中文名称: 一种随机线性网络编码的方法、装置和系统

摘要

本发明公开了一种随机线性网络编码的方法、装置和系统，涉及网络编码领域，用于解决现有网络编码技术过程中需要手工进行繁琐、耗时太长的问题而发明。本发明实施例提供的随机线性网络编码的方法包括：将原始数据顺序分成至少两个数据块；确定至少两个系数组，其中所述系数组的长度与数据块个数相同，所述系数组包含至少两个元素；所述数据块与所述对应的系数进行位运算，得到编码数据块；所述编码数据块之间进行位运算，得到编码包；本发明实施例提供的随机线性网络编码进行解码的方法包括：通过位运算和运算的逆运算对编码包中的系数组进行简化，获取原始数据。本发明适用于对编码效率要求较高的网络编码。

审查员: 郑昊
1. 一种随机线性网络编码的方法，其特征在于，包括：

将原始数据顺序分成至少两个数据块；

确定至少两个系数组，其中所述系数组的长度与数据块个数相同，所述系数组包含两个元
素，所述系数组中的两个元素为 0 和 1；

所述数据块与其对应的系数进行位与运算，得到编码数据块；

所述编码数据块之间进行位异或运算，得到编码包；

发送所述编码包和与所述编码包的系数组，以及随后要传输的编码包的系数组，以便
接收端检测所述随后要传输的编码包是否与所述编码包线性相关；

如果所述接收端检测所述随后要传输的编码包与所述编码包线性相关，则接收所述
接收端发送的拒绝信号以及一个线性独立的系数组。

2. 根据权利要求 1 所述的随机线性网络编码的方法，其特征在于，将原始数据顺序分
成至少两个数据块之后还包括：设定所有系数组中非 0 系数个数的平均值 K。

3. 根据权利要求 2 所述的随机线性网络编码的方法，其特征在于，所述确定系数组的
步骤包括：

随机生成所述系数组，其中任意一个系数为 1 的概率为 $\frac{K}{\text{系数组的长度}}$，为 0 的概率为
$1 - \frac{K}{\text{系数组的长度}}$。

4. 一种随机线性网络编码进行解码的方法，其特征在于，包括：

接收包含编码包及其随后至少一个编码包的系数组的编码信号；

检测所述随后的系数组与已接收到的编码包的系数组是否线性相关；

如果线性相关，则拒绝该系数组对应的编码包，同时向发送端传送一个与已接收到的
编码包的系数组之间线性独立的系数组；

如果线性独立，则通过位异或运算的逆运算对已接收到的编码包中的系数组进行简
化；

获取原始数据。

5. 根据权利要求 4 所述的随机线性网络编码进行解码的方法，其特征在于，还包括：

检测所述编码包中的系数组与已接收到的编码包的系数组是否线性相关；

如果线性相关，则丢弃该编码包。

6. 根据权利要求 4 所述的随机线性网络编码进行解码的方法，其特征在于，所述通过
位异或运算的逆运算对编码包中的系数组进行简化的步骤包括：

将所述编码包的系数组添加到已有的系数矩阵中；

如果所述系数组包含主元之外的非 0 元素，且所述非 0 元素对应的主元在已有的系数
矩阵中已经得到确认，那么通过位异或运算将所述系数组中的主元之外的非 0 元素消除；

确定所述系数组中的主元后，利用该系数组进一步简化已有的系数矩阵。

7. 一种随机线性网络编码的编码装置，其特征在于，包括

数据分割模块，用于将原始数据顺序分成至少两个数据块；

确定系数模块，用于确定至少两个系数组，其中所述系数组的长度与数据块个数相同，
所述系数组包含两个元素，所述系数组中的两个元素为 0 和 1；
与运算模块，用于对所述数据块与其对应的系数进行位与运算，得到编码数据块；
异或运算模块，用于对所述编码数据块进行位异或运算，得到编码包；
发送模块，用于发送包含所述编码包以及随后至少一个编码包的系数组的编码信号，以便接收端检测所述随后要传输的编码包是否与所述编码包线性相关；
系数接收模块，用于当所述接收端检测所述随后要传输的编码包与所述编码包线性相关时，接收由所述接收端发送的拒绝信号以及一个线性独立的系数组。
8. 根据权利要求 7 所述的随机线性网络编码的编码装置，其特征在于，数据分割模块之后还包括：
系数均值设定模块，用于设定所有系数组中非 0 系数个数的平均值 K。
9. 一种随机线性网络编码的解码装置，其特征在于，包括：
接收模块，用于接收包含编码包及其随后至少一个编码包的系数组的编码信号；
检测模块，用于检测所述随后的编码包的系数组与已接收到的编码包的系数组是否线性相关；
丢弃/拒收模块，用于当所述检测模块检测为线性相关时，指示拒收所述线性相关的系数组对应的编码包，同时，系数传送模块，用于当所述检测模块检测为线性相关时，向发送端传送一个与已接收到的系数组之间线性独立的系数组；
简化模块，用于当所述检测模块检测为线性独立时，通过位异或的逆运算对编码包中的系数组进行简化；
数据获取模块，用于获取原始数据。
10. 根据权利要求 9 所述的随机线性网络编码的解码装置，其特征在于，
所述检测模块还用于检测所述编码包中的系数组与已接收到的编码包的系数组是否线性相关；
所述丢弃/拒收模块还用于指示丢弃所述线性相关的编码包。
11. 根据权利要求 9 所述的随机线性网络编码的解码装置，其特征在于，所述简化模块，包括：
添加系数组模块，用于将所述编码包的系数组添加到已有的系数矩阵中；
异或化简模块，用于通过位异或运算消除所述编码包的系数组中主元之外的非 0 元素；
矩阵简化模块，用于进一步简化已有的系数矩阵。
12. 一种随机线性网络编码的系统，其特征在于，包括：
如权利要求 7 所述的随机线性网络编码的编码装置；
如权利要求 9 所述的随机线性网络编码的解码装置。
一种随机线性网络编码的方法、装置和系统

技术领域
[0001] 本发明涉及网络编码, 尤其涉及一种随机线性网络编码的方法、装置和系统。

背景技术
[0002] 网络编码属于一种被称为无比率编码的特定的信道编码。发送端和接收端之间的传输模型相对来说很简单, 发送端以最大的速率连续发送编码数据包给接收端, 而无需等待接收端的反馈信息, 接收端在积累足够的编码包后, 恢复原始数据。
[0003] 在抽象代数中, 伽罗华域 Galois Field(又名有限域) 是一个包含有限多个元素(数字)的域，可以用 GF(q) 来表示一个拥有 q 个元素的伽罗华域。伽罗华域运算被定义为有限元素之间特定的循环映射关系, 典型的 GF 运算为 GF 加法和 GF 乘法。由于循环的特性, GF 中的有限元素相互关联形成了一个有限环; 对任何不属于该环的其他元素, 执行模运算使得该元素被映射到有限环中的某个元素。它的加法和乘法表是全逆唯一的; GF 加法和乘法运算因为是一对一映射, 所以存在反向运算。对 GF(q) 加法和乘法的直观理解如下所示,
[0004] \[A \oplus B = (A+B) \mod q \]
[0005] \[A \otimes B = (A \times B) \mod q \]
[0006] 其中, \(\oplus \) 是 GF 中的加法运算符, \(\otimes \) 是 GF 中的乘法运算符, \(\mod \) 为模运算。
[0007] 网络编码的编码和解码过程用 GF 的加法和乘法来操作原始数据块。由于 GF 中的运算是完全可逆的, 解码过程只要简单地反向执行编码过程中的运算即可。
[0008] 编码过程
[0009] 参照图 1 可以清楚看到编码过程包括以下步骤:
[0010] 将原始数据分成 M 个数据块, 其中 M \geq 2;
[0011] 将所述数据块转换成编码包;
[0012] 可以采用公式\[Y_k = \sum_{i=1}^{M} C_{ki} \times X_i, i \in \{1,2,3,...,M\} \], 将所述数据块转换成编码包; 其中, \(Y_k \) 表示第 k 个编码包, 用 \(X_i \) 表示第 i 个数据块; \(C_{ki} \) 表示第 k 个编码包中第 i 个数据块的随机系数。
[0013] 所述数据块经过 GF 运算生成至少 M 个编码包, 将这些编码包挨个发送到接收端。
[0014] \[
\begin{bmatrix}
C_{11} & C_{12} & C_{13} & \cdots & C_{1M} \\
C_{21} & C_{22} & C_{23} & \cdots & C_{2M} \\
C_{31} & C_{32} & C_{33} & \cdots & C_{3M} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
C_{k1} & C_{k2} & C_{k3} & \cdots & C_{kM} \\
\vdots & \vdots & \vdots & \ddots & \vdots
\end{bmatrix}
\begin{bmatrix}
X_1 \\
X_2 \\
X_3 \\
\vdots \\
X_M
\end{bmatrix}
= \begin{bmatrix}
Y_1 \\
Y_2 \\
Y_3 \\
\vdots \\
Y_k
\end{bmatrix}
\]
发明内容

[0020] 本发明的实施例提供一种随机线性网络编码的方法，能够使网络编码的编码、解码过程更加简便，大大缩短解码处理时间。

[0021] 为达到上述目的，本发明的实施例提供的随机线性网络编码的方法，包括以下步骤：

[0022] 将原始数据顺序分成至少两个数据块；

[0023] 确定至少两个系数组，其中所述系数组的长度与数据块个数相同，所述系数组包含两个元素；

[0024] 所述数据块与其对应的系数进行运算，得到编码数据块；

[0025] 所述编码数据块之间进行运算或运算，得到编码包；

[0026] 发送所述编码包和与所述编码包的系数组，以及随后要传输的编码包的系数组；

[0027] 接收由接收端发送的系数组。

[0028] 为达到上述目的，本发明的实施例还提供了一种随机线性网络编码进行解码的方法，包括以下步骤：

[0029] 接收包含编码包及其随后至少一个编码包的系数组的编码信号；

[0030] 检测所述系数组与已接收到的编码包的系数组是否线性相关；

[0031] 如果线性相关，则接收该系数组对应的编码包；

[0032] 向发送端发送一个与已接收到的编码包的系数组之间线性独立的系数组；

[0033] 如果线性独立，则通过位异或运算的逆运算对已接收到的编码包中的系数组进行简化；

[0034] 获取原始数据。

[0035] 为达到上述目的，本发明的实施例提供的随机线性网络编码的编码装置，包括：

[0036] 数据分割模块，用于将原始数据顺序分成至少两个数据块；

[0037] 确定系数模块，用于确定至少两个系数组，其中所述系数组的长度与数据块个数相同，所述系数组包含两个元素；

[0038] 与运算模块，用于对所述数据块与其对应的系数进行位运算，得到编码数据块；

[0039] 异或运算模块，用于对所述数据块进行位异或运算，得到编码包；

[0040] 发送模块，用于发送包含所述编码包以及随后至少一个编码包的系数组的编码信号；

[0041] 系数接收模块，用于接收由接收端发送的一组系数。
说明书

[0042] 为达到上述目的，本发明的实施例还提供一种随机线性网络编码的解码装置，包括：
[0043] 接收模块，用于接收包含编码包及其随后至少一个编码包的系数组的编码信号；
[0044] 检测模块，用于检测所述随后的编码包的系数组与已接收到的编码包的系数组是否线性相关；
[0045] 丢弃/接收模块，用于当所述检测模块检测为线性相关时，指示接收到所述线性相关的系数组对应的编码包；
[0046] 系数传送模块，用于向发送端传送一个与已接收到的系数组之间线性独立的系数组；
[0047] 简化模块，用于当所述检测模块检测为线性独立时，通过位异或运算的逆运算对编码包中数据组进行简化；
[0048] 数据获取模块，用于获取原始数据。
[0049] 本发明的实施例提供一种随机线性网络编码的系统，使网络编码的解码过程更加简便，大大缩短解码处理时间。
[0050] 为达到上述目的，本发明的实施例提供的随机线性网络编码的系统，包括：
[0051] 如上所述随机线性网络编码的编码装置；
[0052] 如上所述随机线性网络编码的解码装置。
[0053] 本发明实施例提供的随机线性网络编码的方法、装置和系统，在编码过程中采用了基于GF(2)的网络编码，随机为初始数据块分配系数，并通过位与运算和位异或运算将原始数据块转换为编码包；在解码过程中通过将每个编码包中非主元系数消减为0，从而将其系数矩阵最终简化为单位矩阵，此时便得到相应的原始数据。现有技术相比，其在解码过程中避免了繁琐的系数矩阵求逆运算，使得解码过程较之前简单很多，运算时间缩短。本发明实施例提供的网络编码的方法、装置和系统，使得网络编码、解码过程能够更加快速、有效地进行。

附图说明
[0054] 图1为现有技术中线性随机网络编码的编码过程示意图；
[0055] 图2为本发明实施例中线性随机网络编码的方法流程图；
[0056] 图3为本发明实施例中线性随机网络编码进行解码的方法流程图；
[0057] 图4为本发明实施例中线性随机网络编码进行解码的高斯消去法的示意图；
[0058] 图5为本发明实施例中线性随机网络编码的编码装置的结构示意图；
[0059] 图6为本发明实施例中线性随机网络编码的解码装置的结构示意图；
[0060] 图7为本发明实施例中线性随机网络编码的系统的结构示意图。

具体实施方式
[0061] 为了解决现有网络编码的解码过程太过繁琐，致使处理时间太长的问题，本发明的实施例提供一种随机线性网络编码的方法，下面结合附图对本发明实施例随机线性网络编码的方法进行详细描述。
[0062] 如图2所示，本发明随机线性网络编码方法的实施例包括以下步骤：
21. 将原始数据顺序分成至少两个数据块；
22. 确定至少两个系数组，其中所述系数组的长度与数据块个数相同，所述系数组包含两个元素；
23. 所述数据块与其对应的系数进行位与运算，得到编码数据块；
24. 所述编码数据块之间进行位或运算，得到编码包。
25. 本发明还提出一种随机线性网络编码进行解码的方法，如图 3 所示，本发明随机线性网络编码进行解码的方法的实施例包括以下步骤：
26. 通过位或运算的逆运算对编码包中的系数组进行简化；
27. 获取原始数据。
28. 步骤 31 中，所述位或运算的逆运算仍为位或运算。
29. 本发明实施例所提供的随机线性网络编码的方法，在编码过程中采用了基于 GF(2)的网络编码，随机为原始数据块分配系数，并通过位与运算和位或运算将原始数据块转化成编码包；在解码过程中通过将编码包中非主元系数消减为 0 从而将其系数矩阵化简为单位矩阵，此时便得到相应的原始数据，与现有技术相比，本发明实施例在解码过程中避免了繁琐的系数矩阵求逆运算，使得解码过程较之前简便很多，运算时间缩短。
30. GF(2) 编码
31. 采用 GF(2) 编码简化了编码过程。对于一个分成 n (n ≥ 2) 个数据块的编码单元来说，首先，生成 n 位二进制数，与对应的系数位进行或运算，数据块和 0 相与为 0，和 1 相与仍为其本身，这样得到编码数据块；然后，将这些编码数据块进行位异或运算，生成一个编码包。该编码过程也就相当于随机地选择几个数据块执行位或运算，生成一个编码包，较现有技术中的编码过程简便了很多。
32. 用高斯消去法进行解码
33. 本发明随机线性网络编码的方法的实施例，对编码包中系数组进行简化的过程包括：通过高斯消去法对至少两个编码包的系数矩阵进行简化，使得系数矩阵每行的主元为 1，其它位置的元素均为 0。
34. 如果当前编码包和以前收到的编码包线性独立，它就包含一个主元，通过高斯消去法将其对应于已确定的主元 (pivot element) 位置的元素置为 0。通过消除多余的非 0 元素，将简化编码包的系数组，进而得到编码包系数中的主元。其后，利用新的主元还可以进一步简化其它已收到的编码包。
35. 在本发明随机线性网络编码的方法的实施例中，所述高斯消去法是对系数矩阵中的行进行位或运算来对编码包中的系数组进行简化的，简化过程大致如下：
36. 如图 4 所示，设定 n 为 4，Y, Y 为接收端已收到并进行简化了的编码包，Y 为接收端收到的编码包，且 Y, Y 之间线性独立；通过高斯消去法对编码包系数矩阵进行简化的过程包括以下步骤：
37. S1，将编码包 Y 的系数组添加到系数矩阵中；
38. S2, S3，如果 Y 的系数组中包含冗余元素（主元之外的非 0 元素），且它们对应的主元在 Y, Y 的系数组中已经得到确认，那么通过位或运算将 Y 的系数组中的冗余元素消除；
39. S4, Y 的系数组中主元已经确定，利用 Y 进一步简化其它已收到的编码包；
S5，得到简化后的系数矩阵。

只有在接收到n个线性独立的编码包后，且经简化后所有的主元都为1，所有的冗余元素都消除，解码才算完成。即解码过程的目标就是用高斯消去法将编码系数矩阵简化成单位矩阵。

本发明实施例采用高斯消去法进行解码的方法，编码包到达时，编码包内的数据可以随时得到处理，使得编码包下载和校验包处理可以同时进行，大大降低了解码处理时间。

可调节的系数分配

由于每个独立的编码包只有一个主元，解码过程通过将非主元系数消减为0来解码编码包，非0系数的个数决定进行异或运算的次数。在编码过程中可以调节编码系数组中非0系数个数的平均值来改变处理复杂度。如果系数组中非0系数个数的平均值很小，网络编码处理数据的时间就比较少。

系数组中非0系数个数的平均值的确定过程：发送端拥有接收端请求的原始数据，通过检查原始数据的大小，发送端确定数据块的数量n和数据块的长度L。发送端传递数据块数量n和长度L给接收端，接收端返回一个自身软硬件配置信息，发送端根据该配置信息确定K值，该K值表示所有系数组中非0系数个数的平均值。

对一个有n个系数的编码包，如果有系数组中非0系数个数的平均值是K，那么每个系数被选为1的概率就是$\frac{K}{n}$，每个系数被选为0的概率就是$1 - \frac{K}{n}$。如果K较小，网络编码处理数据的时间就比较少。

系数协商协议

对于接收到的每个编码包，通过高斯消去法对其进行简化。如果新接收到的编码包与前面的编码包线性相关，则该编码包的非0系数都会被消除，那么该编码包就会被接收端丢弃。

如果接收到大量的与以往的编码包线性相关的、无用的编码包，就会严重影响接收端设备进行解码的速度，浪费解码时间。

本发明随机线性网络编码的方法的实施例中，引入了系数协商协议：

发送端传输编码包和其对应的系数组，以及随后要传输的编码包的系数组给接收端；

接收端检测随后要传输的编码包是否与之前接收到的编码包线性相关；

如果线性相关，接收端发送拒绝信号给发送端，同时发送一个线性独立的系数组给发送端；

发送端接收该系数组，并根据该系数组合成新的编码包，发送给接收端。

由于网络时延和丢包，有可能同时有多个包在网络中传输。为了应付这种情况，可以在当前编码包里嵌入两组以上（包括两组）随后将要传输的编码包的系数组。

为了能更好地对本发明进行理解，现以一具体实施例对本发明的技术方案做进一步介绍。

发送端具体实施

发送端拥有接收端请求的原始数据的完整拷贝，通过检查原始数据的大小，发送
端能动态确定数据块的数量和数据块的长度L。发送端采用握手协议传递数据块数量和数据块长度信息给接收端；作为响应，接收端返回一个关于接收端存活的计算能力的信息，这样发送端就能确定合适的K值，它表示所有数据包中非0字节的平均个数。

【0101】 一旦K值确定了，发送端开始传输，为每个数据包随机分配的系数中非0系数的个数会受到K值的限制。当数据块的数量为n，即系数矩阵大小为n×n时，每组系数包括n个2进制系数，则每个系数选择为1的概率为\(\frac{K}{n}\)，为0的概率为\(1 - \frac{K}{n}\)。

【0102】根据当前系数组中的系数生成编码包。首先，为将要输出的数据分配存储空间，并将该输出数据初始化为0向量；然后从左到右扫描当前的系数组。如果第1个位置上的系数不为0，则将第1个数据块与输出数据进行位异或运算，生成编码包；完成这一步后，发送端将两组预测系数组（即分配给将要发送的编码包的系数组）与该编码包绑定，发送给接收端。

【0103】编码包发送完成后，第一组预测系数组变为当前系数组，第二组预测系数组就变成了第一组预测系数组，发送端自动生成新的第二组预测系数组。

【0104】在发送过程中，如果发送端从接收端收到一个编码包的系数相关的报告，那就意味着两组预测系数组中至少有一组将会导致发送端生成与接收端已接收编码包线性相关的编码包。发送端用接收端报告的系数组来替换接收端已接收编码包中系数组线性相关的预测系数组。如是发送端处理流程的伪码。

【0105】接收端具体实施

【0106】接收端与发送端握手以获得数据包的字节数和长度的信息，然后就可以初始化相关设备。

【0107】解码过程由接收到的编码包驱动。当编码包到达时，首先处理其中包含的3组系数组。为了确定系数组是否会导致相关的包，尝试定位系数组中的主元。首先查询主元表中每个已经恢复出来的主元，对位置1上的主元来说，如果新接收的系数组相应的位置上的系数不为0，那么将该系数组和已恢复的主元的系数数进行异或运算以消除该非0系数。当新接收的系数组中所有与已确定的主元位置对应的非0系数都被消除后，系数组就变成了简化形式。

【0108】如果简化系数组没有包含任何非0元素，那么该系数组与初始的收到的数据包就是线性相关的。如果与已收到的编码包线性相关的系数组是当前系数组，则丢弃刚收到的数据包；如果与已收到的编码包线性相关的系数组是预测系数组，则发送拒绝消息。如果接收端收到发送端发送的系数组数据包，所述接收的系数组是已收到的编码包的系数是线性独立的。

【0109】在收到的主元都确定后，解码编码包并恢复原始数据。每个存储的编码包的系数组只在自己相应的主元位置上有非0元素。这时编码包中的数据已经恢复成原来的数据了，然后接收端向发送端报告解码成功。

【0110】上述随机线性网络编码的方法的实施例只描述了发送和接收一个编码码单元（大小为n×L字节）的过程。通常一个单元的大小不会很大，因此传输一个内容时，需要将内容在逻辑上分成多个连续的编码码单元。接收端一般按顺序下载编码码单元，且同时向多个发送端请求数据。发送端收到下载请求后，对所请求编码码单元的数据进行编码，发送编码包给接收端。接收端从多个发送端获取所请求编码码单元的编码包，当获得足够的编码包后，将它们组合成一个完整的编码码单元。
码包并能解码得到编解码单元原始数据时，通知发送端接收完成，并可能请求下一个编解码单元。发送端收到接收端的完成报告后，开始发送下一个所请求编解码单元的编码包。

【0111】本发明随机线性网络编码的方法的实施例，在编码过程中采用了基于 GF(2) 的网络编码，编码系数只有 0 和 1，通过对原始数据块进行位异或运算生成编码块，简化了现有技术中编码的过程；本发明随机线性网络编码的方法的实施例，在解码过程中采用了高效消去法对编码包系数矩阵进行简化，使其最终简化为单单位矩阵，原始数据随之得到，该方法避免了现有技术中繁琐的矩阵求逆运算，节省了解码时间；本发明随机线性网络编码的方法的实施例，实现了可调节的系数分配，可以针对不同设备调节编码的复杂度；本发明随机线性网络编码的方法的实施例，还提出了一种系数协商协议，接收端通过检测随后将要收到的编码包的系数组来判断是否要接收该编码包，降低编码包线性相关的可能性，降低了对线性相关的编码包进行解码所造成的时间上、资源上的浪费。采用本发明实施例的随机线性网络编码的方法，计算设备能以很高的吞吐率快速解编码，同时又能将编码包线性相关导致的通讯开销控制在最小。

【0112】本领域普通技术人员可以理解：实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成，所述的程序可以存储在计算机可读存储介质中，该程序在执行时，包括如下方法实施例的步骤；而前述的存储介质包括：ROM、RAM、磁盘或者光盘等各种可以存储程序代码的介质。

【0113】为解决现有网络编码的解码过程太过繁琐，致使处理时间太长的问题，本发明的实施例提出一种随机线性网络编码的装置，下面结合附图对本发明实施例随机线性编码的装置进行详细描述。

【0114】如图 5 所示，本发明随机线性网络编码的编码装置的实施例包括：

【0115】数据分割模块，用于将原始数据顺序分割为至少两个数据块；

【0116】确定系数模块，用于确定至少两个系数组，其中所述系数组的长度与数据块个数相同，所述系数组包含两个元素；

【0117】与运算模块，用于对所述数数据块与其对应的系数进行位与运算，得到编码数据块；

【0118】异或运算模块，用于对所述数据块进行位异或运算，得到编码包。

【0119】其中，所述数据分割模块之后还包括：系数值设定模块，用于设定所有系数组中非 0 系数个数的平均值 K。

【0120】本发明实施例的随机线性网络编码的编码装置还包括：发送模块，用于发送包含所述编码包的编码信号。

【0121】所述发送模块，还用于发送包含所述编码包以及随后至少一个编码包的系数组的编码信号。

【0122】本发明实施例的随机线性网络编码的编码装置还包括：系数接收模块，用于接收由接收端发送的一组系数。

【0123】本发明的实施例还提出一种随机线性网络编码的解码装置，如图 6 所示，本发明随机线性网络编码的解码装置的实施例包括：

【0124】简化模块，用于通过位异或运算的逆运算对编码包中的数据块进行简化；

【0125】数据获取模块，用于获取原始数据。
[0126] 本发明实施例的随机线性网络编码的解码装置还包括：接收模块，用于接收包含编码包的编码信号。

[0127] 所述接收模块，还用于接收包含编码包及其随后至少一个编码包的系数组的编码信号。

[0128] 本发明实施例的随机线性网络编码的解码装置中，还包括：

[0129] 检测模块，用于检测所述编码包中的系数组与已接收到的编码包的系数组是否线性相关；

[0130] 丢弃／接收模块，用于指示丢弃所述线性相关的编码包。

[0131] 所述检测模块，还用于检测随后的编码包的系数组与已接收到的编码包的系数组是否线性相关；

[0132] 所述丢弃／接收模块，还用于指示接收到所述线性相关的系数组对应的编码包。

[0133] 本发明实施例的随机线性网络编码的解码装置还包括：系数传送模块，用于在接收一编码包之后，向发送端传送一个与已接收到的系数组之间线性独立的系数组。

[0134] 本发明实施例的随机线性网络编码的解码装置中，所述简化模块包括：

[0135] 添加系数矩阵模块，用于将所述编码包的系数组添加到已有的系数矩阵中；

[0136] 异或化简模块，用于通过位异或运算消除所述编码包的系数矩阵中主元之外的非0元素；

[0137] 矩阵简化模块，用于进一步简化已有的系数矩阵。

[0138] 应用本发明实施例提供的随机线性网络编码的装置进行网络编码，编码过程中采用基于GF(2)的网络编码，随机为原始数据块分配系数，并通过位与运算和位异或运算将原始数据块转化成编码包；在解码过程中通过对每个编码包中非主元元素消减为0从而将其系数矩阵化简为单位矩阵，此时便得到相应的原始数据，与现有技术相比，其允许缓存过程中避免了繁琐的系数矩阵求逆运算，使得解码过程较之前简便很多，运算时间缩短。

[0139] 为了解决现有网络编码的解码过程过于繁琐，致使处理时间太长的问题，本发明的实施例：一种随机线性网络编码的系统，下面结合附图对本发明实施例随机线性编码的系统进行详细介绍。

[0140] 如图7所示，本发明随机线性网络编码的系统的实施例包括：

[0141] 编码装置，用于随机地为原始数据块分配系数，并通过位与运算和位异或运算将原始数据块转化成编码包；

[0142] 解码装置，用于对所述编码包进行简化、解码得到原始数据。

[0143] 所述编码装置包括：

[0144] 数据分割模块，用于将原始数据顺序分成至少两个数据块；

[0145] 确定系数模块，用于确定至少两个系数组，其中所述系数组的长度与数据块个数相同，所述系数组包含两个元素；

[0146] 与运算模块，用于对所述数据块与其对应的系数进行位与运算，得到编码数据块；

[0147] 异或运算模块，用于对所述数据块进行位异或运算，得到编码包。

[0148] 所述解码装置包括：

[0149] 简化模块，用于通过位异或运算的逆运算对编码包中的数据组进行简化；
数据获取模块，用于获取原始数据。

应用本发明实施例提供的随机线性网络编码的系统进行网络编码。在编码过程中采用基于 GF(2) 的网络编码，随机为原始数据块分配系数，并通过位与运算和位异或运算将原始数据块转化成编码包；在解码过程中通过将每个编码包中非主元元素消减为 0 从而将其系数矩阵化简为单位矩阵，此时便得到相应的原始数据，与现有技术相比，其在解码过程中避免了繁琐的系数矩阵求逆运算，使得解码过程较之前简便很多，运算时间缩短。

以上所述，仅为本发明的具体实施方式，但本发明的保护范围并不局限于此，任何熟悉本技术领域的技术人员在本发明揭露的技术范围内，可轻易想到变化或替换，都应涵盖在本发明的保护范围之内。因此，本发明的保护范围应以权利要求的保护范围为准。
原始数据

分成M块

$X_1, X_2, X_3, X_4, X_5, X_6, X_7, \ldots, X_M$

生成第k个编码包

随机系数发生器

$C_{k1} \otimes X_1 \Rightarrow C_{k1} \otimes X_1$

$C_{k2} \otimes X_2 \Rightarrow C_{k2} \otimes X_2$

$C_{k3} \otimes X_3 \Rightarrow C_{k3} \otimes X_3$

\cdots

$C_{kM} \otimes X_M \Rightarrow C_{kM} \otimes X_M$

第k个编码包

图 1
图 2

开始

将原始数据分成数据块

确定系数组

数据块与其对应的系数进行位与运算，得到编码数据块

编码数据块之间进行位异或运算，得到编码包

结束

图 3

开始

简化系数组

获取原始数据

结束