UNITED STATES PATENT OFFICE.

THOMAS JOSEPH MACLAUGHLIN, OF OTTAWA, ONTARIO, CANADA.

PUTTY-APPLYING TOOL.


Application filed January 13, 1908. Serial No. 416,672.

To all whom it may concern:

Be it known that I, THOMAS JOSEPH MACLAUGHLIN, of the city of Ottawa, in the county of Carleton, Province of Ontario, Canada, have invented certain new and useful Improvements in Putty-Applying Tools, of which the following is a specification.

My invention relates to improvements in putty applying tools, and the objects of my invention are to provide an exceedingly cheap and simple form of tool by means of which the putty may be quickly and uniformly applied to a window frame and such a tool as will form a rabbet along the upper edge of the putty bead, whereby the same may be more readily removed when it is desired to insert a new pane of glass.

The tool is preferably formed from thin metal and provided at one end with two guiding edges adapted to extend along the two faces of the sash, an edge for shaping the putty bead and a flange adapted to bear against the pane of glass being inserted, and an edge adapted to form a rabbet in the top of the putty bead.

The invention is more fully described in the accompanying specifications and drawings in which,

Figure 1 is a perspective view illustrating the operation of the tool. Fig. 2 is a plan view of the tool. Fig. 3 is a sectional view along the line 2—2 Fig. 2. Fig. 4 is a sectional detail through the putty bead, showing the tool in position. Fig. 5 is an enlarged sectional detail showing the shape of the putty bead. Fig. 6 is a plan view of an alternative form of tool.

In the drawings like letters of reference indicate corresponding parts in each figure.

Referring to the drawings, A represents a window frame of usual construction with a pane B therein, and C represents the putty bead applied by my tool in the manner hereinafter described.

D represents the tool itself, which may be made in a variety of ways, the embodiment illustrated in Figs. 1 to 5 being formed from a single piece of sheet metal and having the single end adapted to apply the putty along both sides of the window.

In accordance with my invention a single V-shaped groove e is formed in the extremity of the tool, the edges b and c thereof being inclined slightly inwardly and adapted to extend along the outer surface, and the inner face e on the sash, thereby affording a means for guiding the tool when forming the putty bead as herein described.

On each side of the V-shaped groove e similar V-shaped grooves f and g are formed on opposite sides, the edges h and i in the extremities of these grooves being adapted to form rabbets along the top of the putty bead. Adjacent to the grooves f and g flat strips k and l are formed, the edges m and n of which are adapted to shape the face of the beading and integral with the outside edge of these strips are inclined flanges o and p adapted to bear against the face of the glass and guide the tool, scrape up surplus putty and clear it from the bead.

To provide a convenient means for holding the tool the central part is provided with projections 5 and 6, which are inwardly curved to form a handle and an extension 7 on the opposite end is shaped to form a putty knife.

The edges m and n are not continuous with the edges h and i but are slightly further back than the same, thereby facilitating the molding of the corners of the beading, by permitting the edges h and i to extend right into the corner while the edges m and n will be removed therefrom by the thickness of the putty bead.

In the alternative form of tool shown in Fig. 6, the opposite ends are adapted to serve for opposite sides of the window frame. In this form a V-shaped groove g extends close to one edge, the edges r, s, t and u being adapted to fit along the outer surface and inner face of the sash as described, and the edges of the smaller groove w being adapted to form the rabbet in the top of the putty bead. A strip z is also provided, whose edges are adapted to form the surface of the putty bead and flanges y and z are formed at opposite ends adapted to bear against the face of the glass, and clear beading of surplus putty.

In using the tool, the putty is spread on roughly with a knife or with the fingers in lumps at intervals along the edge of the pane. The grooved end of the tool is then placed in position as shown in Fig. 4 and drawn along the edge of the sash, the edges h and i bearing on the face of the sash and the flange o or p serving to guide the tool during its motion, and to clear away surplus putty. This motion of the tool will mold the putty into a uniformly gaged beading C with a rabbet S along its upper edge. This rabbet is immediately adjacent to the inner face e on the
sash, whereby when the putty is hard, there will be no difficulty in inserting the knife or chisel to remove it at the exact point of juncture between the sash and the putty, whereby any liability to injure the sash is prevented.

In the old way of applying the putty, the beading was triangular in cross-section and it was very difficult to find the line of demarcation between the wood and the putty. According to the present invention, the beading is left in a quadrilateral cross-section in which the right angle or acute angle between the top of the beading and the sash accurately indicates the line of demarcation.

In general, the tool will be inclined at an angle of about thirty degrees to the window but this may be varied and such variations will result in a decrease or increase of the thickness of the beading. The tool thus serves at once to gauge and mold the beading, on a sash of any size.

In the form illustrated in Fig. 6, the opposite ends of the tool are used for the different sides of the sash but otherwise the construction and arrangement of the tool is the same. It will thus be seen that the present invention provides an exceedingly simple means of applying the putty or other plastic material as may be used in glazing by means of which the work may be done quickly and neatly, by any person, without special knowledge or experience in the art of glazing and further the putty is applied in such a manner that it may be readily removed no matter how hard it may have become.

While the invention has been described herein with great particularity of detail, yet, it will be readily understood that in carrying out the construction of the same, changes may be made, within the scope of the appended claims, without departing from the spirit of the invention.

What I claim as my invention is:

1. A putty applying tool having guiding means thereon adapted to engage the edge of the sash, and means for forming a rabbet along the top of the putty beading.

2. A putty applying tool having guiding means thereon adapted to engage the edge of the sash, means for forming a rabbet along the top of the putty beading, and means for shaping the surface of the putty beading.

3. A putty applying tool having guiding means thereon adapted to engage the edge of the sash, means for forming a rabbet along the top of the putty beading, means for shaping the surface of the putty beading and flanges adapted to bear against the pane of glass being inserted.

4. A putty applying tool having a groove in the end thereof, the edges of which are adapted to extend along the surface and inner face of the sash, a second smaller groove of the edges of which are adapted to form a rabbet on the putty beading and a strip, the edges of which are adapted to mold the surface of the putty beading.

5. A putty applying tool having edges formed on the extremity thereof adapted to mold the surface of the putty beading and to form a rabbet on the top thereof.

6. A putty applying tool having edges formed on the extremity thereof adapted to engage the face and inner surface of the sash, and guide the tool during movement and having other edges adapted to mold a rabbet in the putty beading.

7. A putty applying tool having inclined edges at the extremity thereof adapted to engage the edge of the window sash, and guide the tool during movement, a second edge adapted to form a rabbet in the putty beading, and a third edge adapted to mold the putty beading and a flange adapted to bear against the window pane.

8. A putty applying tool having a putty knife at one end, and means for molding the putty beading at the opposite end.

9. A putty applying tool formed of a single piece of metal, comprising a central portion having flanges curved inwardly, to form a handle, a putty knife formed at one end and a tool for molding the putty beading at the opposite end.

10. A putty applying tool having a longitudinal groove formed at one end, the edges of which are adapted to engage the edges of the sash, and guide the tool during movement, smaller grooves at each side of the larger groove, the edges of which are adapted to form rabbets in the putty beading, when the tool is used on different sides of the sash, flat strips adjacent to the smaller grooves, the edges of which are adapted to mold the surface of the putty beading on opposite sides and inclined flanges adapted to rest against the pane during movement of the tool.

11. A putty applying tool having edges formed on the extremity thereof adapted to engage the face and inner surface of the sash, other edges adjacent to the same adapted to mold the putty beading, the said edges for molding the beading being slightly farther back than the edges engaging the sash, whereby the edges engaging the sash may completely extend into the corner of the same.

In witness whereof I have hereunto set my hand in the presence of two witnesses.

THOMAS JOSEPH MACLAUGHLIN.

Witnesses:
RUSSEL K. SMART,
WM. G. WYMAN.