
(19) United States
US 20050210455A1

(12) Patent Application Publication (10) Pub. No.: US 2005/0210455 A1
KOehler et al. (43) Pub. Date: Sep. 22, 2005

(54) METHOD FOR GENERATING AN
EXECUTABLE WORKFLOW CODE FROM
AN UNSTRUCTURED CYCLIC PROCESS
MODEL

(75) Inventors: Jana Koehler, Oberrieden (CH);
Rainer F. Hauser, Thalwil (CH)

Correspondence Address:
FREDERICK W. GIBB, III
MCGINN & GIBB, PLLC
2568-A RIVA ROAD
SUTE 304
ANNAPOLIS, MD 21401 (US)

(73) Assignee: International Business Machines Cor
poration, Armonk, NY

(21)

(22)

Appl. No.: 11/056,784

Filed: Feb. 11, 2005

oDo (CD&DA) or CA

cloops
MainLoop

O

ckinvokes
A

(30) Foreign Application Priority Data

Mar. 18, 2004 (EP).. O4405162.1

Publication Classification

(51) Int. Cl." ... G06F 9/44
(52) U.S. Cl. .. 717/136

(57) ABSTRACT

A method for generating an executable workflow code from
an unstructured cyclic proceSS model. The method com
prises the following StepS. First a continuation equation
System is generated from the unstructured cyclic process
model. Then, the executable workflow code is generated
from the continuation equation System, wherein therefore,
the continuation equation System is Solved by means of
transformation rules.

i
—l

&loops / acro
& Doi (CD & DB) or CB

O

C kinvokex Y --/
else

(else)

US 2005/0210455 A1

| -61-I

JepuO ??uuqnS

O

?OnpOJC ?un6?uOOg

Patent Application Publication Sep. 22, 2005 Sheet 1 of 6

US 2005/0210455 A1

?OnpOJC ?un6?uOOg

?onpOud ?00|?S

| 3x || || ZX [5] [57] [×] [×] E] [×]

Patent Application Publication Sep. 22, 2005 Sheet 2 of 6

Patent Application Publication Sep. 22, 2005 Sheet 3 of 6 US 2005/0210455 A1

a -(c)

while-do repeat-until

Fig. 3 Fig. 4

Patent Application Publication Sep. 22, 2005 Sheet 4 of 6 US 2005/0210455 A1

--- www. cloop ---

MainLoop

oDo (CD & DA) or CA

--

Bc5Stoop \
oDo/CD & DB) or CB-- \

O \
/ «invokey \

| N / |

Fig. 6

Patent Application Publication Sep. 22, 2005 Sheet 5 of 6 US 2005/0210455 A1

Transformation Engine
72

Rule Controller

Fig. 7

US 2005/0210455 A1 Patent Application Publication Sep. 22, 2005 Sheet 6 of 6

US 2005/0210455 A1

METHOD FOR GENERATING AN EXECUTABLE
WORKFLOW CODE FROMAN UNSTRUCTURED

CYCLIC PROCESS MODEL

TECHNICAL FIELD

0001. The present invention relates to a method for
generating an executable workflow code from an unstruc
tured cyclic proceSS model and also to a computer program
element for executing the method.

BACKGROUND OF THE INVENTION

0002 Today, a graphical description of a business pro
ceSS can be drawn, but it can not be mapped directly to an
executable implementation on a workflow engine unless the
busineSS proceSS is heavily Simplified.
0003. There are two categories of graphical tools for
modeling busineSS processes.
0004 Graphical tools of the first category allow a user to
describe the process and the behaviors it is intended to show
in a completely free manner by using the user's own
graphical notation. In this case, the meaning of the Symbols
in the notation is known only to the user and not by the
graphical tool. The user can use the graphical rendering of
his notation in the tool to communicate the meaning to other
users. But, the user cannot use the graphical rendering to
generate code that can be executed on Some workflow
engine. An example therefor is Microsoft Visio (TM of
Microsoft Corp.).
0005 Graphical tools of the second category allow a user
to describe the process by using a fixed set of graphical
symbols provided by the tool. Before the user can describe
the process, he must learn the Set of Symbols and understand
their intended meaning, which is captured in the tool. The
graphical tool may also check the user's input whether it
complies with modeling rules implemented in the tool. If the
user complies with these rules, an executable workflow can
be generated with the help of the tool. WBI Modeler in MQ
Series Workflow (TM of IBM Corporation) mode is an
example therefor.
0006. It is a particular characteristic that tools of the
Second category allow the user not to describe process flows,
using arbitrary graphs. Very often, the flow must be acyclic,
i.e. it must not contain loops, when code is to be generated.
For example the WBI Modeler allows so called GO TO
connectors to implicitly describe cycles, but not in MQ
Series Workflow mode. This limitation restricts the freedom
of the busineSS process modeler and enforces him to create
models which correspond to the abilities of the tool, but not
necessarily to the complex reality. From these Simplified
models, only simplified workflows can be generated, which
is a major inhibitor to the adoption of workflow technology
today.

SUMMARY OF THE INVENTION

0007 An object of the invention is to provide a method
for generating an executable workflow code from an
unstructured cyclic process model and a computer program
element for executing the method wherein the process model
can have a cyclic structure and wherein the workflow code
is generated automatically.

Sep. 22, 2005

0008 A further object of the invention is to optimize the
Workflow code with regard to the amount of memory that is
required to Store it, the runtime and the communication
effort required to execute it.

0009. The method for generating an executable workflow
code from an unstructured cyclic proceSS model according to
the invention comprises the following Steps. First a continu
ation equation System is generated from the unstructured
cyclic proceSS model. Then, the executable workflow code is
generated from the continuation equation System. The code
is then executable by a workflow engine.

0010 More specific, a computing device, that can be a
busineSS model computer, can be programmed for designing
the unstructured cyclic proceSS model. The unstructured
cyclic proceSS model is then transformed to a representation
that represents flow continuations as captured in the process
model. Transformation rules are applied to the set of flow
continuations guided by a transformation engine. Thereby
the unstructured process model is automatically transformed
into a well-structured and optimized executable workflow
code.

0011. The representation can be an equational represen
tation.

0012. A computer program element comprises computer
program code for performing StepS according to the method
for generating an executable workflow code from an
unstructured cyclic process model when loaded in a digital
processor of a computing device.

0013 Advantageous further developments of the inven
tion arise from the characteristics indicated in the dependent
claims.

0014 Preferably, for generating the continuation equa
tion System variables are assigned to nodes of the process
model.

0015. In a further embodiment of the method according
to the invention variables are assigned to the Start and end
nodes of the process model. Furthermore a variable is
assigned to a node that has more than one incoming or
outgoing link.

0016 For generating the executable workflow code the
continuation equation System can be Solved by means of
transformation rules.

0017 For solving the continuation equation system at
first a transformation rule is Selected that is applicable to an
equation of the continuation equation System. Then the
Selected transformation rule is applied to the equation and
the modified continuation equation System is computed.
Finally these StepS are repeated until a single equation
remains.

0018. In an embodiment of the method according to the
invention with the help of a first transformation rule a
variable of a first equation is Substituted by an expression of
a Second equation.

0019. In a further embodiment of the method according
to the invention with the help of a second transformation rule
the number of occurrences of the same variable in an
equation is reduced.

US 2005/0210455 A1

0020. The second transformation rule can be imple
mented in the following way: at each place where the
variable occurs it is replaced by a Boolean variable, and a
conditional Statement is introduced in the equation for
branching to the variable if the Boolean variable fulfills the
condition.

0021. In a further embodiment of the method according
to the invention with the help of a third transformation rule
a variable occurring on both sides of an equation is replaced
by a repeat-until Statement.

0022. The third transformation rule can be implemented
in the following way: the condition for terminating the
repeat-until Statement is obtained from the negation of the
condition that led in the original equation to the variable.
0023. In a further embodiment of the method according
to the invention with the help of a fourth transformation rule
conditional Statements in an equation are rearranged in the
equation.

0024. In a further improvement of the method according
to the invention each transformation rule is assigned to a
priority, and the transformation rule with the highest priority
is applied first.

0.025 Advantageously, the second transformation rule of
the method according to the invention is assigned to the
highest priority.

0026. Over and above this it is helpful when in the
method according to the invention that variable is eliminated
first which occurs most Seldom in the continuation equation
System.

0027) Furthermore, in the method according to the inven
tion the Single equation can be mapped to an XML file.

0028. In another aspect of the invention the method for
generating an executable workflow code from an unstruc
tured cyclic proceSS model can be used for mapping a
busineSS process to an executable workflow on a workflow
engine.

0029. According to a further aspect of the invention a
code generator for generating an executable workflow code
from an unstructured cyclic proceSS model is provided. The
code is executable by a workflow engine. The code genera
tor comprises a computing device for designing the unstruc
tured cyclic proceSS model, and a transformation engine
adapted to generate a continuation equation System from the
unstructured cyclic proceSS model and adapted to generate
the executable workflow code from the continuation equa
tion System.

0.030. In accordance with another aspect of the invention
it is provided a code generation method for generating an
executable workflow code from a graphical flow chart
comprising an unstructured cyclic process model by means
of a transformation engine. The method comprises the Steps
of generating a continuation equation System from the
unstructured cyclic proceSS model, and generating the
executable workflow from the continuation equation System.
0031. The transformation engine comprises a rule con
troller for applying the transformation rules. Further, the
transformation engine comprises an output that provides or
outputs the executable workflow code. The graphical flow

Sep. 22, 2005

chart can be displayed on a Screen which is contemplated as
input for the code generation.
0032. Additional objects and advantages of the invention
will be set forth in the description which follows, and in part
will be obvious from the description, or may be learned by
practice of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

0033. The invention and its embodiments will be more
fully appreciated by reference to the following detailed
description of presently preferred but nonetheless illustra
tive embodiments in accordance with the present invention
when taken in conjunction with the accompanying drawings.
0034. The figures are illustrating:
0035 FIG. 1 an example of a graphical representation of
a busineSS proceSS model,
0036 FIG. 2 the graphical representation of the business
process model of FIG. 1 associated with continuation vari
ables,
0037 FIG. 3 a graphical representation of a while-do
loop,
0038 FIG. 4 a graphical representation of a repeat-until
loop,
0039 FIG. 5 a graphical representation of a while-do
loop being equal to the repeat-until loop of FIG. 4,
0040 FIG. 6 a graphical representation of the business
process model of FIG. 1 in unified modeling language,
0041 FIG. 7 a block diagram with a transformation
engine which applies a set of rules to a Set of models, and
0042 FIG. 8 a block diagram of a system for generating
executable workflow code from an unstructured cyclic pro
ceSS model.

REFERENCE SIGNS

0043. In order to aid the understating of the description,
the following reference Signs are used.

0044 x1-x8 continuation variables

0045 A-D actions

0046 E, F, G conditions/decisions

DETAILED DESCRIPTION OF THE DRAWINGS

0047 The method and tool according to the invention
allows a user to use completely arbitrary cycles in the
graphical rendering of a proceSS model and then map or
compile these cyclic models into optimized and executable
Workflow code. The invention associates a continuation
Semantics with the graphical rendering which captures the
intended control flow of the process model. It then makes the
continuation SemanticS explicit in a continuation model,
which is transformed in a transformation engine until it
reaches a normalized Structure. This normalized Structure is
then transformed to executable workflow code, for example
in the BPEL4WS (Business Process Execution Language for
Web Services, or its graphical rendering as a UML activity
diagram. The transformations guarantee the functional
equivalence of the original busineSS proceSS model and the

US 2005/0210455 A1

resulting workflow: when provided with the same input data,
both will provide the same output data. Furthermore, the
resulting BPEL4WS contains properly nested, hierarchical
flows, which allow a simulation tool to perform Simulation
and analysis of the BPEL4WS at various levels of granu
larity.
0.048 1. Graphical Representation of the Business Pro
cess Model

0049 FIG. 1 shows an example of a graphical represen
tation of a business proceSS model, wherein the busineSS
process model describes the possible flow of activities. This
graphical representation uses well-defined elements from a
graphical modeling language that was designed for busineSS
proceSS modeling needs. Several different graphical model
ing languages exist today to describe the process model.
Well-known examples for these modeling languages are
ARIS Easy Design (TM of IDS Scheer AG), WBI Modeler
(TM of IBM), and BPMN. The invention can be used for any
of these modeling languages and others not mentioned here,
but known to the expert. Which one is used depends on the
technical boundary conditions.
0050 Strictly speaking, FIG. 1 shows an example of an
electronic purchasing busineSS process adopting a BPMN
like notation. The busineSS process describes how a user
buys products via an online purchasing System.
0051. The example process consists of four activities A,
B, C, and D and three decisions E, F, and G. Once the
proceSS has started, activity A “Select product' is executed.
After the “select product” activity has been completed, the
proceSS branches at decision E. The user can either decide to
configure the product executing activity B “configure prod
uct” or he places the product directly into the Shopping cart
using activity C “place into cart'. It should be noted that a
non-concurrent process model is considered in which the
branching is exhaustive and disjoint, i.e. after each decision
exactly one of the possible branches is Selected. After these
activities have been completed, the user Submits his order by
executing activity D “submit order”. This sequence of
activities A, B, C and D describes the normal purchasing
process. For a Successful implementation, however, this
proceSS should allow the user to freely navigate between the
various activities. For example, after a product is placed into
the cart, the user may want to revisit its configuration and
perhaps change it. Furthermore, the user may want to Select
Several products before he Submits an order. After an order
is Submitted, the user may also want to revisit the configu
ration of the ordered product and/or change the Set of
Selected products. Finally, a user may want to delay or
cancel the placement of an order and leave the proceSS
without executing the activity D “submit order'. This free
dom in the process execution is described by the various
back links from the decisions F and G to one of the possible
activities A or B.

0.052 The example illustrates that arbitrary, unstructured
cycles frequently occur in the graphical representation of
busineSS processes. Unstructured cycles are characterized by
having more than one entry or exit point. The proceSS shown
in FIG. 1 contains such an unstructured cycle, which
comprises the activities A, B, C, and D. This unstructured
cycle can be entered at activity Aby coming from either the
start, the decision F, or the decision G. This unstructured
cycle can also be entered at activity B by coming from the

Sep. 22, 2005

decisions For G. It can be left via decision F, which allows
the user to terminate a product Selection and configuration
process without placing an order, and decision G, which
allows the user to terminate the purchasing process after his
order is submitted. These multiple entry points (via A and B)
and exit points (via F and G) are the characteristic features
of unstructured cycles, which are Sometimes also called wild
or arbitrarily nested cycles. In contrast to unstructured
cycles, a structured cycle has exactly one entry and one exit
point, which is not shown in the example process of FIG. 1.
0053 2. Mapping of the graphical model to a set of
continuation equations
0054. In order to transform a business process model with
unstructured cycles into a workflow code that Supports
Structured cycles with uniquely defined entry and exit
points, a continuation Semantics is assigned to the graphical
model. The continuation Semantics partitions the graphical
flow into the past, present, and future and allows it to
describe the intended execution of a process model. For
example, given the activity A, the activity A itself is con
sidered as the present of the process, "Start is considered as
its past and the activities B or C are considered as its future.
For a given node, which can be an activity or a decision, in
the graphical flow (the present of the execution), its possible
continuations (the remainder of the flow) can be described in
the form of equations. This is done with the following
method:

0055 a) Assign a continuation variable to the start and
end nodes.

0056 b) Assign a continuation variable to each activity
or decision node in the flow that has more than one
incoming or outgoing link.

0057 The assignment of the continuation variables
according to the above mentioned rules 1 and 2 is depicted
in FIG. 2.

0058. Depending on which modeling language for the
description of the graphical process model is used the
mapping of the graphical representation of the business
process model to the Set of continuation equations can be
adapted to meet the graphical process model, also called
input model, described under Section 1"Graphical represen
tation of the busineSS process model”.
0059. In the following, it is described what happens
during the execution of the proceSS flow using the continu
ation variables x1 to X8. The equations are build as follows.
On the left-hand side of the equation symbol, the continu
ation variable to be considered is put. On the right-hand Side
of the equation, the possible continuations that can follow
this variable are described. A continuation can either be
another variable or variables or it can be an activity, which
we denote with “invoke A”, “invoke B', etc. A linear
continuation can be described using the Sequence operator
“”. A branching of the continuation is described using the
conditional statement “if <condition>then X'. Each link
leaving a decision node in the process model is mapped to
a branching. If a variable in the continuation at the left-hand
Side of the equation is encountered, a new equation is built.
The <condition>in the conditional statement can be derived
from the proceSS model if its graphical representation is
annotated with branching conditions for the decision nodes.
If not, as it is the case in the example of FIG. 2, abstract

US 2005/0210455 A1

names can be used to represent these conditions. For
example, the condition that drives the continuation from
proceSS activity A to process activity B is denoted with AB,
the condition to continue from activity A to activity C, is
denoted with AC.

0060. In the following, the continuation equations (1) to
(8) derived from the process shown in FIG. 1 and 2 are
listed.

(1) X1 = Start: X2:
(2) x2 = invoke A; X3;
(3) x3 = if AB then x4:

if AC then x5;
(4) X4 = invoke B; x5
(5) X5 = invoke C; x6
(6) x6 = if CD then invoke D; x7 endif:

if CEnd then x8:
if CA then X2:
if CB then x4;

(7) x7 = if DB then x4;
if DA then X2:
if DEnd then x8;

(8) x8 = End;

0061 For the example model of FIG. 1 and 2, it is started
with a System of 8 continuation equations (1) to (8). The
decisions E, F, and G are covered by the equations for the
variables X3, X6, and X7. It can be seen that the number of
outgoing links from a decision node corresponds to the
number of conditional Statements. The ordering of the
conditional Statements in the equations is arbitrary, because
a non-concurrent business proceSS model is considered.
0.062. 3. Solving the System of Continuation Equations
0063) Now the set of continuation equations (1) to (8) can
be solved using the following four transformation rules 3.1
to 3.4:

0064 3.1 Substitution:
0065. The substitution rule reduces the number of con
tinuation variables and thereby also the number of equations
in the Set of continuation equations. Given the occurrence of
a continuation variable on the right-hand Side of a continu
ation equation, this rule takes this variable and replaces it
with the right-hand Side of the equation having this variable
on its left-hand side.

0.066 For example:
0067 x0=invoke K; X1
0068 x1=invoke L;

0069
0070 x0=invoke K;
0071

0072 3.2 Factorization:

is substituted by:

invoke L;

0073. The factorization rule eliminates multiple occur
rences of the same continuation variable within an equation
by introducing a new Boolean variable. This Boolean vari
able is introduced in the beginning of the right-hand Side of
the equation and Set to false. Each occurrence of the con
tinuation variable is replaced with an assignment that Sets
the new Boolean variable to true. At the end of the right

Sep. 22, 2005

hand Side, a new conditional Statement that tests the Boolean
variable for being true and then branches to the continuation
variable is added.

0074 For example:
0075) x0=invoke K;

0076) if c then x1;
0077 invoke L;
0078 if d then x1;

0079) is replaced by:

0080 x0=selx1:=false;
0081) invoke K;
0082) if c then selx1:=true;
0083) invoke L;
0084) if d then selx1:=true;
0085) if selx 1 then x 1;

0.086 3.3 Derecursivation:
0087. The derecursivation rule eliminates cycles. It is
applied to rules that mention the same continuation variable
at the left-hand and the right-hand Side of an equation. The
occurrence at the right-hand Side of the equation is elimi
nated by a repeat-until Statement ranging from the beginning
of the right-hand side until the occurrence of the continua
tion variable. The condition that terminates the repeat-until
Statement is obtained from the negation of the conditions on
the execution path that lead to the continuation variable.
This rule can be applied if no other continuation variables
occur between the equation sign and the recursive continu
ation variable. Otherwise, the continuations have to be
reordered first using the if-distribution rule explained next.
0088 For example:

0089 x1=invoke K;
0090)
is replaced by:

if c then X1;

0091)
0092 x1=repeat

0093)
0094 until not c;

0.095 3.4 If-Distribution:
0096. The if-distribution rule rearranges elements of the
Sequential continuations, which can be guarded by condi
tions. The rule may occur in different forms, which are
shown below:

0097. For example:

0.098 x0=if c1 then x1;

invoke K,

0099 else if c2 then x2;
01.00 endif;

0101 is rearranged by:

0102 x0=if cl then X1;
0103) if not c1 & c2 then X2:

US 2005/0210455 A1

0104 And for example:
01.05 x0=if c1 then x1;

0106 if c2 then X2:
01.07

0108 x0=if c2 then X2:
01.09)

0110. The above mentioned rules 3.1 to 3.4 are main
tained and organized by a transformation engine which is
shown in FIG. 7 and which operates in the following steps
a) to c):

0111
0112 b) Apply the rule and compute the modified set
of equations,

0113 c) Goto step a) until only a single equation
remains in the Set of equations.

0114. In the following, it is described how the set of
example equations (1) to (8) is Solved. For each cycle, the set
of applicable rules is described, one or more of them is
Selected for application and the resulting transformed equa
tion set is shown. The order in which rules are selected for
application determines the quality of the generated workflow
code. This means, by applying the rules in a particular order
the code can be optimized in terms of the amount of memory
that is required to Store it and in terms of runtime and
communication effort required to execute it. This optimiza
tion is discussed in Section 4 "Optimizing the generated
workflow instructions'.

0115 Pass 1:
0116. In a first pass of the transformation engine, only the
Substitution rule is applicable, but it can be applied to many
equations. The derecursivation rule is not applicable,
because no equation contains the same variable on both
SideS. The factorization rule is not applicable, because no
equation contains Several occurrences of the same continu
ation variable on the right-hand Side. The transformation
engine decides to apply the Substitution rule to the continu
ation variable X3 in continuation equation (2), to continua
tion variable X6 in continuation equation (5), and then to
continuation variable X7 in the transformed continuation
equation (5). The transformed continuation equation set (1)
to (8) is shown below:

is rearranged by:

if c1 then X1;

a) Select a rule that is applicable to an equation;

(1) X1 = Start: X2:
(2) x2 = invoke A;

if AB then x4:
if AC then x5;

(4) X4 = invoke B; x5;
(5) X5 = invoke C:

if CD then invoke D;
if DB then x4;
if DA then X2:
if DEnd then x8:

endif:
if CEnd then x8;
if CAthen X2:
if CB then x4;

(8) x8 = End;

Sep. 22, 2005

0117) Pass 2:

0118. In the second pass, the transformation engine
decides to work on the complex continuation equation (5) by
applying the factorization rule to the continuation variables
X2, X4, and X8, which each occur twice on the right-hand
Side of this equation. For each continuation variable, a new
Selector variable is introduced. As a neXt Step, the variable
X8 is eliminated by Substituting the continuation equation
(8). The transformed continuation equation (5) is shown
below:

(1) X1 = Start: X2:
(2) x2 = invoke A;

if AB then x4:
if AC then x5;

(4) X4 = invoke B; x5:
(5) X5 = selx2 := false:

selx4 := false;
selx8 := false:
invoke C:
if CD then invoke D;

if DB then selx4 := true:
if DA then selx2 := true:
if DEnd then selx8 := true:

endif:
if CEnd then selx8 := true:
if CAthen selx2 := true:
if CB then selx4 := true:
if selx2 then X2:
if selx4 then x4:
if selx8 then End;

0119) Pass 3:

0120 In pass 3 of the transformation engine, the con
tinuation variable X4 is Substituted in the continuation equa
tions (2) and (5). Then, the multiple occurrences of the
variable X5 in equation (2) are eliminated by applying the
factorization rule again.

Start: X2:
selx5 := false:
invoke A;
if AB then invoke B;

sex5 := true
endif:
if AC then selx5 := true:
if selx5 then x5:
selx2 := false:
selx4 := false;
selx8 := false:
invoke C:
if CD then invoke D;

if DB then selx4 := true:
if DA then selx2 := true:
if DEnd then selx8 := true:

endif:
if CEnd then selx8 := true:
if CAthen selx2 := true:
if CB then selx4 := true:
if selx2 then X2:
if selx4 then invoke B;

X5
endif:
if selx8 then End;

(5) X5 =

US 2005/0210455 A1

0121 Pass 4:
0122) In the fourth pass, the transformation engine works
on continuation equation (5) again. Equation (5) is recursive,
because it contains the continuation variable X5 on both
Sides of the equation. The transformation engine can there
fore apply the derecursivation rule. This rule introduces a
repeat-until Statement from the beginning of the right-hand
side of the equation to the position where the variable X5
occurs (shown underline). It can be observed that the con
tinuation variable X2 (shown in bold) occurs inside the
continuation that the repeat-until loop will spawn. This
means, before the derecursivation rule can be applied, the
continuation leading to variable X2 has to be first moved
outside the Scope of the repeat-until loop.

(1) X1 = Start: X2:
(2) x2 = selx5 := false:

invoke A;
if AB then invoke B;

sex5 := true
endif:
if AC then selx5 := true:
if selx5 then x5:

(5) X5 = repeat
selx2 := false:
selx4 := false;
selx8 := false:
invoke C:
if CD then invoke D;

if DB then selx4 := true;
if DA then selx2 := true:
if DEnd then selx8 := true:

endif:
if CEnd then selx8 := true:
if CA then selx2 := true:
if CB then selx4 := true:
if selx4 then invoke B;

until not selx4;
if selx2 then X2:
if selx8 then End;

0123 Pass 5:
0.124. In pass 5, the continuation variable X5 is substi
tuted in continuation equation (2). Then, the if-distribution
rule is applied to move “if selx8 then End;" to the end of the
equation again.

(1) X1 = Start: X2:
(2) x2 = selx5 := false:

invoke A;
if AB then invoke B;

selx5 := true
endif:
if AC then selx5 := true:
if selx5 then repeat

selx2 := false;
selx4 := false;
selx8 := false;
invoke C:
if CD then invoke D;

if DB then selx4 := true:
if DA then selx2 := true:
if DEnd then selx8 := true:

endif:
if CEnd then selx8 := true:
if CAthen selx2 := true:
if CB then selx4 := true:

Sep. 22, 2005

-continued

if selx4 then invoke B;
until not selx4;
if selx2 then X2:

endif:
if selx5 & selx8 then End;

0125 Pass 6:
0126 In pass 6 the transformed continuation equation (2)
is recursive and thus, the derecursivation rule is applied by
the transformation engine. It can be observed that the
continuation variable X2 occurs inside a conditional State
ment (shown underlined), which would be incorrectly inter
rupted if the repeat-until Statement would be simply intro
duced in the place where variable x2 occurs. The
transformation engine therefore first moves the variable X2
after the end of the conditional statement. This can be done
by collecting the conditions on the execution path towards
variable X2 (shown in bold) and then moving variable X2 to
the end of the right-hand Side of the equation as shown
below.

(2) x2 = selx5 := false:
invoke A;
if AB then invoke B;

selx5 := true
endif:
if AC then selx5 := true:
if selx5 then repeat

selx2 := false:
selx4 := false;
selx8 := false:
invoke C:
if CD then invoke D;

if DB then selx4:=true:
if DA then selx2 := true:
if DEnd then selx8 := true:

endif:
if CEnd then selx8 := true:
if CAthen selx2 := true:
if CB then selx4 := true:
if selx4 then invoke B;

until not selx4;
endif:
if selx5 & selx2 then X2:
if selx5 & selx8 then End;

O127 Pass 7:
0128 Now, in pass 7 the repeat-until loop can be intro
duced to replace the continuation variable X2 and the trans
formed continuation equation (2) can be inserted into con
tinuation equation (1) to replace the final occurrence of
variable X2. These last transformation StepS Solve the equa
tion System. Only a single continuation equation defining the
variable X1 is left, which contains no other continuation
variables on its right-hand side. The Boolean variables,
which have been introduced during the factorization Steps
are all maintained and manipulated by the generated code.

(1) x1 = Start:
repeat

selx5 := false:
invoke A;

US 2005/0210455 A1

-continued

if AB then invoke B;
selx5 := true:

endif:
if AC then selx5 := true:
if selx5 then repeat

selx2 := false:
selx4 := false;
selx8 := false:
invoke C:
if CD then invoke D;

if DB then selx4 := true:
if DA then selx2 := true:
if DEnd then selx8 := true:

endif:
if CEnd then selx8 := true:
if CA then selx2 := true:
if CB then selx4 := true:
if selx4 then invoke B;

until not selx4;
endif:

until not (selx5 & selx2);
if selx5 & selx8 then End;

0129. The transformation engine guarantees that any
transformation it applies preserves the continuation Seman
tics of the process model. The flow described by the business
process model in FIG. 1 and the flow described by the
Solved continuation equation (1) are functionally equivalent.
This means, when invoked on the same input, both flows
will produce exactly the same output.
0130 4. Optimizing the generated workflow instructions
0131 Two main techniques for optimizing the generated
workflow code exist:

0132) 4.1. The solved continuation equation can be fur
ther simplified by exploiting the information in the proceSS
model.

0.133 4.2. The transformation engine can modify the
generated code by applying the transformation rules in a
Specific order.
0134. Both techniques are described in the following.
0135) 4.1. Simplifying the solved continuation equation
by exploiting the information in the proceSS model
0.136 The mechanically generated code looks not as if it
can be easily understood. In fact, the workflow code can be
further simplified by inspecting the various execution paths
that it describes.

0137 First, it can be observed that the last test “if selx5
& selx8 then End;" is unnecessary. Independently of
whether the condition “selx5 & Selx8’ holds or not, the
workflow will end, because it is the last instruction in the
workflow code. Therefore, it can be removed and with that
the continuation variable Selx8 is no longer needed as well.
0.138. Secondly, it can be observed that activity C“place
into cart' has to be executed in any execution. It will either
directly follow activity A or it will follow activity B, but it
cannot be skipped. How activity C is reached, is captured in
the Boolean variable selx5, which is set to true after activity
A or B have been executed. Recall that the flow model
describes an exhaustive and disjoint branching after each
decision node, i.e. any execution path in this process either

Sep. 22, 2005

starts with activities A, B, C or A. C. This means that the
variable selx5 will be true in any execution and thus the test
on variable Selxis being true as well as any occurrences of
variable selx5 can be removed. This results in the following
Simplified continuation equation:

(1) x1 = Start:
repeat

invoke A;
if AB then invoke B;
repeat

selx2 := false:
selx4 := false;
selx8 := false:
invoke C:
if CD then invoke D;

if DB then selx4 := true:
if DA then selx2 := true:
if DEnd then selx8 := true;

endif:
if CEnd then selx8 := true:
if CAthen selx2 := true:
if CB then selx4 := true:
if selx4 then invoke B;

until not selx4;
until not selx2;

0.139 Next, the guard conditions for the remaining Bool
ean variables are made explicit. The guard conditions, that
are encountered on executions paths that lead to a Boolean
variable to be set to true, are collected.

0140 selx2=(CD & DA) or CA
0141 selx4=(CD & DB) or CB
0142 selx8=(CD & DEnd) or CEnd

0.143 Obviously, variable selx2 captures the conditions
under which activity A is revisited, variable Selx4 captures
the conditions under which activity B is revisited, while
variable selx8 captures the conditions under which the
process is ending. Now, all Statements from the continuation
equation that Set a Boolean variable to true or false can be
eliminated and any test on the value of a Boolean variable
can be replaced with the abstract transition conditions that
was collected above.

0144 Finally, the Start activity can be removed. In the
example model of FIG. 1, it indicates only where the
busineSS proceSS Starts, but does not describe any busineSS
relevant activity (data manipulation for example). The result
of this simplification is:

(1) x1 = repeat
invoke A;
if AB then invoke B;

repeat
invoke C:
if CD then invoke D;
if (CD & DB) or CB then invoke B;

until not (CD & DB) or CB);
until not (CD & DA) or CA;

0145 Now, continuation equation (1) contains two nicely
nested loops. The inner loop captures the moving forward
and backward between the activities B, C, and D. The outer
loop captures the moving back to activity A from either
activity C or D.

US 2005/0210455 A1

0146 4.2. Controlling rule application order
0147 The second opportunity for optimizing the gener
ated workflow code lies in computing the right order for the
application of rules by the transformation engine. In order to
control the rule application, the transformation engine keeps
information about how often variables occur on the right
hand Side of the equations and about which rules are
applicable.
0.148. The transformation engine also defines a priority of
application for the rules. Factorization has a higher priority
than derecursivation, which in turn has a higher priority than
substitution. If-distribution is only applied if required, which
happens in two situations: First, to move any continuation of
the flow towards the End activity to the very end of a
continuation equation; Secondly, to move continuation vari
ables outside the Scope of applicability of the derecursiva
tion rule. How the rule application order is controlled is
further explained with the help of the example of FIG. 1.
0149. In the first pass, only the substitution rule was
applicable. The following occurrences of continuation vari
ables on the right-hand Side of the continuation equations (1)
to (8) are counted:

0150. It is noted that the continuation variables X3, X6,
and X7 only occur a single time. Whenever Such a single
occurrence variable exists, the transformation engine will
apply the Substitution rule to eliminate it from the continu
ation equation Set. This happened in the first pass.
0151. For the second pass, the factorization rule is appli
cable, because the continuation variables X2, X4, and X8
occur twice in the same right-hand Side of a continuation
equation. Because of its higher priority, this rule is applied.
Then the Substitution rule is considered again, which is
controlled by the occurrence of the continuation variables,
which has changed to:

0152 Only the continuation variable x8 occurs a single
time and thus the Substitution rule is applied to eliminate it.
0153. For the third pass, all remaining continuation vari
ables occur exactly two times. None of the other rules is
applicable, except the Substitution rule. The transformation
engine has no unique choice to continue. This phenomenon
reflects the fact that the flow graph encoded in the busineSS
proceSS model is non-reducible and Some code duplication,
i.e. Substituting the same equation more than one time in
different places, is mandatory. Flow graph reducibility is
described in Standard textbooks on compiler theory, e. g.
Compilers: Principles, Techniques, and Tools by A. Aho, R.
Sethi, and J. Ullman, Addison-Wesley Publishing Company,
1996. The transformation engine selects the variable that
occurs the minimal number of times and if no Such choice
exists as it is the case in the example, it Selects the variable

Sep. 22, 2005

that has the smallest right-hand side in its equation. “Small'
can be defined in different ways depending on the goal of the
code optimization. It can be the number of “invoke' state
ments, the number of conditions tested or any other user
defined criterion or combination thereof. In the example, it
is tried to minimize the number of “invoke' statements
followed by the number of tested conditions, because the
number of Web Service invocations, which are generated for
the workflow code, shall be minimized and the branching
logic should be kept as Simple as possible. Consequently, the
transformation engine Selects variable X4 in the third pass.

0154 Eliminating variable x4 transforms equation (5)
into a recursive equation and thus, in pass 5, the derecursi
Vation rule is applied. It requires applying the if-distribution
rule first, because another continuation variable occurs in the
Scope for applying this rule.

0155 In pass 5, the only variables left are X2 (it occurs
two times) and X5 (it occurs a single time). Consequently,
variable X5 is substituted first. In pass 6, the derecursivation
rule is applied because of its higher priority. It is preceded
by the if-distribution rule, because another continuation
variable occurs in the Scope for applying this rule. Finally,
in pass 7, a last application of the Substitution rule is
possible.

0156 To see that a different order of applying the rules
leads to a leSS compact workflow code, pass 1 is considered
again. The resulting continuation equation set after pass 1 is
repeated below:

Start: X2:
invoke A;
if AB then x4:
if AC then x5;
invoke B; x5;
invoke C:
if CD then invoke D;

if DB then x4;
if DA then X2:
if DEnd then x8:

endif:
if CEnd then x8:
if CAthen X2:
if CB then x4;

(8) x8 = End;

(1) X1 =
(2) x2 =

(4) X4 =
(5) X5 =

O157 The occurrences of the continuation variables are
as follows:

0158 If the rule priorities are ignored and the Substitution
rule is simply applied, the variables X5 and X8 look as
equally good choices. Applying both Substitutions would
yield the transformed equation Set shown below. Apparently,
the equations for the variables X2 and X4 have become much
more complicated. In particular, it can Seen that the trans
formation has unnecessarily duplicated the “invoke C and
“invoke D” statements (shown in bold). No transformation
rule exists that will ever undo these code duplications.

US 2005/0210455 A1

Start: X2:
invoke A;
if AB then x4:
if AC then invoke C:

if CD then invoke D;
if DB then x4;
if DA then X2:
if DEnd then End;

endif:
if CEnd then End;
if CAthen X2:
if CB then x4;

endif:
invoke B;
invoke C:
if CD then invoke D;

if DB then x4;
if DA then X2:
if DEnd then End;

endif:
if CEnd then End;
if CAthen X2:
if CB then x4;

(4) X4 =

0159. The functional equivalence of the transformed
model is Still guaranteed, but unnecessary code duplication
is a feature which should be avoided for any code generation
method.

0160 5. Mapping of the solved system of continuation
equations to BPEL4WS
0.161 The single equation that is computed by the trans
formation engine contains only two well-structured cycles in
the form of repeat-until Statements as well as a few condi
tional branches. It can be directly mapped to an XML file
containing instructions for a workflow engine in the Stan
dardized language BPEL4WS (Business process execution
language for Web Services).
0162 The mapping is based on the following correspon
dences:

repeat-until not condition <=> <sequences
<assign newcondition = true f>
<while newcondition>

<assign newcondition =
condition f>

<fwhile
</sequences

<=> <switch: <case condition = guard/>
</switch
<invoke A f>

if guard then

invoke A <=>

0163 A repeat-until loop as shown in FIG. 4 can be
mapped to an equivalent while-do loop depicted in FIG. 5.
0164. The starting point for the mapping to BPEL4WS is
the compact representation of the right-hand Side of the
remaining continuation equation that is mapped to the
corresponding XML (Extensible Markup Language) ele
ments. In the following, the abstract BPEL4WS specifica
tion that defines the control-flow for the workflow is shown,
but many attribute values that Specify the message eXchange
and linking to the Web Services, which implement the
various activities are omitted. This information was not
present in the example busineSS proceSS model, but could be
easily added to the BPEL4WS file, if the business process

Sep. 22, 2005

model would be completed with that information, which can
be captured in additional models.

<process>
<sequences

<assign condition1 = true f>
<while condition1

<sequences
<assign condition1 = ((CD & DA) or CA) />
<invoke Af>
<switch

<case condition = AB>
<invoke Bis

<fcases
</switch
<assign condition2 = true f>
<while condition2>

<sequences
<assign condition2 = ((CD & DB) or CB) fs
<invoke C/
<switch

<case condition = CDs
<invoke Df>

<fcases
</switch
<switch

<case condition= (CD & DB) or CB />
<invoke Bis

<fcases
</switch

</sequences
<whilef>

</sequences
<fwhiles

</sequences
</process>

0.165. The XML representation can also be graphically
displayed by mapping it for example to the UML (Unified
Modeling Language) Profile for BPEL4WS by J. Amsden, T.
Gardner, C. Griffin, S. Iyengar, J. Knapman: UML Profile for
Automated Business Processes with a Mapping to BPEL 1.0,
IBM Alphawork, http://dwdemos.alphaworks.ibm.com/
wStk/ common/WStkdoc/services/demoS/uml2bpel/docs/
UMLProfileForBusinessProcesses1.0.pdf, 2003, which is
shown in FIG. 6.

0166 6. Variants of the transformation method
0167 A transformation engine 70 shown in FIG. 7 works
on a set of models 72 to which it applies a set of rules 74,
wherein the application of the rules 74 or transformation
rules 74 is controlled by a rule controller 76. Many varia
tions points exist for the above described transformation
method.

0.168. The model representation can be varied. For
example, the graphical business process model can be
mapped to a Set of mathematical equations. Alternatively,
also BPEL4WS could be directly used to encode the con
tinuation Semantics of the business proceSS model and then
further the BPEL4WS model is transformed until its control
flow is optimized.
0169. The rules 74 can also be modified. Obvious modi
fications are to change the derecursivation rule Such that it
directly generates while-do loops instead of repeat-until
loops. The factorization rule could be modified such that it
does not introduce additional Boolean variables, but main
tains the branching logic directly. Additional rules or differ
ent rule Sets can also be imagined to achieve other trans
formations, which may be required by a particular target
Workflow engine.

US 2005/0210455 A1

0170 The rule controller 76 implements the priorities
among rules and guides the order in which rules can be
applied. Different controllers could be used to achieve
different optimization criteria during the transformation.
0171 FIG. 8 shows a system for generating executable
workflow code 84 from an unstructured cyclic process
model 72. The code that comprises workflow engine instruc
tions is executable by a workflow engine 86. The workflow
engine 86 could be a server or multiple computers which
might be distributed. FIG. 8 shows a computing device 82,
that here is a busineSS model computer 82, programmed for
designing the unstructured cyclic process model 72. The
busineSS model computer 82 is connected to the transfor
mation engine 70 with the rule controller 76. The rule
controller has access to the rules 74. The transformation
engine 70 generates a continuation equation System from the
unstructured cyclic proceSS model, applies the transforma
tion rules 74, and outputs the executable workflow code 84.
The executable workflow code 84, e.g. BPEL, can then
directly be executed by the workflow engine 86. As indi
cated in the figure, the busineSS model computer 82 and the
transformation engine 70 can be a computing unity 80 that
is also referred to as code generator.
0172 The presented method and code generator can
Support a business consultant or analyst in automatically
transforming an unstructured cyclic process model into a
well-structured and executable workflow code.

1. A method for generating an executable workflow code
from an unstructured cyclic process model, Said method
comprising:

generating a continuation equation System from the
unstructured cyclic proceSS model; and

generating the executable workflow from the continuation
equation System.

2. The method according to claim 1,
wherein for generating the continuation equation System

variables are assigned to nodes of the process model.
3. The method according to claim 2,
wherein one of Said variables is assigned to a start node

and one of Said variables is assigned to an end node of
the proceSS model, and

wherein one of Said variables is assigned to one of Said
nodes that has more than one incoming or outgoing
link.

4. The method according to claim 2,
wherein for generating the executable workflow code the

continuation equation System is Solved by means of
transformation rules.

5. The method according to claim 4,
wherein one of Said transformation rules is Selected Such

that it is applicable to an equation of the continuation
equation System,

wherein the Selected transformation rule is applied to the
equation and a modified continuation equation System
is computed,

wherein these StepS are repeated until a Single equation
remains.

Sep. 22, 2005

6. The method according to claim 4,
wherein with the help of a first transformation rule one

Variable of a first equation is Substituted by an expres
Sion of a Second equation.

7. The method according to claim 4,
wherein with the help of a second transformation rule the

number of occurrences of the Same variable in the
equation is reduced.

8. The method according to claim 7,
wherein at each place where the variable occurs it is

replaced by a Boolean variable, and
wherein a conditional Statement is introduced in the

equation for branching to the variable if the Boolean
variable fulfills the condition.

9. The method according to claim 4,
wherein with the help of a third transformation rule one

Variable occurring on both sides of the equation is
replaced by a repeat-until Statement.

10. The method according to claim 9,
wherein the condition for terminating the repeat-until

Statement is obtained from the negation of the condition
that led in the original equation to the variable.

11. The method according to claim 4,
wherein each transformation rule is assigned to a priority,

and

wherein the transformation rule with the highest priority
is applied first.

12. The method according to claim 2,
wherein that variable is eliminated first which occurs most

Seldom in the continuation equation System.
13. The method according to claim 5,
wherein the Single equation is mapped to an XML file.
14. A computer program element comprising computer

program code which, when loaded in a processor of a
computing device, configures the processor to perform a
method comprising:

generating a continuation equation System from the
unstructured cyclic proceSS model; and

generating the executable workflow from the continuation
equation System.

15. A code generator for generating an executable work
flow code from an unstructured cyclic proceSS model, the
code being executable by a workflow engine, Said code
generator comprising:

a computing device for designing the unstructured cyclic
process model; and

a transformation engine adapted to generate:
a continuation equation System from the unstructured

cyclic process model; and
the executable workflow code from the continuation

equation System.

