
USOO9021418B2

(12) United States Patent (10) Patent No.: US 9,021,418 B2
Seel (45) Date of Patent: Apr. 28, 2015

(54) SYSTEMS AND/OR METHODS FOR 2003/O149552 A1 8, 2003 Srinivasa
2007/0055972 A1* 3, 2007 Brown et al. 717/174

CREATION OF METAMODELS 2008, OO82959 A1* 4, 2008 Fowler T17,104
O O 2008/0092111 A1* 4/2008 Kinnucan et al. 717/105

(75) Inventor: Christian Seel, Saarbrucken (DE) 2008/0229277 A1* 9, 2008 Devarakonda et al. 717/104
2009,0132562 A1* 5, 2009 Mehr et al. TO7/100

(73) Assignee: Software AG, Darmstadt (DE) 2013/0196658 A1* 8, 2013 Fedor et al. 455,434
OTHER PUBLICATIONS

(*) Notice: Subject to any disclaimer, the term of this
atent is extended or adiusted under 35 Microsoft DSL-Tools for Visual Studio, http://msdn.microsoft.com/ p

U.S.C. 154(b) by 1109 days. de-de/library/bb932387%28v=VS.90%29.aspx 1 page (2010).
MetaCase MetalEdit--.http://www.metacase.com/MetalEdit.html. 1

(21) Appl. No.: 12/974,440 page (2010). Eclipse Model Development Tools (MDT), http://www.eclipse.org/
(22) Filed: Dec. 21, 2010 modeling/mdt/?project=uml2tools, pp. 1-4 (2010).

e af-l (Continued)

(65) Prior Publication Data
Primary Examiner — John Breene

US 2012/O159426A1 Jun. 21, 2012 Assistant Examiner — Lynda Dinh
(51) Int. Cl. (74) Attorney, Agent, or Firm — Nixon & Vanderhye PC

G06F 9/44 2006.O1
(52) U.S. Cl () (57) ABSTRACT

CPC. G06F 8/10 (2013.01); G06F 8/30 (2013.01); Certain example embodiments described herein relate to sys
G06F 8/36 (2013.01); G06F 8/33 (2013.01) tems and/or methods for systems and/or methods for

(58) Field of Classification Search improved creation of metamodels. More particularly, certain
example embodiments described herein relate to automating

CPC GE's "S'', of S. the creation of metamodels from one or more example mod
USPC s s 717/104 els. In certain example embodiments, nodes, edges, and mul
See a lication file for complete search histo tiplicities of at least one model are automatically identified. A

pp p ry. preliminary metamodel is created by adding a metaclass for
(56) References Cited each automatically identified node and edge. A connection is

U.S. PATENT DOCUMENTS

6,711,734 B1 3/2004 Baisley
6,751,631 B2 6/2004 Hrebek
7,426,523 B2 9, 2008 Schroeder
7,673,283 B2 3/2010 Gutz
7,890,923 B2 * 2/2011 Elaasar T17,104

2002/0104068 A1* 8, 2002 Barrett et al. 717,104
2003/0023413 A1 1/2003 Srinivasa 703/2

202a

Model 2

Metamodel Creation
from Example Models

Output: Created Metamodel

made between each said added metaclass edge to at least two
said added metaclass nodes via first and second associations.
Detection of multiple relations is performed by determining
whether any of said added metaclass edges are connected to
more than two added metaclass nodes. The preliminary meta
model is refined or optimized, e.g., so as to reduce the occur
rence of multiple relations.

18 Claims, 9 Drawing Sheets

202b

2O6

US 9,021.418 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Troux Architect and Metaverse, http://www.troux.com/products/
troux architect?, pp. 1-3 (2010).
Behzad Bordbar, Athanasios Staikopoulos: Automated Generation of
Metamodels for Web service Languages. http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1. 106.6193&rep--repl&type+pdf, pp.
1-14. Sep. 2-6, 2002.

Dimitris Karagiannis, Harald Kühn: Metamodelling Platforms. In
Proceedings of the 3rd International Conference ECWeb Dexa
2002, Metamodelling Platforms (2002), http://www.dke.univie.ac.
at/mmp/FullVersion MMP DexaECWeb2002.pdf, pp. 1-8, Mar.
2004.

Search Report issued on Mar. 20, 2012 in corresponding European
Application No. 11 152334.

* cited by examiner

US 9,021.418 B2 Apr. 28, 2015

ziz ~T (GUI)
gZ (61-)

U.S. Patent

US 9,021.418 B2 U.S. Patent

O

US 9,021.418 B2 Sheet 5 Of 9 Apr. 28, 2015 U.S. Patent

#707

p?AOJddy

p?Aouddy ?ON

O ºvo: D

US 9,021.418 B2 Sheet 6 of 9 Apr. 28, 2015 U.S. Patent

ÁæM??es)-CINV - Luoy SS000Ic{qnS
A
9

U.S. Patent Apr. 28, 2015 Sheet 7 of 9 US 9,021.418 B2

(Sue).uod

O O
O

'O is S. s
wn s C f C vm

E w - uO O (uoly g
d

on D. L'O O wer
SB --- 5
S k'O 2 i

k'O <g

wad

o

(s
wa

O

s

US 9,021.418 B2 Sheet 8 of 9 Apr. 28, 2015 U.S. Patent

ssedouciqnS
x'se I.

US 9,021,418 B2
1.

SYSTEMIS AND/OR METHODS FOR
CREATION OF METAMODELS

FIELD OF THE INVENTION

Certain example embodiments described herein relate to
systems and/or methods for creation of metamodels. More
particularly, certain example embodiments described herein
relate to the creation of metamodels from one or more
example models. In certain example embodiments, a
metamodel creation engine receives one or more example
model(s) and uses the models to automatically create a meta
model.

BACKGROUND AND SUMMARY OF EXAMPLE
EMBODIMENTS OF THE INVENTION

Models provide a technique for abstracting real world
events, attributes, etc. The creation of these models typically
involves domain specific challenges and issues. Metamodels
provide a further abstraction of a model and may abstract the
above domain specific challenges associated with models. A
metamodel highlights or defines the properties of how the
individual models are to be built. Many different modeling
languages implement the above model and metamodel fea
tures through graphical user interfaces (GUIs) that allow dis
parate industries and areas of application to take advantage of
optimization of business practices or software development.
The international standardization organization Object

Management Group (OMG) defines a four level standard
architecture. FIG. 1 shows the standard four tiers from the
OMG-defined architecture. The subject of the model 108 is at
tier M0, which is the object to be analyzed with a graphical
model. This is also sometimes referred to as the data layer that
may be used to describe real-world objects.

Attier M1 is the graphical model 106 of the regarded object
on level M0. The model 106 may be expressed as an example
model 114 (or a series of example models). The model may be
represented in a modeling language Such as the UML (Uni
fied Modeling Language) or the like. Models at tier M1 are
usually created in a clearly defined notation, rather than with
arbitrary modeling elements and symbols. One reason for this
is that the meaning of the defined model could be unclear on
Such an abstract level and thus may not be implementable
(e.g., the model may be too domain specific).

Tier M2 generally defines the modeling elements and their
relations. The definition of the syntax of the modeling lan
guage used in model 106 is called the metamodel 104. In
addition to defining the elements used to create a model,
metamodels are also used in order to specify the data struc
tures that are needed to represent a model on any storage. At
tier M2, the metamodel 104 may be expressed in a language.
A common example is the UML metamodel, the model that
describes UML.
At the highest level is tier M3, which includes the meta

metamodel 102. This defines the modeling language that is
used in order to create a metamodel. As with the tier described
above, meta-metamodels can be expressed in a language.
OMG uses the “Meta Object Facility” (MOF) 110 standard
for defining the specification of metamodels. This standard
uses UML 2.0 class diagrams and the Object Constraint Lan
guage (OCL) in order to specify a metamodel.

Thus, a meta-metamodel language such as MOF 2.0 may in
turn specify a metamodel language Such as UML 2.0 and
OCL. These languages in turn may be used to specify a
particular model (e.g., the business practice of a company).

10

15

25

30

35

40

45

50

55

60

65

2
It will be appreciated that if the metamodel is defined such

that it is compatible with industry standards, then it can be
used for the generation of modeling tools, for the specifica
tion of storage formats, the documentation of modeling lan
guage, etc. Specifications are especially useful in the form of
so-called domain specific languages (DSLS). These lan
guages are usually not completely new but instead are typi
cally derived from standard modeling languages and cover
the special issues of a particular domain. DSLS may speed
Software development in a given domain because the needed
modeling elements are provided in a more direct way.

Conventionally, tools that Support and identify metamod
els as assets do so though graphical metamodeling editors.
The creation of these metamodels through such tools is a
process in which a user manually creates a given metamodel.
One technique of automating the creation of metamodels

involves providing other metamodels to create more meta
models or, in other words, converting one M2 tier model into
another M2 tier model. Another conventional technique is the
automatic creation of models out of metamodels. For
example, UML models (e.g., attier M1) may be created out of
MOF metamodels. Accordingly some amount of automatic
creation of models and/or metamodels has been achieved.
However, those skilled in the art will appreciate that more
work is still needed to reduce the manual task of model,
metamodel, and/or meta-metamodel creation.
One aspect of certain example embodiments relates to the

creation of metamodels in an automated process. In certain
example embodiments, the automated process is a method
implemented on a processing system.

Another aspect of certain example embodiments relates to
providing a procedure from the creation of metamodels that is
scalable and/or non NP-complete. In certain example
embodiments, a large number of example models may be
used in order to generate a metamodel.

Another aspect of certain example embodiments is the
optimization of a generated metamodel. In certain example
embodiments, the complexity of the metamodel is reduced
during the optimization process. In certain example embodi
ments, abstract model elements are used that reduce the num
ber of edges and/or nodes in a generated metamodel.

Still another aspect of certain example embodiments
relates to the extension of existing modeling languages as
well as their generation from Scratch.

Still aspect of certain example embodiments relates to
providing a graphical visualization that uses nodes, edges,
and/or container nodes (e.g., nodes that enclose nodes, edges,
and other container nodes).

Yet another aspect of certain example embodiments relates
to generating a metamodel that follows OMG standards
MOF, which may be based on the UML 2.0 class diagram and
OCL standards.

Yet another aspect of certain example embodiments relates
to allowing users with little or no technical background to use
and/or produce the generated metamodels.

In certain example embodiments, a method of creating a
metamodel for use with a processing system including at least
one processor is provided. Nodes, edges, and multiplicities
are automatically identified from at least one example model.
A preliminary metamodel is created by (a) adding to the
preliminary metamodel a corresponding metaclass node for
each said automatically identified node in the at least one
model and a corresponding metaclass edge for each said
automatically identified edge in the at least one model, and (b)
connecting each said added metaclass edge to at least two said
added metaclass nodes via first and second associations, with
the first and second associations having opposite directions

US 9,021,418 B2
3

and having respective multiplicities associated therewith.
Detection as to whether multiple relationships exist is per
formed by determining whether any of said added metaclass
edges are connected to more than two added metaclass nodes.
The preliminary metamodel is refined when it is determined 5
that at least one multiple relationship exists so as to create a
refined metamodel, but otherwise the preliminary metamodel
is treated as the refined metamodel.

In certain example embodiments, a metamodel creation
system is provided with at least one processor, display, and
user input adapter for receiving user input. The system may be
configured to automatically identify nodes, edges, and mul
tiplicities of at least one example model. The system may be
further configured to create a preliminary metamodel by add
ing metaclass nodes to the preliminary metamodel for each
said automatically identified node in the at least one model 15
and a corresponding metaclass edge for each said automati
cally identified edge in the at least one model. The system
may also be further configure to connect each said added
metaclass edge to at least two said added metaclass nodes via
first and second associations, the first and second associations 20
having opposite directions and having respective multiplici
ties associated therewith. The system may be configured to
detect whether multiple relationships exist by determining
whether any of said added metaclass edges are connected to
more than two added metaclass nodes. The system may also as
be configured to refine the preliminary metamodel when at
least one multiple relationship exists so as to create a refined
metamodel, but otherwise treating the preliminary meta
model as the refined metamodel.

There also are provided in certain example embodiments
non-transitory computer readable storage mediums tangibly
storing instructions that, when processed by at least one pro
cessor, execute the above-described and/or other methods.

These aspects and example embodiments may be used
separately and/or applied in various combinations to achieve
yet further embodiments. 35

10

30

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages may be better and
more completely understood by reference to the following 40
detailed description of exemplary illustrative embodiments in
conjunction with the drawings, of which:

FIG. 1 is an example diagram showing the different tiers of
a modeling architecture;

FIG. 2A is an example flowchart for creating a metamodel 45
in accordance with certain example embodiments;

FIG.2B is an example flowchart of the metamodel creation
process of FIG. 2A in accordance with certain example
embodiments;

FIG. 3 is a metamodel of a Generic modeling language 50
(GML) that may be used in order to create example models
that serve as input for the creation of metamodels in accor
dance with certain example embodiments;

FIG. 4 is an example graphical model in accordance with
certain example embodiments; 55

FIG. 5-7 are example metamodels created from example
models at different steps in accordance with certain example
embodiments; and

FIG. 8 is an example processing system for creating a
metamodel out of example models in accordance with certain 60
example embodiments.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS OF THE INVENTION

65

The following description is provided in relation to
embodiments which may share common characteristics, fea

4
tures, etc. It is to be understood that one or more features of
any embodiment may be combinable with one or more fea
tures of other embodiments. In addition, single features or a
combination offeatures may constitute an additional embodi
ment(s).

In certain example embodiments, a computer implemented
algorithm is provided to generate a metamodel from example
models. In certain example embodiments, the example mod
els may be defined or represented in a specific format that
facilitates parsing of the models by the algorithm for creation
of a metamodel.

FIG. 2A is an example flowchart for creating a metamodel
in accordance with certain example embodiments. Model 1
202a, model 2 202b and model in 202c are initially provided.
The models are input into a metamodel creation tool from
example models process 204, where a metamodel is created
from the example models. Once the metamodel is created, it
may be output for use in block 206.
The number of models that may be input into the process

204 may vary from 1 model to n number of models in different
embodiments. Furthermore, in certain example embodi
ments, the provided example models may cover all language
elements and relations that are to be covered in a generated
metamodel. In certain example embodiments, elements/rela
tionships/etc., e.g., entities, that are not specified within the
set of provided example models may be automatically added
during the generation process. For instance, a predefined set
of elements and/or relationships may be included in the gen
eration process. These predefined entities may be outside of
the set of those elements/relationships in the example models.
In certain example embodiments, the addition of these enti
ties during the metamodel generation process may be a
dynamic event based on rules that are predefined for the
addition of the new entities. For example, a rule may be
established and implemented that automatically includes an
element X when element Y is within the example model set of
elements.

In certain example embodiments, models provided to a
metamodel generation process (e.g., models 202a, 202b, etc.)
may be pre-existing models. For example, pre-existing mod
els may be provided from existing business process manage
ment (BPM) models. Alternatively, or in addition, the pro
vided models may be created for the metamodel generation
process. For example, some models may be created and oth
ers may be pre-existing models. In certain example embodi
ments, the example models (provided, created, etc.) may be
Business Process Models and notation (BPMN) models of
for example, a company’s business process or the like.
FIG.2B is an example flowchart of the metamodel creation

process of FIG. 2A in accordance with certain example
embodiments. The creation process 204 receives input from
block 212. As discussed above, the input may be newly cre
ated or one or more received previously existing model(s).
The input models are parsed in metamodel creation process
204, where metamodel elements and relations are created for
the metamodel from the example models in block 220. The
resulting temporary metamodel may define all the nodes,
edges, and multiplicities of the provided example models.
Container elements may be created for the newly created
metamodel in block 222. Once the containers, elements, and
relations are created, the metamodel is processed through a
refinement or optimization block 224. In certain example
embodiments, the associations in the temporary metamodel
are refined or optimized, and/or OCL statements are added as
appropriate.

FIG. 3 is an exemplary metamodel of a modeling language
in accordance with certain example embodiments. In certain

US 9,021,418 B2
5

example embodiments, the models provided to the meta
model generation process may follow a predefined represen
tation or language. Such a technique may facilitate the pars
ing process when a metamodel is created from the example
models. In FIG. 3, a Generic Modeling Language (GML) is
shown and defined by a UML metamodel that may be used to
create example models that serve as input for the creation of
metamodels. The GML may allow, for example, for the rep
resentation of graphical models including nodes, edges, and
container elements. Multiplicities also may be specified or
represented in certain example implementations.

In certain example embodiments, the standard Business
Process Model Notation (BPMN) may be used. Accordingly,
one or more models may be specified for use with the GML.
GML models may be expressed in an XML structure and/or in
one or more other similar languages and/or structures. FIG. 4
is an example graphical model in accordance with certain
example embodiments. An BPMN example model is shown
in FIG. 4. An offer is created in block 402. The created offer
is checked in block 404. Next, a decision is made at decision
tree 410. This may be a manual decision (e.g., a manager
deciding to accept an offer) or an automatic check (e.g., if
certain predefined criteria are met Such as if price conditions
are met, the offer is approved). If the decision is approved, the
offer is sent out in block 408. If the offer is not approved, then
the offer is revised in step 406. A corresponding XML struc
ture of the BPMN model of FIG. 4 is shown below.

<?xml version=“1.0 encoding=UTF-82s
- <GMLModel Xmlins="http://www.providercommunity.com/...'s

- <metanformation
<modelName xmlns=">BPMN-Example 1.</modelName>
<modelDescription Xmlins="DPMN example model in
GML -
<lastModification xmlins=">2010-10

28T17:32:17+2:00<lastModification>
<metalnformation>

- <ModelElements.>
<node id="1" type="StartEvent relid="2" />
<edge id="2" type="SequenceFlow” fromNode= “1”
toNode="3’ >
<node id="3" type="Task” relid=“4” f>Create
Offer</node>
<edge id="4" type="SequenceFlow” fromNode="3"
toNode=5’ >

<node id="7" type="Gateway' relid=“6” f>
<edge id="8" type="SequenceFlow” fromNode= “1”
toNode=3

f>Not Approved</edge->

<node id="18 type="Lane”
contains="1,2,3,4,5,8-Sales:</node>

<ModelBlements
</GMLModels

In certain example embodiments, once one or more models
are provided, the automated generation of a metamodel is
started. As noted above, the models may conform to a certain
specification (e.g., the GML shown in FIG.3). Alternatively,
or in addition, the models collectively may cover all model
elements that are to be included into the newly created meta
model (e.g., elements, relationships, etc).

In certain example embodiments, an integrity check may
be performed or judgment call may be made on the sample
model to determine whether the sample model is a connected
graph. Accordingly, in certain example embodiments, invalid
input models may be rejected as input for the creation of a
metamodel. If an example model passes such a 'sanity
check. it may then be parsed and meta-classes for all of the
nodes may be generated. In certain example embodiments,

10

15

25

30

35

40

45

50

55

60

65

6
the created metaclasses may be identified by their name,
which in turn may be derived from an attribute “type.” For
example, as shown in FIG. 3, the attribute type of the GML
example model may be used. Thus, in certain example
embodiments the result may be one metaclass for each type of
node.
As there may be one metaclass for each type of node, all

nodes may have an associated metaclass.
Next, a metaclass may be added to the metamodel for each

edge in the sample models. In certain example embodiments,
as with the nodes described above, the attribute type of the
edge may be used. The current metamodel (now including
nodes and edges from the example models) may show the
edges and nodes as separate classes. This may be because
these entities may have other attributes Such as, for example
names, roles, multiplicities, and/or the like, that can be
assigned to the metaclass associated with the edge and/or
node.

In certain example embodiments, the metaclass of each
edge may be connected to nodes by two associations. The first
association may go from the node to the edge, and the second
association may go in the opposite direction. Accordingly, in
certain example embodiments, the two associations may
make it possible to distinguish between the number of nodes
an edge may be connected to and the number of edges of the
same type that a node may have.

These numbers (e.g., the number of nodes an edge may be
connected to and the number of edges of the same type that a
node may have) may be defined by multiplicities. When asso
ciations are created, they may be assigned multiplicities, e.g.,
(*, 0). In certain example embodiments, these multiplicities
may be the largest minimum multiplicity and the smallest
maximum multiplicity. Therefore, the example model is
parsed and connections between nodes and edges that con
tradict these multiplicities may be recorded. In certain
example embodiments, for each contradiction, the minimum
multiplicity may be reduced and the maximum multiplicity
may be increased.

It will be appreciated that following the processing
described above, a meta-model may include classes for all of
the nodes and edges including, for example, the attributes and
cardinalities present in the sample models. FIG. 5 is an
example metamodel created in accordance with certain
example embodiments where the elements and relations of
example models are inserted into the example metamodel. As
will be appreciated from the FIG. 5 example metamodel,
nodes, edges, and multiplicities are present. “To” and “from
relations also are provided.

In certain example embodiments, the metamodel creation
process may include the creation of container elements and/or
associations for container elements. In certain example
embodiments, container elements may be expressed as model
element that may include several other model elements or a
group of model elements. A container element may have the
relation"contains' in a metamodel to the model that it encom
passes. Accordingly, for each pair of model element types that
have a “contains' relation in an example model, a directed
association "contains' between the equivalent metaclasses
may be created.

In addition, the “contains' association may have other
multiplicities as well. These multiplicities may define in how
many containers a specific model element may occur and/or
the number of model elements of a specific type that a con
tainer element may encompass. In certain example embodi
ments, the multiplicities may be set to (*, 0) when the asso
ciations are created. In certain example embodiments, the
minimum multiplicity may be reduced and the maximum

US 9,021,418 B2
7

multiplicity increased, according to the contradictions that
are found in the current multiplicities. FIG. 6 is an example
metamodel created from example models after the container
elements are inserted and/or defined in accordance with cer
tain example embodiments. As shown in the FIG. 6 example
metamodel, a SubProcess contains an EndEvent.

According to certain example embodiments, once the ele
ments and relations are created and the container elements
defined, the resulting metamodel may be refined or opti
mized. FIG. 7 is an example metamodel in a UML class
diagram that is created after being refined in accordance with
certain example embodiments.

According to certain example embodiments a metamodel
covering all nodes, edges, and multiplicities, and/or container
elements (e.g., necessary model entities) may be refined or
optimized. In certain example embodiments this refinement
process may help partially or fully optimize the created meta
model. In certain example embodiments, a metamodel
including a metaclass of an edge that is associated with more
than two metaclass nodes (e.g., a multiple relationship) may
be further refined or optimized. Accordingly, the number of
edges in the metamodel may be reduced and the metamodel
may be further improved.

To carry out this refinement or optimization, in certain
example embodiments, the OCL is used, which is part of
OMG’s MOF standard. In certain example embodiments, the
process of refinement and/or adding OCL is performed after
the above steps of creating elements and defining containers.

For example, in the case of a multiple relationship that can
be refined or optimized, an abstract class may be added to the
metamodel. Accordingly, in certain example embodiments,
nodes that have an association to the metaclass of the edge of
the multiple relationship may become inherited from the
newly added abstract class. In certain example embodiments,
the associations between the nodes and the edges of the mul
tiple relationship may then be deleted. The metaclass of the
edge may then have an association from and to the newly
added abstract class. In certain example embodiments, the
connection between nodes and edges and their multiplicities
may be defined via OCL. Example OCL statements according
to certain example embodiments may be as follows:

CONTEXT Sequence Flow
INV: Self from.ocllsKindOf(Gateway) AND
Selfto.ocllsKindOf Task)

IMPLIES Self from.fromEdge->Size() = 0
AND Selfto.toEdge->Size() = 1

INV: Self from OcllsKindOf(EndEvent) AND
Selfto.ocllsKindOf EndEvent)

IMPLIES Self from.fromEdge->Size() = 0
AND Selfto.toEdge->Size() = 0

FIG. 8 is an example processing system for creating a
metamodel out of example models in accordance with certain
example embodiments. User input 802 may be input from a
user to create or retrieve example models. User input may also
be supplied to make domain specific adjustments to meta
models that are created on the processing system 806. User
input may also supply commands for creating metamodels
from example models (e.g., starting a process as described
above or the like). Accordingly, user input 802 may interface
with the user input adapter that may be, for example, a USB
port, PS/2 port, or the like. The user input may then be pro
cessed by the processing system 806.
As noted above, user input may trigger the start of a process

to, for example, create a metamodel out of certain example

5

10

15

25

30

35

40

45

50

55

60

65

8
models. An example metamodel creation process may be
executed by processing system 806 by using CPU 810 (in
cluding at least one processor). The data may be moved over
system bus 814, stored in RAM812, and processed by at least
one processor or CPU 810. The results (e.g., a metamodel)
may then be output through various methods. In certain
example embodiments, the resulting metamodel may be out
put through a display interface 816 to a display 820. This may
be in the form of a graphical model in UML form. Alterna
tively, or in addition, the results and/or data may be sent
through a network interface 818 to be stored in a database
822, or the like. In certain example embodiments, the results
and/or data may be passed onto external resources 824. The
external resources 824 may be resources such as, for example,
an external application, another processing system, a notifi
cation system (e.g., email, etc), a business process manage
ment application, or the like.

It will be appreciated that as used herein, the terms system,
Subsystem, service, programmed logic circuitry, and the like
may be implemented as any suitable combination of software,
hardware, firmware, and/or the like. It also will be appreciated
that the storage locations herein may be any suitable combi
nation of disk drive devices, memory locations, Solid State
drives, CD-ROMs, DVDs, tape backups, storage area net
work (SAN) systems, and/or any other appropriate tangible
computer readable storage medium. It also will be appreci
ated that the techniques described herein may be accom
plished by having a processor execute instructions that may
be tangibly stored on a computer readable storage medium.

While the invention has been described in connection with
what is presently considered to be the most practical and
preferred embodiment, it is to be understood that the inven
tion is not to be limited to the disclosed embodiment, but on
the contrary, is intended to cover various modifications and
equivalent arrangements included within the spirit and scope
of the claims

What is claimed is:
1. A method of creating a metamodel for use with a pro

cessing system including at least one processor, the method
comprising:

automatically parsing nodes, edges, and multiplicities of at
least one example model;

creating a preliminary metamodel by (a) adding to the
preliminary metamodel a corresponding metaclass node
for each said node in the at least one model and a corre
sponding metaclass edge for each said edge in the at least
one model, and (b) connecting each said added meta
class edge to at least two said added metaclass nodes via
first and second associations, the first and second asso
ciations having opposite directions and having respec
tive multiplicities associated therewith:

detecting whether multiple relationships exist by determin
ing whether any of said added metaclass edges are con
nected to more than two added metaclass nodes; and

refining the preliminary metamodel when it is determined
that at least one multiple relationship exists so as to
create a refined metamodel, but otherwise treating the
preliminary metamodel as the refined metamodel,
wherein refining the preliminary metamodel includes
reducing a number of metaclass edges and/or metaclass
nodes in the preliminary metamodel by:
inserting an abstract class into the preliminary meta

model for each said detected multiple relationship,
causing the added metaclass nodes associated with each

said multiple relationship to become inherited from a
correspondingly inserted abstract class,

US 9,021,418 B2

deleting the first and second associations between the
inherited metaclass nodes and the metaclass edges of
the multiple relationships, and

inserting a first abstract class association and a second
abstract class association between the metaclass edge
of the multiple relationship and the correspondingly
inserted abstract class.

2. The method of claim 1, further comprising:
inserting at least one container element into the prelimi

nary metamodel; and
grouping into the at least one container elementat least two

of said added metaclass nodes and/or edges, the at least
one container element having a multiplicity associated
therewith.

3. The method of claim 1, wherein the first abstract class
association and the second abstract class association are
reciprocal associations to and from the abstract class and the
metaclass edge associated and are created at each said
detected multiple relationship.

4. The method of claim 1, wherein the refining of the
preliminary metamodel is performed in connection with an
object constraint language (OCL).

5. The method of claim 1, wherein each said added meta
class node and edge has an associated attribute type.

6. The method of claim 1, further comprising outputting the
refined metamodel to a display and/or a non-transitory com
puter readable storage location.

7. The method of claim 1, further comprising creating the at
least one model through a generic modeling language.

8. The method of claim 1, wherein the at least one model is
received.

9. The method of claim 1, wherein nodes, edges, and mul
tiplicities are automatically parsed from a plurality of
example models.

10. The method of claim 9, wherein a single refined meta
model is automatically generated indirectly from the plurality
of example models, each said example model being modeled
in a generic modeling language.

11. The method of claim 1, wherein the refining of the
preliminary metamodel further comprises inserting the
abstract class into the preliminary metamodel between one of
the metaclass nodes associated with the multiple relationship
and at least two other metaclass nodes associated with the
multiple relationship.

12. A metamodel creation system, comprising:
an adapter configured to receive user input;
a display; and
at least one processor configured to:

automatically parse nodes, edges, and multiplicities of at
least one example model;

create a preliminary metamodel by (a) adding to the
preliminary metamodel a corresponding metaclass
node for each said node in the at least one model and
a corresponding metaclass edge for each said edge in
the at least one model, and (b) connecting each said
added metaclass edge to at least two said added meta
class nodes via first and second associations, the first
and second associations having opposite directions
and having respective multiplicities associated there
with:

detect whether multiple relationships exist by determin
ing whether any of said added metaclass edges are
connected to more than two added metaclass nodes;
and

refine the preliminary metamodel when at least one mul
tiple relationship exists so as to create a refined meta
model, but otherwise treating the preliminary meta

10

15

25

30

35

40

45

50

55

60

65

10
model as the refined metamodel, wherein refining the
preliminary metamodel includes reducing a number
of metaclass edges and/or metaclass nodes in the pre
liminary metamodel by:

inserting an abstract class into the preliminary meta
model for each said detected multiple relationship,

causing the added metaclass nodes associated with each
said multiple relationship to become inherited from a
correspondingly inserted abstract class,

deleting the first and second associations between the
inherited metaclass nodes and the metaclass edges of
the multiple relationships, and

inserting a first abstract class association and a second
abstract class association between the metaclass edge
of the multiple relationship and the correspondingly
inserted abstract class.

13. The system of claim 12, wherein the processor is fur
ther configured to:

insert at least one container element into the preliminary
metamodel; and

group into the at least one container element at least two of
said added metaclass nodes and/or edges, the at least one
container element having a multiplicity associated
therewith.

14. The system of claim 12, wherein the first abstract class
association and the second abstract class association are
reciprocal associations to and from the abstract class and the
metaclass edge associated and the processor is configured to
create the first and second abstract class associations at each
said detected multiple relationship.

15. The system of claim 12 wherein the processor is further
configured to create the at least one model through a generic
modeling language.

16. The system of claim 12, wherein nodes, edges, and
multiplicities are automatically parsed by the processor from
a plurality of example models.

17. The system of claim 12, wherein the processor is fur
ther configured to insert the abstract class into the preliminary
metamodel between one of the metaclass nodes associated
with the multiple relationship and at least two other metaclass
nodes associated with the multiple relationship.

18. A non-transitory computer readable storage medium
tangibly storing instructions that, when processed by at least
one processor, cause the processor to perform functionality
comprising:

automatically parsing nodes, edges, and multiplicities of at
least one example model;

creating a preliminary metamodel by (a) adding to the
preliminary metamodel a corresponding metaclass node
for each said node in the at least one model and a corre
sponding metaclass edge for each said edge in the at least
one model, and (b) connecting each said added meta
class edge to at least two said added metaclass nodes via
first and second associations, the first and second asso
ciations having opposite directions and having respec
tive multiplicities associated therewith:

detecting whether multiple relationships exist by determin
ing whether any of said added metaclass edges are con
nected to more than two added metaclass nodes; and

refining the preliminary metamodel when it is determined
that at least one multiple relationship exists so as to
create a refined metamodel, but otherwise treating the
preliminary metamodel as the refined metamodel,
wherein refining the preliminary metamodel includes
reducing a number of metaclass edges and/or metaclass
nodes in the preliminary metamodel by:

US 9,021,418 B2
11

inserting an abstract class into the preliminary meta
model for each said detected multiple relationship,

causing the added metaclass nodes associated with each
said multiple relationship to become inherited from a
correspondingly inserted abstract class, 5

deleting the first and second associations between the
inherited metaclass nodes and the metaclass edges of
the multiple relationships, and

inserting a first abstract class association and a second
abstract class association between the metaclass edge 10
of the multiple relationship and the correspondingly
inserted abstract class.

k k k k k

12

