA APAAEIKATH | 960 |  |
| A |  | 961 |

(SEQ ID NO: 103).
[0168] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas13d Metagenomic hit (no protein accession): contig OCTW011587266.1:

MKQNDRENNN	KIKKSAAKAV	GVKSLARLSD	GSTVVSSFGK	GAAAELESLI	TGGEIRKLSD	60
KAILEITDDT	QNKNAYNVKS	SRIPNLTART	DKLSDKSGMD	DLGFKRELEL	EVFGQCFDDS	120
IHIQIAHAVF	DIQKSLAAVI	PNVLYTLNNL	DRSYSTDNTS	DKKDIIGNTL	NYQHSYES FN	180
VEKRGEFTEY	YNAAKDRESY	FPDILCVLEK	VNGKDRYQPK	SEKDAFNVLS	SVNMLRNSLF	240
HFAPKSNDGK	ARIAVFKNQF	DSDFSHITST	VNKIYSAKIA	GVNENFLNNE	GNNLYIILKA	300
TNWDIKKIVP	QLYRFSVLKS	DKNMGFNMRK	LREFAVESKN	IDLSRLNDKF	LTNNRKKLYK	360
VIDFIIYYHL	NKVLKDSFVD	DFVAALRASQ	SEEEKEKLYA	QYSERLFADE	GLKSAIKKAV	420
DMISDTKSNI	FKMKTPLDKA	LIENIKVNSD	ASDFCKLIYV	FTRFLDGKEI	NILLNSLIKK	480
FQDIHSFNTT	VKKLSENNLI	INADYVDDYS	LFEQSGTVAR	ELMLIKSISK	MDFGLDNINL	540
SFMYDDALRT	LGVSDENLPE	VKREYFGKTK	NLSAYI RNNV	LENRRFKYVI	KYIHPSDVQK	600
IACNKAIAGF	VLNRMPDTQI	KRYYDSLINK	GATDIQAQAK	ALLDCITGIS	FDAIKDDKHL	660
HKS KEKS PQR	SADRERKKAM	LTLYYTIVYI	FVKQMLHINS	LYTIGFFYLE	RDQRFIYSRA	720
KKENKNPSKN	SYLNDFRSVT	AYFIPSEIMK	RIEKNENKGF	LEDFEALWNS	CGKTSRLRKE	780
DVLLYARYIS	PDHALKNYKM	ILNSYRNKIA	HINVIMSAGK	YTGGIKRMDS	YESVFQHLVQ	840
CDILSNPNNK	GKCFESESLK	PLLLDMKFDG	TDEKLYSKRL	TRALNIPFGY	NVPRYKNLTF	900
EKIYLKSSIN	E					911
104).						

[0169] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas13d Metagenomic hit (no protein accession): contig emb|OGNF01009141.1:
MADIDKKKSS AKAAGLKSTF VLENNKLLMT SFGNGNKAVI EKIIDEKVDS INEPEVESVT 60 PCDKKFELQP AKRGLAADSL VDNPLKSKKT AGDDAIHSRK FLERQFFDGN TFNDNIHIQL 120 IYNILDIEKI LSVHVNDIVY SVNNILSRGE GMEYNDYIGT LNLKSFETYK NNLVNKKKFD 180 LDRVKKIPQL AYFGSAFYNT PEDTSAKITK TKIKSNEEIY YTFMLLSTAR NFSAHYLDRN 240 RAKSSDAEDF DGTSVIMYNL DNEELYKKLY NKKVHMALTG MKKVLDANFN KKVEHLNNSF 300 IKNSAKDFVI LCEVLGIKSR DEKTKFVKDY YDFVVRKNYK HLGFSVKELR ELLFANHDSN 360 KYIKEFDKIS NKKFDSVRSR LNRLADYIIY DYYNKNNAKV SDLVKYLRAA ADDEQKKKIY 420 LNESINLVKS GILERIKKIL PKLNGKIIGN MQPDSTITAS MLHNTGKDWH PISENAHYFT 480 KWIYTLTLFM DGKEINDLVT TLINKFDNIA SFIEVLKSQS VCTHFSEERK MFIDSAEICS 540 ELSAMNSFAR MEAPGASSKR AMFVEAARIL GDNRSKEELE EYFDTLFDKS ASKKEKGFRN 600 FIRNNVVDSN RFKYLTRYTD TSSVKAFSNN KALVKFAIKD IPQEQILRYY NSCFGASERY 660 YNDGMSDKLV EAIGKINLMQ FNGVIQQADR NMLPEEKKKA NAQKEKYKSI IRLYLTVCYL 720

| FFKNLVYVNS RYYSAFYNLE KDRSLFEING ELKPTGKFDE GHYTGLVKLF | IDNGWINPRA | 780 |
| :--- | :--- | :--- | :--- | :--- |
| SAYLTVNLAN | SDETAIRTFR NTAEHLEALR NADKYLNDLK QFDSYFEIYH YITQRNIKEK | 840 |
| CEMLKEQTVK YNNDLLKYHG YSKDFVKALC VPFGYNLPRF KNLSIDALFD KNDKREKLKK | 900 |  |
| GFED |  | 904 |

(SEQ ID NO: 105).
[0170] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas13d Metagenomic hit (no protein accession): contig emb|OIEN01002196.1:
$\left.\begin{array}{llllll}\text { MERQKRKMKS } & \text { KSKMAGVKSV FVIGDELLMT } & \text { SFGDGDDAVL } & \text { EKDIDENGVV } & \text { NDCRNPAAYD } & 60 \\ \text { AVYGTDSIRV } & \text { KKTNNNIRAK } & \text { VNNPLAKSNI } & \text { RSEESALFRT } & \text { RVNEYKREQK } & \text { DKYETLFFGK }\end{array}\right] 120$
(SEQ ID NO: 106).
[0171] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:

## CasRX/Cas13d Metagenomic hit (no protein accession): contig e-k87_11092736:

MKRQKTFAKR IGIKSTVAYG QGKYAITTFG KGSKAEIAVR SADPPEETLP TESDATLSIH 60 AKFAKAGRDG REFKCGDVDE TRIHTSRSEY ESLISNPAES PREDYLGLKG TLERKFEGDE 120 YPKDNLRIQI IYSILDIQKI LGLYVEDILH FVDGLQDEPE DLVGLGLGDE KMQKLLSKAL 180 PYMGFFGSTD VEKVTKKREE RAAADEHNAK VFRALGAIRQ KLAHEKWKES LAIFGANANM 240 PIRFFQGATG GRQLWNDVIA PLWKKRIERV RKSFLSNSAK NLWVLYQVFK DDTDEKKKAR 300 ARQYYHFSVL KEGKNLGFNL TKTREYFLDK EFPIFHSSAP DVKRKVDTFR SKFYAILDFI 360 IYEASVSVAN SGQMGKVAPW KGAIDNALVK LREAPDEEAK EKIYNVLAAS IRNDSLELRL 420 KSACDKFGAE QNRPVEPNEL RNNRDIRNVR SEWLEATQDV DAAAFVQLIA FLCNELEGKE 480 INELVTALIK KFEGIQALID LLRNLEGVDS IRFENEFALF NDDKGNMAGR IARQLRLLAS 540 VGKMKPDMTD AKRVLYKSAL EILGAPPDEV SDEWLAENIL LDKSNNDYQK AKKTVNPFRN 600 YIAKNVITSR SFYYLVRYAK PTAVRKLMSN PKIVRYVLKR LPEKQVASYY SAIWTQSESN 660 SNEMVKLIEM IDRLTTEIAG ESFAVLKDKK DSIVSASRES RAVNLEVERL KKLTTLYMSI 720 AYIAVKSLVK VNARYFIAYS ALERDLYFFN EKYGEEFRLH EIPYELNGKT CQFEYLAILK 780 YYLARDEETL KRKCEICEEI KVGCEKHKKN ANPPYEYDQE WIDKKKALNS ERKACERRLH 840 FSTHWAQYAT KRDENMAKHP QKWYDILASH YDELLALQAT GWLATQARND AEHLNPVNEF 900

DVYIEDLRRY PEGTPKNKDY HIGSYFEIYH YIRQRAYLEE VLAKRKEYRD SGSFTDEQLD	960	
KLQKILDDIR ARGSYDKNLL KLEYLPFAYN LPRYKNLTTE ALFDDDSVSG KKRVAEWRER	1020	
EKTREAEREQ RRQR		1034

(SEQ ID NO: 107).
An exemplary direct repeat sequence of CasRX/Cas13d Metagenomic hit (no protein accession) contig e-k87_11092736 (SEQ ID NO: 107) comprises or consists of the nucleic acid sequence:

CasRX/Cas13d Direct repeat 1: gtgagaagte tccttatggg gagatgctac
(SEQ ID NO: 108).
[0172] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas13d Ga0129306_1000735:

MQKQREQQTV TDESERKKKP	LKSGAKAAGL KSVFVLSEGK	ELLTSFGRGN	EAVPEKRVTG	60	
GTIANARTDN	KEAFSAALQN	KRFEVFGRTA	GSSDDPLAVS	RAPGQDLIGA	KTALEERYFG

(SEQ ID NO: 109).
[0173] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas13d Ga0129317_1008067:


| DMTGYDKSGK KLAQSKKGFR NFIINNVVES | SRFKYIVRYS | NPQKIRKLAN | NSVVVGFVLG | 600 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| KLPDAQIESY FNSCLPNRVY STPDKARESL RDMLHNISFN | DFADVKQDDR RATPEEKVEK | 660 |  |  |
| ERYKAIIGLY LTVMYHLVKN LVYVNSRYVM AFHCLERDAM | HYDVSLDNYR DLIRHLISEG | 720 |  |  |
| DSSCNHFISH NRRMRDCIEE NVKNSEQLIF GKEDAVIRFR NNVAHLSAIR NANEYIGDIR | 780 |  |  |  |
| EITSYFALYH YLMQRKLIDD CKVNDTAHKY FEQLTKYKTY VMDMVKALCS | PFGYNLPRFK | 840 |  |  |
| NLSIEGKFDM | HESK |  |  | 854 |

(SEQ ID NO: 110).
[0174] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence: CasRX/Cas13d Ga0224415_10048792:

| MSKKENRKSY VKGLGLKSTL VSDSKVYLTT EADGSNAKLE KCVENNKIIC ISNDKEAFAA | 60 |  |
| :--- | :--- | :--- | :--- | :--- |
| SIANKNVGYK IKNDEKFRHP KGYDIISNNP LLHNNSVQQD MLGLKNVLEK RYFGKSSGGD | 120 |  |
| NNLCIQIIHN IIDIEKILSE YIPNVVYAFN NIAGFKDEHN | NIIDIIGTQT YNSSYTYADF | 180 |
| SKDKSDKKYI EFQKLLKNKR LGYWGKAFFT GQGNNAKVRQ ENQCFHIIAL LISLRNWATH | 240 |  |
| SNELDKHTKR TWLYKLDDTN ILNAEYVKTL NYLYDTIADE LTKSFSKNGA VNVNYLAKKY | 300 |  |
| NIKDDLPGFS EQYFRFSIMK EQKNLGFNIS KLRENMLDFK DMSVIRDDHN RYDKDRSKIY | 360 |  |
| TMMDFVIYRY YIDNNNDSID FINKLRSSID EKSKEKLYNE EANRLWNKLK EYMLYIKEFN | 420 |  |
| GKLASRTPDR DGNISEFVES LPKIHRLLPR GQKISNFSKL MYLLTMFLDG KEINDLLTTL | 480 |  |
| INKFENIQGF LDIMPEINVN AKFEPEYVFF NKSHEIAGEL KLIKGFAQMG EPAATLKLEM | 540 |  |
| TADAIKILGT EKEDAELIKL AESLFKDENG KLLGNKQHGM RNFIGNNVIK SKRFHYLIRY | 600 |  |
| GDPAHLHKIA TNKNVVRFVL GRIADMQKKQ GQKGKNQIDR YYEVCVGNKD IKKTIEEKID | 660 |  |
| ALTDIIVNMN YDQFEKKKAV IENQNRGKTF EEKNKYKRDN AEREKFKKII SLYLTVIYHI | 720 |  |
| LKNIVNVNSR YILGFHCLER DKQLYIEKYN KDKLDGFVAL TKFCLGDEER FEDLKAKAQA | 780 |  |
| SIQALETANP KLYAKYMNYS DEEKKEEFKK QLNRERVKNA RNAYLKNIKN YIMIRLQLRD | 840 |  |
| QTDSSGYLCG EFRDKVAHLE VARHAHEYIG NIKEVNSYFQ LYHYIMQCRL YDVLKNNTKA | 900 |  |
| EAMVKGKAKE YFEALEKEGT YNDKLLKIAC VPFGYCIPRY KNLSMEELFD MNEEKKFKKK | 960 |  |
| APENT |  |  |

APENT
965 (SEQ ID NO:
111).
[0175] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence
CasRX/Cas13d 160582958 _gene49834:
MKNSVTFKLI QAQENKEAAR KKAKDIAEQA RIAKRNGVVK KEENRINRIQ IEIQTQKKSN 60
TQNAYHLKSL AKAAGVKSVF AIGNDLLMTG FGPGNDATIE KRVFQNRAIE TLSSPEQYSA 120
EFQNKQFKIK GNIKVLNHST QKMEEIQTEL QDNYNRPHFD LLGCKNVLEQ KYFGRTFSDN 180
IHVQIAYNIM DIEKLLTPYI NNIIYTLNEL MRDNSKDDFF GCDSHFSVAY LYDELKAGYS 240
DRLKTKPNLS KNIDRIWNNF CNYMNSDSGN TEARLAYFGE LFYKPKETGD AKSDYKTHLS 300
NNQKEEWELK SDKEVYNIFA ILCDLRHFCT HGESITPSGK PFPYNLEKNL FPEAKQVLNS 360
LFEEKAESLG AEAFGKTAGK TDVSILLKVF EKEQASQKEQ QALLKEYYDF KVQKTYKNMG 420
FSIKKLREAI MEIPDAAKFK DDLYSSLRHK LYGLFDFILV KHFLDTSDSE NLQNNDIFRQ 480
LRACRCEEEK DQVYRSIAVK VWEKVKKKEL NMFKQVVVIP SLSKDELKQM EMTKNTELLS 540
SIETISTQAS LFSEMIFMMT YLLDGKEINL LCTSLIEKFE NIASENEVLK SPQIGYETKY 600 TEGYAFFKNA DKTAKELRQV NNMARMTKPL GGVNTKCVMY NEAAKILGAK PMSKAELESV 660

| FNLDNHDYTY SPSGKKIPNK NFRNFIINNV ITSRRFLYLI RYGNPEKIRK IAINPSIISF | 720 |  |
| :--- | :--- | :--- | :--- | :--- |
| VLKQIPDEQI KRYYPPCIGK RTDDVTLMRD ELGKMLQSVN | FEQFSRVNNK QNAKQNPNGE | 780 |
| KARLQACVRL YLTVPYLFIK NMVNINARYV LAFHCLERDH ALCFNSRKLN DDSYNEMANK | 840 |  |
| FQMVRKAKKE QYEKEYKCKK QETGTAHTKK IEKLNQQIAY | IDKDIKNMHS YTCRNYRNLV | 900 |
| AHLNVVSKLQ NYVSELPNDY QITSYFSFYH YCMQLGLMEK VSSKNIPLVE SLKNEANDAQ | 960 |  |
| SYSAKKTLEY FDLIEKNRTY CKDFLKALNA PFSYNLPRFK NLSIEALFDK NIVYEQADLK | 1020 |  |
| KE |  | 1022 |

(SEQ ID NO: 112).
[0176] An exemplary direct repeat sequence of CasRX/Cas 13 d proteins may comprise or consist of the sequence

CasRX/Cas13d 160582958 _gene 49834 (SEQ ID NO: 112) comprises or consists of the nucleic acid sequence: CasRX/Cas13d DR:

```
gaactacacc cctctgttct tgtaggggtc taacac
(SEQ ID NO: 113).
[0177] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence: CasRX/Cas13d 250twins_35838_GL0110300:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline MGNKQRVSAQ & KRRENAKLCN & QQKARQAESQ & RDKI KNMNVE & KMKNINTNDI & KНTKTTAKKL & 60 \\
\hline GLKSTIIADK & KIILTSFINE & QSSKTANIEK & VAGFKGDTID & TISYTPRMFR & SEINPGEIVI & 120 \\
\hline SKGDDLSEFA & NPANFPIGRD & YVKIRSALEK & QYFGKEFPED & NLHVQIAYNV & ADIKKILSVY & 180 \\
\hline INNIIYMFYN & LARSEEYDIF & YNSQSENSGR & DCDVIGSLYY & QASYRNQDAN & RFEKDGKKKA & 240 \\
\hline IDSLLDDTRA & YYTYFDGLFS & VPKREDDGKI & KESEKEKAKD & QNFDVLRLLS & VGRQLTFHSD & 300 \\
\hline KSNNEAYLFD & LSKLTRAAQD & ENRRQDIQSL & LNILNSTCRS & NLEGVNGDFV & KHAKNNLYVL & 360 \\
\hline NQLYPSLKAN & DLIGEYYNFI & VKKENRNIGI & RLITVRELII & EHNYTNLKDS & KYDTYRNKIY & 420 \\
\hline TVLNFILFRE & IQENSIAIKN & FREKLRSTEK & AEQPALYQAF & ANKIYPMVQA & KFAKAIDLFE & 480 \\
\hline EQYKTKFKSE & FKGGISIENM & QQQNILLQTE & NIDYFSKYVL & FLTKFLDGKE & INELLCALIN & 540 \\
\hline KFDNIADLLD & ISKQIGTPVV & FCADYESLND & AAKIAENIRL & IKNIAHLRPA & IQEAQSSKDN & 600 \\
\hline ADAAGTPATL & LIDAYNMLNT & DIQLVYGEAA & YEELRKDLFE & RKNGTKYNKK & GKKVDVYDHK & 660 \\
\hline FRNFLINNVI & KSKWFFYIAK & YVKPADCAKM & MSNKKMIEFA & LRDLPETQIK & RYYYTITGNE & 720 \\
\hline ALGDAESLKG & VIIEQLHAFS & IKNTLLSIKN & MGEGEYKIQQ & IGSSKEKLKA & IVNLYLTVAY & 780 \\
\hline LLTKSLVKVN & IRFSIAFGCL & ERDLVLQKKS & EKKFDAIINE & ILLEDDKIRK & ECDKERAQAK & 840 \\
\hline TLPRELAQER & FAQI KRRESG & CYFKSYHVYD & YLSKNSNEFK & QNHIDFAVTS & YRNNVEHLNV & 900 \\
\hline VHCMTKYFSE & VKDVKSYYGV & YCYIMQRMLC & DELIIKNQDK & PDVRQTFEEY & NRLLKDHGTY & 960 \\
\hline SKNLMWLLNF & PFAYNLARYK & NLSNEDLENA & KNNDQKSK & & & 998 \\
\hline
\end{tabular}
(SEQ ID NO: 114).
[0178] Exemplary CasRX/Cas13d proteins may comprise or consist of the sequence:
CasRX/Cas13d 250twins_36050_GL0158985:
MKKKHQSAAE KRQVKKLKNQ EKAQKYASEP SPLQSDTAGV ECSQKKTVVS HIASSKTLAK 60
AMGLKSTLVM GDKLVITSFA ASKAVGGAGY KSANIEKITD LQGRVIEEHE RMFSADVGEK 120
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline NIELSKNDCH & TNVNNPVVTN & IGKDYIGLKS & RLEQEFFGKT & FENDNLHVQL & AYNI LDIKKI & 180 \\
\hline LGTYVNNIIY & IFYNLNRAGT & GRDERMYDDL & IGTLYAYKPM & EAQQTYLLKG & DKDMRRFEEV & 240 \\
\hline KQLLQNTSAY & YVYYGTLFEK & VKAKSKKEQR & AKEAEIDACT & AHNYDVLRLL & SLMRQLCMHS & 300 \\
\hline VAgTAFKLAE & SALFNIEDVL & SADLKEILDE & AFSGAVNKLN & DGFVQHSGNN & LYVLQQLYPN & 360 \\
\hline ETIERIAEKY & YRLTVRKEDL & NMGVNIKKLR & ELIVGQYFPE & VLDKEYDLSK & NGDSVVTYRS & 420 \\
\hline KIYTVMNYIL & LYYLEDHDSS & RESMVEALRQ & NREGDEGKEE & IYRQFAKKVW & NGVSGLFGVC & 480 \\
\hline LNLFKTEKRN & KFRSKVALPD & VSGAAYMLSS & ENIDYFVKML & FFVCKFLDGK & EINELLCALI & 540 \\
\hline NKFDNIADIL & DAAAQCGSSV & WFVDSYRFFE & RSRRISAQIR & IVKNIASKDF & KKSKKDSDES & 600 \\
\hline YPEQLYLDAL & ALLGDVISKY & KQNRDGSVVI & DDQGNAVLTE & QYKRFRYEFF & EEIKRDESGG & 660 \\
\hline IKYKKSGKPE & YNHQRRNFIL & NNVLKSKWFF & YVVKYNRPSS & CRELMKNKEI & LRFVLRDIPD & 720 \\
\hline SQVRRYFKAV & QGEEAYASAE & AMRTRLVDAL & SQFSVTACLD & EVGGMTDKEF & ASQRAVDS KE & 780 \\
\hline KLRAIIRLYL & TVAYLITKSM & VKVNTRESIA & FSVLERDYYL & LIDGKKKSSD & YTGEDMLALT & 840 \\
\hline RKFVGEDAGL & YREWKEKNAE & AKDKYFDKAE & RKKVLRQNDK & MIRKMHFTPH & SLNYVQKNLE & 900 \\
\hline SVQSNGLAAV & IKEYRNAVAH & LNIINRLDEY & IGSARADSYY & SLYCYCLQMY & LSKNFSVGYL & 960 \\
\hline INVQKQLEEH & HTYMKDLMWL & LNIPFAYNLA & RYKNLSNEKL & FYDEEAAAEK & ADKAENERGE & 1020 \\
\hline
\end{tabular}
(SEQ ID NO: 115).
[0179] Yan et al. (2018) Mol Cell. 70(2):327-339 (doi: 10.1016/j.molcel.2018.02.2018) and Konermann et al. (2018) Cell 173(3):665-676 (doi: 10.1016/j.cell/2018.02.033) have described CasRX/Cas13d proteins and both of which are incorporated by reference herein in their entireties. Also see WO Publication Nos. WO2018/183703 (CasM) and WO2019/006471 (Cas13d), which are incorporated herein by reference in their entirety.
[0180] Exemplary wild type Cas13d proteins of the disclosure may comprise or consist of the amino acid sequence:

\section*{[0181] Cas13d (Ruminococcus flavefaciens XPD3002) sequence:}
```

    1 IEKKKSFAKG MGVKSTLVSG SKVYMTTFAE GSDARLEKIV EGDSIRSVNE GEAFSAEMAD
    6 1 ~ K N A G Y K I G N A ~ K F S H P K G Y A V ~ V A N N P L Y T G P ~ V Q Q D M L G L K E ~ T L E K R Y F G E S ~ A D G N D N I C I Q ~
    121 VIHNILDIEK ILAEYITNAA YAVNNISGLD KDIIGFGKFS TVYTYDEFKD PEHHRAAFNN
181 NDKLINAIKA QYDEFDNFLD NPRLGYFGQA FFSKEGRNYI INYGNECYDI LALLSGLAHW
241 VVANNEEESR ISRTWLYNLD KNLDNEYIST LNYLYDRITN ELTNSFSKNS AANVNYIAET
301 LGINPAEFAE QYFRFSIMKE QKNLGENITK LREVMLDRKD MSEIRKNHKV FDSIRTKVYT
3 6 1 ~ M M D F V I Y R Y Y ~ I E E D A K V A A A ~ N K S L P D N E K S ~ L S E K D I F V I N ~ L R G S F N D D Q K ~ D A L Y Y D E A N R .
4 2 1 ~ I W R K L E N I M H ~ N I K E F R G N K T ~ R E Y K K K D A P R ~ L P R I L P A G R D ~ V S A F S K L M Y A ~ L T M F L D G K E I ~
481 NDLLTTLINK FDNIQSFLKV MPLIGVNAKF VEEYAFFKDS AKIADELRLI KSFARMGEPI
5 4 1 ~ A D A R R A M Y I D ~ A I R I L G T N L S ~ Y D E L K A L A D T ~ F S L D E N G N K L ~ K K G K H G M R N F ~ I I N N V I S N K R ~
601 FHYLIRYGDP AHLHEIAKNE AVVKFVLGRI ADIQKKQGQN GKNQIDRYYE TCIGKDKGKS
6 6 1 ~ V S E K V D A L T K ~ I I T G M N Y D Q F ~ D K K R S V I E D T ~ G R E N A E R E K F ~ K K I I S L Y L T V ~ I Y H I L K N I V N '
7 2 1 ~ I N A R Y V I G F H ~ C V E R D A Q L Y K ~ E K G Y D I N L K K ~ L E E K G F S S V T ~ K L C A G I D E T A ~ P D K R K D V E K E ~
7 8 1 ~ M A E R A K E S I D ~ S L E S A N P K L Y ~ A N Y I K Y S D E K ~ K A E E F T R Q I N ~ R E K A K T A L N A ~ Y L R N T K W N V I ~
841 IREDLLRIDN KTCTLFANKA VALEVARYVH AYINDIAEVN SYFQLYHYIM QRIIMNERYE
901 KSSGKVSEYF DAVNDEKKYN DRLLKLLCVP FGYCIPRFKN LSIEALFDRN EAAKFDKEKK
961 KVSGNS (SEQ ID NO: 45).

```
[0182] Exemplary wild type Cas 13 d proteins of the disclosure may comprise or consist of the amino acid sequence:
[0183] Cas13d (contig e-k87_11092736):
MKRQKTFAKRIGIKSTVAYGQGKYAITTFGKGSKAEIAVRSADPPEETLPTESDATLSIHAKFA KAGRDGREFKCGDVDETRIHTSRSEYESLISNPAESPREDYLGLKGTLERKFFGDEYPKDNLRI QIIYSILDIQKILGLYVEDILHFVDGLQDEPEDLVGLGLGDEKMQKLLSKALPYMGFFGSTDVF KVTKKREERAAADEHNAKVFRALGAIRQKLAHFKWKESLAIFGANANMPIRFFQGATGGRQLWN DVIAPLWKKRIERVRKSFLSNSAKNLWVLYQVFKDDTDEKKKARARQYYHFSVLKEGKNLGFNL TKTREYFLDKFFPIFHSSAPDVKRKVDTFRSKFYAILDFIIYEASVSVANSGQMGKVAPWKGAI DNALVKLREAPDEEAKEKIYNVLAAS IRNDSLFLRLKSACDKFGAEQNRPVFPNELRNNRDIRN VRSEWLEATQDVDAAAFVQLIAFLCNFLEGKE INELVTALIKKFEGIQALIDLLRNLEGVDSIR FENE FALFNDDKGNMAGRIARQLRLLASVGKMKPDMTDAKRVLYKSALEILGAPPDEVSDEWLA ENILLDKSNNDYQKAKKTVNPFRNYIAKNVITSRSFYYLVRYAKPTAVRKLMSNPKIVRYVLKR LPEKQVASYYSAIWTQSESNSNEMVKLIEMIDRLTTEIAGFSFAVLKDKKDSIVSASRESRAVN LEVERLKKLTTLYMSIAYIAVKSLVKVNARYFIAYSALERDLYFFNEKYGEEFRLHFIPYELNG KTCQFEYLAILKYYLARDEETLKRKCEICEEIKVGCEKHKKNANPPYEYDQEWIDKKKALNSER KACERRLHFSTHWAQYATKRDENMAKHPQKWYDILASHYDELLALQATGWLATQARNDAEHLNP VNEFDVYIEDLRRYPEGTPKNKDYHIGSYFEIYHYIRQRAYLEEVLAKRKEYRDSGSFTDEQLD KLQKILDDIRARGSYDKNLLKLEYLPFAYNLPRYKNLTTEALFDDDSVSGKKRVAEWREREKTR EAEREQRRQR (SEQ ID NO: 46).
[0184] An exemplary direct repeat sequence of Cas13d (contig e-k87_11092736) (SEQ ID NO: 46) comprises or consists of the nucleic acid sequence:Cas13d (contig e-k87_11092736) Direct Repeat Sequence): GTGAGAAGTCTCCTTATGGGGAGATGCTAC (SEQ ID NO: 47).
[0185] Exemplary wild type Cas13d proteins of the disclosure may comprise or consist of the amino acid sequence:
[0186] Cas13d (160582958_gene49834):
MKNSVTFKLIQAQENKEAARKKAKDIAEQARIAKRNGVVKKEENRINRIQIEIQTQKKSNTQNA YHLKSLAKAAGVKSVFAIGNDLLMTGFGPGNDAT IEKRVFQNRAIETLSSPEQYSAEFQNKQFK IKGNIKVLNHSTQKMEEIQTELQDNYNRPHFDLLGCKNVLEQKYFGRTFSDNIHVQIAYNIMDI EKLLTPYINNIIYTLNELMRDNSKDDFFGCDSHFSVAYLYDELKAGYSDRLKTKPNLSKNIDRI

WNNFCNYMNSDSGNTEARLAYFGELFYKPKETGDAKSDYKTHLSNNQKEEWELKSDKEVYNIFA ILCDLRHFCTHGESITPSGKP FPYNLEKNLFPEAKQVLNSLFEEKAESLGAEAFGKTAGKTDVS ILLKVFEKEQASQKEQQALLKEYYDFKVQKTYKNMGFS IKKLREAIMEIPDAAKFKDDLYSSLR HKLYGLFDFILVKHFLDTSDSENLQNNDI FRQLRACRCEEEKDQVYRSIAVKVWEKVKKKELNM FKQVVVIPSLSKDELKQMEMTKNTELLSSIETISTQASLFSEMI FMMTYLLDGKEINLLCTSLI EKFENIAS FNEVLKSPQIGYETKYTEGYAFFKNADKTAKELRQVNNMARMTKPLGGVNTKCVMY NEAAKILGAKPMSKAELESVFNLDNHDYTYSPSGKKIPNKNFRNFIINNVITSRRFLYLIRYGN PEKIRKIAINPSIIS FVLKQIPDEQIKRYYPPCIGKRTDDVTLMRDELGKMLQSVNFEQFSRVN NKQNAKQNPNGEKARLQACVRLYLTVPYLFIKNMVNINARYVLAFHCLERDHALCFNSRKLNDD SYNEMANKFQMVRKAKKEQYEKEYKCKKQETGTAHTKKIEKLNQQIAYIDKDIKNMHSYTCRNY RNLVAHLNVVSKLQNYVSELPNDYQITSYFS FYHYCMQLGLMEKVSSKNIPLVESLKNEANDAQ SYSAKKTLEYFDLIEKNRTYCKDFLKALNAPFSYNLPRFKNLSIEALFDKNIVYEQADLKKE (SEQ ID NO: 48).
[0187] An exemplary direct repeat sequence of Cas13d (160582958_gene49834) (SEQ ID NO 48) comprises or consists of the nucleic acid sequence:
[0188] Cas13d (160582958_gene49834) Direct Repeat Sequence: GAACTACACCCCTCTGTTCTTGTAGGGGTCTAACAC (SEQ ID NO: 49).
[0189] Exemplary wild type Cas13d proteins of the disclosure may comprise or consist of the amino acid sequence:
[0190] Cas13d (contig tpg|DJXD01000002.1| ; uncultivated Ruminococcus assembly, UBA7013, from sheep gut metagenome):

MKKQKSKKTVSKTSGLKEALSVQGTVIMTS FGKGNMANLSYKIPSSQKPQNLNSSAGLKNVEVS GKKIKFQGRHPKIATTDNPLFKPQPGMDLLCLKDKLEMHYFGKT FDDNIHIQLIYQILDIEKIL AVHVNNIVFTLDNVLHPQKEELTEDFIGAGGWRINLDYQTLRGQTNKYDRFKNYIKRKELLYFG EAFYHENERRYEEDI FAILTLLSALRQFCFHSDLSSDESDHVNS FWLYQLEDQLSDEFKETLSI LWEEVTERIDSEFLKTNTVNLHILCHVFPKESKETIVRAYYEFLIKKSEKNMGFSIKKLREIML EQSDLKS FKEDKYNSVRAKLYKLFDFIITYYYDHHAFEKEALVSSLRSSLTEENKEEIYIKTAR TLASALGADFKKAAADVNAKNIRDYQKKANDYRISFEDIKIGNTGIGYFSELIYMLTLLLDGKE INDLLTTLINKFDNIISFIDILKKLNLEFKFKPEYADFFNMTNCRYTLEELRVINSIARMQKPS ADARKIMYRDALRILGMDNRPDEEIDRELERTMPVGADGKFIKGKQGFRNFIASNVIESSRFHY

LVRYNNPHKTRTLVKNPNVVKFVLEGIPETQIKRYFDVCKGQEIPPTSDKSAQIDVLARIISSV DYKI FEDVPQSAKINKDDPSRNFSDALKKQRYQAIVSLYLTVMYLITKNLVYVNSRYVIAFHCL ERDAFLHGVTLPKMNKKIVYSQLTTHLLTDKNYTTYGHLKNQKGHRKWYVLVKNNLQNSDITAV SSFRNIVAHISVVRNSNEYISGIGELHSYFELYHYLVQSMIAKNNWYDTSHQPKTAEYLNNLKK HHTYCKDFVKAYCIPFGYVVPRYKNLTINELFDRNNPNPEPKEEV (SEQ ID NO: 50).
[0191] An exemplary direct repeat sequence of Cas13d (contig tpg|DJXD01000002.1|; uncultivated Ruminococcus assembly, UBA7013, from sheep gut metagenome) (SEQ ID NO: 50) comprises or consists of the nucleic acid sequence:Cas13d (contig tpg|DJXD01000002.1| ; uncultivated Ruminococcus assembly, UBA7013, from sheep gut metagenome) Direct Repeat Sequence: CAACTACAACCCCGTAAAAATACGGGGTTCTGAAAC (SEQ ID NO: 51).

\section*{gRNA Target Sequences}
[0192] In some embodiments of the compositions of the disclosure, a target sequence of an RNA molecule comprises a sequence motif corresponding to the first RNA binding protein and/or the second RNA binding protein.
[0193] In some embodiments of the compositions and methods of the disclosure, the sequence motif is a signature of a disease or disorder.
[0194] A sequence motif of the disclosure may be isolated or derived from a sequence of foreign or exogenous sequence found in a genomic sequence, and therefore translated into an mRNA molecule of the disclosure or a sequence of foreign or exogenous sequence found in an RNA sequence of the disclosure.
[0195] A sequence motif of the disclosure may comprise or consist of a mutation in an endogenous sequence that causes a disease or disorder. The mutation may comprise or consist of a sequence substitution, inversion, deletion, insertion, transposition, or any combination thereof. [0196] A sequence motif of the disclosure may comprise or consist of a repeated sequence. In some embodiments, the repeated sequence may be associated with a microsatellite instability (MSI). MSI at one or more loci results from impaired DNA mismatch repair mechanisms of a cell of the disclosure. A hypervariable sequence of DNA may be transcribed into an mRNA of the disclosure comprising a target sequence comprising or consisting of the hypervariable sequence.
[0197] A sequence motif of the disclosure may comprise or consist of a biomarker. The biomarker may indicate a risk of developing a disease or disorder. The biomarker may indicate a healthy gene (low or no determinable risk of developing a disease or disorder. The biomarker may indicate an edited gene. Exemplary biomarkers include, but are not limited to, single nucleotide polymorphisms (SNPs), sequence variations or mutations, epigenetic marks, splice acceptor sites, exogenous sequences, heterologous sequences, and any combination thereof. [0198] A sequence motif of the disclosure may comprise or consist of a secondary, tertiary or quaternary structure. The secondary, tertiary or quaternary structure may be endogenous or naturally occurring. The secondary, tertiary or quaternary structure may be induced or nonnaturally occurring. The secondary, tertiary or quaternary structure may be encoded by an endogenous, exogenous, or heterologous sequence.
[0199] In some embodiments of the compositions and methods of the disclosure, a target sequence of an RNA molecule comprises or consists of between 2 and 100 nucleotides or nucleic acid bases, inclusive of the endpoints. In some embodiments, the target sequence of an RNA molecule comprises or consists of between 2 and 50 nucleotides or nucleic acid bases, inclusive of the endpoints. In some embodiments, the target sequence of an RNA molecule comprises or consists of between 2 and 20 nucleotides or nucleic acid bases, inclusive of the endpoints.
[0200] In some embodiments of the compositions and methods of the disclosure, a target sequence of an RNA molecule is continuous. In some embodiments, the target sequence of an RNA molecule is discontinuous. For example, the target sequence of an RNA molecule may comprise or consist of one or more nucleotides or nucleic acid bases that are not contiguous because one or more intermittent nucleotides are positioned in between the nucleotides of the target sequence.
[0201] In some embodiments of the compositions and methods of the disclosure, a target sequence of an RNA molecule is naturally occurring. In some embodiments, the target sequence of an RNA molecule is non-naturally occurring. Exemplary non-naturally occurring target sequences may comprise or consist of sequence variations or mutations, chimeric sequences, exogenous sequences, heterologous sequences, chimeric sequences, recombinant sequences, sequences comprising a modified or synthetic nucleotide or any combination thereof.
[0202] In some embodiments of the compositions and methods of the disclosure, a target sequence of an RNA molecule binds to a guide RNA of the disclosure.
[0203] In some embodiments of the compositions and methods of the disclosure, a target sequence of an RNA molecule binds to a first RNA binding protein of the disclosure.
[0204] In some embodiments of the compositions and methods of the disclosure, a target sequence of an RNA molecule binds to a second RNA binding protein of the disclosure.

\section*{RNA Molecules}
[0205] In some embodiments of the compositions and methods of the disclosure, an RNA molecule of the disclosure comprises a target sequence. In some embodiments, the RNA molecule of the disclosure comprises at least one target sequence. In some embodiments, the RNA molecule of the disclosure comprises one or more target sequence(s). In some embodiments, the RNA molecule of the disclosure comprises two or more target sequences.
[0206] In some embodiments of the compositions and methods of the disclosure, an RNA molecule of the disclosure is a naturally occurring RNA molecule. In some embodiments, the RNA molecule of the disclosure is a non-naturally occurring molecule. Exemplary non-naturally occurring RNA molecules may comprise or consist of sequence variations or mutations, chimeric sequences, exogenous sequences, heterologous sequences, chimeric sequences, recombinant sequences, sequences comprising a modified or synthetic nucleotide or any combination thereof.
[0207] In some embodiments of the compositions and methods of the disclosure, an RNA molecule of the disclosure comprises or consists of a sequence isolated or derived from a virus
[0208] In some embodiments of the compositions and methods of the disclosure, an RNA molecule of the disclosure comprises or consists of a sequence isolated or derived from a prokaryotic organism. In some embodiments, an RNA molecule of the disclosure comprises or consists of a sequence isolated or derived from a species or strain of archaea or a species or strain of bacteria.
[0209] In some embodiments of the compositions and methods of the disclosure, the RNA molecule of the disclosure comprises or consists of a sequence isolated or derived from a eukaryotic organism. In some embodiments, an RNA molecule of the disclosure comprises or consists of a sequence isolated or derived from a species of protozoa, parasite, protist, algae,
fungi, yeast, amoeba, worm, microorganism, invertebrate, vertebrate, insect, rodent, mouse, rat, mammal, or a primate. In some embodiments, an RNA molecule of the disclosure comprises or consists of a sequence isolated or derived from a human.
[0210] In some embodiments of the compositions and methods of the disclosure, the RNA molecule of the disclosure comprises or consists of a sequence derived from a coding sequence from a genome of an organism or a virus. In some embodiments, the RNA molecule of the disclosure comprises or consists of a primary RNA transcript, a precursor messenger RNA (premRNA) or messenger RNA (mRNA). In some embodiments, the RNA molecule of the disclosure comprises or consists of a gene product that has not been processed (e.g. a transcript). In some embodiments, the RNA molecule of the disclosure comprises or consists of a gene product that has been subject to post-transcriptional processing (e.g. a transcript comprising a 5 'cap and a 3' polyadenylation signal). In some embodiments, the RNA molecule of the disclosure comprises or consists of a gene product that has been subject to alternative splicing (e.g. a splice variant). In some embodiments, the RNA molecule of the disclosure comprises or consists of a gene product that has been subject to removal of non-coding and/or intronic sequences (e.g. a messenger RNA (mRNA)).
[0211] In some embodiments of the compositions and methods of the disclosure, the RNA molecule of the disclosure comprises or consists of a sequence derived from a non-coding sequence (e.g. a non-coding RNA (ncRNA)). In some embodiments, the RNA molecule of the disclosure comprises or consists of a ribosomal RNA. In some embodiments, the RNA molecule of the disclosure comprises or consists of a small ncRNA molecule. Exemplary small RNA molecules of the disclosure include, but are not limited to, microRNAs (miRNAs), small interfering (siRNAs), piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs), extracellular or exosomal RNAs (exRNAs), and small Cajal body-specific RNAs (scaRNAs). In some embodiments, the RNA molecule of the disclosure comprises or consists of a long ncRNA molecule. Exemplary long RNA molecules of the disclosure include, but are not limited to, X-inactive specific transcript (Xist) and HOX transcript antisense RNA (HOTAIR)
[0212] In some embodiments of the compositions and methods of the disclosure, the RNA molecule of the disclosure contacted by a composition of the disclosure in an intracellular space.

In some embodiments, the RNA molecule of the disclosure contacted by a composition of the disclosure in a cytosolic space. In some embodiments, the RNA molecule of the disclosure contacted by a composition of the disclosure in a nucleus. In some embodiments, the RNA molecule of the disclosure contacted by a composition of the disclosure in a vesicle, membranebound compartment of a cell, or an organelle.
[0213] In some embodiments of the compositions and methods of the disclosure, the RNA molecule of the disclosure contacted by a composition of the disclosure in an extracellular space. In some embodiments, the RNA molecule of the disclosure contacted by a composition of the disclosure in an exosome. In some embodiments, the RNA molecule of the disclosure contacted by a composition of the disclosure in a liposome, a polymersome, a micelle or a nanoparticle. In some embodiments, the RNA molecule of the disclosure contacted by a composition of the disclosure in an extracellular matrix. In some embodiments, the RNA molecule of the disclosure contacted by a composition of the disclosure in a droplet. In some embodiments, the RNA molecule of the disclosure contacted by a composition of the disclosure in a microfluidic droplet. [0214] In some embodiments of the compositions and methods of the disclosure, a RNA molecule of the disclosure comprises or consists of a single-stranded sequence. In some embodiments, the RNA molecule of the disclosure comprises or consists of a double-stranded sequence. In some embodiments, the double-stranded sequence comprises two RNA molecules. In some embodiments, the double-stranded sequence comprises one RNA molecule and one DNA molecule. In some embodiments, including those wherein the double-stranded sequence comprises one RNA molecule and one DNA molecule, compositions of the disclosure selectively bind and, optionally, selectively cut the RNA molecule

\section*{RNA-Binding Endonucleases}
[0215] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a nuclease domain. In some embodiments, the second RNA binding protein binds RNA in a manner in which it associates with RNA. In some embodiments, the second RNA binding protein associates with RNA in a manner in which it cleaves RNA. [0216] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of an RNAse.
[0217] In some embodiments, the second RNA binding protein comprises or consists of an RNAse 1. In some embodiments, the RNAse 1 protein comprises or consists of:

KESRAKKFQRQHMDSDSSPSSSSTYCNQMMRRRNMTQGLCKPVNTFVHEPLVDVQNV CFQEKVTCKNGQGNCYKSNSSMHITDCRLTNGSRYPNCAYRTSPKERHIIVACEGSPYV PVHFDASVEDST (SEQ ID NO: 20)
[0218] In some embodiments, the second RNA binding protein comprises or consists of an RNAse4. In some embodiments, the RNAse4 protein comprises or consists of:

QDGMYQRFLRQHVHPEETGGSDRYCDLMMQRRKMTLYHCKRFNTFIHEDIWNIRSICS TTNIQCKNGKMNCHEGVVKVTDCRDTGSSRAPNCRYRAIASTRRVVIACEGNPQVPVH FDG (SEQ ID NO: 21).
[0219] In some embodiments, the second RNA binding protein comprises or consists of an RNAse6. In some embodiments, the RNAse6 protein comprises or consists of:

WPKRLTKAHWFEIQHIQPSPLQCNRAMSGINNYTQHCKHQNTFLHDSFQNVAAVCDLL SIVCKNRRHNCHQSSKPVNMTDCRLTSGKYPQCRYSAAAQYKFFIVACDPPQKSDPPYK LVPVHLDSIL (SEQ ID NO: 22).
[0220] In some embodiments, the second RNA binding protein comprises or consists of an RNAse7. In some embodiments, the RNAse7 protein comprises or consists of:

APARAGFCPLLLLLLLGLWVAEIPVSAKPKGMTSSQWFKIQHMQPSPQACNSAMKNINK HTKRCKDLNTFLHEPFSSVAATCQTPKIACKNGDKNCHQSHGPVSLTMCKLTSGKYPNC RYKEKRQNKSYVVACKPPQKKDSQQFHLVPVHLDRVL (SEQ ID NO: 23)
[0221] In some embodiments, the second RNA binding protein comprises or consists of an RNAse8. In some embodiments, the RNAse8 protein comprises or consists of: TSSQWFKTQHVQPSPQACNSAMSIINKYTERCKDLNTFLHEPFSSVAITCQTPNIACKNSC KNCHQSHGPMSLTMGELTSGKYPNCRYKEKHLNTPYIVACDPPQQGDPGYPLVPVHLD KVV (SEQ ID NO: 24).
[0222] In some embodiments, the second RNA binding protein comprises or consists of an RNAse2. In some embodiments, the RNAse2 protein comprises or consists of: KPPQFTWAQWFETQHINMTSQQCTNAMQVINNYQRRCKNQNTFLLTTFANVVNVCGN PNMTCPSNKTRKNCHHSGSQVPLIHCNLTTPSPQNISNCRYAQTPANMFYIVACDNRDQ RRDPPQYPVVPVHLDRII (SEQ ID NO: 25).
[0223] In some embodiments, the second RNA binding protein comprises or consists of an RNAse6PL. In some embodiments, the RNAse6PL protein comprises or consists of: DKRLRDNHEWKKLIMVQHWPETVCEKIQNDCRDPPDYWTIHGLWPDKSEGCNRSWPF NLEEIKKNWMEITDSSLPSPSMGPAPPRWMRSTPRRSTLAEAWNSTGSWTSTGGCALPP AALPSGDLCCRPSLTAGSRGVGVDLTALHQLLHVHYSATGIIPEECSEPTKPFQIILHHDH TEWVQSIGMPIWGTISSSESAIGKNEESQPACAVLSHDS (SEQ ID NO: 26).
[0224] In some embodiments, the second RNA binding protein comprises or consists of an RNAseL. In some embodiments, the RNAseL protein comprises or consists of:

AAVEDNHLLIKAVQNEDVDLVQQLLEGGANVNFQEEEGGWTPLHNAVQMSREDIVEL LLRHGADPVLRKKNGATPFILAAIAGSVKdLLKLFLSKGADVNECDFYGFTAFMEAAVY GKVKALKFLYKRGANVNLRRKTKEDQERLRKGGATALMDAAEKGHVEVLKILLDEM GADVNACDNMGRNALIHALLSSDDSDVEAITHLLLDHGADVNVRGERGKTPLILAVEK KHLGLVQRLLEQEHIEINDTDSDGKTALLLAVELKLKKIAELLCKRGASTDCGDLVMTA RRNYDHSLVKVLLSHGAKEDFHPPAEDWKPQSSHWGAALKDLHRIYRPMIGKLKFFID EKYKIADTSEGGIYLGFYEKQEVAVKTFCEGSPRAQREVSCLQSSRENSHLVTFYGSESH RGHLFVCVTLCEQTLEACLDVHRGEDVENEEDEFARNVLSSIFKAVQELHLSCGYTHQD LQPQNILIDSKKAAHLADFDKSIKWAGDPQEVKRDLEDLGRLVLYVVKKGSISFEDLKA QSNEEVVQLSPDEETKDLIHRLFHPGEHVRDCLSDLLGHPFFWTWESRYRTLRNVGNES DIKTRKSESEILRLLQPGPSEHSKSFDKWTTKINECVMKKMNKFYEKRGNFYQNTVGDL LKFIRNLGEHIDEEKHKKMKLKIGDPSLYFQKTFPDLVIYVYTKLQNTEYRKHFPQTHSP NKPQCDGAGGASGLASPGC (SEQ ID NO: 27).
[0225] In some embodiments, the second RNA binding protein comprises or consists of an RNAseT2. In some embodiments, the RNAseT2 protein comprises or consists of: VQHWPETVCEKIQNDCRDPPDYWTIHGLWPDK SEGCNRSWPFNLEEIKDLLPEMRAYW PDVIHSFPNRSRFWKHEWEKHGTCAAQVDALNSQKKYFGRSLELYRELDLNSVLLKLGI KPSINYYQVADFKDALARVYGVIPKIQCLPPSQDEEVQTIGQIELCLTKQDQQLQNCTEP GEQPSPKQEVWLANGAAESRGLRVCEDGPVFYPPPKKTKH (SEQ ID NO: 28).
[0226] In some embodiments, the second RNA binding protein comprises or consists of an RNAse11. In some embodiments, the RNAse 11 protein comprises or consists of: EASESTMKIIKEEFTDEEMQYDMAKSGQEKQTIEILMNPILLVKNTSLSMSKDDMSSTLL

TFRSLHYNDPKGNSSGNDKECCNDMTVWRKVSEANGSCKWSNNFIRSSTEVMRRVHR APSCKFVQNPGISCCESLELENTVCQFTTGKQFPRCQYHSVTSLEKILTVLTGHSLMSWL VCGSKL (SEQ ID NO: 29).
[0227] In some embodiments, the second RNA binding protein comprises or consists of an RNAseT2-like. In some embodiments, the RNAseT2-like protein comprises or consists of: XLGGADKRLRDNHEWKKLIMVQHWPETVCEKIQNDCRDPPDYWTIHGLWPDKSEGCN RSWPFNLEEIKDLLPEMRAYWPDVIHSFPNRSRFWKHEWEKHGTCAAQVDALNSQKKY FGRSLELYRELDLNSVLLKLGIKPSINYYQTTEEDLNLDVEPTTEDTAEEVTIHVLLHSAL FGEIGPRRW (SEQ ID NO: 30).
[0228] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a mutated RNAse.
[0229] In some embodiments, the second RNA binding protein comprises or consists of a mutated Rnase1 (Rnase1(K41R)) polypeptide. In some embodiments, the Rnase1(K41R) polypeptide comprises or consists of:
KESRAKKFQRQHMDSDSSPSSSSTYCNQMMRRRNMTQGRCRPVNTFVHEPLVDVQNV CFQEKVTCKNGQGNCYKSNSSMHITDCRLTNGSRYPNCAYRTSPKERHIIVACEGSPYV PVHFDASVEDST (SEQ ID NO: 116).
[0230] In some embodiments, the second RNA binding protein comprises or consists of a mutated Rnase 1 (Rnase1(K41R, D121E)) polypeptide. In some embodiments, the Rnasel (Rnasel(K41R, D121E)) polypeptide comprises or consists of: KESRAKKFQRQHMDSDSSPSSSSTYCNQMMRRRNMTQGRCRPVNTFVHEPLVDVQNV CFQEKVTCKNGQGNCYKSNSSMHITDCRLTNGSRYPNCAYRTSPKERHIIVACEGSPYV PVHFEASVEDST (SEQ ID NO: 117).
[0231] In some embodiments, the second RNA binding protein comprises or consists of a mutated Rnasel (Rnasel(K41R, D121E, H119N)) polypeptide. In some embodiments, the Rnase1 (Rnase1(K41R, D121E, H119N)) polypeptide comprises or consists of: KESRAKKFQRQHMDSDSSPSSSSTYCNQMMRRRNMTQGRCRPVNTFVHEPLVDVQNV CFQEKVTCKNGQGNCYKSNSSMHITDCRLTNGSRYPNCAYRTSPKERHIIVACEGSPYV PVNFEASVEDST (SEQ ID NO: 118).
[0232] In some embodiments, the second RNA binding protein comprises or consists of a mutated Rnase1. In some embodiments, the second RNA binding protein comprises or consists of a mutated Rnase1 (Rnase1(H119N)) polypeptide. In some embodiments, the Rnase 1 (Rnase1(H119N)) polypeptide comprises or consists of:

KESRAKKFQRQHMDSDSSPSSSSTYCNQMMRRRNMTQGRCKPVNTFVHEPLVDVQNV CFQEKVTCKNGQGNCYKSNSSMHITDCRLTNGSRYPNCAYRTSPKERHIIVACEGSPYV PVNFDASVEDST (SEQ ID NO: 119).
[0233] In some embodiments, the second RNA binding protein comprises or consists of a mutated Rnase 1 (Rnase1(R39D, N67D, N88A, G89D, R91D, H119N)) polypeptide. In some embodiments, the Rnase1 (Rnase1(R39D, N67D, N88A, G89D, R91D, H119N)) polypeptide comprises or consists of:

KESRAKKFQRQHMDSDSSPSSSSTYCNQMMRRRNMTQGDCKPVNTFVHEPLVDVQNV CFQEKVTCKDGQGNCYKSNSSMHITDCRLTADSDYPNCAYRTSPKERHIIVACEGSPYV PVNFDASVEDST (SEQ ID NO: 120). In some embodiments, the second RNA binding protein comprises or consists of a mutated Rnase1 (Rnase1(R39D, N67D, N88A, G89D, R91D, H1 19N)) polypeptide. In some embodiments, the Rnase1 (Rnasel(R39D, N67D, N88A, G89D, R91D, H119N, K41R, D121E)) polypeptide comprises or consists of:

KESRAKKFQRQHMDSDSSPSSSSTYCNQMMRRRNMTQGDCRPVNTFVHEPLVDVQNV CFQEKVTCKDGQGNCYKSNSSMHITDCRLTADSDYPNCAYRTSPKERHIIVACEGSPYV PVNFEASVEDST (SEQ ID NO: 121)

In some embodiments, the second RNA binding protein comprises or consists of a mutated Rnasel (Rnasel(R39D, N67D, N88A, G89D, R91D, H119N)) polypeptide. In some embodiments, the Rnase1 (Rnase1(R39D, N67D, N88A, G89D, R91D)) polypeptide comprises or consists of:

\section*{KESRAKKFQRQHMDSDSSPSSSSTYCNQMMRRRNMTQGDCKPVNTFVHEPLVDVQNV CFQEKVTCKDGQGNCYKSNSSMHITDCRLTADSDYPNCAYRTSPKERHIIVACEGSPYV PVHFDASVEDST (SEQ ID NO: 122).}

In some embodiments, the second RNA binding protein comprises or consists of a mutated Rnase1 (Rnase1 (R39D, N67D, N88A, G89D, R91D, H119N, K41R, D121E)) polypeptide that comprises or consists of:

KESRAKKFQRQHMDSDSSPSSSSTYCNQMMRRRNMTQGDCRPVNTFVHEPLVDVQNV CFQEKVTCKDGQGNCYKSNSSMHITDCRLTADSDYPNCAYRTSPKERHIIVACEGSPYV PVNFEASVEDST (SEQ ID NO: 208).
[0234] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a NOB1 polypeptide. In some embodiments, the NOB1 polypeptide comprises or consists of:
APVEHVVADAGAFLRHAALQDIGKNIYTIREVVTEIRDKATRRRLAVLPYELRFKEPLPE YVRLVTEFSKKTGDYPSLSATDIQVLALTYQLEAEFVGVSHLKQEPQKVKVSSSIQHPET PLHISGFHLPYKPKPPQETEKGHSACEPENLEFSSFMFWRNPLPNIDHELQELLIDRGEDV PSEEEEEEENGFEDRKDDSDDDGGGWITPSNIKQIQQELEQCDVPEDVRVGCLTTDFAM QNVLLQMGLHVLAVNGMLIREARSYILRCHGCFKTTSDMSRVFCSHCGNKTLKKVSVT V (SEQ ID NO: 31).
[0235] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of an endonuclease. In some embodiments, the second RNA binding protein comprises or consists of an endonuclease V (ENDOV). In some embodiments, the ENDOV protein comprises or consists of:

AFSGLQRVGGVDVSFVKGDSVRACASLVVLSFPELEVVYEESRMVSLTAPYVSGFLAFR EVPFLLELVQQLREKEPGLMPQVLLVDGNGVLHHRGFGVACHLGVLTDLPCVGVAKKL LQVDGLENNALHKEKIRLLQTRGDSFPLLGDSGTVLGMALRSHDRSTRPLYISVGHRMS LEAAVRLTCCCCRFRIPEPVRQADICSREHIRKS (SEQ ID NO: 32).
[0236] In some embodiments, the second RNA binding protein comprises or consists of an endonuclease G (ENDOG). In some embodiments, the ENDOG protein comprises or consists of: AELPPVPGGPRGPGELAKYGLPGLAQLKSRESYVLCYDPRTRGALWVVEQLRPERLRG DGDRRECDFREDDSVHAYHRATNADYRGSGFDRGHLAAAANHRWSQKAMDDTFYLS NVAPQVPHLNQNAWNNLEKYSRSLTRSYQNVYVCTGPLFLPRTEADGKSYVKYQVIGK NHVAVPTHFFKVLILEAAGGQIELRTYVMPNAPVDEAIPLERFLVPIESIERASGLLFVPNI LARAGSLKAITAGSK (SEQ ID NO: 33).
[0237] In some embodiments, the second RNA binding protein comprises or consists of an endonuclease D1 (ENDOD1). In some embodiments, the ENDOD1 protein comprises or
consists of:
RLVGEEEAGFGECDKFFYAGTPPAGLAADSHVKICQRAEGAERFATLYSTRDRIPVYSA FRAPRPAPGGAEQRWLVEPQIDDPNSNLEEAINEAEAITSVNSLGSKQALNTDYLDSDYQ RGQLYPFSLSSDVQVATFTLTNSAPMTQSFQERWYVNLHSLMDRALTPQCGSGEDLYIL TGTVPSDYRVKDKVAVPEFVWLAACCAVPGGGWAMGFVKHTRDSDIIEDVMVKDLQ KLLPFNPQLFQNNCGETEQDTEKMKKILEVVNQIQDEERMVQSQKSSSPLSSTRSKRSTL LPPEASEGSSSFLGKLMGFIATPFIKLFQLIYYLVVAILKNIVYFLWCVTKQVINGIESCLY RLGSATISYFMAIGEELVSIPWKVLKVVAKVIRALLRILCCLLKAICRVLSIPVRVLVDVA TFPVYTMGAIPIVCKDIALGLGGTVSLLFDTAFGTLGGLFQVVFSVCKRIGYKVTFDNSG EL (SEQ ID NO: 34).
[0238] In some embodiments, the second RNA binding protein comprises or consists of a Human flap endonuclease-1 (hFEN1). In some embodiments, the hFEN1 polypeptide comprises or consists of:

MGIQGLAKLIADVAPSAIRENDIKSYFGRKVAIDASMSIYQFLIAVRQGGDVLQNEEGET TSHLMGMFYRTIRMMENGIKPVYVFDGKPPQLKSGELAKRSERRAEAEKQLQQAQAAG AEQEVEKFTKRLVKVTKQHNDECKHLLSLMGIPYLDAPSEAEASCAALVKAGKVYAAA TEDMDCLTFGSPVLMRHLTASEAKKLPIQEFHLSRILQELGLNQEQFVDLCILLGSDYCE SIRGIGPKRAVDLIQKHKSIEEIVRRLDPNKYPVPENWLHKEAHQLFLEPEVLDPESVELK WSEPNEEELIKFMCGEKQFSEERIRSGVKRLSKSRQGSTQGRLDDFFKVTGSLSSAKRKE PEPKGSTKKKAKTGAAGKFKRGK (SEQ ID NO: 35).
[0239] In some embodiments, the second RNA binding protein comprises or consists of a DNA repair endonuclease XPF (ERCC4) polypeptide. In some embodiments, the ERCC4 polypeptide comprises or consists of:

MESGQPARRIAMAPLLEYERQLVLELLDTDGLVVCARGLGADRLLYHFLQLHCHPACL VLVLNTQPAEEEYFINQLKIEGVEHLPRRVTNEITSNSRYEVYTQGGVIFATSRILVVDFL TDRIPSDLITGILVYRAHRIIESCQEAFILRLFRQKNKRGFIKAFTDNAVAFDTGFCHVERV MRNLFVRKLYLWPRFHVAVNSFLEQHKPEVVEIHVSMTPTMLAIQTAILDILNACLKEL KCHNPSLEVEDLSLENAIGKPFDKTIRHYLDPLWHQLGAKTKSLVQDLKILRTLLQYLSQ YDCVTFLNLLESLRATEKAFGQNSGWLFLDSSTSMFINARARVYHLPDAKMSKKEKISE KMEIKEGEGILWG (SEQ ID NO: 124).
[0240] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of an Endonuclease III-like protein 1 (NTHL) polypeptide. In some embodiments, the NTHL polypeptide comprises or consists of:

CSPQESGMTALSARMLTRSRSLGPGAGPRGCREEPGPLRRREAAAEARKSHSPVKRPRK AQRLRVAYEGSDSEKGEGAEPLKVPVWEPQDWQQQLVNIRAMRNKKDAPVDHLGTEH CYDSSAPPKVRRYQVLLSLMLSSQTKDQVTAGAMQRLRARGLTVDSILQTDDATLGKLI YPVGFWRSKVKYIKQTSAILQQHYGGDIPASVAELVALPGVGPKMAHLAMAVAWGTV SGIAVDTHVHRIANRLRWTKKATKSPEETRAALEEWLPRELWHEINGLLVGFGQQTCLP VHPRCHACLNQALCPAAQGL (SEQ ID NO: 123).
[0241] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a human Schlafen 14 (hSLFN14) polypeptide. In some embodiments, the hSLFN14 polypeptide comprises or consists of:

ESTHVEFKRFTTKKVIPRIKEMLPHYVSAFANTQGGYVLIGVDDKSKEVVGCKWEKVNP DLLKKEIENCIEKLPTFHFCCEKPKVNFTTKILNVYQKDVLDGYVCVIQVEPFCCVVFAE APDSWIMKDNSVTRLTAEQWVVMMLDTQSAPPSLVTDYNSCLISSASSARKSPGYPIKV HKFKEALQ (SEQ ID NO: 36).
[0242] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a human beta-lactamase-like protein 2 (hLACTB2) polypeptide. In some embodiments, the hLACTB2 polypeptide comprises or consists of:

TLQGTNTYLVGTGPRRILIDTGEPAIPEYISCLKQALTEFNTAIQEIVVTHWHRDHSGGIG DICKSINNDTTYCIKKLPRNPQREEIIGNGEQQYVYLKDGDVIKTEGATLRVLYTPGHTD DHMALLLEEENAIFSGDCILGEGTTVFEDLYDYMNSLKELLKIKADIIYPGHGPVIHNAE AKIQQYISHRNIREQQILTLFRENFEKSFTVMELVKIIYKNTPENLHEMAKHNLLLHLKKL EKEGKIFSNTDPDKKWKAHL (SEQ ID NO: 37).
[0243] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of an apurinic/apyrimidinic (AP) endodeoxyribonuclease (APEX) polypeptide. In some embodiments, the second RNA binding protein comprises or consists of an apurinic/apyrimidinic (AP) endodeoxyribonuclease (APEX2) polypeptide. In some embodiments, the APEX2 polypeptide comprises or consists of: MLRVVSWNINGIRRPLQGVANQEPSNCAAVAVGRILDELDADIVCLQETKVTRDALTEP

LAIVEGYNSYFSFSRNRSGYSGVATFCKDNATPVAAEEGLSGLFATQNGDVGCYGNMD EFTQEELRALDSEGRALLTQHKIRTWEGKEKTLTLINVYCPHADPGRPERLVFKMRFYR LLQIRAEALLAAGSHVIILGDLNTAHRPIDHWDAVNLECFEEDPGRKWMDSLLSNLGCQ SASHVGPFIDSYRCFQPKQEGAFTCWSAVTGARHLNYGSRLDYVLGDRTLVIDTFQASF LLPEVMGSDHCPVGAVLSVSSVPAKQCPPLCTRFLPEFAGTQLKILRFLVPLEQSPVLEQ STLQHNNQTRVQTCQNKAQVRSTRPQPSQVGSSRGQKNLKSYFQPSPSCPQASPDIELPS LPLMSALMTPKTPEEKAVAKVVKGQAKTSEAKDEKELRTSFWKSVLAGPLRTPLCGGH REPCVMRTVKKPGPNLGRRFYMCARPRGPPTDPSSRCNFFLWSRPS (SEQ ID NO: 38).
[0244] In some embodiments, the APEX2 polypeptide comprises or consists of: MLRVVSWNINGIRRPLQGVANQEPSNCAAVAVGRILDELDADIVCLQETKVTRDALTEP LAIVEGYNSYFSFSRNRSGYSGVATFCKDNATPVAAEEGLSGLFATQNGDVGCYGNMD EFTQEELRALDSEGRALLTQHKIRTWEGKEKTLTLINVYCPHADPGRPERLVFKMRFYR LLQIRAEALLAAGSHVIILGDLNTAHRPIDHWDAVNLECFEEDPGRKWMDSLLSNLGCQ SASHVGPFIDSYRCFQPKQEGAFTCWSAVTGARHLNYGSRLDYVLGDRTLVIDTFQASF LLPEVMGSDHCPVGAVLSVSSVPAKQCPPLCTRFLPEFAGTQLKILRFLVPLEQSP (SEQ ID NO: 39).
[0245] In some embodiments, the second RNA binding protein comprises or consists of an apurinic or apyrimidinic site lyase (APEX1) polypeptide. In some embodiments, the APEX1 polypeptide comprises or consists of:
PKRGKKGAVAEDGDELRTEPEAKKSKTAAKKNDKEAAGEGPALYEDPPDQKTSPSGKP ATLKICSWNVDGLRAWIKKKGLDWVKEEAPDILCLQETKCSENKLPAELQELPGLSHQ YWSAPSDKEGYSGVGLLSRQCPLKVSYGIGDEEHDQEGRVIVAEFDSFVLVTAYVPNAG RGLVRLEYRQRWDEAFRKFLKGLASRKPLVLCGDLNVAHEEIDLRNPKGNKKNAGFTP QERQGFGELLQAVPLADSFRHLYPNTPYAYTFWTYMMNARSKNVGWRLDYFLLS (SEQ ID NO: 125).
[0246] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of an angiogenin (ANG) polypeptide. In some embodiments, the ANG polypeptide comprises or consists of:

QDNSRYTHFLTQHYDAKPQGRDDRYCESIMRRRGLTSPCKDINTFIHGNKRSIKAICENK

NGNPHRENLRISKSSFQVTTCKLHGGSPWPPCQYRATAGFRNVVVACENGLPVHLDQSI FRRP (SEQ ID NO: 40).
[0247] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a heat responsive protein 12 (HRSP12) polypeptide. In some embodiments, the HRSP12 polypeptide comprises or consists of:
SSLIRRVISTAKAPGAIGPYSQAVLVDRTIYISGQIGMDPSSGQLVSGGVAEEAKQALKN MGEILKAAGCDFTNVVKTTVLLADINDFNTVNEIYKQYFKSNFPARAAYQVAALPKGS RIEIEAVAIQGPLTTASL (SEQ ID NO: 41).
[0248] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a Zinc Finger CCCH-Type Containing 12A (ZC3H12A) polypeptide. In some embodiments, the ZC3H12A polypeptide comprises or consists of: GGGTPKAPNLEPPLPEEEKEGSDLRPVVIDGSNVAMSHGNKEVFSCRGILLAVNWFLER GHTDITVFVPSWRKEQPRPDVPITDQHILRELEKKKILVFTPSRRVGGKRVVCYDDRFIV KLAYESDGIVVSNDTYRDLQGERQEWKRFIEERLLMYSFVNDKFMPPDDPLGRHGPSLD NFLRKKPLTLE (SEQ ID NO: 42).
[0249] In some embodiments, the ZC3H12A polypeptide comprises or consists of: SGPCGEKPVLEASPTMSLWEFEDSHSRQGTPRPGQELAAEEASALELQMKVDFFRKLGY SSTEIHSVLQKLGVQADTNTVLGELVKHGTATERERQTSPDPCPQLPLVPRGGGTPKAP NLEPPLPEEEKEGSDLRPVVIDGSNVAMSHGNKEVFSCRGILLAVNWFLERGHTDITVFV PSWRKEQPRPDVPITDQHILRELEKKKILVFTPSRRVGGKRVVCYDDRFIVKLAYESDGI VVSNDTYRDLQGERQEWKRFIEERLLMYSFVNDKFMPPDDPLGRHGPSLDNFLRKKPL TLEHRKQPCPYGRKCTYGIKCRFFHPERPSCPQRSVADELRANALLSPPRAPSKDKNGRR PSPSSQSSSLLTESEQCSLDGKKLGAQASPGSRQEGLTQTYAPSGRSLAPSGGSGSSFGPT DWLPQTLDSLPYVSQDCLDSGIGSLESQMSELWGVRGGGPGEPGPPRAPYTGYSPYGSE LPATAAFSAFGRAMGAGHFSVPADYPPAPPAFPPREYWSEPYPLPPPTSVLQEPPVQSPG AGRSPWGRAGSLAKEQASVYTKLCGVFPPHLVEAVMGRFPQLLDPQQLAAEILSYKSQ HPSE (SEQ ID NO: 43).
[0250] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a Reactive Intermediate Imine Deaminase A (RIDA) polypeptide. In some embodiments, the RIDA polypeptidecomprises or consists of:

SSLIRRVISTAKAPGAIGPYSQAVLVDRTIYISGQIGMDPSSGQLVSGGVAEEAKQALKN MGEILKAAGCDFTNVVKTTVLLADINDFNTVNEIYKQYFKSNFPARAAYQVAALPKGS RIEIEAVAIQGPLTTASL (SEQ ID NO: 44).
[0251] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a Phospholipase D Family Member 6 (PDL6) polypeptide. In some embodiments, the PDL6 polypeptide comprises or consists of:

EALFFPSQVTCTEALLRAPGAELAELPEGCPCGLPHGESALSRLLRALLAARASLDLCLF AFSSPQLGRAVQLLHQRGVRVRVVTDCDYMALNGSQIGLLRKAGIQVRHDQDPGYMH HKFAIVDKRVLITGSLNWTTQAIQNNRENVLITEDDEYVRLFLEEFERIWEQFNPTKYTF FPPKKSHGSCAPPVSRAGGRLLSWHRTCGTSSESQT (SEQ ID NO: 126).
[0252] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a mitochondrial ribonuclease P catalytic subunit (KIAA0391) polypeptide. In some embodiments, the KIAA0391 polypeptide comprises or consists of: KARYKTLEPRGYSLLIRGLIHSDRWREALLLLEDIKKVITPSKKNYNDCIQGALLHQDVN TAWNLYQELLGHDIVPMLETLKAFFDFGKDIKDDNYSNKLLDILSYLRNNQLYPGESFA HSIKTWFESVPGKQWKGQFTTVRKSGQCSGCGKTIESIQLSPEEYECLKGKIMRDVIDGG DQYRKTTPQELKRFENFIKSRPPFDVVIDGLNVAKMFPKVRESQLLLNVVSQLAKRNLR LLVLGRKHMLRRSSQWSRDEMEEVQKQASCFFADDISEDDPFLLYATLHSGNHCRFITR DLMRDHKACLPDAKTQRLFFKWQQGHQLAIVNRFPGSKLTFQRILSYDTVVQTTGDSW HIPYDEDLVERCSCEVPTKWLCLHQKT (SEQ ID NO: 127).
[0253] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of an argonaute 2 (AGO2) polypeptide.

In some embodiments of the compositions of the disclosure, the AGO2 polypeptide comprises or consists of:

SVEPMFRHLKNTYAGLQLVVVILPGKTPVYAEVKRVGDTVLGMATQCVQMKNVQRTT PQTLSNLCLKINVKLGGVNNILLPQGRPPVFQQPVIFLGADVTHPPAGDGKKPSIAAVVG SMDAHPNRYCATVRVQQHRQEIIQDLAAMVRELLIQFYKSTRFKPTRIIFYRDGVSEGQF QQVLHHELLAIREACIKLEKDYQPGITFIVVQKRHHTRLFCTDKNERVGKSGNIPAGTTV DTKITHPTEFDFYLCSHAGIQGTSRPSHYHVLWDDNRFSSDELQILTYQLCHTYVRCTRS

VSIPAPAYYAHLVAFRARYHLVDKEHDSAEGSHTSGQSNGRDHQALAKAVQVHQDTL RTMYFA (SEQ ID NO: 128)
[0254] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a mitochondrial nuclease EXOG (EXOG) polypeptide. In some embodiments, the EXOG polypeptide comprises or consists of:

QGAEGALTGKQPDGSAEKAVLEQFGFPLTGTEARCYTNHALSYDQAKRVPRWVLEHIS KSKIMGDADRKHCKFKPDPNIPPTFSAFNEDYVGSGWSRGHMAPAGNNKFSSKAMAET FYLSNIVPQDFDNNSGYWNRIEMYCRELTERFEDVWVVSGPLTLPQTRGDGKKIVSYQV IGEDNVAVPSHLYKVILARRSSVSTEPLALGAFVVPNEAIGFQPQLTEFQVSLQDLEKLSG LVFFPHLDRTSDIRNICSVDTCKLLDFQEFTLYLSTRKIEGARSVLRLEKIMENLKNAEIEP DDYFMSR YEKKLEELKAKEQSGTQIRKPS (SEQ ID NO: 129).
[0255] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a Zinc Finger CCCH-Type Containing 12D (ZC3H12D) polypeptide. In some embodiments, the ZC3H12D polypeptide comprises or consists of: EHPSKMEFFQKLGYDREDVLRVLGKLGEGALVNDVLQELIRTGSRPGALEHPAAPRLVP RGSCGVPDSAQRGPGTALEEDFRTLASSLRPIVIDGSNVAMSHGNKETFSCRGIKLAVD WFRDRGHTYIKVFVPSWRKDPPRADTPIREQHVLAELERQAVLVYTPSRKVHGKRLVC YDDRYIVKVAYEQDGVIVSNDNYRDLQSENPEWKWFIEQRLLMFSFVNDRFMPPDDPL GRHGPSLSNFLSRKPKPPEPSWQHCPYGKKCTYGIKCKFYHPERPHHAQLAVADELRAK TGARPGAGAEEQRPPRAPGGSAGARAAPREPFAHSLPPARGSPDLAALRGSFSRLAFSD DLGPLGPPLPVPACSLTPRLGGPDWVSAGGRVPGPLSLPSPESQFSPGDLPPPPGLQLQPR GEHRPRDLHGDLLSPRRPPDDPWARPPRSDRFPGRSVWAEPAWGDGATGGLSVYATED DEGDARARARIALYSVFPRDQVDRVMAAFPELSDLARLILLVQRCQSAGAPLGKP (SEQ ID NO: 130).
[0256] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of an endoplasmic reticulum to nucleus signaling 2 (ERN2) polypeptide. In some embodiments, the ERN2 polypeptide comprises or consists of: RQQQPQVVEKQQETPLAPADFAHISQDAQSLHSGASRRSQKRLQSPSKQAQPLDDPEAE QLTVVGKISFNPKDVLGRGAGGTFVFRGQFEGRAVAVKRLLRECFGLVRREVQLLQES DRHPNVLRYFCTERGPQFHYIALELCRASLQEYVENPDLDRGGLEPEVVLQQLMSGLAH

LHSLHIVHRDLKPGNILITGPDSQGLGRVVLSDFGLCKKLPAGRCSFSLHSGIPGTEGWM APELLQLLPPDSPTSAVDIFSAGCVFYYVLSGGSHPFGDSLYRQANILTGAPCLAHLEEEV HDKVVARDLVGAMLSPLPQPRPSAPQVLAHPFFWSRAKQLQFFQDVSDWLEKESEQEP LVRALEAGGCAVVRDNWHEHISMPLQTDLRKFRSYKGTSVRDLLRAVRNKKHHYREL PVEVRQALGQVPDGFVQYFTNRFPRLLLHTHRAMRSCASESLFLPYYPPDSEARRPCPG ATGR (SEQ ID NO: 131).
[0257] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a pelota mRNA surveillance and ribosome rescue factor (PELO) polypeptide. In some embodiments, the PELO polypeptide comprises or consists of: KLVRKNIEKDNAGQVTLVPEEPEDMWHTYNLVQVGDSLRASTIRKVQTESSTGSVGSN RVRTTLTLCVEAIDFDSQACQLRVKGTNIQENEYVKMGAYHTIELEPNRQFTLAKKQW DSVVLERIEQACDPAWSADVAAVVMQEGLAHICLVTPSMTLTRAKVEVNIPRKRKGNC SQHDRALERFYEQVVQAIQRHIHFDVVKCILVASPGFVREQFCDYLFQQAVKTDNKLLL ENRSKFLQVHASSGHKYSLKEALCDPTVASRLSDTKAAGEVKALDDFYKMLQHEPDRA FYGLKQVEKANEAMAIDTLLISDELFRHQDVATRSRYVRLVDSVKENAGTVRIFSSLHV SGEQLSQLTGVAAILRFPVPELSDQEGDSSSEED (SEQ ID NO: 132).
[0258] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a YBEY metallopeptidase (YBEY) polypeptide. In some embodiments, the YBEY polypeptide comprises or consists of: SLVIRNLQRVIPIRRAPLRSKIEIVRRILGVQKFDLGIICVDNKNIQHINRIYRDRNVPTDVL SFPFHEHLKAGEFPQPDFPDDYNLGDIFLGVEYIFHQCKENEDYNDVLTVTATHGLCHLL GFTHGTEAEWQQMFQKEKAVLDELGRRTGTRLQPLTRGLFGGS (SEQ ID NO: 133).
[0259] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a cleavage and polyadenylation specific factor 4 like (CPSF4L) polypeptide. In some embodiments, the CPSF4L polypeptide comprises or consists of: QEVIAGLERFTFAFEKDVEMQKGTGLLPFQGMDKSASAVCNFFTKGLCEKGKLCPFRH DRGEKMVVCKHWLRGLCKKGDHCKFLHQYDLTRMPECYFYSKFGDCSNKECSFLHVK PAFKSQDCPWYDQGFCKDGPLCKYRHVPRIMCLNYLVGFCPEGPKCQFAQKIREFKLLP GSKI (SEQ ID NO: 134).
[0260] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of an hCG_2002731 polypeptide. In some embodiments, the hCG_2002731 polypeptide comprises or consists of:

KLVRKNIEKDNAGQVTLVPEEPEDMWHTYNLVQVGDSLRASTIRKVQTESSTGSVGSN RVRTTLTLCVEAIDFDSQACQLRVKGTNIQENEYVKMGAYHTIELEPNRQFTLAKKQW DSVVLERIEQACDPAWSADVAAVVMQEGLAHICLVTPSMTLTRAKVEVNIPRKRKGNC SQHDRALERFYEQVVQAIQRHIHFDVVKCILVASPGFVREQFCDYMFQQAVKTDNKLLL ENRSKFLQVHASSGHKYSLKEALCDPTVASRLSDTKAAGEVKALDDFYKMLQHEPDRA FYGLKQVEKANEAMAIDTLLISDELFRHQDVATRSRYVRLVDSVKENAGTVRIFSSLHV SGEQLSQLTGVAAILRFPVPELSDQEGDSSSEED (SEQ ID NO: 135).
[0261] In some embodiments, the hCG_2002731 polypeptide comprises or consists of: DPAWSADVAAVVMQEGLAHICLVTPSMTLTRAKVEVNIPRKRKGNCSQHDRALERFYE QVVQAIQRHIHFDVVKCILVASPGFVREQFCDYMFQQAVKTDNKLLLENRSKFLQVHAS SGHKYSLKEALCDPTVASRLSDTKAAGEVKALDDFYKMLQHEPDRAFYGLKQVEKAN EAMAIDTLLISDELFRHQDVATRSRYVRLVDSVKENAGTVRIFSSLHVSGEQLSQLTGVA AILRFPVPELSDQEGDSSSEED (SEQ ID NO: 136).
[0262] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of an Excision Repair Cross-Complementation Group 1 (ERCC1) polypeptide. In some embodiments, the ERCC1 polypeptide comprises or consists of: MDPGKDKEGVPQPSGPPARKKFVIPLDEDEVPPGVRGNPVLKFVRNVPWEFGDVIPDYV LGQSTCALFLSLRYHNLHPDYIHGRLQSLGKNFALRVLLVQVDVKDPQQALKELAKMC ILADCTLILAWSPEEAGRYLETYKAYEQKPADLLMEKLEQDFVSRVTECLTTVKSVNKT DSQTLLTTFGSLEQLIAASREDLALCPGLGPQK (SEQ ID NO: 137).
[0263] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a ras-related C3 botulinum toxin substrate 1 isoform (RAC1) polypeptide. In some embodiments, the RAC1 polypeptide comprises or consists of: KESRAKKFQRQHMDSDSSPSSSSTYCNQMMRRRNMTQGRCKPVNTFVHEPLVDVQNV CFQEKVTCKNGQGNCYKSNSSMHITDCRLTNGSRYPNCAYRTSPKERHIIVACEGSPYV PVHFDASVEDST (SEQ ID NO: 138).
[0264] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a Ribonuclease A A1 (RAA1) polypeptide. In some embodiments, the RAA1 polypeptide comprises or consists of: QDNSRYTHFLTQHYDAKPQGRDDRYCESIMRRRGLTSPCKDINTFIHGNKRSIKAICENK NGNPHRENLRISKSSFQVTTCKLHGGSPWPPCQYRATAGFRNVVVACENGLPVHLDQSI FRRP (SEQ ID NO: 139).
[0265] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a Ras Related Protein (RAB1) polypeptide. In some embodiments, the RAB1 polypeptide comprises or consists of: GLGLVQPSYGQDGMYQRFLRQHVHPEETGGSDRYCNLMMQRRKMTLYHCKRFNTFIH EDIWNIRSICSTTNIQCKNGKMNCHEGVVKVTDCRDTGSSRAPNCRYRAIASTRRVVIAC EGNPQVPVHFDG (SEQ ID NO: 140).
[0266] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a DNA Replication Helicase/Nuclease 2 (DNA2) polypeptide. In some embodiments, the DNA2 polypeptide comprises or consists of: XSAVDNILLKLAKFKIGFLRLGQIQKVHPAIQQFTEQEICRSKSIKSLALLEELYNSQLIVA TTCMGINHPIFSRKIFDFCIVDEASQISQPICLGPLFFSRRFVLVGDHQQLPPLVLNREARA LGMSESLFKRLEQNKSAVVQLTVQYRMNSKIMSLSNKLTYEGKLECGSDKVANAVINL RHFKDVKLELEFYADYSDNPWLMGVFEPNNPVCFLNTDKVPAPEQVEKGGVSNVTEA KLIVFLTSIFVKAGCSPSDIGIIAPYRQQLKIINDLLARSIGMVEVNTVDKYQGRDKSIVLV SFVRSNKDGTVGELLKDWRRLNVAITRAKHKLILLGCVPSLNCYPPLEKLLNHLNSEKLI SFFFCIWSHLIALL (SEQ ID NO: 141).
[0267] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a FLJ35220 polypeptide. In some embodiments, the FLJ35220 polypeptide comprises or consists of:

MALRSHDRSTRPLYISVGHRMSLEAAVRLTCCCCRFRIPEPVRQADICSREHIRKSLGLP GPPTPRSPKAQRPVACPKGDSGESSALC (SEQ ID NO: 142)
[0268] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a FLJ13173 polypeptide. In some embodiments, the FLJ13173 polypeptide comprises or consists of:

CYTNHALSYDQAKRVPRWVLEHISKSKIMGDADRKHCKFKPDPNIPPTFSAFNEDYVGS GWSRGHMAPAGNNKFSSKAMAETFYLSNIVPQDFDNNSGYWNRIEMYCRELTERFEDV WVVSGPLTLPQTRGDGKKIVSYQVIGEDNVAVPSHLYKVILARRSSVSTEPLALGAFVV PNEAIGFQPQLTEFQVSLQDLEKLSGLVFFPHLDRT (SEQ ID NO: 143).
[0269] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of Teneurin Transmembrane Protein (TENM) polypeptide. In some embodiments, the second RNA binding protein comprises or consists of Teneurin Transmembrane Protein 1 (TENM1) polypeptide. In some embodiments, the TENM1 polypeptide comprises or consists of:

VTVSQMTSVLNGKTRRFADIQLQHGALCFNIRYGTTVEEEKNHVLEIARQRAVAQAWT KEQRRLQEGEEGIRAWTEGEKQQLLSTGRVQGYDGYFVLSVEQYLELSDSANNIHFMR QSEIGRR (SEQ ID NO: 144).

In some embodiments, the second RNA binding protein comprises or consists of Teneurin Transmembrane Protein 2 (TENM2) polypeptide. In some embodiments, the TENM2 polypeptide comprises or consists of:

TVSQPTLLVNGKTRRFTNIEFQYSTLLLSIRYGLTPDTLDEEKARVLDQARQRALGTAW AKEQQKARDGREGSRLWTEGEKQQLLSTGRVQGYEGYYVLPVEQYPELADSSSNIQFL RQNEMGKR (SEQ ID NO: 145).
In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a Ribonuclease Kappa (RNAseK) polypeptide. In some embodiments, the RNAseK polypeptide comprises or consists of:
MGWLRPGPRPLCPPARASWAFSHRFPSPLAPRRSPTPFFMASLLCCGPKLAACGIVLSA WGVIMLIMLGIFFNVHSAVLIEDVPFTEKDFENGPQNIYNLYEQVSYNCFIAAGLYLLLG GFSFCQVRLNKRKEYMVR (SEQ ID NO: 204).
[0270] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a transcription activator-like effector nuclease (TALEN) polypeptide or a nuclease domain thereof. In some embodiments, the TALEN polypeptide comprises or consists of:

\footnotetext{
1 MRIGKSSGWL NESVSLEYEH VSPPTRPRDT RRRPRAAGDG GLAHLHRRLA VGYAEDTPRT
61 EARSPAPRRP LPVAPASAPP APSLVPEPPM PVSLPAVSSP RFSAGSSAAI TDPFPSLPPT
121 PVLYAMAREL EALSDATWQP AVPLPAEPPT DARRGNTVFD EASASSPVIA SACPQAFASP
181 PRAPRSARAR RARTGGDAWP APTFLSRPSS SRIGRDVFGK LVALGYSREQ IRKLKQESLS
}
```

241 EIAKYHTTLT GQGFTHADIC RISRRRQSLR VVARNYPELA AALPELTRAH IVDIARQRSG
3 0 1 ~ D L A L Q A L L P V ~ A T A L T A A P L R ~ L S A S Q I A T V A ~ Q Y G E R P A I Q A ~ L Y R L R R K L T R ~ A P L H L T P Q Q V ~
3 6 1 ~ V A I A S N T G G K ~ R A L E A V C V Q L ~ P V L R A A P Y R L ~ S T E Q V V A I A S ~ N K G G K Q A L E A ~ V K A H L L D L L G ~
4 2 1 ~ A P Y V L D T E Q V ~ V A I A S H N G G K ~ Q A L E A V K A D L ~ L D L R G A P Y A L ~ S T E Q V V A I A S ~ H N G G K Q A L E A ~
4 8 1 ~ V K A D L L E L R G ~ A P Y A L S T E Q V ~ V A I A S H N G G K ~ Q A L E A V K A H L ~ L D L R G V P Y A L ~ S T E Q V V A I A S ~
5 4 1 ~ H N G G K Q A L E A ~ V K A Q L L D L R G ~ A P Y A L S T A Q V ~ V A I A S N G G G K ~ Q A L E G I G E Q L ~ L K L R T A P Y G L ~
6 0 1 ~ S T E Q V V A I A S ~ H D G G K Q A L E A ~ V G A Q L V A L R A ~ A P Y A L S T E Q V ~ V A I A S N K G G K ~ Q A L E A V K A Q L ~
6 6 1 LELRGAPYAL STAQVVAIAS HDGGNQALEA VGTQLVALRA APYALSTEQV VAIASHDGGK
7 2 1 QALEAVGAQL VALRAAPYAL NTEQVVAIAS SHGGKQALEA VRALFPDLRA APYALSTAQL
781 VAIASNPGGK QALEAVRALF RELRAAPYAL STEQVVAIAS NHGGKQALEA VRALFRGLRA
8 4 1 ~ A P Y G L S T A Q V ~ V A I A S S N G G K ~ Q A L E A V W A L L ~ P V L R A T P Y D L ~ N T A Q I V A I A S ~ H D G G K P A L E A ~
901 VWAKLPVLRG APYALSTAQV VAIACISGQQ ALEAIEAHMP TLRQASHSLS PERVAAIACI
961 GGRSAVEAVR QGLPVKAIRR IRREKAPVAG PPPASLGPTP QELVAVLHFF RAHQQPRQAF
1021 VDALAAFQAT RPALLRLLSS VGVTEIEALG GTIPDATERW QRLLGRLGFR PATGAAAPSP
1 0 8 1 ~ D S L Q G F A Q S L ~ E R T L G S P G M A ~ G Q S A C S P H R K ~ R P A E T A I A P R ~ S I R R S P N N A G ~ Q P S E P W P D Q L ~
1141 AWLQRRKRTA RSHIRADSAA SVPANLHLGT RAQFTPDRLR AEPGPIMQAH TSPASVSFGS
1201 HVAFEPGLPD PGTPTSADLA SFEAEPFGVG PLDFHLDWLL QILET(SEQ ID NO: 205).

```

In some embodiments, the TALEN polypeptide comprises or consists of:
```

    l mdpirsrtps parellpgpq pdrvqptadr ggappaggpl dglparrtms rtrlpsppap
    6 1 ~ s p a f s a g s f s ~ d l l r q f d p s l ~ l d t s l l d s m p ~ a v g t p h t a a a ~ p a e c d e v q s g ~ l r a a d d p p p t
    121 vrvavtaarp prakpaprrr aaqpsdaspa aqvdlrtlgy sqqqqekikp kvgstvaqhh
    1 8 1 ~ e a l v g h g f t h ~ a h i v a l s r h p ~ a a l g t v a v k y ~ q d m i a a l p e a ~ t h e d i v g v g k ~ q w s g a r a l e a ~
    2 4 1 ~ l l t v a g e l r g ~ p p l q l d t g q l ~ v k i a k r g g v t ~ a v e a v h a s r n ~ a l t g a p l n l t ~ p a q v v a i a s n ~
    3 0 1 ~ n g g k q a l e t v ~ q r l l p v l c q a ~ h g l t p a q v v a ~ i a s h d g g k q a ~ l e t m q r l l p v ~ l c q a h g l p p d
    3 6 1 ~ q v v a i a s n i g ~ g k q a l e t v q r ~ l l p v l c q a h g ~ l t p d q v v a i a ~ s h g g g k q a l e ~ t v q r l l p v l c
    421 qahgltpdqv vaiashdggk qaletvqrll pvlcqahglt pdqvvaiasn gggkqaletv
    4 8 1 ~ q r l l p v l c q a ~ h g l t p d q v v a ~ i a s n g g k q a l ~ e t v q r l l p v l ~ c q a h g l t p d q ~ v v a i a s h d g g
    5 4 1 ~ k q a l e t v q r l ~ l p v l c q t h g l ~ t p a q v v a i a s ~ h d g g k q a l e t ~ v q q l l p v l c q ~ a h g l t p d q v v ~
    6 0 1 ~ a i a s n i g g k q ~ a l a t v q r l l p ~ v l c q a h g l t p ~ d q v v a i a s n g ~ g g k q a l e t v q ~ r l l p v l c q a h ~
    6 6 1 ~ g l t p d q v v a i ~ a s n g g g k q a l ~ e t v q r l l p v l ~ c q a h g l t q v q ~ v v a i a s n i g g ~ k q a l e t v q r l ~
    7 2 1 ~ l p v l c q a h g l ~ t p a q v v a i a s ~ h d g g k q a l e t ~ v q r l l p v l c q ~ a h g l t p d q v v ~ a i a s n g g g k q
    7 8 1 ~ a l e t v q r l l p ~ v l c q a h g l t q ~ e q v v a i a s n n ~ g g k q a l e t v q ~ r l l p v l c q a h ~ g l t p d q v v a i ~
    8 4 1 ~ a s n g g g k q a l ~ e t v q r l l p v l ~ c q a h g l t p a q ~ v v a i a s n i g g ~ k q a l e t v q r l ~ l p v l c q d h g l
    901 tlaqvvaias niggkqalet vqrllpvlcq ahgltqdqvv aiasniggkq aletvqrllp
    961 vlcqdhgltp dqvvaiasni ggkqaletvq rllpvlcqdh gltldqvvai asnggkqale
    1 0 2 1 ~ t v q r l l p v l c ~ q d h g l t p d q v ~ v a i a s n s g g k ~ q a l e t v q r l l ~ p v l c q d h g l t ~ p n q v v a i a s n ~
    1 0 8 1 ~ g g k q a l e s i v ~ a q l s r p d p a l ~ a a l t n d h l v a ~ l a c l g g r p a m ~ d a v k k g l p h a ~ p e l i r r v n r r ~
    1 1 4 1 ~ i g e r t s h r v a ~ d y a q v v r v l e ~ f f q c h s h p a y ~ a f d e a m t q f g ~ m s r n g l v q l f ~ r r v g v t e l e a ~
    1 2 0 1 ~ r g g t l p p a s q ~ r w d r i l q a s g ~ m k r a k p s p t s ~ a q t p d q a s l h ~ a f a d s l e r d l ~ d a p s p m h e g d ~
    1261 qtgassrkrs rsdravtgps aqhsfevrvp eqrdalhlpl swrvkrprtr iggglpdpgt
    1321 piaadlaass tvmweqdaap fagaaddfpa fneeelawlm ellpqsgsvg gti (SEQ ID
    ```
NO: 206).
[0271] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists a zinc finger nuclease polypeptide or a nuclease domain thereof. In some embodiments, the second RNA binding protein comprises or consists of a ZNF638 polypeptide or a nuclease domain thereof. In some embodiments, the ZNF638 polypeptide polypeptide comprises or consists of:

1 MSRPRFNPRG DFPLQRPRAP NPSGMRPPGP FMRPGSMGLP RFYPAGRARG IPHRFAGHES 61 YQNMGPQRMN VQVTQHRTDP RLTKEKLDFH EAQQKKGKPH GSRWDDEPHI SASVAVKQSS
```

    121 VTQVTEQSPK VQSRYTKESA SSILASFGLS NEDLEELSRY PDEQLTPENM PLILRDIRMR
    181 KMGRRLPNLP SQSRNKETLG SEAVSSNVID YGHASKYGYT EDPLEVRIYD PEIPTDEVEN
    2 4 1 ~ E F Q S Q Q N I S A ~ S V P N P N V I C N ~ S M F P V E D V F R ~ Q M D F P G E S S N ~ N R S F F S V E S G ~ T K M S G L H I S G ~
    3 0 1 ~ G Q S V L E P I K S ~ V N Q S I N Q T V S ~ Q T M S Q S L I P P ~ S M N Q Q P E S S E ~ L I S S V S Q Q E R ~ I P H E P V I N S S ~
    3 6 1 ~ N V H V G S R G S K ~ K N Y Q S Q A D I P ~ I R S P F G I V K A ~ S W L P K F S H A D ~ A Q K M K R L P T P ~ S M M N D Y Y A A S ~
    4 2 1 ~ P R I F P H L C S L ~ C N V E C S H L K D ~ W I Q H Q N T S T H ~ I E S C R Q L R Q Q ~ Y P D W N P E I L P ~ S R R N E G N R K E ~
    4 8 1 ~ N E T P R R R S H S ~ P S P R R S R R S S ~ S S H R F R R S R S ~ P M H Y M Y R P R S ~ R S P R I C H R F I ~ S R Y R S R S R S R ~
    5 4 1 ~ S P Y R I R N P F R ~ G S P K C F R S V S ~ P E R M S R R S V R ~ S S D R K K A L E D ~ V V Q R S G H G T E ~ F N K Q K H L E A A ~
    6 0 1 ~ D K G H S P A Q K P ~ K T S S G T K P S V ~ K P T S A T K S D S ~ N L G G H S I R C K ~ S K N L E D D T L S ~ E C K Q V S D K A V ~
    661 SLQRKLRKEQ SLHYGSVLLI TELPEDGCTE EDVRKLFQPF GKVNDVLIVP YRKEAYLEME
    7 2 1 ~ F K E A I T A I M K ~ Y I E T T P L T I K ~ G K S V K I C V P G ~ K K K A Q N K E V K ~ K K T L E S K K V S ~ A S T L K R D A D A ~
    7 8 1 ~ S K A V E I V T S T ~ S A A K T G Q A K A ~ S V A K V N K S T G ~ K S A S S V K S V V ~ T V A V K G N K A S ~ I K T A K S G G K K ~
    841 SLEAKKTGNV KNKDSNKPVT IPENSEIKTS IEVKATENCA KEAISDAALE ATENEPLNKE
    901 TEEMCVMLVS NLPNKGYSVE EVYDLAKPFG GLKDILILSS HKKAYIEINR KAAESMVKFY
    961 TCFPVLMDGN QLSISMAPEN MNIKDEEAIF ITLVKENDPE ANIDTIYDRF VHLDNLPEDG
    1021 LQCVLCVGLQ FGKVDHHVFI SNRNKAILQL DSPESAQSMY SFLKQNPQNI GDHMLTCSLS
    1081 PKIDLPEVQI EHDPELEKES PGLKNSPIDE SEVQTATDSP SVKPNELEEE STPSIQTETL
    1141 VQQEEPCEEE AEKATCDSDF AVETLELETQ GEEVKEEIPL VASASVSIEQ FTENAEECAL
    1201 NQQMFNSDLE KKGAEIINPK TALLPSDSVF AEERNLKGIL EESPSEAEDF ISGITQTMVE
    1261 AVAEVEKNET VSEILPSTCI VTLVPGIPTG DEKTVDKKNI SEKKGNMDEK EEKEFNTKET
    1321 RMDLQIGTEK AEKNEGRMDA EKVEKMAAMK EKPAENTLFK AYPNKGVGQA NKPDETSKTS
    1381 ILAVSDVSSS KPSIKAVIVS SPKAKATVSK TENQKSFPKS VPRDQINAEK KLSAKEFGLL
    1441 KPTSARSGLA ESSSKFKPTQ SSLTRGGSGR ISALQGKLSK LDYRDITKQS QETEARPSIM
    1501 KRDDSNNKTL AEQNTKNPKS TTGRSSKSKE EPLFPFNLDE FVTVDEVIEE VNPSQAKQNP
    1561 LKGKRKETLK NVPFSELNLK KKKGKTSTPR GVEGELSFVT LDEIGEEEDA AAHLAQALVT
    1 6 2 1 ~ V D E V I D E E E L ~ N M E E M V K N S N ~ S L F T L D E L I D ~ Q D D C I S H S E P ~ K D V T V L S V A E ~ E Q D L L K Q E R L ~
    1681 VTVDEIGEVE ELPLNESADI TFATLNTKGN EGDTVRDSIG FISSQVPEDP STLVTVDEIQ
    1741 DDSSDLHLVT LDEVTEEDED SLADFNNLKE ELNFVTVDEV GEEEDGDNDL KVELAQSKND
    1801 HPTDKKGNRK KRAVDTKKTK LESLSQVGPV NENVMEEDLK TMIERHLTAK TPTKRVRIGK
    1861 TLPSEKAVVT EPAKGEEAFQ MSEVDEESGL KDSEPERKRK KTEDSSSGKS VASDVPEELD
    1 9 2 1 ~ F L V P K A G F F C ~ P I C S L F Y S G E ~ K A M T N H C K S T ~ R H K Q N T E K F M ~ A K Q R K E K E Q N ~ E A E E R S S R ~
    (SEQ ID NO: 207).

```
[0272] In some embodiments of the compositions of the disclosure, the second RNA binding protein comprises or consists of a PIN domain derived from the human SMG6 protein, also commonly known as telomerase-binding protein EST1A isoform 3, NCBI Reference Sequence: NP_001243756.1. In some embodiments, the PIN from hSMG6 is used herein in the form of a Cas fusion protein and as an internal control, for example, and without limitation, see Figure 9, which shows PIN-dSauCas9, PIN-dSauCas9dHNH, PIN-dSPCas9, and dcjeCas9-PIN.
[0273] In some embodiments of the compositions of the disclosure, the composition further comprises (a) a sequence comprising a gRNA that specifically binds within an RNA molecule and (b) a sequence encoding a nuclease. In some embodiments, a nuclease comprises a sequence isolated or derived from a CRISPR/Cas protein. In some embodiments, the CRISPR/Cas protein is isolated or derived from any one of a type I, a type IA, a type IB, a type IC, a type ID, a type IE, a type IF, a type IU, a type III, a type IIIA, a type IIIB, a type IIIC, a type IIID, a type IV, a
type IVA, a type IVB, a type II, a type IIA, a type IIB, a type IIC, a type V, or a type VI CRISPR/Cas protein .In some embodiments, a nuclease comprises a sequence isolated or derived from a TALEN or a nuclease domain thereof. In some embodiments, a nuclease comprises a sequence isolated or derived from a zinc finger nuclease or a nuclease domain thereof.

\section*{Fusion Proteins}
[0274] In some embodiments of the compositions and methods of the disclosure, the composition comprises a sequence encoding a target RNA-binding fusion protein comprising (a) a sequence encoding a first RNA-binding polypeptide or portion thereof; and (b) a sequence encoding a second RNA-binding polypeptide, wherein the first RNA-biding polypeptide binds a target RNA, and wherein the second RNA-binding polypeptide comprises RNA-nuclease activity.
[0275] In some embodiments, a target RNA-binding fusion protein is an RNA-guided target RNA-binding fusion protein. RNA-guided target RNA-binding fusion proteins comprise at least one RNA-binding polypeptide which corresponds to a gRNA which guides the RNA-binding polypeptide to target RNA. RNA-guided target RNA-binding fusion proteins include without limitation, RNA-binding polypeptides which are CRISPR/Cas-based RNA-binding polypeptides or portions thereof.
[0276] In some embodiments, a target RNA-binding fusion protein is not an RNA-guided target RNA-binding fusion protein and as such comprises at least one RNA-binding polypeptide which is capable of binding a target RNA without a corresponding gRNA sequence. Such nonguided RNA-binding polypeptides include, without limitation, at least one RNA-binding protein or RNA-binding portion thereof which is a PUF (Pumilio and FBF homology family). This type RNA-binding polypeptide can be used in place of a gRNA-guided RNA binding protein such as CRISPR/Cas. The unique RNA recognition mode of PUF proteins (named for Drosophila Pumilio and C. elegans fem-3 binding factor) that are involved in mediating mRNA stability and translation are well known in the art. The PUF domain of human Pumiliol, also known in the art, binds tightly to cognate RNA sequences and its specificity can be modified. It contains eight PUF repeats that recognize eight consecutive RNA bases with each repeat recognizing a single base. Since two amino acid side chains in each repeat recognize the Watson-Crick edge of the
corresponding base and determine the specificity of that repeat, a PUF domain can be designed to specifically bind most 8-nt RNA. Wang et al., Nat Methods. 2009; 6(11): 825-830. See also WO2012/068627 which is incorporated by reference herein in its entirety.
[0277] In some embodiments of the non-guided RNA-binding fusion proteins of the disclosure, the fusion protein comprises at least one RNA-binding protein or RNA-binding portion thereof which is a PUMBY (Pumilio-based assembly) protein. RNA-binding protein PumHD (Pumilio homology domain, a member of the PUF family, which has been widely used in native and modified form for targeting RNA, has been engineered to yield a set of four canonical protein modules, each of which targets one RNA base. These modules (i.e., Pumby, for Pumilio-based assembly) can be concatenated in chains of varying composition and length, to bind desired target RNAs. The specificity of such Pumby-RNA interactions is high, with undetectable binding of a Pumby chain to RNA sequences that bear three or more mismatches from the target sequence. Katarzyna et al., PNAS, 2016; 113(19): E2579-E2588. See also US 2016/0238593 which is incorporated by reference herein in its entirety.
[0278] In some embodiments of the compositions of the disclosure, the first RNA binding protein comprises a Pumilio and FBF (PUF) protein. In some embodiments, the first RNA binding protein comprises a Pumilio-based assembly (PUMBY) protein. In some embodiments, a PUF1 protein of the disclosure comprises or consists of the amino acid sequence of
```

MOKSKQNNTN NLSNIEEVJD PGTTJPLYFE EYENNGESNS QJQQQPQKJG SYRSEAGKES
NTLSNLYPST SAKLHHSKKN SHGRNGZEFS SSNNSSQSTV ASKTPRASPS RSKMMESSTD
GVTMDREGSL TPPQDMEKLV HEPDSSNNEL TPAPQGSSDS ENLPHQISPT ENNTMSSQTP }18
STSSAAPKPR TSSGTWSSNA SANDPRQOHT JQQLQPTTSN NTTNSNTLND YSTKTAYEDN 240
MUSTSGSQMX DNKNNTNNLA JPNSVWSNTR OPSQSNASSI YTDAPJYEQE ARASISSHYT SOO
YPTQESELYA DEIDPQSINW VMMPPVPSI NQTSNLIPTN TISISNVEPL ORQQPQLNNP
INLTSTSMAT LOSKYGEVIS ARTLRNLNMZ LVEESSVESA VKALDSLQGK EVSMIGAESE
ISFAKILPMH QQPPQELLNS QGLPLGLENN NLQPQPILQE QLFNGAVFEQ QQGNVSIPVE \&BO
NQQSQQSQHQ NHSSGSAGES NVTHGYNNNN SMTGNNNNSA NEKFQCPEPJ: PEFNVNEKED }54
HLREIIELEE ANSDEYQJNS LIKKSLNHKG TSDTQNEGEL PEPLSGREGD PEKLREJRKS GOO
IDSNAFSDLE IEQLATAMLD ELPELSSDYL GNPIVQKLEE HSSDIIKDIM LRKTSKYLTS
MGVHENGTWA CQKMIPMAHT PRQIMQVIQG VKDYCTPLIN DQFGNYVIQC VLKFGEPWNQ
EIFESIIANE WVIVQNRYQZ EAVRACLEAH DIVLPEQSIV LSAMTVMYAE YLSTNSNGAI 780

```

```

GNVNAHDSSP PKETTKJLCE TNYGPTPYHK VIAMELTEDD TRAHTIKQVR KVLTDSTQTQ QOO
PSRRLLEEVG LASESSTHNK TKQQQQQHHN SSTSHMEPTP DTSGQHMRGL SVSSVKSGGS SGO
KHTPMNTMTT NGSSASTLSP GQPLNANSNS SMGYESYPGY EPVSGFSGNA SNGYAMNNDD IOLO
LSSQEDMLNE NNGTRLSLPQ LSLTNHNNTM MELVNNVGSS QPHTNNNNNN NNTNYNDDNE IOBO
VEETLTLHSA.N

In some embodiments, a PUF3 protein of the disclosure comprises or consists of the amino acid sequence of

1 MEMNMDMDMD MELASIVSSL SALSHSNNNG GQARASGIVN GGRAGSQQIG GFRRSSERTA<br>61 NEVDSEILLL HGSEESSPIF RXTALSVGTA PPESTNSKKE FGNGGNYQY RSTUMASLSS<br>121 ASYNNYFTHH TARNLGKNNK VNHLLGOYSA STAGPVYYNG NDNNNSGGEG FFERFGESLI<br>181 DGTRELPSQD RPDAVNTQSQ EISKSVSNAS LDTQNTFEQN VESDKNENKL NRNTTNSGSL<br>241 YHSSSNSGSS ASLESENAHY EKRNIWNVAN TPVFRPSNNP AAVGATNVAL ENQODGPANN<br>301 NEPPYNGEP PNQEHQGPHY QNFENYLIGS ESNFISQMIS VQIPANEDTE DSNGKKKKRA<br>361 NRESSVSSES SPPNNSPYPF AYPNPMMEMP PPPISAPQQQ QQQQ00QQQE DQQQQQQQEN<br>421 PYIYYPTPNE IEVKMPKDEK TEKKPNNKNH EANNSNNANE QANPYLENSI PTKNTSKKNA<br>481 SSESNESTAN NHKSESHSHE HSQSLQQQQQ TYHESPLIEQ IRNSSSDKNS NGNMSIKDTE<br>541 GHSLEFCKDQ RGSREIQREL ATSPASEKEV IENEIRDDAT ETBNDVEGNY VIQKEEEEGS<br>601 KIQKNTLVDQ EKGNMKQLSL QMYACRVIQK ALEYMDSNOR IELVLELSDS VLQMIKDQNG<br>661 NHVIQRAIET TPIERLPETL SSLTGHIYFL STHSYGCRVI QRLLEFGSSE DQESILNELK<br>721 DEIPYLIQDQ YGNYVIQYVL QQLQEINREM VDIRQEIIET VANNVVEYSK BKEASNVVEK<br>781. SIHYGSENQK DIITSKILPR DKNUAJNEED DSPDILMTKD QFANYVIQKL VNVSEGEGKK<br>O41 LIVIATRAYL DKLNESNSLG NRHMASVEKL. AALVENAEV (SEQ ID NO: 210). In some

embodiments, a PUF4 protein of the disclosure comprises or consists of the amino acid sequence of

211).

In some embodiments, a PUF5 protein of the disclosure comprises or consists of the amino acid sequence of

1 MSDSTGRINS RASDSSSISD HQTADLSLYN GSEDGGAFSS SNIPLFNEMG TGNQREQYP
61 HEEAKSSDEC RLAALTESTP KGELNLTEAD EGLADESVGN ESEADEDANN TSEVGNVQSN
121. VRSTRLTEAM AVDNSGNTRD DLTEQDVVSN GSITDEAMDR TGVKETERHE EEDEDNEMEE

181 VTTDKLTEQG AVETSLCRSA AGNETTQKEV EHATLDEQER JVRKMCDNGL IEMCJDKEAC
241 RVVQMSTOKE DVSTAMKJVE KTSSTDFTEL CDDQCATHVI, QKVVKITPIS AWSEFVKELC
301 RDDNLMPYCQ DKYGCREVQQ TYDKLSDNPK LHCFNTRLQL KHGLMTSVAR NCERLSSNEF
361 ANYVVQYVIK SSGVMEMYRD TITEKCLTRN ILSMSQDKYA SHVVEGAFLE APELLLGEMM
421 DEFFUGYVKD QETNRDALDI IJFFQYGNYV VQQMTSICTS AITGKEEREM VASEMRTYAK
$48 I$ WEDRTKNRVN RHSGRJERES SGKKITESIQ KLNVPMTMTN EEMPYWAMET PIMDTSAHEM
541 NKINFQKNSV FDE (SEQ ID NO: 212). In some embodiments, a PUF6 protein of
the disclosure comprises or consists of the amino acid sequence of
1 MTPNRRSTDS YNMLGASEDE DPDESLLSNK THKNFNPKEP VKLLEYRHGS NTTSSDLDNY

```
61 IENSGSGSSD DETPEPARPI FISLEEVLLN GLLIDEAIDE SGVKFEANY RLDSEDQTRK 121 AVEEKLTEST TLEVGLCHSR NGNETVQKLV ELATPAEQRE LLRQMIDGGL LVMCKDKEAC 181 RVVQUALQKE DHSNVFQLIQ EIGTEDIAAM CTOQISTHVI QRVVKQLEVD MWTEFVHELS 241 SGDSLMAVCQ DKYGCRLVQQ VIDRLAENPK LECEKFRIQL LHSLMTCIVR NCYRLSSNEF 301 ANYVIQYVIK SSGIMERYRD TITDKCLIRN ULSMSQDKYA SHVIEGAFLE APPALTHEMM 361 EEIFSGYVKD VELNRDALDI LLFHQYGNYV VQQMISICTA ALIGKEERQL PPAILLLYSG 421 WYERMEQRVL QHASRLERES SGKKIDDSM RHGVPTAAAI NAQAAPSLME LTAQEDAMFE 481 SELAF (SEQ ID NO: 213). In some embodiments, a PUF7 protein of the
```

disclosure comprises or consists of the amino acid sequence of

```
1 MTPNRRSTDS YNMLGASEDF DPDESLLSNK THKNFNPKEP VELLEYRHGS NTTSSDSDSY
61 IENSGSGSSD AETPAPVAPT FISLEDVLTN GQLTDFATDP SGVKFTEANY FLDSEDQTRK
121 AVEEKFTEST TLEVGLCHSR NGNEIVQKLV EIATPAEQRE LLRGMIDGGL LAMCKDKEAC
181 RVVOIALQKE DHSNVFQIIQ ELSTGDLAAM CTDQISIHVL QRVVKQLPVD MWTEFVHELS
241 SGDSLMAVCQ DKYGCRLVQQ VIDRLAENPR LPCFKERIOL LHSLMMCIVR NCYRLSSNEE
301 ANYVIQYVIK SSGIMENYRD TIIDECLIRN LLSMSQDKYA SHVIEGAFLE APPALLHEMM
361 EFTFSGYVKD VESNRDALDJ IJ.FHQYGNYV VQOMISICTA AIIGKEERET PPATLITYSG
421 WYEKMKQRVL QHASRIERES SGKKTJDSVM RHGVPTAAAV NAQAAPSLME JTAQEDAMFP
481 SEIAR (GEQ TD NO: 214). In some embodiments, a PUF8 protein of the
```

disclosure comprises or consists of the amino acid sequence of
1 MSREISIGNT CTRDPSASET ESTGPSTGAQ ETVUSVCGSE JRSYGPFIST NPFNERTPDT 61 PFEQFATYMH QGGKVIGQNT JHMEGTEPSC YCAQENTPIS SNVGHVLSTJ NMNYMNHOYR 121 GSNMFSNQMT QMEQAQAYND LQMHQAHSQS IRVEVQPSAT GIESNPYREP TTMDDLLTPY 181 RANPAMMKNL KLSDIRGALI KEAKDQVGSR ETQQELASSK DREEKDSTED EVVSNADELV 241 DOTFGNYVVQ KFPEYGEFRH WARTVDATID RVPFYAFQMY ACRVLQKALE KTNEPIQTKJ 301 LSQIRHVIHR CMEDONGNHV VQKAJEKVSE QYVQEIVDTJ JESSNTJYER SVDPYGCRVV 361 QRCIEHCSES QTEPVJGQIH KREDETANNQ YGNYVVQHVL FHGSEEDRMV IVTRVSNNLE 421 EEPTHKYSSN VIEKCLEQGA VYHKSMLVGA ACHEQEGSVE IVVQMMKDQY ANYVVQKMED 481 QVTSEQRRET ILTVRPHEFV IRQEEHGKHT LAKLEKYFQK EAVMSYEYQD MQGSR (SEQ

ID NO: 215). In some embodiments, a PUF9 protein of the disclosure comprises or consists of the amino acid sequence of


216 ;
[0279] In some embodiments of the compositions of the disclosure, at least one of the RNAbinding proteins or RNA-binding portions thereof is a PPR protein. PPR proteins (proteins with pentatricopeptide repeat (PPR) motifs derived from plants) are nuclear-encoded and exclusively
controlled at the RNA level organelles (chloroplasts and mitochondria), cutting, translation, splicing, RNA editing, genes specifically acting on RNA stability. PPR proteins are typically a motif of 35 amino acids and have a structure in which a PPR motif is about 10 contiguous amino acids. The combination of PPR motifs can be used for sequence-selective binding to RNA. PPR proteins are often comprised of PPR motifs of about 10 repeat domains. PPR domains or RNAbinding domains may be configured to be catalytically inactive. WO 2013/058404 incorporated herein by reference in its entirety.
[0280] In some embodiments, the fusion protein disclosed herein comprises a linker between the at least two RNA-binding polypeptides. In some embodiments, the linker is a peptide linker. In some embodiments, the peptide linker comprises one or more repeats of the tri-peptide GGS. In other embodiments, the linker is a non-peptide linker. In some embodiments, the non-peptide linker comprises polyethylene glycol (PEG), polypropylene glycol (PPG), copoly(ethylene/propylene) glycol, polyoxyethylene (POE), polyurethane, polyphosphazene, polysaccharides, dextran, polyvinyl alcohol, polyvinylpyrrolidones, polyvinyl ethyl ether, polyacryl amide, polyacrylate, polycyanoacrylates, lipid polymers, chitins, hyaluronic acid, heparin, or an alkyl linker.
[0281] In some embodiments, the at least one RNA-binding protein does not require multimerization for RNA-binding activity. In some embodiments, the at least one RNA-binding protein is not a monomer of a multimer complex. In some embodiments, a multimer protein complex does not comprise the RNA binding protein. In some embodiments, the at least one of RNA-binding protein selectively binds to a target sequence within the RNA molecule. In some embodiments, the at least one RNA-binding protein does not comprise an affinity for a second sequence within the RNA molecule. In some embodiments, the at least one RNA-binding protein does not comprise a high affinity for or selectively bind a second sequence within the RNA molecule. In some embodiments, the at least one RNA-binding protein comprises between 2 and 1300 amino acids, inclusive of the endpoints.
[0282] In some embodiments, the at least one RNA-binding protein of the fusion proteins disclosed herein further comprises a sequence encoding a nuclear localization signal (NLS). In some embodiments, a nuclear localization signal (NLS) is positioned 3' to the RNA binding protein. In some embodiments, the at least one RNA-binding protein comprises an NLS at a C-
terminus of the protein. In some embodiments, the at least one RNA-binding protein further comprises a first sequence encoding a first NLS and a second sequence encoding a second NLS. In some embodiments, the first NLS or the second NLS is positioned 3' to the RNA-binding protein. In some embodiments, the at least one RNA-binding protein comprises the first NLS or the second NLS at a C-terminus of the protein. In some embodiments, the at least one RNAbinding protein further comprises an NES (nuclear export signal) or other peptide tag or secretory signal.
[0283] In some embodiments, a fusion protein disclosed herein comprises the at least one RNA-binding protein as a first RNA-binding protein together with a second RNA-binding protein comprising or consisting of a nuclease domain.
[0284] In some embodiments, the second RNA-binding polypeptide is operably configured to the first RNA-binding polypeptide at the C-terminus of the first RNA-binding polypeptide. In some embodiments, the second RNA-binding polypeptide is operably configured to the first RNA-binding polypeptide at the N-terminus of the first RNA-binding polypeptide. For example, one such exemplary fusion protein is E99 which is configured so that RNAse1(R39D, N67D, N88A, G89D, R19D, H1 19N, K41R) is located at the N-terminus of SpyCas9 whereas another exemplary fusion protein, E100, is configured so that RNAse1(R39D, N67D, N88A, G89D, R19D, H119N, K41R) is located at the C-terminus of SpyCas9. See Figure 6.

## Vectors

[0285] In some embodiments of the compositions and methods of the disclosure, a vector comprises a guide RNA of the disclosure. In some embodiments, the vector comprises at least one guide RNA of the disclosure. In some embodiments, the vector comprises one or more guide RNA(s) of the disclosure. In some embodiments, the vector comprises two or more guide RNAs of the disclosure. In some embodiments, the vector further comprises a fusion protein of the disclosure. In some embodiments, the fusion protein comprises a first RNA binding protein and a second RNA binding protein.
[0286] In some embodiments of the compositions and methods of the disclosure, a first vector comprises a guide RNA of the disclosure and a second vector comprises a fusion protein of the disclosure. In some embodiments, the first vector comprises at least one guide RNA of the disclosure. In some embodiments, the first vector comprises one or more guide RNA(s) of the
disclosure. In some embodiments, the first vector comprises two or more guide RNA(s) of the disclosure. In some embodiments, the fusion protein comprises a first RNA binding protein and a second RNA binding protein. In some embodiments, the first vector and the second vector are identical. In some embodiments, the first vector and the second vector are not identical.
[0287] In some embodiments of the compositions and methods of the disclosure, the vector is or comprises a component of a " 2 -component RNA targeting system" comprising (a) nucleic acid sequence encoding a RNA-targeted fusion protein of the disclosure; and (b) a single guide RNA (sgRNA) sequence comprising: on its $5^{\prime}$ end, an RNA sequence (or spacer sequence) that hybridizes to or binds to a target RNA sequence; and on its $3^{\prime}$ end, an RNA sequence (or scaffold sequence) capable of binding to or associating with the CRISPR/Cas protein of the fusion protein; and wherein the 2-component RNA targeting system recognizes and alters the target RNA in a cell in the absence of a PAMmer. In some embodiments, the sequences of the 2 -component system are in a single vector. In some embodiments, the spacer sequence of the 2 component system targets a repeat sequence selected from the group consisting of CUG, CCUG, CAG, and GGGGCC.
[0288] In some embodiments of the compositions and methods of the disclosure, a vector of the disclosure is a viral vector. In some embodiments, the viral vector comprises a sequence isolated or derived from a retrovirus. In some embodiments, the viral vector comprises a sequence isolated or derived from a lentivirus. In some embodiments, the viral vector comprises a sequence isolated or derived from an adenovirus. In some embodiments, the viral vector comprises a sequence isolated or derived from an adeno-associated virus (AAV). In some embodiments, the viral vector is replication incompetent. In some embodiments, the viral vector is isolated or recombinant. In some embodiments, the viral vector is self-complementary.
[0289] In some embodiments of the compositions and methods of the disclosure, the viral vector comprises a sequence isolated or derived from an adeno-associated virus (AAV). In some embodiments, the viral vector comprises an inverted terminal repeat sequence or a capsid sequence that is isolated or derived from an AAV of serotype AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11 or AAV12. In some embodiments, the viral vector is replication incompetent. In some embodiments, the viral vector is isolated or recombinant (rAAV). In some embodiments, the viral vector is self-complementary (scAAV).
[0290] In some embodiments of the compositions and methods of the disclosure, a vector of the disclosure is a non-viral vector. In some embodiments, the vector comprises or consists of a nanoparticle, a micelle, a liposome or lipoplex, a polymersome, a polyplex or a dendrimer. In some embodiments, the vector is an expression vector or recombinant expression system. As used herein, the term "recombinant expression system" refers to a genetic construct for the expression of certain genetic material formed by recombination.
[0291] In some embodiments of the compositions and methods of the disclosure, an expression vector, viral vector or non-viral vector provided herein, includes without limitation, an expression control element. An "expression control element" as used herein refers to any sequence that regulates the expression of a coding sequence, such as a gene. Exemplary expression control elements include but are not limited to promoters, enhancers, microRNAs, post-transcriptional regulatory elements, polyadenylation signal sequences, and introns. Expression control elements may be constitutive, inducible, repressible, or tissue-specific, for example. A "promoter" is a control sequence that is a region of a polynucleotide sequence at which initiation and rate of transcription are controlled. It may contain genetic elements at which regulatory proteins and molecules may bind such as RNA polymerase and other transcription factors. In some embodiments, expression control by a promoter is tissue-specific. Non-limiting exemplary promoters include CMV, CBA, CAG, Cbh, EF-1a, PGK, UBC, GUSB, UCOE, hAAT, TBG, Desmin, MCK, C5-12, NSE, Synapsin, PDGF, MecP2, CaMKII, mGluR2, NFL, NFH, $\mathrm{n} \beta 2$, PPE, ENK, EAAT2, GFAP, MBP, and U6 promoters. An "enhancer" is a region of DNA that can be bound by activating proteins to increase the likelihood or frequency of transcription. Non-limiting exemplary enhancers and posttranscriptional regulatory elements include the CMV enhancer and WPRE.
[0292] In some embodiments of the compositions and methods of the disclosure, an expression vector, viral vector or non-viral vector provided herein, includes without limitation, vector elements such as an IRES or 2A peptide sites for configuration of "multicistronic" or "polycistronic" or "bicistronic" or tricistronic" constructs, i.e., having double or triple or multiple coding areas or exons, and as such will have the capability to express from mRNA two or more proteins from a single construct. Multicistronic vectors simultaneously express two or more separate proteins from the same mRNA. The two strategies most widely used for
constructing multicistronic configurations are through the use of an IRES or a 2 A self-cleaving site. An "IRES" refers to an internal ribosome entry site or portion thereof of viral, prokaryotic, or eukaryotic origin which are used within polycistronic vector constructs. In some embodiments, an IRES is an RNA element that allows for translation initiation in a capindependent manner. The term "self-cleaving peptides" or "sequences encoding self-cleaving peptides" or " 2 A self-cleaving site" refer to linking sequences which are used within vector constructs to incorporate sites to promote ribosomal skipping and thus to generate two polypeptides from a single promoter, such self-cleaving peptides include without limitation, T2A, and P2A peptides or sequences encoding the self-cleaving peptides.
[0293] In some embodiments, the vector is a viral vector. In some embodiments, the vector is an adenoviral vector, an adeno-associated viral (AAV) vector, or a lentiviral vector. In some embodiments, the vector is a retroviral vector, an adenoviral/retroviral chimera vector, a herpes simplex viral I or II vector, a parvoviral vector, a reticuloendotheliosis viral vector, a polioviral vector, a papillomaviral vector, a vaccinia viral vector, or any hybrid or chimeric vector incorporating favorable aspects of two or more viral vectors. In some embodiments, the vector further comprises one or more expression control elements operably linked to the polynucleotide. In some embodiments, the vector further comprises one or more selectable markers. In some embodiments, the AAV vector has low toxicity. In some embodiments, the AAV vector does not incorporate into the host genome, thereby having a low probability of causing insertional mutagenesis. In some embodiments, the AAV vector can encode a range of total polynucleotides from 4.5 kb to 4.75 kb . In some embodiments, exemplary AAV vectors that may be used in any of the herein described compositions, systems, methods, and kits can include an AAV1 vector, a modified AAV1 vector, an AAV2 vector, a modified AAV2 vector, an AAV3 vector, a modified AAV3 vector, an AAV4 vector, a modified AAV4 vector, an AAV5 vector, a modified AAV5 vector, an AAV6 vector, a modified AAV6 vector, an AAV7 vector, a modified AAV7 vector, an AAV8 vector, an AAV9 vector, an AAV.rh10 vector, a modified AAV.rh 10 vector, an AAV.rh32/33 vector, a modified AAV.rh32/33 vector, an AAV.rh43 vector, a modified AAV.rh43 vector, an AAV.rh64R1 vector, and a modified AAV.rh64R1 vector and any combinations or equivalents thereof. In some embodiments, the lentiviral vector is an integrase-competent lentiviral vector (ICLV). In some embodiments, the
lentiviral vector can refer to the transgene plasmid vector as well as the transgene plasmid vector in conjunction with related plasmids (e.g., a packaging plasmid, a rev expressing plasmid, an envelope plasmid) as well as a lentiviral-based particle capable of introducing exogenous nucleic acid into a cell through a viral or viral-like entry mechanism. Lentiviral vectors are well-known in the art (see, e.g., Trono D. (2002) Lentiviral vectors, New York: Spring-Verlag Berlin Heidelberg and Durand et al. (2011) Viruses 3(2):132-159 doi: 10.3390/v3020132). In some embodiments, exemplary lentiviral vectors that may be used in any of the herein described compositions, systems, methods, and kits can include a human immunodeficiency virus (HIV) 1 vector, a modified human immunodeficiency virus (HIV) 1 vector, a human immunodeficiency virus (HIV) 2 vector, a modified human immunodeficiency virus (HIV) 2 vector, a sooty mangabey simian immunodeficiency virus (SIVSM) vector, a modified sooty mangabey simian immunodeficiency virus (SIVSm) vector, a African green monkey simian immunodeficiency virus (SIV ${ }_{\text {AGM }}$ ) vector, a modified African green monkey simian immunodeficiency virus (SIV ${ }_{\text {AGM }}$ ) vector, an equine infectious anemia virus (EIAV) vector, a modified equine infectious anemia virus (EIAV) vector, a feline immunodeficiency virus (FIV) vector, a modified feline immunodeficiency virus (FIV) vector, a Visna/maedi virus (VNV/VMV) vector, a modified Visna/maedi virus (VNV/VMV) vector, a caprine arthritis-encephalitis virus (CAEV) vector, a modified caprine arthritis-encephalitis virus (CAEV) vector, a bovine immunodeficiency virus (BIV), or a modified bovine immunodeficiency virus (BIV).

## Nucleic Acids

[0294] Provided herein are the nucleic acid sequences encoding the fusion proteins disclosed herein for use in gene transfer and expression techniques described herein. It should be understood, although not always explicitly stated that the sequences provided herein can be used to provide the expression product as well as substantially identical sequences that produce a protein that has the same biological properties. These "biologically equivalent" or "biologically active" or "equivalent" polypeptides are encoded by equivalent polynucleotides as described herein. They may possess at least $60 \%$, or alternatively, at least $65 \%$, or alternatively, at least $70 \%$, or alternatively, at least $75 \%$, or alternatively, at least $80 \%$, or alternatively at least $85 \%$, or alternatively at least $90 \%$, or alternatively at least $95 \%$ or alternatively at least $98 \%$, identical primary amino acid sequence to the reference polypeptide when compared using sequence
identity methods run under default conditions. Specific polypeptide sequences are provided as examples of particular embodiments. Modifications to the sequences to amino acids with alternate amino acids that have similar charge. Additionally, an equivalent polynucleotide is one that hybridizes under stringent conditions to the reference polynucleotide or its complement or in reference to a polypeptide, a polypeptide encoded by a polynucleotide that hybridizes to the reference encoding polynucleotide under stringent conditions or its complementary strand. Alternatively, an equivalent polypeptide or protein is one that is expressed from an equivalent polynucleotide.
[0295] The nucleic acid sequences (e.g., polynucleotide sequences) disclosed herein may be codon-optimized which is a technique well known in the art. In some embodiments disclosed herein, exemplary Cas sequences, such as e.g., SEQ ID NO: 46 (Cas13d), are codon optimized for expression in human cells. Codon optimization refers to the fact that different cells differ in their usage of particular codons. This codon bias corresponds to a bias in the relative abundance of particular tRNAs in the cell type. By altering the codons in the sequence to match with the relative abundance of corresponding tRNAs, it is possible to increase expression. It is also possible to decrease expression by deliberately choosing codons for which the corresponding tRNAs are known to be rare in a particular cell type. Codon usage tables are known in the art for mammalian cells, as well as for a variety of other organisms. Based on the genetic code, nucleic acid sequences coding for, e.g., a Cas protein, can be generated. In some embodiments, such a sequence is optimized for expression in a host or target cell, such as a host cell used to express the Cas protein or a cell in which the disclosed methods are practiced (such as in a mammalian cell, e.g., a human cell). Codon preferences and codon usage tables for a particular species can be used to engineer isolated nucleic acid molecules encoding a Cas protein (such as one encoding a protein having at least $80 \%$, at least $85 \%$, at least $90 \%$, at least $92 \%$, at least $95 \%$, at least $96 \%$, at least $97 \%$, at least $98 \%$, at least $99 \%$, or $100 \%$ sequence identity to its corresponding wild-type protein) that takes advantage of the codon usage preferences of that particular species. For example, the Cas proteins disclosed herein can be designed to have codons that are preferentially used by a particular organism of interest. In one example, an Cas nucleic acid sequence is optimized for expression in human cells, such as one having at least $70 \%$, at least $80 \%$, at least $85 \%$, at least $90 \%$, at least $92 \%$, at least $95 \%$, at least $98 \%$, or at least
$99 \%$ sequence identity to its corresponding wild-type or originating nucleic acid sequence. In some embodiments, an isolated nucleic acid molecule encoding at least one Cas protein (which can be part of a vector) includes at least one Cas protein coding sequence that is codon optimized for expression in a eukaryotic cell, or at least one Cas protein coding sequence codon optimized for expression in a human cell. In one embodiment, such a codon optimized Cas coding sequence has at least $80 \%$, at least $85 \%$, at least $90 \%$, at least $92 \%$, at least $95 \%$, at least $96 \%$, at least $97 \%$, at least $98 \%$, at least $99 \%$, or $100 \%$ sequence identity to its corresponding wild-type or originating sequence. In another embodiment, a eukaryotic cell codon optimized nucleic acid sequence encodes a Cas protein having at least $85 \%$, at least $90 \%$, at least $92 \%$, at least $95 \%$, at least $96 \%$, at least $97 \%$, at least $98 \%$, at least $99 \%$, or $100 \%$ sequence identity to its corresponding wild-type or originating protein. In another embodiment, a variety of clones containing functionally equivalent nucleic acids may be routinely generated, such as nucleic acids which differ in sequence but which encode the same Cas protein sequence. Silent mutations in the coding sequence result from the degeneracy (i.e., redundancy) of the genetic code, whereby more than one codon can encode the same amino acid residue. Thus, for example, leucine can be encoded by CTT, CTC, CTA, CTG, TTA, or TTG; serine can be encoded by TCT, TCC, TCA, TCG, AGT, or AGC; asparagine can be encoded by AAT or AAC; aspartic acid can be encoded by GAT or GAC; cysteine can be encoded by TGT or TGC; alanine can be encoded by GCT, GCC, GCA, or GCG; glutamine can be encoded by CAA or CAG; tyrosine can be encoded by TAT or TAC; and isoleucine can be encoded by ATT, ATC, or ATA. Tables showing the standard genetic code can be found in various sources (see, for example, Stryer, 1988, Biochemistry, 3 .sup.rd Edition, W.H. 5 Freeman and Co., NY).
[0296] "Hybridization" refers to a reaction in which one or more polynucleotides react to form a complex that is stabilized via hydrogen bonding between the bases of the nucleotide residues. The hydrogen bonding may occur by Watson-Crick base pairing, Hoogstein binding, or in any other sequence-specific manner. The complex may comprise two strands forming a duplex structure, three or more strands forming a multi-stranded complex, a single self-hybridizing strand, or any combination of these. A hybridization reaction may constitute a step in a more extensive process, such as the initiation of a PC reaction, or the enzymatic cleavage of a polynucleotide by a ribozyme.
[0297] Examples of stringent hybridization conditions include: incubation temperatures of about $25^{\circ} \mathrm{C}$ to about $37^{\circ} \mathrm{C}$; hybridization buffer concentrations of about 6 x SSC to about 10 x SSC; formamide concentrations of about $0 \%$ to about $25 \%$; and wash solutions from about 4 x SSC to about 8x SSC. Examples of moderate hybridization conditions include: incubation temperatures of about $40^{\circ} \mathrm{C}$ to about $50^{\circ} \mathrm{C}$; buffer concentrations of about 9 x SSC to about 2 x SSC; formamide concentrations of about $30 \%$ to about $50 \%$; and wash solutions of about 5 x SSC to about 2x SSC. Examples of high stringency conditions include: incubation temperatures of about $55^{\circ} \mathrm{C}$ to about $68^{\circ} \mathrm{C}$; buffer concentrations of about lx SSC to about 0.1 xSC ;
formamide concentrations of about $55 \%$ to about $75 \%$; and wash solutions of about $1 \mathrm{xSSC}, 0.1 \mathrm{x}$ SSC, or deionized water. In general, hybridization incubation times are from 5 minutes to 24 hours, with 1,2 , or more washing steps, and wash incubation times are about 1,2 , or 15 minutes. SSC is 0.15 M NaCl and 15 mM citrate buffer. It is understood that equivalents of SSC using other buffer systems can be employed.
[0298] "Homology" or "identity" or "similarity" refers to sequence similarity between two peptides or between two nucleic acid molecules. Homology can be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same base or amino acid, then the molecules are homologous at that position. A degree of homology between sequences is a function of the number of matching or homologous positions shared by the sequences. An "unrelated" or "nonhomologous" sequence shares less than $40 \%$ identity, or alternatively less than $25 \%$ identity, with one of the sequences of the present invention.

## Cells

[0299] In some embodiments of the compositions and methods of the disclosure, a cell of the disclosure is a prokaryotic cell.
[0300] In some embodiments of the compositions and methods of the disclosure, a cell of the disclosure is a eukaryotic cell. In some embodiments, the cell is a mammalian cell. In some embodiments, the cell is a bovine, murine, feline, equine, porcine, canine, simian, or human cell In some embodiments, the cell is a non-human mammalian cell such as a non-human primate cell.
[0301] In some embodiments, a cell of the disclosure is a somatic cell. In some embodiments, a cell of the disclosure is a germline cell. In some embodiments, a germline cell of the disclosure is not a human cell.
[0302] In some embodiments of the compositions and methods of the disclosure, a cell of the disclosure is a stem cell. In some embodiments, a cell of the disclosure is an embryonic stem cell. In some embodiments, an embryonic stem cell of the disclosure is not a human cell. In some embodiments, a cell of the disclosure is a multipotent stem cell or a pluripotent stem cell. In some embodiments, a cell of the disclosure is an adult stem cell. In some embodiments, a cell of the disclosure is an induced pluripotent stem cell (iPSC). In some embodiments, a cell of the disclosure is a hematopoietic stem cell (HSC).
[0303] In some embodiments of the compositions and methods of the disclosure, a somatic cell of the disclosure is an immune cell. In some embodiments, an immune cell of the disclosure is a lymphocyte. In some embodiments, an immune cell of the disclosure is a T lymphocyte (also referred to herein as a T-cell). Exemplary T-cells of the disclosure include, but are not limited to, naïve T cells, effector T cells, helper T cells, memory T cells, regulatory T cells (Tregs) and Gamma delta T cells. In some embodiments, an immune cell of the disclosure is a B lymphocyte. In some embodiments, an immune cell of the disclosure is a natural killer cell. In some embodiments, an immune cell of the disclosure is an antigen-presenting cell.
[0304] In some embodiments of the compositions and methods of the disclosure, a somatic cell of the disclosure is a muscle cell. In some embodiments, a muscle cell of the disclosure is a myoblast or a myocyte. In some embodiments, a muscle cell of the disclosure is a cardiac muscle cell, skeletal muscle cell or smooth muscle cell. In some embodiments, a muscle cell of the disclosure is a striated cell.
[0305] In some embodiments of the compositions and methods of the disclosure, a somatic cell of the disclosure is an epithelial cell. In some embodiments, an epithelial cell of the disclosure forms a squamous cell epithelium, a cuboidal cell epithelium, a columnar cell epithelium, a stratified cell epithelium, a pseudostratified columnar cell epithelium or a transitional cell epithelium. In some embodiments, an epithelial cell of the disclosure forms a gland including, but not limited to, a pineal gland, a thymus gland, a pituitary gland, a thyroid gland, an adrenal gland, an apocrine gland, a holocrine gland, a merocrine gland, a serous gland,
a mucous gland and a sebaceous gland. In some embodiments, an epithelial cell of the disclosure contacts an outer surface of an organ including, but not limited to, a lung, a spleen, a stomach, a pancreas, a bladder, an intestine, a kidney, a gallbladder, a liver, a larynx or a pharynx. In some embodiments, an epithelial cell of the disclosure contacts an outer surface of a blood vessel or a vein.
[0306] In some embodiments of the compositions and methods of the disclosure, a somatic cell of the disclosure is a neuronal cell. In some embodiments, a neuron cell of the disclosure is a neuron of the central nervous system. In some embodiments, a neuron cell of the disclosure is a neuron of the brain or the spinal cord. In some embodiments, a neuron cell of the disclosure is a neuron of the retina. In some embodiments, a neuron cell of the disclosure is a neuron of a cranial nerve or an optic nerve. In some embodiments, a neuron cell of the disclosure is a neuron of the peripheral nervous system. In some embodiments, a neuron cell of the disclosure is a neuroglial or a glial cell. In some embodiments, a glial of the disclosure is a glial cell of the central nervous system including, but not limited to, oligodendrocytes, astrocytes, ependymal cells, and microglia. In some embodiments, a glial of the disclosure is a glial cell of the peripheral nervous system including, but not limited to, Schwann cells and satellite cells.
[0307] In some embodiments of the compositions and methods of the disclosure, a somatic cell of the disclosure is a primary cell.
[0308] In some embodiments of the compositions and methods of the disclosure, a somatic cell of the disclosure is a cultured cell.
[0309] In some embodiments of the compositions and methods of the disclosure, a somatic cell of the disclosure is in vivo, in vitro, ex vivo or in situ.
[0310] In some embodiments of the compositions and methods of the disclosure, a somatic cell of the disclosure is autologous or allogeneic.

## Methods of Use

[0311] The disclosure provides a method of modifying level of expression of an RNA molecule of the disclosure or a protein encoded by the RNA molecule comprising contacting the composition and the RNA molecule under conditions suitable for binding of one or more of the guide RNA or the fusion protein (or a portion thereof) to the RNA molecule.
[0312] The disclosure provides a method of modifying an activity of a protein encoded by an RNA molecule comprising contacting the composition and the RNA molecule under conditions suitable for binding of one or more of the guide RNA or the fusion protein (or a portion thereof) to the RNA molecule.
[0313] The disclosure provides a method of modifying level of expression of an RNA molecule of the disclosure or a protein encoded by the RNA molecule comprising contacting the composition and a cell comprising the RNA molecule under conditions suitable for binding of one or more of the guide RNA or the fusion protein (or a portion thereof) to the RNA molecule. In some embodiments, the cell is in vivo, in vitro, ex vivo or in situ. In some embodiments, the composition comprises a vector comprising composition comprising a guide RNA of the disclosure and a fusion protein of the disclosure. In some embodiments, the vector is an AAV. [0314] The disclosure provides a method of modifying an activity of a protein encoded by an RNA molecule comprising contacting the composition and a cell comprising the RNA molecule under conditions suitable for binding of one or more of the guide RNA or the fusion protein (or a portion thereof) to the RNA molecule. In some embodiments, the cell is in vivo, in vitro, ex vivo or in situ. In some embodiments, the composition comprises a vector comprising composition comprising a guide RNA or a single guide RNA of the disclosure and a fusion protein of the disclosure. In some embodiments, the vector is an AAV.
[0315] The disclosure provides a method of modifying level of expression of an RNA molecule of the disclosure or a protein encoded by the RNA molecule comprising contacting the composition and the RNA molecule under conditions suitable for RNA nuclease activity wherein the fusion protein induces a break in the RNA molecule.
[0316] The disclosure provides a method of modifying an activity of a protein encoded by an RNA molecule comprising contacting the composition and the RNA molecule under conditions suitable for RNA nuclease activity wherein the fusion protein induces a break in the RNA molecule.
[0317] The disclosure provides a method of modifying a level of expression of an RNA molecule of the disclosure or a protein encoded by the RNA molecule comprising contacting the composition and a cell comprising the RNA molecule under conditions suitable for RNA nuclease activity wherein the fusion protein induces a break in the RNA molecule. In some
embodiments, the cell is in vivo, in vitro, ex vivo or in situ. In some embodiments, the composition comprises a vector comprising composition comprising a guide RNA of the disclosure and a fusion protein of the disclosure. In some embodiments, the vector is an AAV. [0318] The disclosure provides a method of modifying an activity of a protein encoded by an RNA molecule comprising contacting the composition and a cell comprising the RNA molecule under conditions suitable for RNA nuclease activity wherein the fusion protein induces a break in the RNA molecule. In some embodiments, the cell is in vivo, in vitro, ex vivo or in situ. In some embodiments, the composition comprises a vector comprising composition comprising a guide RNA or a single guide RNA of the disclosure and a fusion protein of the disclosure. In some embodiments, the vector is an AAV.
[0319] The disclosure provides a method of treating a disease or disorder comprising administering to a subject a therapeutically effective amount of a composition of the disclosure.
[0320] The disclosure provides a method of treating a disease or disorder comprising administering to a subject a therapeutically effective amount of a composition of the disclosure, wherein the composition comprises a vector comprising composition comprising a guide RNA of the disclosure and a fusion protein of the disclosure and wherein the composition modifies a level of expression of an RNA molecule of the disclosure or a protein encoded by the RNA molecule.
[0321] The disclosure provides a method of treating a disease or disorder comprising administering to a subject a therapeutically effective amount of a composition of the disclosure, wherein the composition comprises a vector comprising composition comprising a guide RNA of the disclosure and a fusion protein of the disclosure and wherein the composition modifies an activity of a protein encoded by an RNA molecule.
[0322] In some embodiments of the compositions and methods of the disclosure, a disease or disorder of the disclosure includes, but is not limited to, a genetic disease or disorder. In some embodiments, the genetic disease or disorder is a single-gene disease or disorder. In some embodiments, the single-gene disease or disorder is an autosomal dominant disease or disorder, an autosomal recessive disease or disorder, an X-chromosome linked (X-linked) disease or disorder, an X-linked dominant disease or disorder, an X-linked recessive disease or disorder, a Y-linked disease or disorder or a mitochondrial disease or disorder. In some embodiments, the
genetic disease or disorder is a multiple-gene disease or disorder. In some embodiments, the genetic disease or disorder is a multiple-gene disease or disorder. In some embodiments, the single-gene disease or disorder is an autosomal dominant disease or disorder including, but not limited to, Huntington's disease, neurofibromatosis type 1, neurofibromatosis type 2, Marfan syndrome, hereditary nonpolyposis colorectal cancer, hereditary multiple exostoses, Von Willebrand disease, and acute intermittent porphyria. In some embodiments, the single-gene disease or disorder is an autosomal recessive disease or disorder including, but not limited to, Albinism, Medium-chain acyl-CoA dehydrogenase deficiency, cystic fibrosis, sickle-cell disease, Tay-Sachs disease, Niemann-Pick disease, spinal muscular atrophy, and Roberts syndrome. In some embodiments, the single-gene disease or disorder is X-linked disease or disorder including, but not limited to, muscular dystrophy, Duchenne muscular dystrophy, Hemophilia, Adrenoleukodystrophy (ALD), Rett syndrome, and Hemophilia A. In some embodiments, the single-gene disease or disorder is a mitochondrial disorder including, but not limited to, Leber's hereditary optic neuropathy.
[0323] In some embodiments of the compositions and methods of the disclosure, a disease or disorder of the disclosure includes, but is not limited to, an immune disease or disorder. In some embodiments, the immune disease or disorder is an immunodeficiency disease or disorder including, but not limited to, B-cell deficiency, T-cell deficiency, neutropenia, asplenia, complement deficiency, acquired immunodeficiency syndrome (AIDS) and immunodeficiency due to medical intervention (immunosuppression as an intended or adverse effect of a medical therapy). In some embodiments, the immune disease or disorder is an autoimmune disease or disorder including, but not limited to, Achalasia, Addison's disease, Adult Still's disease, Agammaglobulinemia, Alopecia areata, Amyloidosis, Anti-GBM/Anti-TBM nephritis, Antiphospholipid syndrome, Autoimmune angioedema, Autoimmune dysautonomia, Autoimmune encephalomyelitis, Autoimmune hepatitis, Autoimmune inner ear disease (AIED), Autoimmune myocarditis, Autoimmune oophoritis, Autoimmune orchitis, Autoimmune pancreatitis, Autoimmune retinopathy, Autoimmune urticaria, Axonal \& neuronal neuropathy (AMAN), Baló disease, Behcet's disease, Benign mucosal pemphigoid, Bullous pemphigoid, Castleman disease (CD), Celiac disease, Chagas disease, Chronic inflammatory demyelinating polyneuropathy (CIDP), Chronic recurrent multifocal osteomyelitis (CRMO), Churg-Strauss

Syndrome (CSS) or Eosinophilic Granulomatosis (EGPA), Cicatricial pemphigoid, Cogan's syndrome, Cold agglutinin disease, Congenital heart block, Coxsackie myocarditis, CREST syndrome, Crohn's disease, Dermatitis herpetiformis, Dermatomyositis, Devic's disease (neuromyelitis optica), Discoid lupus, Dressler's syndrome, Endometriosis, Eosinophilic esophagitis (EoE), Eosinophilic fasciitis, Erythema nodosum, Essential mixed cryoglobulinemia, Evans syndrome, Fibromyalgia, Fibrosing alveolitis, Giant cell arteritis (temporal arteritis), Giant cell myocarditis, Glomerulonephritis, Goodpasture's syndrome, Granulomatosis with Polyangiitis, Graves' disease, Guillain-Barre syndrome, Hashimoto's thyroiditis, Hemolytic anemia, Henoch-Schonlein purpura (HSP), Herpes gestationis or pemphigoid gestationis (PG), Hidradenitis Suppurativa (HS) (Acne Inversa), Hypogammalglobulinemia, IgA Nephropathy, IgG4-related sclerosing disease, Immune thrombocytopenic purpura (ITP), Inclusion body myositis (IBM), Interstitial cystitis (IC), Juvenile arthritis, Juvenile diabetes (Type 1 diabetes), Juvenile myositis (JM), Kawasaki disease, Lambert-Eaton syndrome, Leukocytoclastic vasculitis, Lichen planus, Lichen sclerosus, Ligneous conjunctivitis, Linear IgA disease (LAD), Lupus, Lyme disease chronic, Meniere's disease, Microscopic polyangiitis (MPA), Mixed connective tissue disease (MCTD), Mooren's ulcer, Mucha-Habermann disease, Multifocal Motor Neuropathy (MMN) or MMNCB, Multiple sclerosis, Myasthenia gravis, Myositis, Narcolepsy, Neonatal Lupus, Neuromyelitis optica, Neutropenia, Ocular cicatricial pemphigoid, Optic neuritis, Palindromic rheumatism (PR), PANDAS, Paraneoplastic cerebellar degeneration (PCD), Paroxysmal nocturnal hemoglobinuria (PNH), Parry Romberg syndrome, Pars planitis (peripheral uveitis), Parsonnage-Turner syndrome, Pemphigus, Peripheral neuropathy, Perivenous encephalomyelitis, Pernicious anemia (PA), POEMS syndrome, Polyarteritis nodosa, Polyglandular syndromes type I, II, III, Polymyalgia rheumatica, Polymyositis, Postmyocardial infarction syndrome, Postpericardiotomy syndrome, Primary biliary cirrhosis, Primary sclerosing cholangitis, Progesterone dermatitis, Psoriasis, Psoriatic arthritis, Pure red cell aplasia (PRCA), Pyoderma gangrenosum, Raynaud's phenomenon, Reactive Arthritis, Reflex sympathetic dystrophy, Relapsing polychondritis, Restless legs syndrome (RLS), Retroperitoneal fibrosis, Rheumatic fever, Rheumatoid arthritis, Sarcoidosis, Schmidt syndrome, Scleritis, Scleroderma, Sjögren's syndrome, Sperm \& testicular autoimmunity, Stiff person syndrome (SPS), Subacute bacterial endocarditis (SBE), Susac's syndrome, Sympathetic ophthalmia (SO), Takayasu's
arteritis, Temporal arteritis/Giant cell arteritis, Thrombocytopenic purpura (TTP), Tolosa-Hunt syndrome (THS), Transverse myelitis, Type 1 diabetes, Ulcerative colitis (UC), Undifferentiated connective tissue disease (UCTD), Uveitis, Vasculitis, Vitiligo, Vogt-Koyanagi-Harada Disease, or Wegener's granulomatosis.
[0324] In some embodiments of the compositions and methods of the disclosure, a disease or disorder of the disclosure includes, but is not limited to, an inflammatory disease or disorder. [0325] In some embodiments of the compositions and methods of the disclosure, a disease or disorder of the disclosure includes, but is not limited to, a metabolic disease or disorder.
[0326] In some embodiments of the compositions and methods of the disclosure, a disease or disorder of the disclosure includes, but is not limited to, a degenerative or a progressive disease or disorder. In some embodiments, the degenerative or a progressive disease or disorder includes, but is not limited to, amyotrophic lateral sclerosis (ALS), Huntington's disease, Alzheimer's disease, and aging.
[0327] In some embodiments of the compositions and methods of the disclosure, a disease or disorder of the disclosure includes, but is not limited to, an infectious disease or disorder.
[0328] In some embodiments of the compositions and methods of the disclosure, a disease or disorder of the disclosure includes, but is not limited to, a pediatric or a developmental disease or disorder.
[0329] In some embodiments of the compositions and methods of the disclosure, a disease or disorder of the disclosure includes, but is not limited to, a cardiovascular disease or disorder.
[0330] In some embodiments of the compositions and methods of the disclosure, a disease or disorder of the disclosure includes, but is not limited to, a proliferative disease or disorder. In some embodiments, the proliferative disease or disorder is a cancer. In some embodiments, the cancer includes, but is not limited to, Acute Lymphoblastic Leukemia (ALL), Acute Myeloid Leukemia (AML), Adrenocortical Carcinoma, AIDS-Related Cancers, Kaposi Sarcoma (Soft Tissue Sarcoma), AIDS-Related Lymphoma (Lymphoma), Primary CNS Lymphoma (Lymphoma), Anal Cancer, Appendix Cancer, Gastrointestinal Carcinoid Tumors, Astrocytomas, Atypical Teratoid/Rhabdoid Tumor, Central Nervous System (Brain Cancer), Basal Cell Carcinoma, Bile Duct Cancer, Bladder Cancer, Bone Cancer, Ewing Sarcoma, Osteosarcoma, Malignant Fibrous Histiocytoma, Brain Tumors, Breast Cancer, Burkitt

Lymphoma, Carcinoid Tumor, Carcinoma, Cardiac (Heart) Tumors, Embryonal Tumors, Germ Cell Tumor, Primary CNS Lymphoma, Cervical Cancer, Cholangiocarcinoma, Chordoma, Chronic Lymphocytic Leukemia (CLL), Chronic Myelogenous Leukemia (CML), Chronic Myeloproliferative Neoplasms, Colorectal Cancer, Craniopharyngioma, Cutaneous T-Cell Lymphoma, Ductal Carcinoma In Situ, Embryonal Tumors, Endometrial Cancer (Uterine Cancer), Ependymoma, Esophageal Cancer, Esthesioneuroblastoma (Head and Neck Cancer), Ewing Sarcoma (Bone Cancer), Extracranial Germ Cell Tumor, Extragonadal Germ Cell Tumor, Eye Cancer, Childhood Intraocular Melanoma, Intraocular Melanoma, Retinoblastoma, Fallopian Tube Cancer, Fibrous Histiocytoma of Bone, Malignant, and Osteosarcoma, Gallbladder Cancer, Gastric (Stomach) Cancer, Gastrointestinal Carcinoid Tumor, Gastrointestinal Stromal Tumors (GIST) (Soft Tissue Sarcoma), Childhood Gastrointestinal Stromal Tumors, Germ Cell Tumors, Childhood Extracranial Germ Cell Tumors, Extragonadal Germ Cell Tumors, Ovarian Germ Cell Tumors, Testicular Cancer, Gestational Trophoblastic Disease, Hairy Cell Leukemia, Head and Neck Cancer, Heart Tumors, Hepatocellular (Liver) Cancer, Histiocytosis, Hodgkin Lymphoma, Hypopharyngeal Cancer (Head and Neck Cancer), Intraocular Melanoma, Islet Cell Tumors, Pancreatic Neuroendocrine Tumors, Kaposi Sarcoma (Soft Tissue Sarcoma), Kidney (Renal Cell) Cancer, Langerhans Cell Histiocytosis, Laryngeal Cancer (Head and Neck Cancer), Leukemia, Lip and Oral Cavity Cancer (Head and Neck Cancer), Liver Cancer, Lung Cancer (Non-Small Cell and Small Cell), Childhood Lung Cancer, Lymphoma, Male Breast Cancer, Malignant Fibrous Histiocytoma of Bone and Osteosarcoma, Melanoma, Merkel Cell Carcinoma (Skin Cancer), Mesothelioma, Metastatic Squamous Neck Cancer with Occult Primary (Head and Neck Cancer), Midline Tract Carcinoma With NUT Gene Changes, Mouth Cancer (Head and Neck Cancer), Multiple Endocrine Neoplasia Syndromes, Multiple Myeloma/Plasma Cell Neoplasms, Mycosis Fungoides (Lymphoma), Myelodysplastic Syndromes, Myelodysplastic/Myeloproliferative Neoplasms, Nasal Cavity and Paranasal Sinus Cancer (Head and Neck Cancer), Nasopharyngeal Cancer (Head and Neck Cancer), Neuroblastoma, Non-Hodgkin Lymphoma, Non-Small Cell Lung Cancer, Oral Cancer, Lip and Oral Cavity Cancer and Oropharyngeal Cancer, Osteosarcoma and Malignant Fibrous Histiocytoma of Bone, Ovarian Cancer, Pancreatic Cancer, Pancreatic Neuroendocrine Tumors (Islet Cell Tumors), Papillomatosis, Paraganglioma, Parathyroid Cancer, Penile Cancer,

Pharyngeal Cancer (Head and Neck Cancer), Pheochromocytoma, Plasma Cell Neoplasm/Multiple Myeloma, Pleuropulmonary Blastoma, Pregnancy and Breast Cancer, Primary Central Nervous System (CNS) Lymphoma, Primary Peritoneal Cancer, Prostate Cancer, Rectal Cancer, Recurrent Cancer, Renal Cell (Kidney) Cancer, Retinoblastoma, Rhabdomyosarcoma, Childhood (Soft Tissue Sarcoma), Salivary Gland Cancer (Head and Neck Cancer), Sarcoma, Childhood Rhabdomyosarcoma (Soft Tissue Sarcoma), Childhood Vascular Tumors (Soft Tissue Sarcoma), Ewing Sarcoma (Bone Cancer), Kaposi Sarcoma (Soft Tissue Sarcoma), Osteosarcoma (Bone Cancer), Uterine Sarcoma, Sézary Syndrome, Lymphoma, Skin Cancer, Small Cell Lung Cancer, Small Intestine Cancer, Soft Tissue Sarcoma, Squamous Cell Carcinoma of the Skin, Squamous Neck Cancer, Stomach (Gastric) Cancer, T-Cell Lymphoma, Testicular Cancer, Throat Cancer (Head and Neck Cancer), Nasopharyngeal Cancer, Oropharyngeal Cancer, Hypopharyngeal Cancer, Thymoma and Thymic Carcinoma, Thyroid Cancer, Transitional Cell Cancer of the Renal Pelvis and Ureter, Renal Cell Cancer, Urethral Cancer, Uterine Sarcoma, Vaginal Cancer, Vascular Tumors (Soft Tissue Sarcoma), Vulvar Cancer, Wilms Tumor and Other Childhood Kidney Tumors.
[0331] In some embodiments of the methods of the disclosure, a subject of the disclosure has been diagnosed with the disease or disorder. In some embodiments, the subject of the disclosure presents at least one sign or symptom of the disease or disorder. In some embodiments, the subject has a biomarker predictive of a risk of developing the disease or disorder. In some embodiments, the biomarker is a genetic mutation.
[0332] In some embodiments of the methods of the disclosure, a subject of the disclosure is female. In some embodiments of the methods of the disclosure, a subject of the disclosure is male. In some embodiments, a subject of the disclosure has two XX or XY chromosomes. In some embodiments, a subject of the disclosure has two XX or XY chromosomes and a third chromosome, either an X or a Y .
[0333] In some embodiments of the methods of the disclosure, a subject of the disclosure is a neonate, an infant, a child, an adult, a senior adult, or an elderly adult. In some embodiments of the methods of the disclosure, a subject of the disclosure is at least $1,2,3,4,5,6,7,8,9,10,11$, $12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30$ or 31 days old. In some embodiments of the methods of the disclosure, a subject of the disclosure is at least $1,2,3,4,5$,
$6,7,8,9,10,11$ or 12 months old. In some embodiments of the methods of the disclosure, a subject of the disclosure is at least $1,2,3,4,5,6,7,8,9,10,15,20,25,30,35,40,45,50,55$, $60,65,70,75,80,85,90,95,100$ or any number of years or partial years in between of age.
[0334] In some embodiments of the methods of the disclosure, a subject of the disclosure is a mammal. In some embodiments, a subject of the disclosure is a non-human mammal.
[0335] In some embodiments of the methods of the disclosure, a subject of the disclosure is a human.
[0336] In some embodiments of the methods of the disclosure, a therapeutically effective amount comprises a single dose of a composition of the disclosure. In some embodiments, a therapeutically effective amount comprises a therapeutically effective amount comprises at least one dose of a composition of the disclosure. In some embodiments, a therapeutically effective amount comprises a therapeutically effective amount comprises one or more dose(s) of a composition of the disclosure.
[0337] In some embodiments of the methods of the disclosure, a therapeutically effective amount eliminates a sign or symptom of the disease or disorder. In some embodiments, a therapeutically effective amount reduces a severity of a sign or symptom of the disease or disorder.
[0338] In some embodiments of the methods of the disclosure, a therapeutically effective amount eliminates the disease or disorder.
[0339] In some embodiments of the methods of the disclosure, a therapeutically effective amount prevents an onset of a disease or disorder. In some embodiments, a therapeutically effective amount delays the onset of a disease or disorder. In some embodiments, a therapeutically effective amount reduces the severity of a sign or symptom of the disease or disorder. In some embodiments, a therapeutically effective amount improves a prognosis for the subject.
[0340] In some embodiments of the methods of the disclosure, a composition of the disclosure is administered to the subject systemically. In some embodiments, the composition of the disclosure is administered to the subject by an intravenous route. In some embodiments, the composition of the disclosure is administered to the subject by an injection or an infusion.
[0341] In some embodiments of the methods of the disclosure, a composition of the disclosure is administered to the subject locally. In some embodiments, the composition of the disclosure is administered to the subject by an intraosseous, intraocular, intracerebrospinal or intraspinal route. In some embodiments, the composition of the disclosure is administered directly to the cerebral spinal fluid of the central nervous system. In some embodiments, the composition of the disclosure is administered directly to a tissue or fluid of the eye and does not have bioavailability outside of ocular structures. In some embodiments, the composition of the disclosure is administered to the subject by an injection or an infusion.
[0342] In some embodiments, the compositions comprising the RNA-binding fusion proteins disclosed herein are formulated as pharmaceutical compositions. Briefly, pharmaceutical compositions for use as disclosed herein may comprise a fusion protein(s) or a polynucleotide encoding the fusion protein(s), optionally comprised in an AAV, which is optionally also immune orthogonal, in combination with one or more pharmaceutically or physiologically acceptable carriers, diluents or excipients. Such compositions may comprise buffers such as neutral buffered saline, phosphate buffered saline and the like; carbohydrates such as glucose, mannose, sucrose or dextrans, mannitol; proteins; polypeptides or amino acids such as glycine; antioxidants; chelating agents such as EDTA or glutathione; adjuvants (e.g., aluminum hydroxide); and preservatives. Compositions of the disclosure may be formulated for oral, intravenous, topical, enteral, intraocular, and/or parenteral administration. In certain embodiments, the compositions of the present disclosure are formulated for intravenous administration.

## Example Embodiments:

[0343] Embodiment 1. A composition comprising:
(a) a sequence comprising a guide RNA (gRNA) that specifically binds a target sequence within an RNA molecule and
(b) a sequence encoding a fusion protein, the sequence comprising a sequence encoding a first RNA-binding polypeptide and a sequence encoding a second RNA-binding polypeptide, wherein neither the first RNA-binding polypeptide nor the second RNA-binding polypeptide comprises a significant DNA-nuclease activity,
wherein the first RNA-binding polypeptide and the second RNA-binding polypeptide are not identical, and
wherein the second RNA-binding polypeptide comprises an RNA-nuclease activity; or
a composition comprising nucleic acid sequence encoding a fusion protein, the fusion protein comprising a first RNA-binding polypeptide and a second RNA-binding polypeptide, wherein the first RNA-binding polypeptide is not a guided RNA-binding polypeptide, wherein the first RNA-binding polypeptide and the second RNA-binding polypeptide are not identical, and wherein the second RNA-binding polypeptide comprises an RNA-nuclease activity.

Embodiment 2. The composition of embodiment 1, wherein the target sequence comprises at least one repeated sequence.

Embodiment 3. The composition of embodiment 1 or 2, wherein the sequence comprising the gRNA comprises a promoter capable of expressing the gRNA in a eukaryotic cell.

Embodiment 4. The composition of embodiment 3, wherein the eukaryotic cell is an animal cell.

Embodiment 5. The composition of embodiment 4, wherein the animal cell is a mammalian cell.

Embodiment 6. The composition of embodiment 5, wherein the animal cell is a human cell.

Embodiment 7. The composition of any one of embodiments 1-6, wherein the promoter is a constitutively active promoter.

Embodiment 8. The composition of any one of embodiments 1-7, wherein the promoter is isolated or derived from a promoter capable of driving expression of an RNA polymerase.

Embodiment 9. The composition of embodiment 8, wherein the promoter is isolated or derived from a U6 promoter

Embodiment 10. The composition of any one of embodiments 1-7, wherein the promoter is isolated or derived from a promoter capable of driving expression of a transfer RNA (tRNA).

Embodiment 11. The composition of embodiment 10, wherein the promoter is isolated or derived from an alanine tRNA promoter, an arginine tRNA promoter, an asparagine tRNA promoter, an aspartic acid tRNA promoter, a cysteine tRNA promoter, a glutamine tRNA promoter, a glutamic acid tRNA promoter, a glycine tRNA promoter, a histidine tRNA promoter, an isoleucine tRNA promoter, a leucine tRNA promoter, a lysine tRNA promoter, a methionine tRNA promoter, a phenylalanine tRNA promoter, a proline tRNA promoter, a serine tRNA promoter, a threonine tRNA promoter, a tryptophan tRNA promoter, a tyrosine tRNA promoter, or a valine tRNA promoter.

Embodiment 12. The composition of embodiment 10, wherein the promoter is isolated or derived from a valine tRNA promoter.

Embodiment 13. The composition of any one of embodiments 1-12, wherein the sequence comprising the gRNA comprises a spacer sequence that specifically binds to the target RNA sequence.

Embodiment 14. The composition of embodiment 13, wherein the spacer sequence has at least $50 \%, 55 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 87 \%, 90 \%, 95 \%, 97 \%, 99 \%$ or any percentage in between of complementarity to the target RNA sequence.

Embodiment 15. The composition of embodiment 13, wherein the spacer sequence has $100 \%$ complementarity to the target RNA sequence.

Embodiment 16. The composition of any one of embodiments 13-15, wherein the spacer sequence comprises or consists of 20 nucleotides.

Embodiment 17. The composition of any one of embodiments 13-15, wherein the spacer sequence comprises or consists of 21 nucleotides.

Embodiment 18. The composition of embodiment 17, wherein the spacer sequence comprises the sequence UGGAGCGAGCAUCCCCCAAA (SEQ ID NO: 1), GUUUGGGGGAUGCUCGCUCCA (SEQ ID NO: 2), CCCUCACUGCUGGGGAGUCC (SEQ ID NO: 3), GGACUCCCCAGCAGUGAGGG (SEQ ID NO: 4), GCAACUGGAUCAAUUUGCUG (SEQ ID NO: 5), GCAGCAAAUUGAUCCAGUUGC (SEQ ID NO: 6), GCAUUCUUAUCUGGUCAGUGC (SEQ ID NO: 7), GCACUGACCAGAUAAGAAUG (SEQ ID NO: 8), GAGCAGCAGCAGCAGCAGCAG (SEQ ID NO: 9), GCAGGCAGGCAGGCAGGCAGG (SEQ ID NO: 10), GCCCCGGCCCCGGCCCCGGC (SEQ ID NO: 11) , or GCTGCTGCTGCTGCTGCTGC (SEQ ID NO: 12), GGGGCCGGGGCCGGGGCCGG (SEQ ID NO: 74), GGGCCGGGGCCGGGGCCGGG (SEQ ID NO: 75), GGCCGGGGCCGGGGCCGGGG (SEQ ID NO: 76), GCCGGGGCCGGGGCCGGGGC (SEQ ID NO: 77), CCGGGGCCGGGGCCGGGGCC (SEQ ID NO: 78), CGGGGCCGGGGCCGGGGCCG (SEQ ID NO: 79).

Embodiment 19. The composition of any one of embodiments 1-18, wherein the sequence comprising the gRNA comprises a scaffold sequence that specifically binds to the first RNA binding protein.

Embodiment 20. The composition of embodiment 19, wherein the scaffold sequence comprises a stem-loop structure.

Embodiment 21. The composition of embodiment 19 or 20, wherein the scaffold sequence comprises or consists of 90 nucleotides.

Embodiment 22. The composition of embodiment 19 or 20, wherein the scaffold sequence comprises or consists of 93 nucleotides.

Embodiment 23. The composition of embodiment 22, wherein the scaffold sequence comprises the sequence
GUUUAAGAGCUAUGCUGGAAACAGCAUAGCAAGUUUAAAUAAGGCUAGUCCGUU AUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUUUUU (SEQ ID NO: 13)

Embodiment 24. The composition of embodiment 16, wherein the spacer sequence comprises the sequence GUGAUAAGUGGAAUGCCAUG (SEQ ID NO: 14),

CUGGUGAACUUCCGAUAGUG (SEQ ID NO: 15), or GAGATATAGCCTGGTGGTTC (SEQ ID NO: 16)

Embodiment 25. The composition of embodiment 19 or 24, wherein the scaffold sequence comprises a step-loop structure.

Embodiment 26. The composition of embodiment 25, wherein the scaffold sequence comprises or consists of 85 nucleotides.

Embodiment 27. The composition of embodiment 26, wherein the scaffold sequence comprises the sequence

GGACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGG CACCGAGUCGGUGCUUUUU (SEQ ID NO: 17).

Embodiment 28. The composition of embodiment 16, wherein the spacer sequence comprises the sequence at least $1,2,3,4,5,6$, or 7 repeats of the sequence CUG (SEQ ID NO: 18), CCUG (SEQ ID NO: 19), CAG (SEQ ID NO: 80), GGGGCC (SEQ ID NO: 81) or any combination thereof.

Embodiment 29. The composition of embodiment 28, wherein the sequence comprising the gRNA comprises a scaffold sequence that specifically binds to the first RNA binding protein.

Embodiment 30. The composition of embodiment 29, wherein the scaffold sequence comprises a stem-loop structure.

Embodiment 31. The composition of embodiment 29 or 30, wherein the scaffold sequence comprises or consists of 90 nucleotides.

Embodiment 32. The composition of embodiment 30 or 31, wherein the scaffold sequence comprises or consists of 93 nucleotides.

Embodiment 33. The composition of embodiment 32, wherein the scaffold sequence comprises the sequence GUUUAAGAGCUAUGCUGGAAACAGCAUAGCAAGUUUAAAUAAGGCUAGUCCGUU AUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUUUUU (SEQ ID NO: 82) or GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGA AAAAGUGGCACCGAGUCGGUGCUUUUUUU (SEQ ID NO: 83).

Embodiment 34. The composition of any one of embodiments 1-33, wherein the gRNA does not bind or does not selectively bind to a second sequence within the RNA molecule.

Embodiment 35. The composition of embodiment 34, wherein an RNA genome or an RNA transcriptome comprises the RNA molecule.

Embodiment 36. The composition of any one of embodiments 1-35, wherein the first RNA binding protein comprises a CRISPR-Cas protein.

Embodiment 37. The composition of embodiment 36, wherein the CRISPR-Cas protein is a Type II CRISPR-Cas protein.

Embodiment 38. The composition of embodiment 37, wherein the first RNA binding protein comprises a Cas9 polypeptide or an RNA-binding portion thereof.

Embodiment 39. The composition of embodiment 36, wherein the CRISPR-Cas protein is a Type V CRISPR-Cas protein.

Embodiment 40. The composition of embodiment 39, wherein the first RNA binding protein comprises a Cpf1 polypeptide or an RNA-binding portion thereof.

Embodiment 41. The composition of embodiment 36, wherein the CRISPR-Cas protein is a Type VI CRISPR-Cas protein.

Embodiment 42. The composition of embodiment 41, wherein the first RNA binding protein comprises a Cas13 polypeptide or an RNA-binding portion thereof.

Embodiment 43. The composition of any one of embodiments 36-42, wherein the CRISPRCas protein comprises a native RNA nuclease activity.

Embodiment 44. The composition of embodiment 43, wherein the native RNA nuclease activity is reduced or inhibited.

Embodiment 45. The composition of embodiment 43, wherein the native RNA nuclease activity is increased or induced.

Embodiment 46. The composition of any one of embodiments $36-45$, wherein the CRISPRCas protein comprises a native DNA nuclease activity and wherein the native DNA nuclease activity is inhibited.

Embodiment 47. The composition of embodiment 46, wherein the CRISPR-Cas protein comprises a mutation.

Embodiment 48. The composition of embodiment 47, wherein a nuclease domain of the CRISPR-Cas protein comprises the mutation.

Embodiment 49. The composition of embodiment 47, wherein the mutation occurs in a nucleic acid encoding the CRISPR-Cas protein.

Embodiment 50. The composition of embodiment 47, wherein the mutation occurs in an amino acid encoding the CRISPR-Cas protein.

Embodiment 51. The composition of any one of embodiments 47-50, wherein the mutation comprises a substitution, an insertion, a deletion, a frameshift, an inversion, or a transposition.

Embodiment 52. The composition of any one of embodiments 47-50, wherein the mutation comprises a deletion of a nuclease domain, a binding site within the nuclease domain, an active site within the nuclease domain, or at least one essential amino acid residue within the nuclease domain.

Embodiment 53. The composition of any one of embodiments 1-35, wherein the first RNA binding protein comprises a Pumilio and FBF (PUF) protein.

Embodiment 54. The composition of embodiment 53, wherein the first RNA binding protein comprises a Pumilio-based assembly (PUMBY) protein.

Embodiment 55. The composition of any one of embodiments 1-54, wherein the first RNA binding protein does not require multimerization for RNA-binding activity.

Embodiment 56. The composition of embodiment 55, wherein the first RNA binding protein is not a monomer of a multimer complex

Embodiment 57. The composition of embodiment 55, wherein a multimer protein complex does not comprise the first RNA binding protein.

Embodiment 58. The composition of any one of embodiments 1-57, wherein the first RNA binding protein selectively binds to a target sequence within the RNA molecule.

Embodiment 59. The composition of embodiment 58, wherein the first RNA binding protein does not comprise an affinity for a second sequence within the RNA molecule.

Embodiment 60. The composition of embodiment 58 or 59, wherein the first RNA binding protein does not comprise a high affinity for or selectively bind a second sequence within the RNA molecule.

Embodiment 61. The composition of embodiment 60, wherein an RNA genome or an RNA transcriptome comprises the RNA molecule.

Embodiment 62. The composition of any one of embodiments 1-61, wherein the first RNA binding protein comprises between 2 and 1300 amino acids, inclusive of the endpoints.

Embodiment 63. The composition of any one of embodiments 1-62, wherein the sequence encoding the first RNA binding protein further comprises a sequence encoding a nuclear localization signal (NLS).

Embodiment 64. The composition of embodiment 63, wherein the sequence encoding a nuclear localization signal (NLS) is positioned 3 ' to the sequence encoding the first RNA binding protein.

Embodiment 65. The composition of embodiment 64, wherein the first RNA binding protein comprises an NLS at a C-terminus of the protein.

Embodiment 66. The composition of any one of embodiments 1-62, wherein the sequence encoding the first RNA binding protein further comprises a first sequence encoding a first NLS and a second sequence encoding a second NLS

Embodiment 67. The composition of embodiment 66, wherein the sequence encoding the first NLS or the second NLS is positioned 3' to the sequence encoding the first RNA binding protein.

Embodiment 68. The composition of embodiment 67, wherein the first RNA binding protein comprises the first NLS or the second NLS at a C-terminus of the protein.

Embodiment 69. The composition of any one of embodiments 1-68, wherein the second RNA binding protein comprises or consists of a nuclease domain.

Embodiment 70. The composition of embodiment 69, wherein the sequence encoding the second RNA binding protein comprises or consists of an RNAse

Embodiment 71. The composition of embodiment 70, wherein the second RNA binding protein comprises or consists of an RNAse1.

Embodiment 72. The composition of embodiment 71, wherein the RNAse1 protein comprises or consists of SEQ ID NO: 20.

Embodiment 73. The composition of embodiment 72, wherein the second RNA binding protein comprises or consists of an RNAse4.

Embodiment 74. The composition of embodiment 73, wherein the RNAse4 protein comprises or consists of: (SEQ ID NO: 21 .

Embodiment 75. The composition of embodiment 70, wherein the second RNA binding protein comprises or consists of an RNAse6.

Embodiment 76. The composition of embodiment 75, wherein the RNAse6 protein comprises or consists of SEQ ID NO: 22.

Embodiment 77. The composition of embodiment 70, wherein the second RNA binding protein comprises or consists of an RNAse7.

Embodiment 78. The composition of embodiment 77, wherein the RNAse7 protein comprises or consists of SEQ ID NO: 23

Embodiment 79. The composition of embodiment 70, wherein the second RNA binding protein comprises or consists of an RNAse8.

Embodiment 80. The composition of embodiment 79, wherein the RNAse8 protein comprises or consists of SEQ ID NO: 24.

Embodiment 81. The composition of embodiment 70, wherein the second RNA binding protein comprises or consists of an RNAse2.

Embodiment 82. The composition of embodiment 81, wherein the RNAse2 protein comprises or consists of SEQ ID NO: 25.

Embodiment 83. The composition of embodiment 70, wherein the second RNA binding protein comprises or consists of an RNAse6PL.

Embodiment 84. The composition of embodiment 83, wherein the RNAse6PL protein comprises or consists of SEQ ID NO: 26.

Embodiment 85. The composition of embodiment 70, wherein the second RNA binding protein comprises or consists of an RNAseL.

Embodiment 86. The composition of embodiment 85, wherein the RNAseL protein comprises or consists of SEQ ID NO: 27.

Embodiment 87. The composition of embodiment 70, wherein the second RNA binding protein comprises or consists of an RNAseT2.

Embodiment 88. The composition of embodiment 87, wherein the RNAseT2 protein comprises or consists of SEQ ID NO: 28.

Embodiment 89. The composition of embodiment 70, wherein the second RNA binding protein comprises or consists of an RNAsel 1.

Embodiment 90. The composition of embodiment 89, wherein the RNAse 11 comprises or consists of SEQ ID NO: 29.

Embodiment 91. The composition of embodiment 70, wherein the second RNA binding protein comprises or consists of an RNAseT2-like.

Embodiment 92. The composition of embodiment 91, wherein the RNAseT2-like protein comprises or consists of SEQ ID NO: 30.

Embodiment 93. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a NOB1 polypeptide.

Embodiment 94. The composition of embodiment 93, wherein the NOB1 polypeptide comprises or consists of SEQ ID NO: 31.

Embodiment 95. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of an endonuclease.

Embodiment 96. The composition of embodiment 95, wherein the second RNA binding protein comprises or consists of an endonuclease V (ENDOV).

Embodiment 97. The composition of embodiment 96, wherein the ENDOV protein comprises or consists of SEQ ID NO: 32.

Embodiment 98. The composition of embodiment 95, wherein the second RNA binding protein comprises or consists of an endonuclease G (ENDOG).

Embodiment 99. The composition of embodiment 98, wherein the ENDOG protein comprises or consists of SEQ ID NO: 33.

Embodiment 100. The composition of embodiment 95, wherein the second RNA binding protein comprises or consists of an endonuclease D1 (ENDOD1).

Embodiment 101. The composition of embodiment 100, wherein the ENDOD1 protein comprises or consists of SEQ ID NO: 34 .

Embodiment 102. The composition of embodiment 95, wherein the second RNA binding protein comprises or consists of a Human flap endonuclease-1 (hFEN1).

Embodiment 103. The composition of embodiment 102, wherein the hFEN1 protein comprises or consists of SEQ ID NO: 35.

Embodiment 104. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a human Schlafen 14 (hSLFN14) polypeptide.

Embodiment 105. The composition of embodiment 104, wherein the hSLFN14 polypeptide comprises or consists of SEQ ID NO: 36 .

Embodiment 106. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a human beta-lactamase-like protein 2 (hLACTB2) polypeptide.

Embodiment 107. The composition of embodiment 106, wherein the hLACTB2 polypeptide comprises or consists of SEQ ID NO: 37.

Embodiment 108. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of an apurinic/apyrimidinic (AP) endodeoxyribonuclease (APEX2) polypeptide.

Embodiment 109. The composition of embodiment 108, wherein the APEX2 polypeptide comprises or consists of SEQ ID NO: 38.

Embodiment 110. The composition of embodiment 108, wherein the APEX2 polypeptide comprises or consists of: SEQ ID NO: 39.

Embodiment 111. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of an angiogenin (ANG) polypeptide.

Embodiment 112. The composition of embodiment 111, wherein the ANG polypeptide comprises or consists of SEQ ID NO: 40.

Embodiment 113. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a heat responsive protein 12 (HRSP12) polypeptide.

Embodiment 114. The composition of embodiment 113, wherein the HRSP12 polypeptide comprises or consists of SEQ ID NO: 41.

Embodiment 115. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a Zinc Finger CCCH-Type Containing 12A (ZC3H12A) polypeptide.

Embodiment 116. The composition of embodiment 115, wherein the ZC3H12A polypeptide comprises or consists of SEQ ID NO: 42.

Embodiment 117. The composition of embodiment 115, wherein the ZC3H12A polypeptide comprises or consists of SEQ ID NO: 43.

Embodiment 118. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a Reactive Intermediate Imine Deaminase A (RIDA) polypeptide.

Embodiment 119. The composition of embodiment 118, wherein the RIDA polypeptide comprises or consists of SEQ ID NO: 44.

Embodiment 120. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a Phospholipase D Family Member 6 (PDL6) polypeptide.

Embodiment 121. The composition of embodiment 120, wherein the PDL6 polypeptide comprises or consists of: (SEQ ID NO: 126.

Embodiment 122. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a Endonuclease III-like protein 1 (NTHL) polypeptide.

Embodiment 123. The composition of embodiment 122, wherein the NTHL polypeptide comprises or consists of SEQ ID NO: 123.

Embodiment 124. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a Mitochondrial ribonuclease P catalytic subunit (KIAA0391) polypeptide.

Embodiment 125. The composition of embodiment 124, wherein the KIAA0391 polypeptide comprises or consists of SEQ ID NO: 127.

Embodiment 126. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of an apurinic or apyrimidinic site lyase (APEX1) polypeptide.

Embodiment 127. The composition of embodiment 126, wherein the APEX1 polypeptide comprises or consists of SEQ ID NO: 125.

Embodiment 128. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of an argonaute 2 (AGO2) polypeptide.

Embodiment 129. The composition of embodiment 128, wherein the AGO2 polypeptide comprises or consists of SEQ ID NO: 128.

Embodiment 130. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a mitochondrial nuclease EXOG (EXOG) polypeptide.

Embodiment 131. The composition of embodiment 130, wherein the EXOG polypeptide comprises or consists of SEQ ID NO: 129.

Embodiment 132. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a Zinc Finger CCCH-Type Containing 12D (ZC3H12D) polypeptide.

Embodiment 133. The composition of embodiment 132, wherein the ZC3H12D polypeptide comprises or consists of SEQ ID NO: 130

Embodiment 134. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of an endoplasmic reticulum to nucleus signaling 2 (ERN2) polypeptide.

Embodiment 135. The composition of embodiment 134, wherein the ERN2 polypeptide comprises or consists of SEQ ID NO: 131.

Embodiment 136. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a pelota mRNA surveillance and ribosome rescue factor (PELO) polypeptide.

Embodiment 137. The composition of embodiment 136, wherein the PELO polypeptide comprises or consists of SEQ ID NO: 132

Embodiment 138. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a YBEY metallopeptidase (YBEY) polypeptide.

Embodiment 139. The composition of embodiment 138, wherein the YBEY polypeptide comprises or consists of SEQ ID NO: 133

Embodiment 140. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a cleavage and polyadenylation specific factor 4 like (CPSF4L) polypeptide.

Embodiment 141. The composition of embodiment 140, wherein the CPSF4L comprises or consists of SEQ ID NO: 134.

Embodiment 142. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of an hCG_200273 1polypeptide.

Embodiment 143. The composition of embodiment 142, wherein the hCG_2002731 polypeptide comprises or consists of SEQ ID NO: 135.

Embodiment 144. The composition of embodiment 142, wherein the hCG_2002731 polypeptide comprises or consists of SEQ ID NO: 136.

Embodiment 145. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of an Excision Repair Cross-Complementation Group 1 (ERCC1) polypeptide.

Embodiment 146. The composition of embodiment 145, wherein the ERCC1 polypeptide comprises or consists of SEQ ID NO: 137.

Embodiment 147. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a ras-related C3 botulinum toxin substrate 1 isoform (RAC1) polypeptide.

Embodiment 148. The composition of embodiment 147, wherein the RAC1 polypeptide comprises or consists of SEQ ID NO: 138

Embodiment 149. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a Ribonuclease A A1 (RAA1) polypeptide.

Embodiment 150. The composition of embodiment 149, wherein the RAA1 polypeptide comprises or consists of SEQ ID NO: 139

Embodiment 151. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a Ras Related Protein (RAB1) polypeptide.

Embodiment 152. The composition of embodiment 151, wherein the RAB1 polypeptide comprises or consists of SEQ ID NO: 140

Embodiment 153. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a DNA Replication Helicase/Nuclease 2 (DNA2) polypeptide.

Embodiment 154. The composition of embodiment 153, wherein the DNA2 polypeptide comprises or consists of SEQ ID NO: 141

Embodiment 155. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a FLJ35220 polypeptide.

Embodiment 156. The composition of embodiment 155, wherein the FLJ35220 polypeptide comprises or consists of SEQ ID NO: 142.

Embodiment 157. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a FLJ13173 polypeptide.

Embodiment 158. The composition of embodiment 157, wherein the FLJ13173 polypeptide comprises or consists of: (SEQ ID NO: 143.

Embodiment 159. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a DNA repair endonuclease XPF (ERCC4) polypeptide.

Embodiment 160. The composition of embodiment 159, wherein the ERCC4 polypeptide comprises or consists of SEQ ID NO: 64.

Embodiment 161. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a mutated Rnase1 (Rnase1(K41R)) polypeptide.

Embodiment 162. The composition of embodiment 161, wherein the Rnase1(K41R) polypeptide comprises or consists of SEQ ID NO: 116.

Embodiment 163. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a mutated Rnasel (Rnase1(K41R, D121E)) polypeptide.

Embodiment 164. The composition of embodiment 163, wherein the Rnase 1 (Rnase1(K41R, D121E)) polypeptide comprises or consists of SEQ ID NO: 117.

Embodiment 165. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a mutated Rnase1 (Rnase1(K41R, D121E, H119N)) polypeptide.

Embodiment 166. The composition of embodiment 165, wherein the Rnase 1 (Rnase1(K41R, D121E, H119N)) polypeptide comprises or consists of SEQ ID NO: 118.

Embodiment 167. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a mutated Rnase1 (Rnase1(H119N)) polypeptide.

Embodiment 168. The composition of embodiment 167, wherein the Rnase 1 (Rnase1(H119N)) polypeptide comprises or consists of SEQ ID NO: 119.

Embodiment 169. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a mutated Rnase1 (Rnase1(R39D, N67D, N88A, G89D, R91D, H1 19N)) polypeptide.

Embodiment 170. The composition of embodiment 169, wherein the Rnase 1 (Rnase1(R39D, N67D, N88A, G89D, R91D, H119N)) polypeptide comprises or consists of SEQ ID NO: 120 .

Embodiment 171. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a mutated Rnase1 (Rnase1(R39D, N67D, N88A, G89D, R91D, H119N)) polypeptide.

Embodiment 172. The composition of embodiment 171, wherein the Rnase1 (Rnase1(R39D, N67D, N88A, G89D, R91D, H119N, K41R, D121E)) polypeptide comprises or consists of SEQ ID NO: 121.

Embodiment 173. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of a mutated Rnasel (Rnasel(R39D, N67D, N88A, G89D, R91D, H119N)) polypeptide.

Embodiment 174. The composition of embodiment 173, wherein the Rnase 1 (Rnase1(R39D, N67D, N88A, G89D, R91D)) polypeptide comprises or consists of SEQ ID NO: 122.

Embodiment 175. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of Teneurin Transmembrane Protein 1 (TENM1) polypeptide.

Embodiment 176. The composition of embodiment 175, wherein the TENM1 polypeptide comprises or consists of SEQ ID NO: 144.

Embodiment 177. The composition of embodiment 69, wherein the second RNA binding protein comprises or consists of Teneurin Transmembrane Protein 2 (TENM2) polypeptide.

Embodiment 178. The composition of embodiment 177, wherein the TENM2 polypeptide comprises or consists of SEQ ID NO: 145 .

Embodiment 179. A composition comprising a sequence encoding a target RNA-binding fusion protein comprising (a) a sequence encoding a first RNA-binding polypeptide or portion thereof; and (b) a sequence encoding a second RNA-binding polypeptide, wherein the first RNAbiding polypeptide binds a target RNA not guided by a gRNA sequence, and wherein the second RNA-binding polypeptide comprises RNA-nuclease activity.

Embodiment 180. The composition of embodiment 179, wherein the first RNA-binding polypeptide or portion thereof is a PUF, PUMBY, or PPR polypeptide or portion thereof.

Embodiment 181. A method for modifying the level of expression of an RNA molecule or a protein encoded by the RNA molecule, the method comprising contacting the composition of embodiments 1 or 179 and the RNA molecule under conditions suitable for binding of the fusion protein or a portion thereof to the RNA molecule.

## EXAMPLES

## Example 1: Methods

[0344] HEK-293 cells were cultured in DMEM with $10 \%$ FBS and $1 \%$ penicillin/streptomycin (GIBCO) and passaged at $90 \%-100 \%$ confluency. Cells were seeded at $1 \times 10^{\wedge} 5$ cells per well of a 24 -well plate for RNA isolation or $.5 \times 10^{\wedge} 5$ cells per well of a 96 -well plate for luciferase assays. RNA isolations were carried out with RNAeasy columns (Qiagen) according to the manufacturer's protocol. RNA quality and concentrations were estimated using the Nanodrop spectrophotometer. cDNA preparation was done using Superscript III (Thermo) with random primers according to the manufacturer's protocol. qPCR was carried out with primers in a sequence adjacent to the CTG repeat in the reporter plasmid using the following primers:

| Forward <br> Primer | TetCTG DMPK E15 F | TCGGAGCGGTTGTGAACT | SEQ ID NO: |
| :--- | :--- | :--- | :--- |

- 127 -

| Reverse <br> Primer | TetCTG_DMPK_E15_R | GTTCGCCGTTGTTCTGTC | SEQ ID NO: |
| :--- | :--- | :--- | :--- |
| 84 |  |  |  |

[0345] Relative abundance of the CTG repeat reporter was determined by normalization to GAPDH. Next, levels of the CTG-targeting sgRNA were normalized to a non-targeting sgRNA to generate a final value reported in the associated data package.

| CTG- <br> targeting <br> spacer | AGCAGCAGCAGCAGCAGCAG | SEQ ID |
| :--- | :--- | :--- |
| Non- <br> targeting <br> control <br> spacer ( $\boldsymbol{2} \mathbf{2})$ | GTGATAAGTGGAATGCCATG 85 |  |
| sgRNA <br> scaffold <br> (N's <br> indicate <br> spacer) | GNNNNNNNNNNNNNNNNNNNNGUUUAAGAGCUAUGCUG | GAACAGCAUAGCAAGUUUAAAUAAGGCUAGUCCGUUA <br> UCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUUUUU |

[0346] Luciferase assays were conducted with the Promega Dual Luciferase kit according to manufacturer's directions. Reported values are a ratio of firefly and renilla luciferase luminescence readings.

## Example 2: RNA-guided cleavage of repetitive RNA molecules and mRNA molecules

[0347] Experimental Design: Various fusions of human proteins with annotated RNA endonuclease activity and Cas9 (Streptococcus pyogenes or Campylobacter jejuni) were constructed. Plasmids encoding the above fusions were co-transfected with either a repeatcontaining plasmid or a luciferase assay plasmid (comprising an mRNA sequence encoding a luciferase protein). A level of CTG repeat-containing RNA was measured with qPCR in the condition in which an RNA endonuclease/Cas9 fusion was co-transfected with a repetitive RNA. A level of luciferase protein was measured using a luminescence assay in the condition in which an RNA endonuclease/Cas9 fusion was co-transfected with a luciferase assay plasmid. All measurements were normalized to a non-targeting sgRNA control construct (Figures 3A-5 and Figure 9).

## Example 3: RNA-guided cleavage of Viral RNA Molecules

[0348] A549 cells were cultured in DMEM with 10\% FBS and 1\% penicillin/streptomycin (GIBCO) and passaged at $90 \%-100 \%$ confluency. Cells were seeded at $1 \times 10^{\wedge} 5$ cells per well of a 24 -well plate for RNA isolation or $.5 \times 10^{\wedge} 5$ cells per well. Cells were transfected with plasmids encoding Campylobacter jejuni Cas 9 (CjeCas9) fused to the gene NTHL1 (residues 31-312, E43) or CPSF4L (full length, E67) with plasmids encoding one of four sites in Zika NS5 RNA CjeCas9 was driven by an EFS promoter while the guide RNAs were driven by U6 promoter. The sequences of the sgRNAs are presented in Table 1. The sequences of the constructs used in this study are presented below.
[0349] RNA isolations were carried out with RNAeasy columns (Qiagen) according to the manufacturer's protocol. RNA quality and concentrations were estimated using the Nanodrop spectrophotometer. cDNA preparation was done using Superscript III (Thermo) with random primers according to the manufacturer's protocol. qPCR was carried out with the following primers as listed in Table 2.
[0350] Figure 7 shows expression levels of Zika NS5 assessed in the presence of both E43 and E67 endonucleases with sgRNAs containing the various NS5-targeting spacer sequences as indicated in Table 2. Zika NS5 expression is displayed as fold change relative to the endonuclease loaded with an sgRNA containing a control (Lambda) spacer sequence.
[0351] Immunofluorescence microscopy was used to visualize Zika NS5 expression in the presence of E 43 or E 67 endonucleases fused to CjeCas9. Figure 8A shows a fluorescence microscopy image of cells transfected with CjeCas9-endonuclease fusions loaded with an sgRNA containing a Zika NS5-targeting spacer sequence. Expression of Zika NS5 is markedly decreased in the presence of CjeCas9-endonuclease fusions loaded with the appropriate Zika NS5-targeting sgRNA as compared to CjeCas9-endonuclease fusions loaded with a non-Zika NS5 targeting sgRNA (Figures 8A and 8B). Figure 6 is a list of exemplary endonucleases for use in the compositions of the disclosure.
[0352] Table 1: qPCR primers

| GAPDH_F | CAGCCTCAAGATCATCAGCAA (SEQ ID NO: 192) |
| :--- | :--- |
| GAPDH_R | TGTGGTCATGAGTCCTTCCA (SEQ ID NO: 193) |
|  |  |
| NS5_F | GAGGAGAGTGCCAGAGTTGT (SEQ ID NO: 194) |


| NS5 R | TCTCTCTCCCCATCCAGTGA (SEQ ID NO: 195) |
| :--- | :--- |

[0353] Table 2: sgRNA sequences

| NS5-targeting spacer 1 | gcaatgatcttcatgttgggagc (SEQ ID NO: 196) |
| :---: | :---: |
| NS5-targeting spacer 2 | gaaccttgttgatgaactcttc (SEQ ID NO: 197) |
| NS5-targeting spacer 3 | gttggtgattagagcttcattc (SEQ ID NO: 198) |
| NS5-targeting spacer 4 | gagtgatcctcgttcaagaatcc (SEQ ID NO: 199) |
| Non-targeting control spacer ( $\lambda 2$ ) | GTGATAAGTGGAATGCCATG (SEQ ID No: 200) |
| sgRNA scaffold (N's indicate spacer) | GNNNNNNNNNNNNNNNNNNNNGUUUAAGAGCUAUG CUGGAAACAGCAUAGCAAGUUUAAAUAAGGCUAGU CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGU GCUUUUUUU (SEQ ID No: 201) |

[0354] A E43-CjeCas9 and sgRNA plasmid may comprise or consist of the sequence (U6: N's=sgRNA spacer, E43, CieCas?):
gtttattacagggacagcagagatccagtttggttaattaaggtaccgagggcctatttcccatgattccttcatatttgcatatacgatacaagg ctgttagagagataattagaattaatttgactgtaaacacaaagatattagtacaaaatacgtgacgtagaaagtaataatttcttgggtagttg cagttttaaaattatgttttaaaatggactatcatatgcttaccgtaacttgaaagtatttcgatttcttggctttatatatcttGTGGAAAGG ACGAAACACCNNNNNNNNNNNNNNNNNNNGTTTTAGTCCCTGAAGGGACTAAAAT AAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGCTTTTTTTCCTGC AGCCCGGGGGATCCACTAGTTCTAGAGCGGCCGCCACCGCGGTGGAGCTCCAGCTT TTGTTCCCTTTAGTGAGGGTTAATTGCGCGAATTCGCTAGCTAGGTCTTGAAAGGAG TGGGAATTGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCC GAGAAGTTGGGGGGAGGGGTCGGCAATTGATCCGGTGCCTAGAGAAGGTGGCGCG GGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGG GAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTG CCGCCAGAACACAGGACCGGTTCTAGAGCGCTATTTAGAACCatgTGTTCTCCCCAA GAATCTGGCATGACCGCTCTTTCAGCGAGGATGTTGACGCGAAGCAGATCCCT GGGACCTGGGGCCGGGCCACGAGGGTGTCGGGAAGAACCAGGACCGTTGCGA CGGAGGGAAGCAGCAGCGGAAGCTCGGAAATCCCATTCTCCGGTTAAACGACC CCGCAAGGCACAACGGCTCAGGGTTGCTTACGAGGGGAGCGATTCCGAAAAGG GTGAAGGAGCAGAGCCCTTGAAGGTTCCAGTATGGGAACCCCAGGATTGGCAG CAGCAGCTTGTAAACATCCGAGCAATGAGGAACAAAAAAGATGCACCTGTTGA TCACCTCGGAACCGAACATTGTTATGATTCTAGTGCGCCGCCAAAAGTCCGCC GGTATCAGGTTCTGTTGAGTTTGATGCTGAGTAGTCAGACTAAGGACCAGGTT ACGGCCGGAGCAATGCAACGGCTTCGGGCACGGGGACTCACGGTCGATAGCAT TTTGCAGACCGATGACGCAACATTGGGTAAACTCATATATCCAGTTGGCTTCTG GCGGAGCAAAGTGAAGTACATCAAGCAGACCTCAGCCATTCTCCAACAACATT ACGGAGGTGATATACCCGCAAGCGTAGCTGAACTGGTAGCACTGCCGGGCGTC GGTCCCAAAATGGCACATCTGGCTATGGCGGTTGCTTGGGGAACGGTGTCTGG TATCGCAGTTGATACGCATGTCCACCGCATCGCCAATCGGCTGAGGTGGACTA

AAAAAGCCACTAAGTCTCCTGAAGAAACACGGGCTGCTCTGGAAGAGTGGCTT CCACGAGAGCTGTGGCATGAAATCAATGGATTGCTGGTTGGTTTCGGGCAGCA GACATGCTTGCCCGTGCACCCCCGGTGTCATGCTTGCTTGAACCAGGCTTTGT GCCCAGCTGCCCAGGGCCTGAGTGGAAGTGAGACACCGGGAACATCTGAGTCTGC GACCCCGGAGAGCacaaacGCGCGAATCCTGGCCTTCGcgATTGGCATTAGCAGCAT CGGCTGGGCATTCTCTGAAAACGACGAACTGAAGGATTGCGGCGTGCGAATTT TCACTAAGGTCGAAAATCCCAAAACTGGTGAATCACTCGCTCTCCCTAGACGAC TGGCACGCTCCGCACGAAAGAGGCTTGCCCGCCGCAAGGCACGCTTGAACCAT CTTAAACACCTTATTGCAAATGAGTTTAAACTGAATTATGAGGACTACCAATCC TTTGACGAGTCTCTTGCTAAAGCCTACAAAGGGAGCCTTATATCCCCGTATGAG CTCCGGTTCAGAGCACTCAACGAACTGCTGTCCAAACAGGATTTTGCTCGCGT GATTCTCCACATAGCGAAGAGGCGAGGATACGATGACATTAAAAACAGTGATG ATAAGGAAAAAGGGGCCATACTCAAAGCGATTAAGCAAAATGAAGAGAAGCTC GCTAACTATCAATCAGTAGGGGAGTATCTCTATAAAGAGTACTTCCAGAAGTTC AAAGAAAATAGCAAGGAATTTACTAATGTCCGGAATAAAAAGGAGTCTTACGA AAGATGTATTGCGCAATCTTTCCTCAAGGACGAGCTCAAATTGATTTTCAAGAA ACAAAGGGAATTTGGGTTCAGCTTCTCAAAAAAATTTGAGGAAGAGGTTCTGA GCGTTGCCTTTTACAAACGCGCCCTTAAGGACTTCTCACATCTCGTAGGGAATT GTAGTTTCTTCACCGATGAAAAACGGGCGCCAAAAAATAGCCCTTTGGCTTTTA TGTTTGTCGCTCTGACTCGCATCATTAATCTGCTCAACAACCTTAAAAACACGG AAGGGATTCTGTACACAAAGGATGATCTGAACGCTCTGCTTAACGAAGTTTTGA AGAACGGGACTTTGACCTACAAACAAACCAAAAAGCTTCTTGGTCTCAGTGATG ACTACGAATTCAAGGGAGAAAAAGGGACATATTTCATCGAATTCAAGAAGTATA AGGAGTTCATCAAAGCCTTGGGCGAGCACAACTTGTCTCAAGATGATCTCAAC GAAATTGCTAAGGATATCACTCTGATTAAAGACGAGATCAAGCTCAAAAAGGC GTTGGCGAAGTATGACCTTAACCAAAACCAAATAGATAGCCTCAGCAAGTTGG AATTTAAAGATCACTTGAATATAAGTTTCAAGGCCCTTAAGTTGGTCACCCCCT TGATGCTTGAAGGAAAGAAATATGATGAGGCATGTAATGAGCTGAATCTCAAG GTTGCTATTAACGAAGACAAAAAAGATTTCCTCCCAGCTTTCAATGAGACTTAC TATAAGGACGAGGTTACCAATCCTGTGGTGCTCCGAGCCATCAAAGAGTATCG AAAGGTCCTGAATGCTTTGCTCAAAAAATACGGTAAGGTACACAAAATAAATAT TGAGCTCGCAAGGGAGGTCGGTAAGAACCACTCCCAGCGCGCCAAAATAGAAA AGGAACAGAATGAAAATTACAAAGCGAAAAAGGACGCCGAGCTCGAGTGCGAA AAGCTGGGCCTGAAAATAAACAGCAAGAACATTCTCAAACTCCGCCTCTTCAAA GAACAAAAAGAATTTTGTGCTTATAGTGGTGAGAAAATAAAAATCTCCGATCTT CAAGACGAGAAGATGCTCGAAATAGACgcgATATATCCATATAGCAGGTCTTTTG ACGATTCTTACATGAATAAAGTGCTTGTTTTCACTAAGCAGAATCAGGAAAAGT TGAATCAGACCCCCTTTGAGGCCTTTGGCAACGACTCAGCAAAGTGGCAGAAG ATCGAGGTCTTGGCTAAGAATCTTCCTACTAAGAAACAGAAAAGGATATTGGAT AAGAACTATAAAGACAAAGAACAAAAGAACTTTAAAGACCGCAACCTCAATGA CACCAGATACATAGCAAGATTGGTTCTGAACTACACAAAAGATTATTTGGACTT CTTGCCGCTGTCTGATGATGAGAACACGAAACTCAACGACACGCAAAAGGGGT CTAAAGTCCACGTCGAAGCTAAATCTGGGATGCTCACCTCAGCATTGAGGCAT ACGTGGGGATTCTCAGCAAAGGACCGAAACAATCACCTGCACCATGCCATTGA CGCAGTTATCATAGCGTATGCCAATAATTCAATAGTAAAAGCGTTTAGCGACTT

CAAGAAGGAACAAGAGTCCAACAGCGCCGAGCTCTACGCAAAAAAGATTAGTG AACTCGACTACAAAAACAAAAGAAAATTCTTTGAGCCGTTCAGCGGATTTCGAC AGAAGGTATTGGATAAAATAGATGAAATTTTCGTGAGCAAACCCGAAAGGAAA AAGCCCTCAGGCGCCTTGCACGAAGAGACTTTCAGGAAGGAAGAGGAATTCTA CCAAAGCTACGGCGGAAAAGAGGGAGTTTTGAAGGCTCTCGAACTTGGAAAGA TTAGGAAGGTGAACGGCAAGATAGTGAAAAACGGCGATATGTTCCGGGTTGAT ATCTTCAAACATAAAAAAACGAATAAATTTTATGCTGTGCCTATATACACTATG GACTTCGCACTTAAGGTCCTGCCGAATAAGGCGGTAGCCCGATCTAAAAAAGG CGAAATTAAGGACTGGATTTTGATGGATGAAAATTACGAGTTCTGCTTTTCTCT CTACAAGGATTCCCTTATATTGATACAGACGAAAGATATGCAGGAACCGGAATT CGTGTATTACAACGCTTTTACTTCCTCTACGGTATCTTTGATTGTCTCCAAACAT GACAACAAATTCGAAACACTCAGTAAAAACCAAAAGATTCTCTTTAAAAATGCG AACGAGAAAGAAGTAATTGCAAAATCAATTGGCATCCAAAATTTGAAAGTTTTT GAAAAATATATAGTATCTGCCCTCGGAGAGGTTACTAAAGCGGAATTTAGACA GCGAGAGGACTTCAAAAAATCAGGTCCACCCAAGAAAAAACGCAAGGTGGAAGA TCCGAAGAAAAAGCGAAAAGTGGATGTGtaaCGTTTTCCGGGACGCCGGCTGGATGA TCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCCACCCCAACTTGTTTATTGC AGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCAT TTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTC TGTATACCG(SEQ ID No: 202)

[0355] A E67-CjeCas9 and sgRNA plasmid may comprise or consist of the sequence (U6: N's=sgRNA spacer, E67, CieCas9):
gttattacagggacagcagagatccagtttggttaattaaggtaccgagggcctatttcccatgattccttcatatttgcatatacgatacaagg ctgttagagagataattagaattaatttgactgtaaacacaaagatattagtacaaaatacgtgacgtagaaagtaataatttcttgggtagttg cagttttaaaattatgttttaaaatggactatcatatgcttaccgtaacttgaaagtatttcgatttcttggctttatatatcttGTGGAAAGG ACGAAACACCNNNNNNNNNNNNNNNNNNNGTTTTAGTCCCTGAAGGGACTAAAAT AAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGCTTTTTTTCCTGC AGCCCGGGGGATCCACTAGTTCTAGAGCGGCCGCCACCGCGGTGGAGCTCCAGCTT TTGTTCCCTTTAGTGAGGGTTAATTGCGCGAATTCGCTAGCTAGGTCTTGAAAGGAG TGGGAATTGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCC GAGAAGTTGGGGGGAGGGGTCGGCAATTGATCCGGTGCCTAGAGAAGGTGGCGCG GGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGG GAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTG CCGCCAGAACACAGGACCGGTTCTAGAGCGCTATTTAGAACCatgCAGGAGGTAATA GCGGGGCTTGAGCGATTTACCTTTGCCTTCGAAAAAGACGTAGAGATGCAGAA GGGAACCGGCCTGCTCCCATTTCAAGGTATGGACAAATCAGCATCTGCCGTGT GCAATTTTTTCACCAAGGGTCTGTGTGAAAAGGGGAAGCTCTGTCCATTTCGCC ATGATCGCGGAGAGAAGATGGTGGTGTGTAAGCACTGGCTGAGAGGGCTTTGC AAAAAAGGCGACCACTGCAAATTTCTTCACCAATATGACCTGACTCGAATGCCT GAGTGTTATTTTTACAGTAAGTTCGGTGACTGTAGCAACAAAGAATGCAGCTTC TTGCATGTCAAACCAGCATTCAAGTCACAGGATTGCCCGTGGTACGATCAGGG TTTTTGCAAGGACGGTCCCCTCTGCAAATATCGACACGTACCCAGAATTATGTG CCTTAATTACCTGGTCGGCTTCTGTCCTGAAGGGCCAAAATGTCAGTTTGCTCA

AAAAATTCGCGAGTTCAAATTGCTCCCTGGGTCTAAAATTTGGGAACCCCAGGA TTGGCAGCAGCAGCTTGTAAACATCCGAGCAATGAGGAACAAAAAAGATGCAC CTGTTGATCACCTCGGAACCGAACATTGTTATGATTCTAGTGCGCCGCCAAAAG TCCGCCGGTATCAGGTTCTGTTGAGTTTGATGCTGAGTAGTCAGACTAAGGAC CAGGTTACGGCCGGAGCAATGCAACGGCTTCGGGCACGGGGACTCACGGTCG ATAGCATTTTGCAGACCGATGACGCAACATTGGGTAAACTCATATATCCAGTTG GCTTCTGGCGGAGCAAAGTGAAGTACATCAAGCAGACCTCAGCCATTCTCCAA CAACATTACGGAGGTGATATACCCGCAAGCGTAGCTGAACTGGTAGCACTGCC GGGCGTCGGTCCCAAAATGGCACATCTGGCTATGGCGGTTGCTTGGGGAACGG TGTCTGGTATCGCAGTTGATACGCATGTCCACCGCATCGCCAATCGGCTGAGG TGGACTAAAAAAGCCACTAAGTCTCCTGAAGAAACACGGGCTGCTCTGGAAGA GTGGCTTCCACGAGAGCTGTGGCATGAAATCAATGGATTGCTGGTTGGTTTCG GGCAGCAGACATGCTTGCCCGTGCACCCCCGGTGTCATGCTTGCTTGAACCAG GCTTTGTGCCCAGCTGCCCAGGGCCTGAGTGGAAGTGAGACACCGGGAACATCT GAGTCTGCGACCCCGGAGAGCacaaacGCGCGAATCCTGGCCTTCGcgATTGGCATT AGCAGCATCGGCTGGGCATTCTCTGAAAACGACGAACTGAAGGATTGCGGCGT GCGAATTTTCACTAAGGTCGAAAATCCCAAAACTGGTGAATCACTCGCTCTCCC TAGACGACTGGCACGCTCCGCACGAAAGAGGCTTGCCCGCCGCAAGGCACGCT TGAACCATCTTAAACACCTTATTGCAAATGAGTTTAAACTGAATTATGAGGACT ACCAATCCTTTGACGAGTCTCTTGCTAAAGCCTACAAAGGGAGCCTTATATCCC CGTATGAGCTCCGGTTCAGAGCACTCAACGAACTGCTGTCCAAACAGGATTTT GCTCGCGTGATTCTCCACATAGCGAAGAGGCGAGGATACGATGACATTAAAAA CAGTGATGATAAGGAAAAAGGGGCCATACTCAAAGCGATTAAGCAAAATGAAG AGAAGCTCGCTAACTATCAATCAGTAGGGGAGTATCTCTATAAAGAGTACTTCC AGAAGTTCAAAGAAAATAGCAAGGAATTTACTAATGTCCGGAATAAAAAGGAG TCTTACGAAAGATGTATTGCGCAATCTTTCCTCAAGGACGAGCTCAAATTGATT TTCAAGAAACAAAGGGAATTTGGGTTCAGCTTCTCAAAAAAATTTGAGGAAGA GGTTCTGAGCGTTGCCTTTTACAAACGCGCCCTTAAGGACTTCTCACATCTCGT AGGGAATTGTAGTTTCTTCACCGATGAAAAACGGGCGCCAAAAAATAGCCCTTT GGCTTTTATGTTTGTCGCTCTGACTCGCATCATTAATCTGCTCAACAACCTTAA AAACACGGAAGGGATTCTGTACACAAAGGATGATCTGAACGCTCTGCTTAACG AAGTTTTGAAGAACGGGACTTTGACCTACAAACAAACCAAAAAGCTTCTTGGTC TCAGTGATGACTACGAATTCAAGGGAGAAAAAGGGACATATTTCATCGAATTCA AGAAGTATAAGGAGTTCATCAAAGCCTTGGGCGAGCACAACTTGTCTCAAGAT GATCTCAACGAAATTGCTAAGGATATCACTCTGATTAAAGACGAGATCAAGCTC AAAAAGGCGTTGGCGAAGTATGACCTTAACCAAAACCAAATAGATAGCCTCAG CAAGTTGGAATTTAAAGATCACTTGAATATAAGTTTCAAGGCCCTTAAGTTGGT CACCCCCTTGATGCTTGAAGGAAAGAAATATGATGAGGCATGTAATGAGCTGA ATCTCAAGGTTGCTATTAACGAAGACAAAAAAGATTTCCTCCCAGCTTTCAATG AGACTTACTATAAGGACGAGGTTACCAATCCTGTGGTGCTCCGAGCCATCAAA GAGTATCGAAAGGTCCTGAATGCTTTGCTCAAAAAATACGGTAAGGTACACAA AATAAATATTGAGCTCGCAAGGGAGGTCGGTAAGAACCACTCCCAGCGCGCCA AAATAGAAAAGGAACAGAATGAAAATTACAAAGCGAAAAAGGACGCCGAGCTC GAGTGCGAAAAGCTGGGCCTGAAAATAAACAGCAAGAACATTCTCAAACTCCG CCTCTTCAAAGAACAAAAAGAATTTTGTGCTTATAGTGGTGAGAAAATAAAAAT


#### Abstract

CTCCGATCTTCAAGACGAGAAGATGCTCGAAATAGACgcgATATATCCATATAGC AGGTCTTTTGACGATTCTTACATGAATAAAGTGCTTGTTTTCACTAAGCAGAAT CAGGAAAAGTTGAATCAGACCCCCTTTGAGGCCTTTGGCAACGACTCAGCAAA GTGGCAGAAGATCGAGGTCTTGGCTAAGAATCTTCCTACTAAGAAACAGAAAA GGATATTGGATAAGAACTATAAAGACAAAGAACAAAAGAACTTTAAAGACCGC AACCTCAATGACACCAGATACATAGCAAGATTGGTTCTGAACTACACAAAAGAT TATTTGGACTTCTTGCCGCTGTCTGATGATGAGAACACGAAACTCAACGACACG CAAAAGGGGTCTAAAGTCCACGTCGAAGCTAAATCTGGGATGCTCACCTCAGC ATTGAGGCATACGTGGGGATTCTCAGCAAAGGACCGAAACAATCACCTGCACC ATGCCATTGACGCAGTTATCATAGCGTATGCCAATAATTCAATAGTAAAAGCGT TTAGCGACTTCAAGAAGGAACAAGAGTCCAACAGCGCCGAGCTCTACGCAAAA AAGATTAGTGAACTCGACTACAAAAACAAAAGAAAATTCTTTGAGCCGTTCAGC GGATTTCGACAGAAGGTATTGGATAAAATAGATGAAATTTTCGTGAGCAAACCC GAAAGGAAAAAGCCCTCAGGCGCCTTGCACGAAGAGACTTTCAGGAAGGAAGA GGAATTCTACCAAAGCTACGGCGGAAAAGAGGGAGTTTTGAAGGCTCTCGAAC TTGGAAAGATTAGGAAGGTGAACGGCAAGATAGTGAAAAACGGCGATATGTTC CGGGTTGATATCTTCAAACATAAAAAAACGAATAAATTTTATGCTGTGCCTATA TACACTATGGACTTCGCACTTAAGGTCCTGCCGAATAAGGCGGTAGCCCGATC TAAAAAAGGCGAAATTAAGGACTGGATTTTGATGGATGAAAATTACGAGTTCTG CTTTTCTCTCTACAAGGATTCCCTTATATTGATACAGACGAAAGATATGCAGGA ACCGGAATTCGTGTATTACAACGCTTTTACTTCCTCTACGGTATCTTTGATTGT CTCCAAACATGACAACAAATTCGAAACACTCAGTAAAAACCAAAAGATTCTCTT TAAAAATGCGAACGAGAAAGAAGTAATTGCAAAATCAATTGGCATCCAAAATTT GAAAGTTTTTGAAAAATATATAGTATCTGCCCTCGGAGAGGTTACTAAAGCGGA ATTTAGACAGCGAGAGGACTTCAAAAAATCAGGTCCACCCAAGAAAAAACGCAA GGTGGAAGATCCGAAGAAAAAGCGAAAAGTGGATGTGtaaCGTTTTCCGGGACGCCG GCTGGATGATCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCCACCCCAACT TGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAA ATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATC TTATCATGTCTGTATACCG (SEQ ID NO: 203)


## INCORPORATION BY REFERENCE

[0356] Every document cited herein, including any cross referenced or related patent or application is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or embodimented herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention.

Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.

## OTHER EMBODIMENTS

[0357] While particular embodiments of the disclosure have been illustrated and described, various other changes and modifications can be made without departing from the spirit and scope of the disclosure. The scope of the appended claims includes all such changes and modifications that are within the scope of this disclosure.

## CLAIMS

## What is claimed is:

1. A composition comprising a nucleic acid sequence encoding an RNA-guided target RNA-binding fusion protein comprising (a) a first RNA-binding polypeptide or portion thereof; and (b) a second RNA-binding polypeptide, wherein the first RNA-binding polypeptide binds a target RNA when guided by a gRNA sequence, and wherein the second RNA-binding polypeptide comprises RNA-nuclease activity.
2. The composition of claim 1, wherein the first RNA-binding polypeptide or portion thereof is a CRISPR/Cas polypeptide or portion thereof.
3. The composition of claim 2, wherein the CRISPR/Cas polypeptide or portion thereof is selected from the group consisting of Cas9, Cpf1, Cas13a, Cas13b, Cas13c and CasRX/Cas13d, wherein the CRISPR/Cas polypeptide has native, reduced or null activity.
4. The composition of claim 1, wherein the second RNA-binding polypeptide binds RNA in a manner in which it associates with RNA.
5. The composition of claim 4, wherein the second RNA-binding polypeptide associates with RNA in a manner in which it cleaves RNA.
6. The composition of claim 1 , wherein the nucleic acid sequence comprises a promoter.
7. The composition of claim 6 , wherein the promoter is a constitutive promoter or a tissuespecific promoter.
8. The composition of claim 1 , wherein the nucleic acid sequence further comprises a gRNA sequence, wherein the gRNA sequence comprises a spacer sequence that specifically binds a target sequence within an RNA molecule and a scaffold sequence that specifically binds to the first RNA-binding polypeptide.
9. The composition of claim 8 , wherein the spacer sequence comprises a sequence comprising at least $1,2,3,4,5,6$, or 7 repeats of a sequence selected from the group consisting of: CUG (SEQ ID NO: 18), CCUG (SEQ ID NO: 19), CAG (SEQ ID NO: 80), GGGGCC (SEQ ID NO: 81), and a combination thereof.
10. The composition of claim 8 , wherein the nucleic acid sequence comprises a promoter which drives expression of the gRNA sequence.
11. The composition of claim 9, wherein the promoter is a polymerase III promoter.
12. The composition of claim 10, wherein the polymerase III promoter is a U6 promoter.
13. The composition of claims 1 or 9 , wherein the promoter is a tRNA promoter.
14. The composition of claims 1 or 9 , wherein the fusion protein comprises an NLS, NES or tag.
15. A vector comprising the composition of claim 1 or 8 .
16. The vector of claim 15 , wherein the vector is selected from the group consisting of: adeno-associated virus, retrovirus, lentivirus, adenovirus, nanoparticle, micelle, liposome, lipoplex, polymersome, polyplex, and dendrimer.
17. A cell comprising the vector of claim 15.
18. The composition of claim 1, wherein the second RNA-binding polypeptide is selected from the group consisting of: RNAse1, RNAse4, RNAse6, RNAse7, RNAse8, RNAse2, RNAse6PL, RNAseL, RNAseT2, RNAse11, RNAseT2-like, NOB1, ENDOV, ENDOG, ENDOD1, hFEN1, hSLFN14, hLACTB2, APEX2, ANG, HRSP12, ZC3H12A, RIDA, PDL6, NTHL, KIAA0391, APEX1, AGO2, EXOG, ZC3H12D, ERN2, PELO, YBEY, CPSF4L, hCG_2002731, ERCC1, RAC1, RAA1, RAB1, DNA2, FLJ35220, FLJ13173, ERCC4, Rnase1(K41R), Rnase1(K41R, D121E), Rnase1(K41R, D121E, H119N), Rnase1(H1 19N), Rnase1(R39D, N67D, N88A, G89D, R91D, H119N), Rnase1(R39D, N67D, N88A, G89D, R91D, H119N, K41R, D121E), Rnase1(R39D, N67D, N88A, G89D, R91D), TENM1, TENM2, RNAseK, TALEN, and ZNF638.
19. A composition comprising:
(a) a guide RNA (gRNA) sequence comprising a spacer sequence that specifically binds a target sequence within an RNA molecule and a scaffold sequence that specifically binds to the first RNA-binding polypeptide;
(b) a nucleic acid sequence encoding a fusion protein, the fusion protein comprising a first RNA-binding polypeptide and a sequence encoding a second RNAbinding polypeptide,
wherein neither the first RNA-binding polypeptide nor the second RNA-binding polypeptide comprises a significant DNA-nuclease activity,
wherein the first RNA-binding polypeptide and the second RNA-binding polypeptide are not identical, and
wherein the second RNA-binding polypeptide comprises an RNA-nuclease activity.
20. A method for modifying the level of expression of a target RNA molecule or a protein encoded by the RNA molecule, the method comprising contacting the composition of claims 19 and the RNA molecule under conditions suitable for binding of the fusion protein or a portion thereof to the RNA molecule.
FIGURE 1

FGURE 2

FIGURE 3A

## Hghexpression postive control. "pos contro"


figure 3b
Single piosmolsystemwithlower expression of
the fusion Some anchitecture os the fusions
involug new endonucleases

[^0]FIGURE 4A
CjeCas9 with N -terminal endonuclease: activity against
CTG repeats

Figure 5a

FIGURE 5B

FigURE 6





## 




FIGURE 8B



FlGURE 9



Form PCT/ISA/210 (second sheet) (January 2015)


[^0]:    Low expression posinve control: "龍"
    

