<table>
<thead>
<tr>
<th>(51) International Patent Classification:</th>
<th>C12N 15/80, 5/10, C12P 21/00</th>
</tr>
</thead>
<tbody>
<tr>
<td>(11) International Publication Number:</td>
<td>WO 96/00787</td>
</tr>
<tr>
<td>(43) International Publication Date:</td>
<td>11 January 1996 (11.01.96)</td>
</tr>
<tr>
<td>(21) International Application Number:</td>
<td>PCT/US95/07743</td>
</tr>
<tr>
<td>(22) International Filing Date:</td>
<td>15 June 1995 (15.06.95)</td>
</tr>
<tr>
<td>(30) Priority Data:</td>
<td></td>
</tr>
<tr>
<td>08/269,449</td>
<td>30 June 1994 (30.06.94)</td>
</tr>
<tr>
<td>08/404,678</td>
<td>15 March 1995 (15.03.95)</td>
</tr>
<tr>
<td>(71) Applicant:</td>
<td>NOVO NORDISK BIOTECH, INC. (US/US); Suite 105, 1445 Drew Avenue, Davis, CA 95616-4880 (US).</td>
</tr>
</tbody>
</table>

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

Title: NON-TOXIC, NON-TOXIGENIC, NON-PATHOGENIC FUSARIUM EXPRESSION SYSTEM AND PROMOTERS AND TERMINATORS FOR USE THEREIN

Abstract

The invention is related to a non-toxic, non-toxigenic, non-pathogenic recombinant *Fusarium*, e.g., *Fusarium graminearum* host cell comprising a nucleic acid sequence encoding a heterologous protein operably linked to a promoter. The invention further relates to a method for the production of recombinant proteins using such *Fusarium* host cells. The invention also relates to a promoter and terminator sequence which may be used in such cells.
<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GE</td>
<td>Georgia</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>KE</td>
<td>Kenya</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KG</td>
<td>Kyrgyzstan</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>KZ</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>NL</td>
<td>Netherlands</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>NZ</td>
<td>New Zealand</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>PT</td>
<td>Portugal</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>RU</td>
<td>Russian Federation</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>SE</td>
<td>Sweden</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>SK</td>
<td>Slovakia</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>TJ</td>
<td>Tajikistan</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>UZ</td>
<td>Uzbekistan</td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
</tbody>
</table>
NON-TOXIC, NON-TOXIGENIC, NON-PATHOGENIC FUSARIUM EXPRESSION SYSTEM AND PROMOTERS AND TERMINATORS FOR USE THEREIN

1. FIELD OF THE INVENTION

The present invention relates to host cells useful in the production of recombinant proteins. In particular, the invention relates to non-toxic, non-toxigenic, and non-pathogenic fungal host cells of Fusarium which can be used in the high-level expression of recombinant proteins, especially enzymes. The invention further relates to promoter and terminator sequences which may be used in such a system.

2. BACKGROUND OF THE INVENTION

The use of recombinant host cells in the expression of heterologous proteins has in recent years greatly simplified the production of large quantities of commercially valuable proteins, which otherwise are obtainable only by purification from their native sources. Currently, there is a varied selection of expression systems from which to choose for the production of any given protein, including prokaryotic and eukaryotic hosts. The selection of an appropriate expression system will often depend not only on the ability of the host cell to produce adequate yields of the protein in an active state, but also to a large extent may be governed by the intended end use of the protein.

Although mammalian and yeast cells have been the most commonly used eukaryotic hosts, filamentous fungi have now begun to be recognized as very useful as host cells for recombinant protein production. Examples of filamentous fungi which are currently used or proposed for use in such processes are Neurospora crassa, Acremonium chrysogenum, Tolypocladium geodes, Mucor circinelloides and Trichoderma reesei, Aspergillus nidulans, Aspergillus niger and Aspergillus oryzae.

Certain species of the genus Fusarium have been used as model systems for the studies of plant pathogenicity and gene regulation such as Fusarium oxysporum (Diolez et al., 1993, Gene 131:61-67; Langin et al., 1990, Curr. Genet. 17:313-319; Malardier et al., 1989, Gene 78:147-156 and Kistler and Benny, 1988, Curr. Genet. 13:145-149), Fusarium solani (Crowhurst et al., 1992, Curr. Genet. 21:463-469), and Fusarium culmorum (Curragh et al., 1992, Mycol. Res. 97:313-317). These Fusarium sp. would not be suitable commercially for the production of heterologous proteins because of their undesirable characteristics such as being plant pathogens or because they produce unsafe levels of mycotoxin. Dickman and Leslie (1992, Mol. Gen. Genet. 235:458-462) discloses the transformation of Gibberella zeae with a plasmid containing nit-2 of Neurospora crassa. The strain of Gibberella zeae disclosed in Dickman and Leslie is a plant pathogen and produces zearalenone, an estrogenic mycotoxin.

An ideal expression system is one which is substantially free of protease and mycotoxin production, also substantially free of large amounts of other endogenously made secreted proteins, and which is capable of higher levels of expression than known host cells. The present invention now provides new Fusarium expression systems which fulfill these requirements.

3. SUMMARY OF THE INVENTION

The present invention provides a recombinant non-toxic, non-toxigenic, and non-pathogenic Fusarium host cell comprising a nucleic acid sequence encoding a heterologous protein operably linked to a promoter. As defined herein, "non-toxic" means that the host cell does not act as a poison to plants or animals. For example, a Fusarium host cell would be considered non-toxic if about 14 days after injecting about 5 mice with a dose of about 20 ml of (1:1 diluted) 3 day old Fusarium culture medium/kg body wt./mouse, none of the mice died as a result of Fusarium treatment. As defined herein, "non-toxigenic" means that the host cells are essentially free of mycotoxin as determined by standard analytical methods such as HPLC analysis. For example, an amount of Fusarium grown on 2 x 9 cm petri dishes containing solid nutrient medium may be extracted with organic solvents and 0.5% of the extract may be injected into an HPLC for analysis. The absence of known mycotoxins would be inferred by the absence of detectable HPLC peaks at positions known for mycotoxin standards. As defined herein, "non-pathogenic" means that the host cells do not cause significant disease in healthy plants or healthy animals. For example, a Fusarium sp. that is pathogenic to plants can show a fungal invasion of the xylem tissue of the plant and result in the disease state characterized by typical wilt symptoms. As defined herein, a "heterologous protein" is a protein which is not native to the host cell, or a native protein in which modifications have been made to alter the native sequence or a native protein whose expression is quantitatively altered as a result of a manipulation of a native regulatory sequence required for the expression of the native protein, such as a promoter, a ribosome binding site, etc. or other manipulation of the host cell by recombinant DNA techniques. The nucleic acid sequence is operably linked to a suitable promoter sequence, which is capable of directing transcription of the nucleic acid sequence in the chosen host cell.

The invention also relates to a method for production of recombinant proteins, the method comprising culturing a host cell of one of the aforementioned species, which host cell contains a nucleic acid sequence encoding a heterologous protein, under conditions conducive to expression of the protein, and recovering the protein from the culture. In a
preferred embodiment, the protein is a fungal protein, most preferably a fungal enzyme. Using
the method of the present invention, at least about 0.5 g heterologous protein/l host cell is
produced.

The host cell of the present invention secretes unexpectedly only low amounts
of protease as determined by the casein clearing assay described in Section 6.1, infra;
specifically only small or no zones of hydrolysis are detected. The host cells and methods of
the present invention are unexpectedly more efficient in the recombinant production of certain
fungal enzymes than are other known fungal species, such as Aspergillus niger Aspergillus
oryzae, or Fusarium oxysporum.

The invention further relates to a promoter sequence derived from a gene
encoding a Fusarium oxysporum trypsin-like protease or a fragment thereof having
substantially the same promoter activity as said sequence. The sequence of the promoter is
shown in SEQ ID NO:5.

Additionally, the invention relates to a terminator sequence derived from a gene
encoding a Fusarium oxysporum trypsin-like protease or a fragment thereof having
substantially the same terminator activity as said sequence. The sequence of the terminator is
shown in SEQ ID NO:6.

4. BRIEF DESCRIPTION OF THE FIGURES

Figure 1 shows an SDS gel of secreted proteins in Fusarium graminearum (lane
1); Aspergillus niger (lane 2); and Aspergillus oryzae (lane 3). Lane 4 shows molecular weight
markers.

Figure 2 shows the results of a protease assay
on the following samples: Aspergillus oryzae (well 1); Aspergillus niger (well 2);
Fusarium graminearum (well 3); empty well controls (wells 4-6).

Figure 3 shows the construction of plasmid pJR6.

Figure 4 shows SDS-PAGE analysis of the secretion of a trypsin-like protease
(SP387) in a transformant of F. graminearum 20334. Lane 1: molecular size markers; lane 2:
blank; lane 3: purified trypsin-like protease protein standard; lane 4: blank; lane 5:
F. graminearum strain 20334 untransformed; lane 6: blank; lane 7: F. graminearum strain 20334
transformed with plasmid pJR6; lane 8: blank; lane 9: molecular size markers.

Figure 5 shows a restriction map of pJR20.

Figure 6 shows a restriction map of pDM151.

Figure 7 shows a restriction map of pDM155.

Figures 8A and 8B show the level of expression of Carezyme® in Fusarium
graminearum when DSM 151-4 is fermented in Fusarium graminearum from 20-160 hrs.
Figure 8A shows the results of an assay for Carezyme®. Figure 8B shows SDS-PAGE

Figures 9A and 9B show the level of expression of Lipolase® when DSM 155-10 is fermented in Fusarium graminearum from 20-160 hrs. Figure 9A shows the results of an assay for Lipolase®. Figure 9B shows SDS-PAGE analysis of the production of Lipolase® in said Fusarium graminearum. Lane 1: molecular size markers; lane 2: 20 hrs.; lane 3: 35 hrs.; lane 4: 60 hrs.; lane 5: 90 hrs.; lane 6: 120 hrs.; lane 7: 140 hrs.; lane 8: 160 hrs.

Figure 10 shows a restriction map of pCaHj418.

Figure 11 shows a restriction map of pDM148.

Figure 12 shows a restriction map of pDM149.

Figure 13 shows a restriction map of pMHan37.

Figure 14 shows a restriction map of pDM154.

5. DETAILED DESCRIPTION OF THE INVENTION

Fusarium are characterized by mycelium extensive and cotton-like in culture, often with some tinge of pink, purple or yellow in the mycelium on solid medium. Conidiophores are variable slender and simple, or stout, short, branched irregularly or bearing a whorl of phialides, single or grouped into sporodochia. Conidia are principally of two kinds, often held in small moist heads: macroconidia several-celled, slightly curved or bent at the pointed ends, typically canoe-shaped and microconidia which are one celled, ovoid or oblong, borne singly or in chains. Some conidia are intermediate, 2 or 3 celled, oblong or slightly curved.

In a specific embodiment, the host cells of the present invention are of the species Fusarium graminearum which is characterized by the following features. Conidia: Microconidia are absent. Macroconidia are distinctly septate, thick walled, straight to moderately sickle-shaped, unequally curved with the ventral surface almost straight and a smoothly arched dorsal surface. The basal cell is distinctly foot-shaped. The apical cell is cone-shaped or constricted as a snout. Conidiophores: unbranched and branched monophialides. Chlamydospores are generally very slow to form in culture: when they do occur, they most often form in the macroconidia but may also form in the mycelium. Colony morphology: on PDA, growth is rapid with dense aerial mycelium that may almost fill the tube and is frequently yellow to tan with the margins white to carmine red. Red-brown to orange sporodochia, if present, are sparse, often appearing only when the cultures are more than 30 days old. The undersurface is usually carmine red. This fungus produces the most cylindrical (dorsal and ventral surfaces parallel) macroconidia of any species of the section Discolor.

In a most specific embodiment, the Fusarium graminearum is Fusarium
graminearum Schwabe IMI 145425, deposited with the American Type Culture Collection and assigned the number ATCC 20334 (U.S. Patent No. 4,041,189), as well as derivatives and mutants which are similarly non-toxic, non-toxigenic, and non-pathogenic, e.g. those taught in U.S. Patent No. 4,041,189.

It will be understood that throughout the specification and claims the use of the term “*Fusarium graminearum*” refers not only to organisms encompassed in this species, but also includes those species which have previously been or currently are designated as other species in alternate classification schemes, but which possess the same morphological and cultural characteristics defined above, and may be synonymous to *F. graminearum*. These include but are not limited to *Fusarium roseum*, *F. roseum* var. *graminearum*, *Gibberella zeae*, or *Gibberella roseum*, *Gibberella roseum* f. sp. *cerealis*.

The skilled artisan will also recognize that the successful transformation of the host species described herein is not limited to the use of the vectors, promoters, and selection markers specifically exemplified. Generally speaking, those techniques which are useful in transformation of *F. oxysporum*, *F. solani* and *F. culmorum* are also useful with the host cells of the present invention. For example, although the amiS selection marker is preferred, other useful selection markers include the argB (*A. nidulans* or *A. niger*), trpC (*A. niger* or *A. nidulans*), pyrG (*A. niger*, *A. oryzae* or *A. nidulans*), niaD (*A. nidulans*, *A. niger*, or *F. oxysporum*), and hpyB (*E. coli*) markers. The promoter may be any DNA sequence that shows strong transcriptional activity in these species, and may be derived from genes encoding both extracellular and intracellular proteins, such as amylases, glucoamylases, proteases, lipases, cellulases and glycolytic enzymes. Examples of such promoters include but are not limited to *A. nidulans* amiS promoter or promoters from genes for glycolytic enzymes, e.g., TPI, ADH, GAPDH, and PGK. The promoter may also be a homologous promoter, i.e., the promoter for a gene native to the host strain being used. The promoter sequence may also be provided with linkers for the purpose of introducing specific restriction sites facilitating ligation of the promoter sequence with the gene of choice or with a selected signal peptide or preregion.

The promoter sequence may be derived from a gene encoding a *Fusarium oxysporum* trypsin-like protease or a fragment thereof having substantially the same promoter activity as said sequence. The sequence of the promoter is shown in SEQ ID NO:5. The invention further encompasses nucleic acid sequences which hybridize to the promoter sequence shown in SEQ ID NO:5 under the following conditions: pre-soaking in 5X SSC and pre-hybridizing for 1 hr. at about 40°C in a solution of 20% formamide, 5X Denhardt’s solution, 50 mM sodium phosphate, pH 6.8, and 50 ug denatured sonicated calf thymus DNA, followed by hybridization in the same solution supplemented with 100 uM ATP for 18 hrs. at about 40°C, followed by a wash in 0.4X SSC at a temperature of about 45°C, or which have at least about 90% homology and preferably about 95% homology to SEQ ID NO:5, but which
have substantially the same promoter activity as said sequence. In another embodiment, the promoter may be a sequence comprising a large number of binding sites of AreA, a positive regulator of genes expressed during nitrogen limitation; these sites are referred to as nit-2 in *Neurospora crassa* (Fu and Marzlus, 1990, Proc. Natl. Acad. Sci. U.S.A. 87:5331-5335). The promoter sequence may be modified by the addition or substitution of such AreA sites.

Terminators and polyadenylation sequences may also be derived from the same sources as the promoters. In a specific embodiment, the terminator sequence may be derived from a gene encoding a *Fusarium oxysporum* trypsin-like protease or a fragment thereof having substantially the same terminator activity as said sequence. The sequence of the terminator is shown in SEQ ID NO:6. The invention further encompasses nucleic acid sequences which hybridize to the terminator sequence shown in SEQ ID NO:6 under the following conditions: pre-soaking in 5X SSC and prehybridizing for 1 hr. at about 40°C in a solution of 20% formamide, 5X Denhardt’s solution, 50 mM sodium phosphate, pH 6.8, and 50 ug denatured sonicated calf thymus DNA, followed by hybridization in the same solution supplemented with 100 uM ATP for 18 hrs. at about 40°C, followed by a wash in 0.4X SSC at a temperature of about 45°C, or which have at least about 90% homology and preferably about 95% homology to SEQ ID NO:5, but which have substantially the same terminator activity as said sequence.

Enhancer sequences may also be inserted into the construct.

To avoid the necessity of disrupting the cell to obtain the expressed product, and to minimize the amount of possible degradation of the expressed product within the cell, it is preferred that the product be secreted outside the cell. To this end, in a preferred embodiment, the gene of interest is linked to a preregion such as a signal or leader peptide which can direct the expressed product into the cell’s secretory pathway. The preregion may be derived from genes for any secreted protein from any organism, or may be the native preregion. Among useful available sources for such a preregion are a glucoamylase or an amylase gene from an *Aspergillus* species, an amylase gene from a *Bacillus* species, a lipase or proteinase gene from *Rhizomucor miehei*, the gene for the α-factor from *Saccharomyces cerevisiae*, or the calf prochymosin gene. The preregion may be derived from the gene for *A. oryzae* TKA amylase, *A. niger* neutral α-amylase, *A. niger* acid stable α-amylase, *B. licheniformis* α-amylase, the maltogenic amylase from *Bacillus* NCIB 11837, *B. stearothermophilus* α-amylase, or *B. licheniformis* subtilisin. An effective signal sequence is the *A. oryzae* TKA amylase signal, the *Rhizomucor miehei* aspartic proteinase signal and the *Rhizomucor miehei* lipase signal. As an alternative, the preregion native to the gene being expressed may also be used, e.g., in SEQ ID NO:4 between amino acids -24 and -5.
The gene for the desired product functionally linked to promoter and terminator sequences may be incorporated in a vector containing the selection marker or may be placed on a separate vector or plasmid capable of being integrated into the genome of the host strain. Alternatively, the vectors used may be capable of replicating as linear or circular extrachromosomal elements in the host cell. These types of vectors include for example, plasmids and minichromosomes. The vector system may be a single vector or plasmid or two or more vectors or plasmids which together contain the total DNA to be integrated into the genome. Vectors or plasmids may be linear or closed circular molecules.

The host cell may be transformed with the nucleic acid encoding the heterologous protein using procedures known in the art such as transformation and electroporation (see, for example, Fincham, 1989, Microbial Rev. 53:148-170).

The recombinant host cell of the present invention may be cultured using procedures known in the art. Briefly, the host cells are cultured on standard growth medium such as those containing a combination of inorganic salts, vitamins, a suitable organic carbon source such as glucose or starch, any of a variety of complex nutrients sources (yeast extract, hydrolyzed casein, soya bean meal, etc.). One example is FP-1 medium (5% soya bean meal, 5% glucose, 2% K₂HPO₄, 0.2% CaCl₂, 0.2% MgSO₄·7H₂O and 0.1% pluronic acid (BASF)). The fermentation is carried out at a pH of about 4.5-8.0, and at a temperature of about 20-37°C for about 2-7 days.

The present host cell species can be used to express any prokaryotic or eukaryotic heterologous protein of interest, and is preferably used to express eukaryotic proteins. Of particular interest for these species is their use in expression of heterologous proteins, especially fungal enzymes. The novel expression systems can be used to express enzymes such as catalase, laccase, phenoloxidase, oxidase, oxidoreductases, cellulase, xylanase, peroxidase, lipase, hydrolase, esterase, cutinase, protease and other proteolytic enzymes, aminepeptidase, carboxyamidase, phytase, lyase, pectinase and other pectinolytic enzymes, amylase, glucoamylase, α-galactosidase, β-galactosidase, α-glucosidase, β-glucosidase, mannosidase, isomerase, invertase, transferase, ribonuclease, chitinase, mutanase and deoxyribonuclease.

In a specific embodiment, the enzyme is an alkaline protease, e.g., a *Fusarium oxysporum* pre-pro-trypsin gene. In a most specific embodiment, the genomic sequence is shown in SEQ ID NO:3 and the protein sequence is shown in SEQ ID NO:4.

In another specific embodiment, the enzyme is an alkaline endoglucanase, which is immunologically reactive with an antibody raised against a highly purified ~43 kD endoglucanase derived from *Humicola insolens*, DSM 1800, or which is a derivative of the ~43 kD endoglucanase exhibiting cellulase activity (cf. WO 91/17243). The endoglucanase,
hereinafter referred to as “Carezyme®” may be encoded by a gene shown in SEQ ID NO:7 and may have a protein sequence shown in SEQ ID NO:8. The enzyme may also be a Carezyme® variant.

In yet another specific embodiment, the enzyme is a 1,3-specific lipase, hereinafter referred to as Lipolase®. The enzyme may be encoded by the DNA sequence shown in SEQ ID NO:9 and may have an amino acid sequence shown in SEQ ID NO:10. The enzyme may also be a Lipolase® variant, e.g., D96L, E210K, E210L (see WO 92/05249).

It will be understood by those skilled in the art that the term "fungal enzymes" includes not only native fungal enzymes, but also those fungal enzymes which have been modified by amino acid substitutions, deletions, additions, or other modifications which may be made to enhance activity, thermostability, pH tolerance and the like. The present host cell species can also be used to express heterologous proteins of pharmaceutical interest such as hormones, growth factors, receptors, and the like.

The present invention will be further illustrated by the following non-limiting examples.

6. EXAMPLES

6.1. Fusarium graminearum 20334 Secretes Only a Low Level of Protein

Conidial spore suspensions of Fusarium graminearum strain 20334, an A. oryzae, and A. niger are inoculated into 25 ml of YPD medium (1% yeast extract (Difco), 2% bactopeptone (Difco), 2% glucose) in a 125 ml shake flask and incubated at 30°C at 300 rpm for 5 days. Supernatant broths from the cultures are harvested by centrifugation. A total of 10 μl of each sample is mixed with 10 μl 0.1 M dithiothreitol (Sigma) and 10 μl of loading buffer (40 mM Tris base, 6% sodium dodecyl sulfate, 2.5 mM EDTA, 15% glycerol, 2 mg/ml bromocresol purple). The samples are boiled for 5 minutes and run on a 4-12% polyacrylamide gel (Novex). The proteins are visualized by staining with Coomassie Blue. The results (Figure 1) show that Fusarium graminearum strain 20334 produces very little secreted protein.

6.2. Fusarium graminearum 20334 Secretes Only a Low Level of Proteases

A total of 40 μl of culture broths from Fusarium graminearum strain 20334, A. oryzae, and A. niger (see Section 6.1., supra) are each pipetted into wells that are cut into a casein agar plate (2% non-fat dry milk (Lucerne), 50 mM Tris-HCl pH=7.5, 1% noble agar (Difco)). The plates are incubated at 37°C for 5 hours and the zones of protein hydrolysis are observed. The results (Figure 2) show that Fusarium graminearum strain 20334 broth contains
very little proteolytic activity.

6.3. Cloning of *Fusarium oxysporum* Genomic Prepro-trypsin Gene

A genomic DNA library in lambda phage is prepared from the *F. oxysporum* genomic DNA using methods such as those described found in Sambrook *et al.*, 1989, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor, NY. A total of 50 μg genomic DNA are digested in a volume of 200 μl containing 10 mM Tris (pH=7.5), 50 mM NaCl, 7 mM MgCl₂, 7 mM 2-mercaptoethanol, and 4 units restriction enzyme Sau3A for one minute at 37°C. Partially digested DNA of molecular size 10-20 kb is isolated by agarose gel electrophoresis, followed by electrodialution into dialysis membrane and concentration using an Elutip-D column (Schleicher and Schuell). One μg of lambda arms of phage of EMBL4 that had been cut with restriction enzyme BamH1 and treated with phosphatase (Clonetech) is ligated with 300-400 μg Sau3A cut genomic DNA in a volume of 25 μl under standard conditions (see Sambrook *et al.*, 1989, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor, NY). Lambda phage are prepared from this ligation mix using a commercially available kit (Gigapack Gold II, Stratagene) following the manufacturers directions.

The plating of ca. 15,000 recombinant lambda phage and the production of filter lifts (to Hybond N+ filters, Amersham) are performed using standard methods (Sambrook *et al.*, 1989, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor, NY). The filters are processed for hybridization with a Genius Kit for nonradioactive nucleic acids detection (Boehringer Mannheim) using standard methods (Sambrook *et al.*, 1989, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor, NY). The DNA used as a probe is a 0.75 kb digoxigenin (DIG) labeled PCR fragment of the entire coding region of the *F. oxysporum* trypsin-like protease (hereinafter referred to as SP387) gene present in plasmid pSX233, which has been deposited with the NRRL under the accession number of NRRL B-21241. The primers for the PCR reaction are 5'-tgcggatccATGGTCAAGTCCTCCGTTCCGTC (forward primer; SEQ ID NO:1) and 5'-gacctcagTTAAGCATAGTGTTCAATGAA (reverse primer; SEQ ID NO:2). In both primers, the lower case characters represent linker sequences and the upper case characters correspond to the coding region of the SP387 gene. To perform the PCR, 25 ng of a 907 bp BamH1/Xba1 DNA fragment containing the SP387 gene from plasmid pSX233 are mixed with 68 pmoles of each forward and reverse primer.

The mixture of the DNA fragment and primers is made up to an 80 μl volume in 1X Taq Buffer/1X DIG labelling Mix/5 units Taq (Boehringer Mannheim). The reaction conditions are 95°C, 3 minutes, then 35 cycles of [95°C 30 seconds, 50°C 1 minute, 72°C 1 minute]. The DNA sequence derived by PCR from the *F. oxysporum* trypsin-like protease is shown in SEQ ID NO:3. The phage plaques are screened with the DIG labeled probe using a
modification (Engler and Blum, 1993, Anal. Biochem. 210:235-244) of the Genius kit (Boehringer Mannheim). Positive clones are isolated and purified by a second round of plating and hybridization. Recombinant lambda phage containing the *F. oxysporum* trypsin-like protease gene are prepared and DNA is isolated from the phage using a Quiagen lambda midi preparation kit (Quiagen).

6.4. Construction of Expression Plasmid pJRoy6

Restriction mapping, Southern blotting, and hybridization techniques (Sambrook *et al.*, 1989, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor, NY) are used to identify a 5.5 kb Pst1 restriction enzyme fragment from one of the recombinant phage that contains the *F. oxysporum* trypsin-like protease coding gene and flanking DNA sequences. This 5.5 kb Pst1 fragment is subcloned into Pst1 digested pUC118 and the plasmid is designated pJRoy4 (see Figure 3). Plasmid pJRoy4 is digested with restriction enzyme EcoR1 and a 3.5 kb EcoR1 fragment containing the SP387 gene and the 43 bp EcoR1/Pst1 region of the pUC118 polylinker is isolated and subcloned into the vector pToC90 to create plasmid pJRoy6 (Figure 3).

6.5. Construction of SP387 Expression Cassette

An expression cassette (pJRoy20) containing the SP387 promoter and terminator joined by a BamH1 site in pUC118 is constructed. An *E. coli* strain containing pJRoy20 has been deposited with the NRRL. The promoter fragment is generated by digesting the SP387 vector pJRoy6 with EcoR1 (which cuts at -1200) and with Nco1 (which cuts at the translational start site, see Figure 3). The terminator sequence (bp 2056-3107 in Figure 5) is generated by PCR amplification using the following oligonucleotides:

FORWARD

5'gcacaccatggtcgctggatccATACCTTGTTGAAGCGTCG3' (SEQ ID NO:11)

REVERSE

5'atcgagcatgcgtaccgtaaaggaattcAGGTAAAACAAGATATAATTTTCTG 3' (SEQ ID NO:12)

Letters in large case are complementary to SP387 terminator DNA, while lower case letters are tails containing engineered restriction sites.

After digestion with Nco1 and Sph1, the resulting amplification product containing the terminator flanked by Nco1 and BamH1 sites on the 5' end, and flanked by EcoR1, Pme1, Kpn1 and Sph1 sites on the 3' end is isolated. A 3-way ligation between the
promoter fragment, the terminator fragment and Kpn1/Sph1 cut pUC118 is performed to generate pJRoy20 (see Figure 5).

6.6. Carezyme® Constructs

The EcoRV site at -15 in the SP387 promoter, and the NcoI site present at +243 in the Carezyme® coding region are utilized to create an exact fusion between the SP387 promoter and the Carezyme® gene. A PCR fragment containing -18 to -1 of the SP387 promoter directly followed by -1 to +294 of the Carezyme® gene is generated from the Carezyme® vector pCaHj418 (see Figure 10) using the following primers:

FORWARD
EcoRV
5'ctttgatatcttcacctATGCCGTCTCCCTCCCCCTCCT3' (SEQ ID NO:13)

REVERSE
5'CAATAGAGGTGGCACAAAA 3' (SEQ ID NO:14)

Lower case letters in the forward primer are bp -24 to -1 of the SP387 promoter, while upper case letters are bp 1 to 20 of Carezyme®.

The PCR conditions used are: 95°C, 5 min. followed by 30 cycles of [95°C, 30 sec., 50°C, 1 min., 72°C, 1 min.]. The resulting 0.32 kb fragment is cloned into vector pCRII using Invitrogen’s TA cloning kit resulting in pDM148 (see Figure 11). The 0.26 kb EcoRV/NcoI fragment is isolated from pDM148 and ligated to the 0.69 kb NcoI/BglII fragment from pCaHj418 and cloned into EcoRV/BamHI digested pJRoy20 to create pDM149 (see Figure 12). The 3.2 kb EcoRI Carezyme® expression cassette (SP387 promoter/Carezyme®/SP387 terminator) is isolated from pDM149 and cloned into the EcoRI site of pToC90 to create pDM151 (see Figure 6). Expression construct pDM151 contains both the expression cassette and the amds selectable marker. An E. coli strain containing pDM151 has been deposited with the NRRL.

6.7. Lipolase® Constructs

The EcoRV site at -15 in the SP387 promoter, and the SacI site at +6 in the Lipolase® coding region are utilized to create an exact fusion between the SP387 promoter and the Lipolase® gene. An adapter containing the final 15 bp of the SP387 promoter followed by the first 6 bp of the Lipolase® coding region is constructed and is shown below.
5 A 0.9 kb SacI/BamHI fragment of the Lipolase® cDNA gene is isolated from the A. oryzae expression construct pMHan37 (see Figure 13). The EcoRV/Sacl adapter and SacI/BamHI Lipolase® fragment are ligated and cloned into EcoRV/BamHI digested pJRoy20 to create plasmid pDM154 (see Figure 14). The 3.2 kb KpnI Lipolase® expression cassette (SP387 promoter/Lipolase®/SP387 terminator) is isolated from pDM154 and cloned into the KpnI site of pToC90 to create plasmid pDM155 (see Figure 7). Expression construct pDM155 contains both the Lipolase® expression cassette and the *amdS* selectable marker. An *E. coli* strain containing pDM151 has been deposited with the NRRL.

6.8. Transformation of *F. graminearum*

Fusarium graminearum strain ATCC 20334 cultures are grown on 100 x 15 mm petri plates of Vogels medium (Vogel, 1964, Am. Nature 98:435-446) plus 1.5% glucose and 1.5% agar for 3 weeks at 25°C. Conidia (approximately 10^8 per plate) are dislodged in 10 ml of sterile water using a transfer loop and purified by filtration through 4 layers of cheesecloth and finally through one layer of miracloth. Conidial suspensions are concentrated by centrifugation. Fifty ml of YPG (1% yeast extract (Difco) 2% bactopeptone (Difco), 2% glucose) are inoculated with 10^8 conidia, and incubated for 14 h at 20°C, 150 rpm. Resulting hyphae are trapped on a sterile 0.4 µm filter and washed successively with sterile distilled water and 1.0 M MgSO_4_. The hyphae are resuspended in 10 ml of Novozym® 234 (Novo Nordisk) solution (2-10 mg/ml in 1.0 M MgSO_4_) and digested for 15-30 min at 34°C with agitation at 80 rpm. Undigested hyphal material is removed from the resulting protoplast suspension by successive filtration through 4 layers of cheesecloth and through miracloth. Twenty ml of 1M sorbitol are passed through the cheesecloth and miracloth and combined with the protoplast solution. After mixing, protoplasts (approximately 5 x 10^8) are pelleted by centrifugation and washed successively by resuspension and centrifugation in 20 ml of 1M sorbitol and in 20 ml of STC (0.8 m sorbitol, 50 mM Tris-HCl pH=8.0, 50 mM CaCl_2). The washed protoplasts are resuspended in 4 parts STC and 1 part SPTC (0.8M sorbitol, 40% polyethylene glycol 4000 (BDH), 50 mM Tris-HCl pH=8.0, 50 mM CaCl_2) at a concentration of 1-2 x 10^8/ml. One hundred µl of protoplast suspension are added to 5 µg pJRoy6 and 5 µl heparin (5 mg/ml in STC) in polypropylene tubes (17 x 100 mm) and incubated on ice for 30 min. One ml of SPTC is mixed gently into the protoplast suspension and incubation is continued at room temperature for 20 min. Protoplasts are plated on a
selective medium consisting of Cove salts (Cove, D.J., 1966, Biochem. Biophys. Acta 113:51-56) plus 10 mM acetamide, 15 mM CsCl2, 2.5% noble agar (Difco) and 1.0 M sucrose using an overlay of the same medium with 0.6 M sucrose and 1.0% low melting agarose (Sigma). Plates are incubated at 25°C and transformants appeared in 6-21 days.

6.9. Expression of trypsin-like protease in Fusarium graminearum

Transformants are transferred to plates of COVE2 medium (same as COVE medium above without the cesium chloride and replacing the 1.0 M sucrose with a concentration of 30 g/l) and grown for 3 or more days at 25°C. Twenty five ml aliquots of FP-1 medium (5% soya bean meal, 5% glucose 2% K2HPO4, 0.2% CaCl2, 0.2% MgSO4.7H2O and 0.1% pluronic acid (BASF)) in 150 ml flasks are inoculated with approximately 1 cm agar plugs from COVE2 plate cultures and incubated for 6 days at 30°C with agitation (150 rpm). Supernatant broth samples are recovered after centrifugation and subjected to SDS-PAGE analysis as follows. Thirty μl of each broth is mixed with 10 μl SDS-PAGE sample buffer (1 ml 0.5 M Tris pH=6.8, 0.8 ml glycerol, 1.6 ml 10% SDS, 0.4 ml 0.8 M dithiothreitol, 0.2 ml 1% bromophenol blue, 2 μl of 2% PMSF (Sigma) in isopropanol, and 2 μl glycerol. The samples are placed in a boiling water bath for 4 minutes and 40 μl of each are run on a 10-27% polyacrylamide gel (Novex). The gels are stained and destained with Coomassie dye using standard methods. The expression level of the trypsin-like protease has been determined to be ≥ 0.5 g/l.

6.10. Enzyme assays

6.10.1. Carezyme®

Buffer: Sodium phosphate (50 mM, pH 7.0)

Substrate: AZCL-HE cellulose (Megazyme) at 2 mg/ml buffer

Enzyme std: 100 mg of Carezyme® standard (10,070 ECU/g) is dissolved in 1 ml buffer and stored at -20°C. This stock is diluted 1:100 in buffer immediately prior to use in enzyme assays. The assay range is 0.5 - 5.0 ECU/ml. A conversion factor of 650,000 ECU/g Carezyme® is used.

Substrate solution (990 μl) is added to sample wells of a 24-well microtiter plate. Ten μl of Carezyme® sample (diluted in buffer to produce activity of between 0.5 and 10 ECU/ml.) are added to the substrate. Reactions are incubated for 30 minutes at 45°C with
supernatant are transferred to a 96-well microtiter plate and the absorbance at 650 nm is measured.

6.10.2. Lipolase® Assay

Buffer: 0.1M MOPS, pH 7.5 containing 4 mM CaCl₂

Substrate: 10 mL p-nitrophenyl butyrate (pNB)
in 1 ml DMSO;
Add 4 ml buffer to substrate in DMSO
*Stock concentration = 11.5 mM in 20% DMSO

Enzyme std:Lipolase® (23,100 LU/g) is dissolved at
1000LU/ml in 50% glycerol and stored at -20°C.
This stock is diluted 1:100 in buffer
immediately prior to assay. The assay range is
0.125 to 3.0 LU/ml.

100 µl pNB stock solution is added to 100 µl of appropriately diluted enzyme
sample. Activity (mOD/min) is measured at 405 nm for 5 min at 25°C.

6.10.3. SP387 Assay

L-BAPNA substrate is prepared by dilution of a 0.2 M stock solution of L-
BAPNA (Sigma B3133) in dimethyl sulfoxide (stored frozen) to 0.004 M in buffer (0.01 M
dimethylglutaric acid (Sigma), 0.2 M boric acid and 0.002 M calcium chloride, adjusted to pH
6.5 with NaOH) just prior to use. One µl of culture was centrifuged (145000 x g, 10 min). A
100 µl aliquot of diluted culture broth is added to 100 µl substrate in a 96 well microtiter plate.
Absorption change at 405 nm is assayed at 30 second intervals for 5 min. at 25°C using an
ELISA reader. Results are calculated relative to a purified SP387 standard.

6.11. Expression of Carezyme®

Twenty-three transformants of pDM151 are purified, cultured in shake flasks
on soy/glucose medium and assayed for Carezyme® activity after 9 days (Table 1-see below).
Four transformants express Carezyme® at a level of approximately 50-100 mg/L.
Transformant pDM151-4 is cultured in small scale fermentors using the conditions developed
for SP387 production (see Section 6.9). Approximately 6.0 g/L of Carezyme® is evident after
7 days (Figure 8A). Carezyme® comprised greater than 90% of secreted proteins based on
7 days (Figure 8A). Carezyme® comprised greater than 90% of secreted proteins based on SDS gel electrophoresis (Figure 8B).

TABLE I

<table>
<thead>
<tr>
<th>Transformant #</th>
<th>ECU/ml</th>
<th>mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>pDM 151.3 - 4</td>
<td>58.2</td>
<td>90</td>
</tr>
<tr>
<td>pDM 151.3 - 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pDM 151.3 - 6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pDM 151.3 - 10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pDM 151.3 - 11</td>
<td>2.46</td>
<td>4</td>
</tr>
<tr>
<td>pDM 151.3 - 12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pDM 151.3 - 13</td>
<td>12.2</td>
<td>19</td>
</tr>
<tr>
<td>pDM 151.3 - 14</td>
<td>47.3</td>
<td>73</td>
</tr>
<tr>
<td>pDM 151.3 - 15</td>
<td>22.7</td>
<td>35</td>
</tr>
<tr>
<td>pDM 151.3 - 16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pDM 151.3 - 17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pDM 151.3 - 18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pDM 151.3 - 19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pDM 151.3 - 21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pDM 151.3 - 22</td>
<td>43.7</td>
<td>67</td>
</tr>
<tr>
<td>pDM 151.3 - 23</td>
<td>1.25</td>
<td>2</td>
</tr>
<tr>
<td>pDM 151.3 - 24</td>
<td>17.8</td>
<td>27</td>
</tr>
<tr>
<td>pDM 151.3 - 25</td>
<td>3.8</td>
<td>58</td>
</tr>
<tr>
<td>pDM 151.3 - 26</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pDM 151.3 - 27</td>
<td>10.5</td>
<td>16</td>
</tr>
<tr>
<td>pDM 151.3 - 28</td>
<td>49.3</td>
<td>76</td>
</tr>
<tr>
<td>pDM 151.3 - 29</td>
<td>19.8</td>
<td>30</td>
</tr>
<tr>
<td>pDM 151.3 - 30</td>
<td>22.7</td>
<td>35</td>
</tr>
</tbody>
</table>

6.12. Expression of Lipolase®

Fifteen transformants of pDM155 are purified, cultured in shake flasks in soy/glucose medium and assayed for Lipolase® activity after 9 days (Table 2-see next page).
TABLE II

<table>
<thead>
<tr>
<th>Transformant #</th>
<th>LU/ml</th>
<th>mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>pDM 155 - 1</td>
<td>669</td>
<td>167</td>
</tr>
<tr>
<td>pDM 155 - 2</td>
<td>45.2</td>
<td>1.1</td>
</tr>
<tr>
<td>pDM 155 - 3</td>
<td>180</td>
<td>4.5</td>
</tr>
<tr>
<td>pDM 155 - 4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pDM 155 - 5</td>
<td>55.4</td>
<td>1.4</td>
</tr>
<tr>
<td>pDM 155 - 6</td>
<td>116</td>
<td>2.9</td>
</tr>
<tr>
<td>pDM 155 - 7</td>
<td>704</td>
<td>17.6</td>
</tr>
<tr>
<td>pDM 155 - 8</td>
<td>214</td>
<td>5.4</td>
</tr>
<tr>
<td>pDM 155 - 9</td>
<td>17.1</td>
<td>0.4</td>
</tr>
<tr>
<td>pDM 155 - 10</td>
<td>7.1</td>
<td>0.17</td>
</tr>
<tr>
<td>pDM 155 - 11</td>
<td>51.1</td>
<td>1.28</td>
</tr>
<tr>
<td>pDM 155 - 12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pDM 155 - 13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pDM 155 - 14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pDM 155 - 15</td>
<td>153</td>
<td>3.8</td>
</tr>
<tr>
<td>pDM 155 - 16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pDM 155 - 17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pDM 155 - 18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pDM 155 - 19</td>
<td>129</td>
<td>3.2</td>
</tr>
<tr>
<td>pDM 155 - 20</td>
<td>37.8</td>
<td>9.5</td>
</tr>
<tr>
<td>pDM 155 - 21</td>
<td>2.16</td>
<td>5.4</td>
</tr>
</tbody>
</table>

Four transformants expressed Lipolase® at a level of approximately 100-200 mg/l (based on the pNB assay). Transformant pDM155-10 is cultured in small scale fermentors using the conditions developed for SP387 production (see Section 6.9). Approximately 2.0 g/l of Lipolase is evident after 7 days (Figure 8A). Lipolase® comprised greater than 90% of secreted proteins based on SDS gel electrophoresis (Figure 8B).

7. DEPOSIT OF MICROORGANISMS

The following biological materials have been deposited in the Agricultural Research Service Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 University Street, Peoria, Illinois, 61604, USA.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Accession No.</th>
<th>Deposit Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli containing</td>
<td>NRRL B-21285</td>
<td>6/20/94</td>
</tr>
<tr>
<td>pJRoy6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. coli containing</td>
<td>NRRL B-21418</td>
<td>3/10/95</td>
</tr>
</tbody>
</table>
The strains have been deposited under conditions that assure that access to the culture will be available during the pendency of this patent application to one determined by the Commissioner of Patents and Trademarks to be entitled thereto under 37 C.F.R. §1.14 and 35 U.S.C. §122 and under conditions of the Budapest Treaty. The deposit represents a biologically pure culture of each deposited strain. The deposit is available as required by foreign patent laws in countries wherein counterparts of the subject application, or its progeny are filed. However, it should be understood that the availability of a deposit does not constitute a license to practice the subject invention in derogation of patent rights granted by governmental action.

The invention described and claimed herein is not to be limited in scope by the specific embodiments herein disclosed, since these embodiments are intended as illustrations of several aspects of the invention. Any equivalent embodiments are intended to be within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.

Various references are cited herein, the disclosures of which are incorporated by reference in their entireties.
SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT:
 (A) NAME: Novo Nordisk Biotech, Inc.
 (B) STREET: 1445 Drew Avenue, Ste. 105
 (C) CITY: Davis
 (D) STATE: California
 (E) COUNTRY: US
 (F) ZIP: 95616-4880
 (G) TELEPHONE: (916) 757-8100
 (H) TELEFAX: (916) 758-0317

(ii) TITLE OF INVENTION: NON-TOXIC, NON-TOXIGENIC, NON-PATHOGENIC FUSARIUM EXPRESSION SYSTEM AND PROMOTERS AND TERMINATORS FOR USE THEREIN

(iii) NUMBER OF SEQUENCES: 16

(iv) CORRESPONDENCE ADDRESS:
 (A) ADDRESSEE: Novo Nordisk of North America, Inc.
 (B) STREET: 405 Lexington Avenue, 64th Floor
 (C) CITY: New York
 (D) STATE: New York
 (E) COUNTRY: USA
 (F) ZIP: 10174-6401

(v) COMPUTER READABLE FORM:
 (A) MEDIUM TYPE: Floppy disk
 (B) COMPUTER: IBM PC compatible
 (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 (D) SOFTWARE: PatentIn Release #1.0, Version #1.30

(vi) CURRENT APPLICATION DATA:
 (A) APPLICATION NUMBER: to be assigned
 (B) FILING DATE: 15-June-1995
 (C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:
 (A) APPLICATION NUMBER: US 08/269,449
 (B) FILING DATE: 30-June-1994

(viii) PRIOR APPLICATION DATA:
 (A) APPLICATION NUMBER: US 08/404,678
 (B) FILING DATE: 15-March-1995

(ix) ATTORNEY/AGENT INFORMATION:
 (A) NAME: Agris Dr., Cheryl H.
 (B) REGISTRATION NUMBER: 34,086
 (C) REFERENCE/DOCKET NUMBER: 4216.204-WO

(x) TELECOMMUNICATION INFORMATION:
 (A) TELEPHONE: 212-867-0123
 (B) TELEFAX: 212-878-9655

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 30 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
GACCTCGAAT TAAAGATGG TGTCAATGAA

(2) INFORMATION FOR SEQ ID NO:3:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 998 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
ATCATCAACC ACTTCTCACT CTTCAACTCT CTTTCTTGG ATATCTATCT CTTAGCAGTG
GCTAGGTCG CTTCGTCGCT TGCACTTTGG GCTCTCCCTGG CTCTGCTCAGCC CTCTCAGGAG
ATCCCAACAA TTGTTGAGGG CACTTCTGCG AGGGTGGGCC GCCTGACTTGG ACTTCTCCTTG CATCGTGAGC
ATGAGCGGCA ACGTGGCGCC CTGGTGAGGG GCTGTCTTCC TCAAGGCAA CACCGTCTTG
ACTGACTGCG ACTGCGTTCG CCGATAGCT CAGGACGTTT TCCAGATTCC TGCTGCGAGT
CTGTCTCGCA CTTGCTGAGG TATATCTGCC TGCGTTTCTT CCGTCGAGGT TCAGCTTAGC
TACAGCAGGA ACAAACACCA CTGTCGTGAT CTGAAGGCTCT CTACTTCCAT CCCCCTCAGGC
GGAAACATCG GCTATGCGCT CTCGCTGCTG TCGGCCTCTG ACCCTTGCGG TGATGCTTCG
GCCACGTGTT CGCTGCTGGG CCGTACTCTCT GAGACCGCAGG GCCTCTACTCC CCGTCAACTCT
CTGAAAGTTA CTGTCCTATT CTTGTCTGCTG GCTACCTGCC GAGTCAAGTA CCGACCTGCC
GCCATCAACA ACCAGATTTG CTGTGCTGGT GCTTCTCTCG GTGGCAAGGA CTCTTGCCAG
GGTACGCCG GCGGCGCTAG CCGGCAAGCG TCCAAACACT TTAGCGGCTG TGCTTTTCCG
GGTAGGATAC CATGCCGACC CAATCTCTCT GGTCTCTATG CCGCCCGTGG TGCTGTCCAG
TCGTTCTATT AGCACTATGC TTAAATCATT GCTTGGAAAG GTGCGAGATGT TCCCTGAAATA
TTCTGCTAGCT TGAGTCTCGT ATACGAAAAG TGGTTGAAGA ATAGGTCTCA ACGAGTCTAG
AAGATATGAG TTAGATTTAG TTAGATTTTA GCTCGGTGTTG CTGCTGATAG AGCAATCTAG
ATTAGCAAAA TGCTATAGA AATTTGATGA AATATTATC

(2) INFORMATION FOR SEQ ID NO:4:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 248 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) FEATURE:
(A) NAME/KEY: Protein
(B) LOCATION: 1..224

(x) FEATURE:
(A) NAME/KEY: Peptide
(B) LOCATION: -24..0
(D) OTHER INFORMATION: /product= "OTHER"

/note= "Label=pre-propeptide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Val Lys Phe Ala Ser Val Val Ala Leu Val Ala Pro Leu Ala Ala
-20

Ala Ala Pro Gln Glu Ile Pro Asn Ile Val Gly Gly Thr Ser Ala Ser
-5

Ala Gly Asp Phe Pro Phe Ile Val Ser Ile Ser Arg Asn Gly Gly Pro
10

Trp Cys Gly Gly Ser Leu Leu Asn Ala Asn Thr Val Leu Thr Ala Ala
25

His Cys Val Ser Gly Tyr Ala Gln Ser Gly Phe Gln Ile Arg Ala Gly
30

Ser Leu Ser Arg Thr Ser Gly Gly Ile Thr Ser Ser Leu Ser Ser Val
35

Arg Val His Pro Ser Tyr Ser Gly Asn Asn Asp Leu Ala Ile Leu
40

Lys Leu Ser Thr Ser Ile Pro Ser Gly Gly Asn Ile Gly Tyr Ala Arg
45

Leu Ala Ala Ser Gly Ser Pro Val Ala Gly Ser Ser Ala Thr Val
50

Ala Gly Trp Gly Ala Thr Ser Gly Gly Ser Ser Thr Pro Val Asn
55

Leu Leu Lys Val Thr Val Pro Ile Val Ser Arg Ala Thr Cys Arg Ala
60

Gln Tyr Gly Thr Ser Ala Ile Thr Asn Gln Met Phe Cys Ala Gly Val
65

Ser Ser Gly Gly Lys Asp Ser Cys Glu Gly Asp Ser Gly Gly Pro Ile
70

Val Asp Ser Ser Asn Thr Leu Ile Gly Ala Val Ser Trp Gly Asn Gly
75

Cys Ala Arg Pro Asn Tyr Ser Gly Val Tyr Ala Ser Val Gly Ala Leu
80

Arg Ser Phe Ile Asp Thr Tyr Ala
85

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1206 base pairs

20
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
GAAATCTTCAC AAACCCTCAA CAGTGAGACG TTCCGAGACG AGCATATCGAT CCTTTGAAGA 60
TAGGGTGACG GTCAATCATG GAATTATCCCA CATCCCTCAG TTCCTCCTCT TTCAAACCAT 120
GCAAAGTCTT TCATCTACCT TCCTAAACCTT GATTTTACCGG CTCTCACCCT AAAAGTACCT 180
TCCTAAAGGTC ATCTACCTCA GCTCAGAATG AGGGCACCTA TTCCGAAAGA TCTCAAGCT 240
GAACTGTAAG GCATAGGGGC AGAATATCCC AGAATATTGG AGAAGCGGTTT CTGATTAGAC 300
CTAAGGCGAT CGCAGAAGAA GATAAAGCGG AGATATAAGC TATGTGGGAG AGGTAGGGGA 360
TGGAAAGAGGA TGCCAGCTTT AATGATTACCA GCCAGTCAAT AGGGTGACTCT AGAAACTAGG 420
TGACAGACTG GCACAGAGGC TGATACATCT GCAGTGCTGAT GCATGGCGTTA TCCACAGGCCT 480
GCTATTTGCT GGGTGGTGGCT ACAAGAAGTTGC TAATGTTTCT CCAAGTCTCAG AATTATGGGC 540
CATTTGATT GATGCGGCTC GACGGATATA TAGCTGTGAA GCCGGCGGAC AGTATGATGG 600
CAGATGGCGT TTGGAGCTCT GCAGGTCTCCG GGCTAAATA ACTCCGGTTG GTCCTGAGAA 660
TGCTGAGCGA ATGATCTCTC GCCATTAATC TGATAGTCTG GGGGGGATA AGCCGATCAA 720
AGACACCAGC TAGATACGTC CTGGAGTACG TTCTACCCAG TTTATAATAGA CATCATTCTT 780
GAACGTCTTT TCTCTCAGCT GTTTACCTTT CCGCTCTATT ATCCGTCATA TCCACAGGCT 840
TATGGGCGAT AGATGATTGC ACTTCCCCCTGC TGGGATACGT GCCCGCGCCG GCCAAAGGCCC 900
TTATATGCCT ATCAGTTTCA GGGAGCAATG ATAGGTTTAA TGCTTCTCTT GAATGCCGAA 960
CTAGACTACG GAACAACGGA GCTTAGTACC AGAAGGGCAG GTAGGCTTAT TCCGAAACTC 1020
CGAAGATACA ACCAACGCAAG CTTATGCGCG GATAGTAAAC AGAGAGGCGG GTAAAGAGAC 1080
ACAACACACT CCATAGCATG TAGAATCCG GAATTAAAA GGACCAAGAT GAATTATCCG 1140
AAGTAGCCTA TCATCAACCA CTCTCACCCT TCTCAACTCTC CTCTTTGGA TATCTATCTC 1200
TTCACC 1206

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1188 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
TAAATACCTT GTTGGACAAGG TCAGAGATGGT CTTGAATAT TCTCTAGGTT GAGTTCTGGA 60
TAGCAACGCT GTTTGGAGAA TAGTTTTCAA CGAGTTAAAG AGATATGGAGT TGATTTCCAGT 120
TGGATCTTGA TTCTGTTTGC TCGTAAAGGA CCAAATCTGA TAGCCCAAAT TGATATGGAA 180
ATTTGATGGA AAATATCATT TCAGATGAAAC CAGCGTCGAA TGTCCTAGCAG GACGAAAGT 240
AGATCAAGCC TGGTTAGTTTC CCGGACCAAC CTACCTTGGAT GTCAGTCTGC GAGTCCGTGG 300
CAGTGGACCA GAAATGATAA TTGACTGAGA CATTTTCTGT CTATGAAGTA TTATGAAACAT 360
GAATATCGTT TCTCTCATTCT CTAATGGTGAC AGCCCTAAAGT TTTACCATAT AGCTAGCAGAAT 420
CAGTCAAGTA TCTGCCGTATG AAGGCTTGGT AAGCCAGGAC GGTATCAGCG TTGAAATATT 480
AAAGAATGAT ATGAATAAAT CAACATGCAG ATGATAAAAG AAAAAAGGGGA ACAAAATTGTG 540
CATATAGTAA AGACCTCAGG TGGCCCTCTC AATAGACATA TGGCGAACCAAA AAACACACAG 600
GATACATTTT ATAGATAAGT ATAATCTACG TTATCTGTCT GCGGAACAAA TACTCTTTTG 660
TGGAACAAAT GAAGATGCA TAAAGCAGTAT TCTTCTGATG GGAACATCCTT TTACAATAAC 720
TCCCTTTGACT TCTCTTCACTG TCTCAATAAGC CTCCAAAGTCT ATGGGCTGCG CATCAAGGCA 780
CGTCAGCTCT GGGAGCACTTG ACACAGTGCA CATACTTTAC GAGATAGGA AGTGGGAGGA 840
ATCGTTCGTT TCTGCCCTCCA AAAAAATGACA CCAGTGTACTT TTTTGACGAT ACTGATATGG 900
TGTTAAAGCTT GGGACTGCTAT GTTGACGATT GCAAATCTCAA CTATGGAGCC GTTCCATTCC 960
TCTGCTGAATA GCTCTCAACAT TTCTCGAAAGT CTGAAACGAT GGGCTATAGT ATCTTAATTGA 1020
GAAATAGTGC TTTCAGAGAA ATTATACCTT GCTTTACCTTTT GCGTCCGAGA TGCGCTGCTAA 1080
AAGCTGCTGG AAAATCAGAA GCCGAGCAGA AGCAGCAAGA GTGATGGGCA CAACGCTGATA 1140
TGGTATGAAA AGCATCAGTTA TCGATAAATT CCACCTCAGAA ACCTGACG 1188

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1060 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 10..924

(ix) FEATURE:
(A) NAME/KEY: mat_peptide
(B) LOCATION: 73..924

(ix) FEATURE:
(A) NAME/KEY: sig_peptide
(B) LOCATION: 10..72

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GGATCCAACT ATG GCT TCG TCC CCC CTC CTC CCG TCC GCC GGT GTG GCC
Met Arg Ser Ser Pro Leu Leu Pro Ser Ala Val Val Ala
-21 -20

GCC CTG CCG GTG TTG GCC CTT GCC GCT GAT GGC AGG TCC ACC CGG TAC
Ala Leu Pro Val Leu Ala Leu Ala Ala Asp Gly Arg Ser Thr Arg Tyr
-5 1

TGG GAC TGC TGC AAC CCT TCG TGC GCC TGG GCC AAG AAG GCT CCC GTG
Trp Asp Cys Cys Lys Pro Ser Cys Gly Trp Ala Lys Lys Ala Pro Val
10 15 20

48 96 144
AAC CAG CCT GTC TTT TCC TGC AAC GCC AAC TTC CAG GTT ATC ACG GAC
Asn Gln Pro Val Phe Ser Cys Asn Ala Asn Phe Gln Arg Ile Thr Asp
25 30 35 40

TTC GAC GCC AAG TCC GCC TGC GAG CCG GCC GGT GTT GCC TAC TCG TCG
Phe Asp Ala Lys Ser Gly Cys Glu Pro Gly Gly Val Ala Tyr Ser Cys
45 50 55

GCC GAC CAG ACC CCA TGG GCT GTC AAC GAC GAC TTC GCG CTC GGT TGG
 Ala Asp Gln Thr Pro Trp Ala Val Asn Asp Phe Ala Leu Gly Phe
60 65 70

GCT GCC ACC TCT ATT GCC GCC AGC AAT GAG GCC GCC TGG TGC TGC TGC
Ala Ala Thr Ser Ile Ala Gly Ser Asn Glu Ala Gly Trp Cys Cys Ala
75 80 85

TGC TAC GAG CTC ACC TTC ACA TCC GCT CCT GTT GCT GCC AAG AAG ATG
Cys Tyr Glu Leu Thr Thr Ser Gly Pro Val Ala Gly Lys Lys Met
90 95 100

GTC GTC CAG TCC ACC AGC ACT GCC GTT GCT CTT GCT GCC AAC CAC TTC
Val Val Gln Ser Thr Ser Thr Gly Gly Leu Gly Ser Asn His Phe
105 110 115 120

GAT CTC AAC ATC CCC GCC GGC GGC GCC GTC GCC ATC TCC GAC GGA TCC
Asp Leu Asn Ile Pro Gly Gly Gly Val Gly Ile Phe Asp Gly Cys Thr
125 130 135

CCC CAG TTC GCC GGT CGT CCC GCC CAG CGC TAC GCC GCC ATC TGG GCC
Pro Gln Phe Gly Leu Pro Gly Glu Tyr Gly Gly Ile Ser Ser
140 145 150

CGC AAC GAG TGC GAT CGG TTC CCC GCC CAG GCC TCC AAG CCC GCC GGC TTC
Arg Asn Glu Cys Asp Arg Phe Pro Ala Leu Lys Pro Gly Cys Tyr
155 160 165

TGG CGC TTC GCC TGC TGG TCC AAG AAC GCC GAC AAT CCG AGC TTC AGC TTC
Trp Arg Phe Asp Trp Phe Lys Asn Ala Asp Asn Pro Ser Phe Ser Phe
170 175 180

CGT CAG GTC CAG TGC CCA GCC GAG CTC GTC GTT GCC ACC GGA TCC GCC
Arg Gln Val Gln Cys Pro Ala Glu Leu Val Ala Arg Thr Gly Cys Arg
185 190 195 200

CGC AAC GAC GCC GCC AAG TTC CCT GCC GTC GAC ATC CCC TCC AGC AGC
Arg Asn Asp Asp Gly Asn Phe Pro Ala Val Gln Ile Pro Ser Ser Ser
205 210 215

ACC AGC TCT CGG GTC AAC CAG CCT ACC AGC ACC ACC AGC ACG TCC ACC
Thr Ser Ser Pro Val Asn Thr Pro Thr Ser Thr Ser Thr Ser Thr
220 225 230

TCC ACC ACC TCG AGC CGG CCA GTC AAC GCT ACC ACT CCC AGC GCC TGC
Ser Thr Thr Ser Ser Pro Val Gln Pro Thr Thr Ser THR Thr Ser THR
235 240 245

ACT GCT GAG ACG TGG GCT CAG TCG GCC GCC AAT GCC TGC ACG GCC TGC
Thr Ala Glu Arg Trp Ala Gln Cys Gly Gly Asn Gly Trp Ser Gly Cys
250 255 260

ACC ACC TTC GCT GCC AAG ACT TTC ACG AAG ATT AAT GAC TGG TAC
Thr Thr Cys Val Ala Gly Ser Thr Cys Thr Ser Lys Ile Asp Thr Tyr
265 270 275 280

CAT CAG TGC CTG TAGACGCCAGG GCAGCTTGAG GGCCTTACTG GTGGGCCGCAA
His Gln Cys Leu

964
CGAAGTGCA CTCCCAATCA CGTATTAGT TCTTGACAT AATTTGCTCA TCCCTCCAGG
GATTGTCACA TAATCTCAAT GAGGAACAT GAGTCAC

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 305 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Arg Ser Ser Pro Leu Leu Pro Ser Ala Val Val Ala Ala Leu Pro
-21 -20 -15 -10
Val Leu Ala Leu Ala Ala Asp Gly Arg Ser Thr Arg Tyr Trp Asp Cys
-5 1 5 10
Cys Lys Pro Ser Cys Gly Trp Ala Lys Lys Ala Pro Val Asn Gln Pro
15 20 25
Val Phe Ser Cys Asn Ala Asn Phe Gln Arg Ile Thr Asp Phe Asp Ala
30 35 40
Lys Ser Gly Cys Glu Pro Gly Gly Val Ala Tyr Ser Cys Ala Asp Gln
45 50 55
Thr Pro Trp Ala Val Asn Asp Phe Ala Leu Gly Phe Ala Ala Thr
60 65 70 75
Ser Ile Ala Gly Ser Asn Glu Ala Gly Trp Cys Cys Ala Cys Tyr Glu
80 85 90
Leu Thr Phe Thr Ser Gly Pro Val Ala Gly Lys Lys Met Val Val Gln
95 100 105
Ser Thr Ser Thr Gly Asp Leu Gly Ser Asn His Phe Asp Leu Asn
110 115 120
Ile Pro Gly Gly Gly Val Gly Ile Phe Asp Gly Cys Thr Pro Glu Phe
125 130 135
Gly Gly Leu Pro Gly Gln Arg Tyr Gly Gly Ile Ser Ser Arg Asn Glu
140 145 150 155
Cys Asp Arg Phe Pro Asp Ala Leu Lys Pro Gly Cys Tyr Trp Arg Phe
160 165 170
Asp Trp Phe Lys Asn Ala Asp Asn Pro Ser Phe Ser Phe Arg Glu Val
175 180 185
Gln Cys Pro Ala Glu Leu Val Ala Arg Thr Gly Cys Arg Arg Asn Asp
190 195 200
Asp Gly Asn Phe Pro Ala Val Gln Ile Pro Ser Ser Ser Thr Ser Ser
205 210 215
Pro Val Asn Gln Pro Thr Ser Thr Ser Thr Ser Thr Ser Thr Thr
220 225 230 235
Ser Ser Pro Pro Val Gln Pro Thr Thr Pro Ser Gly Cys Thr Ala Glu
240 245 250

24
Arg Trp Ala Gln Cys Gly Gly Asn Gly Trp Gly Cys Thr Thr Cys
255 260 265
Val Ala Gly Ser Thr Cys Thr Lys Ile Asn Asp Trp Tyr His Gln Cys
270 275 280
Leu

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 876 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ATGGAGGACCT CCCCTGTGCT GTCCTTGTGTC TCTGCGTGGAG CGGCCTTGGC CAGTCTATT 60
CGTCCAGGAGCT CGCCATGAGAA TCTGATTGCT CAGTGGAGCT GATATATCTGCA 120
GCCGCACTACTGG CCAAGAAAAA CACATGATGCC CAGCTGTTAGA CAAACGATTAC 180
AATGCCCTCCCG CAGAGGTCGA GAAAGCGGGAT CAAAGCTTATCT ATCTATGACCTT 240
GGAAGTGCCGG ATGTCACCCG GTCTCTTGCT CAGTCACAAACA CAGACAAATTC 300
TCTTTCCTGT GCCTCCTGTGC CATAGAGAAT CAGATCGGGA ATCTTTAACTT CAGACTGAAA 360
GAAATTAAAG AATTCCTGCT CGGCCTGAGG GACAGATGAGG GCTTCACCTTC GTCTCTGAGG 420
TCTGTACCGG ATACCTTAAAG CAGGAAGAGG GAGGATCTGTG TGAGGCGGA TCCGACTAT 480
CCGGTCTGGGT TTACCCGGACA TGGTTGCTTGG CAGCATTTGGG CAATTCGACCC CGGACAGAC 540
CTGCCTGGAA ATGGGTATAG TATCGACGTT TTTTCATATCG GCGCCCCCCGG AGTCGGGAAAC 600
AGGGCTTTTGC CAGAATTCTCT CAGCCCTACAG AGCGGCGGGAA CACTGCCAGG CATACCCACC 660
ACCAATGATA TGGCCTGCTG AGTCCCGGCG CGGAAATCGG GTACAGCCCA TCTAGCCCA 720
GAGTACTGGA TCAAAATCTGG AACCTTCTGG CCGCTCCACC GAAAGATATG CGTGAAGATA 780
GAAGGCTAGCG ATGGCAACCGG CGGAATAAAC CAGGCTAACA TTCCGAGATAT CCGTCCCAC 840
CTATGCCTACT TCAGGGATAT TGGGACATGT CCTTAG 876

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 291 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met Arg Ser Ser Leu Val Leu Phe Phe Val Ser Ala Trp Thr Ala Leu
1 5 10 15
Ala Ser Pro Ile Arg Arg Glu Val Ser Glu Asp Leu Phe Asn Gln Phe
20 25 30
Asn Leu Phe Ala Gln Tyr Ser Ala Ala Tyr Cys Gly Lys Asn Asn
25
Asp Ala Pro Ala Gly Thr Asn Ile Thr Cys Thr Gly Asn Ala Cys Pro
50
Glu Val Glu Lys Ala Asp Ala Thr Phe Leu Tyr Ser Phe Glu Asp Ser
65
Gly Val Gly Asp Val Thr Gly Phe Leu Ala Leu Asp Thr Asn Lys
85
Leu Ile Val Leu Ser Phe Arg Gly Ser Arg Ser Ile Glu Asn Trp Ile
100
Gly Asn Leu Asn Phe Asp Leu Lys Glu Ile Asn Asp Ile Cys Ser Gly
115
Cys Arg Gly His Asp Gly Phe Thr Ser Ser Trp Arg Ser Val Ala Asp
130
Thr Leu Arg Gln Lys Val Glu Asp Ala Val Arg Glu His Pro Asp Tyr
145
Arg Val Val Phe Thr Gly His Ser Leu Gly Ala Leu Ala Thr Val
165
Ala Gly Ala Asp Leu Arg Gly Asn Gly Tyr Asp Ile Asp Val Phe Ser
180
Tyr Gly Ala Pro Arg Val Gly Asn Arg Ala Phe Ala Glu Phe Leu Thr
195
Val Gln Thr Gly Thr Leu Tyr Ile Thr His Thr Asn Asp Ile
210
Val Pro Arg Leu Pro Pro Arg Glu Phe Gly Tyr Ser His Ser Ser Pro
225
Glu Tyr Trp Ile Lys Ser Gly Thr Leu Val Pro Val Thr Arg Asn Asp
245
Ile Val Lys Ile Glu Gly Ile Asp Ala Thr Gly Gly Asn Asn Gln Pro
260
Asn Ile Pro Asp Ile Pro Ala His Leu Trp Tyr Phe Gly Leu Ile Gly
275
Thr Cys Leu
290

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 42 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GCACACCATG GTCGCTGGAT CCATAACCTG TTGGAGCGT CG

(2) INFORMATION FOR SEQ ID NO:12:

(1) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 56 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
ATCGGAGCAT GCGTACCGT TAAACGAAT TCAGGTAAC AAGATATAAT TTTCTG

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 44 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
CTCTGGATA TCTATCTCTT CACCATGCGT TCCTCCCCC TCCT

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
CAATAGAGGT GCCAGCAAAA

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 25 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
ATCTATCTCT TCACCATGAG GAGCT

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
TAGATAGAGA AGTGGTACTC C

27
What is claimed is:

1. A non-toxic, non-toxigenic, non-pathogenic recombinant *Fusarium* host cell comprising a nucleic acid sequence encoding a heterologous protein operably linked to a promoter.

2. The host cell of claim 1 in which the *Fusarium* is *Fusarium graminearum*.

3. The host cell of claim 1 in which the *Fusarium graminearum* has the identifying characteristics of ATCC 20334.

4. The host cell of claim 1 in which the heterologous protein is a fungal protein.

5. The host cell of claim 1 in which the heterologous protein is a secreted protein.

6. The host cell of claim 1 in which the heterologous protein is a fungal enzyme.

7. The host cell of claim 6 in which the fungal enzyme is selected from the group consisting of a catalase, laccase, phenoloxidase, oxidase, oxidoreductases, cellulase, xylanase, peroxidase, lipase, hydrolase, esterase, cutinase, a proteolytic enzyme, aminopeptidase, carboxypeptidase, phytase, lyase, a pectinolytic enzymes, amylase, glucoamylase, α-galactosidase, β-galactosidase, α-glucosidase, β-glucosidase, mannosidase, isomerase, invertase, transferase, ribonuclease, chitinase, and deoxyribonuclease.

8. The host cell of claim 6 in which the fungal enzyme is a protease.

9. The host cell of claim 6 in which the fungal enzyme is an alkaline protease.

10. The host cell of claim 9 in which the alkaline protease is a *Fusarium oxysporum* trypsin-like protease.

11. The host cell of claim 10 in which the *Fusarium oxysporum* trypsin-like
protease has an amino sequence shown in SEQ ID NO:4.

12. The host cell of claim 6 in which the fungal enzyme is an endoglucanase or variant thereof.

13. The host cell of claim 14 in which the endoglucanase has an amino acid sequence shown in SEQ ID NO:8.

14. The host cell of claim 6 in which the fungal enzyme is a 1,3 lipase or variant thereof.

15. The host cell of claim 12 in which the 1,3 lipase has an amino acid sequence shown in SEQ ID NO:10.

16. The host cell of claim 1 in which the heterologous protein is selected from the group consisting of a hormone, a growth factor and a receptor.

17. The host cell of claim 1 in which the promoter is a fungal promoter.

18. The host cell of claim 17 in which the promoter is selected from the group consisting of the promoters from A. nidulans amdS.

19. The host cell of claim 17 in which said fungal promoter is derived from a gene encoding a Fusarium oxysporum trypsin-like protease or a fragment thereof having substantially the same promoter activity as said sequence.

20. The host cell of claim 19 in which said promoter sequence is shown in SEQ ID NO:5.

21. The host cell of claim 1 which also comprises a selectable marker.

22. The host cell of claim 13 in which the marker is selected from the group consisting of argB, trpC, pyrG, amdS, niaD and hygB.

23. The host cell of claim 1 which also comprises a terminator.

24. The host cell of claim 23 in which said terminator is derived from a gene...
encoding a *Fusarium oxysporum* trypsin-like protease or a fragment thereof having substantially the same terminator activity as said sequence.

25. The host cell of claim 24 in which said terminator sequence is shown in SEQ ID NO:6.

26. A method for producing a protein of interest which comprises culturing a non-toxic, non-toxigenic, non-pathogenic recombinant *Fusarium* host cell comprising a nucleic acid sequence encoding a said protein operably linked to a promoter and isolating said protein.

27. A promoter sequence derived from a gene encoding a *Fusarium oxysporum* trypsin-like protease or a fragment thereof having substantially the same promoter activity as said sequence in which said promoter has the sequence shown in SEQ ID NO:5.

28. A terminator sequence derived from a gene encoding a *Fusarium oxysporum* trypsin-like protease or a fragment thereof having substantially the same terminator activity as said sequence in which said terminator has the sequence shown in SEQ ID NO:6.
F. OXSPOREUM DNA

PstI EcoRI PstI

prepro-SP387

SUBCLONING OF PstI
FRAGMENT INTO pUC118

pUC118

PstI EcoRI PstI

prepro-SP387

pJROY 4
8.4 kb

SUBCLONING OF EcoRI
FRAGMENT INTO pToC90

pToC90
5.4 kb

PstI EcoRI PstI PstI

prepro-SP387

pJROY 6
8.9 kb

FIG. 3

3/14
SUBSTITUTE SHEET (RULE 26)
FIG. 4
FIG. 7
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 C12N15/80 C12N5/10 C12P21/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>PROTEIN ENG., vol. 6, 1993 pages 341-348, W.R. RYPNIEWSKI ET AL.; 'The sequence and X-ray structure of the trypsin from Fusarium oxysporum' see abstract and Figure 2.</td>
<td>27,28</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

Date of the actual completion of the international search

2 October 1995

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: 31 651 epo nl, 31 701 340-3016

Authorized officer

Yeats, S
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>MYCOL. RES., vol. 97, 1992 pages 313-317, H.J. CURRAGH ET AL.; 'Protoplast formation and DNA-mediated transformation of Fusarium culmorum to hygromycin B resistance' cited in the application see the whole document.</td>
<td>1-26</td>
</tr>
<tr>
<td>Y</td>
<td>CURR. GENET., vol. 21, 1992 pages 463-469, R.N. CROWHURST ET AL.; 'High efficiency transformation of Fusarium solani f. sp. cucurbitae race 2 (mating population V)' cited in the application see abstract.</td>
<td>1-26</td>
</tr>
<tr>
<td>Y</td>
<td>MOLEC. GEN. GENET., vol. 236, 1992 pages 121-124, C.T. YAMASHIRO ET AL.; 'A dominant selectable marker that is meiotically stable in Neurospora crassa: the amdS gene of Aspergillus nidulans' see the whole document.</td>
<td>22</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (continuation of second sheet) (July 1992)