(12) United States Patent

Gurumurthy et al.
(10) Patent No.: US 9,289,209 B2
(45) Date of Patent:

Mar. 22, 2016
(58)

Field of Classification Search
CPC \qquad A61B 17/068; A61B 17/07207; A61B 17/0686; A61B 17/0684
USPC 227/175.1, 175.2, 177.1, 179.1, 180.1, 227/175.3
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

$$
\begin{array}{cccc}
3,079,606 & \mathrm{~A} & \begin{array}{r}
3 / 1963 \\
\text { Bobrov et al. } \\
3,490,675 \mathrm{~A}
\end{array} & \begin{array}{c}
1970 \quad \text { Green et al. } \\
\end{array} \\
& \text { (Continued) }
\end{array}
$$

FOREIGN PATENT DOCUMENTS

AU	198654765	$9 / 1986$
DE	2744824	$4 / 1978$

(Continued)
OTHER PUBLICATIONS

European Search Report dated Sep. 15, 2014 issued in European Appln. No. 12171261.
(Continued)

Primary Examiner - Michelle Lopez
Assistant Examiner - Eduardo R Ferrero

Abstract

(57)

ABSTRACT A surgical fastener applying apparatus for applying fasteners to body tissue. The apparatus includes an anvil half-section having a distal anvil portion and a proximal handle portion and a cartridge receiving half-section having an elongated channel member. A firing assembly is releasably supported in the cartridge half-section and includes a locking member. A clamping lever having an engagement member engages a latch portion of the locking member to releasably retain the clamping lever in a clamped position.

18 Claims, 27 Drawing Sheets

References Cited
U.S. PATENT DOCUMENTS

3,499,591	A	3/1970	Green
3,777,538	A	12/1973	Weatherly et al.
3,882,854	A	5/1975	Hulka et al.
4,027,510	A	6/1977	Hiltebrandt
4,086,926	A	5/1978	Green et al.
4,244,372	A	1/1981	Kapitanov et al.
4,429,695	A	2/1984	Green
4,505,414	A	3/1985	Filipi
4,520,817	A	6/1985	Green
4,589,413	A	5/1986	Malyshev et al.
4,596,351	A	6/1986	Fedotov et al.
4,602,634	A	7/1986	Barkley
4,605,001	A	8/1986	Rothfuss et al.
4,608,981	A	9/1986	Rothfuss et al.
4,610,383	A	9/1986	Rothfuss et al.
4,633,861	A	1/1987	Chow et al.
4,633,874	A	1/1987	Chow et al.
4,671,445	A	6/1987	Barker et al.
4,700,703	A	10/1987	Resnick et al.
4,703,887	A	11/1987	Clanton et al.
4,728,020	A	3/1988	Green et al.
4,752,024	A	6/1988	Green et al.
4,784,137	A	11/1988	Kulik et al.
4,863,088	A	9/1989	Redmond et al.
4,869,415	A	9/1989	Fox
4,892,244	A	1/1990	Fox et al.
4,955,959	A	9/1990	Tompkins et al.
4,978,049	A	12/1990	Green
4,991,764	A	2/1991	Mericle
5,014,899	A	5/1991	Presty et al.
5,031,814	A	7/1991	Tompkins et al.
5,040,715	A	8/1991	Green et al.
5,065,929	A*	11/1991	Schulze et al. 227/19
5,071,430	A	12/1991	deSalis et al.
5,074,454	A	12/1991	Peters
5,083,695	A	1/1992	Foslien et al.
5,084,057	A	1/1992	Green et al.
5,106,008	A	4/1992	Tompkins et al.
5,111,987	A	5/1992	Moeinzadeh et al.
5,129,570	A	7/1992	Schulze et al.
5,141,144	A	8/1992	Foslien et al.
5,156,315	A	10/1992	Green et al.
5,156,614	A	10/1992	Green et al.
5,163,943	A	11/1992	Mohiuddin et al.
5,170,925	A	12/1992	Madden et al.
5,171,247	A	12/1992	Hughetti et al.
5,173,133	A	12/1992	Morin et al.
5,180,092	A	1/1993	Crainich
5,188,274	A*	2/1993	Moeinzadeh et al. 227/180.1
5,220,928	A	6/1993	Oddsen et al.
5,221,036	A	6/1993	Takase
5,242,457	A	9/1993	Akopov et al.
5,246,156	A	9/1993	Rothfuss et al.
5,253,793	A	10/1993	Green et al.
5,263,629	A	11/1993	Trumbull et al.
RE34,519	E	1/1994	Fox et al.
5,275,323	A	1/1994	Schulze et al.
5,282,807	A	2/1994	Knoepfler
5,289,963	A	3/1994	McGarry et al.
5,307,976	A	5/1994	Olson et al.
5,308,576	A	5/1994	Green et al.
5,312,023	A	5/1994	Green et al.
5,318,221	A	6/1994	Green et al.
5,326,013	A	7/1994	Green et al.
5,328,077	A	7/1994	Lou
5,330,486	A	7/1994	Wilk
5,332,142	A	7/1994	Robinson et al.
5,336,232	A	8/1994	Green et al.
5,344,061	A	9/1994	Crainich
5,352,238	A	10/1994	Green et al.
5,356,064	A	10/1994	Green et al.
5,358,506	A	10/1994	Green et al.
5,364,001	A	11/1994	Bryan
5,364,002	A	11/1994	Green et al.
5,364,003	A	11/1994	Williamson, IV

5,366,133	A	11/1994	Geiste
5,376,095	A	12/1994	Ortiz
5,379,933	A	1/1995	Green et al.
5,381,943	A	1/1995	Allen et al.
5,382,255	A	1/1995	Castro et al.
5,383,880	A	1/1995	Hooven
5,389,098	A	2/1995	Tsuruta et al.
5,395,033	A	3/1995	Byrne et al.
5,395,034	A	3/1995	Allen et al.
5,397,046	A	3/1995	Savage et al.
5,397,324	A	3/1995	Carroll et al.
5,403,312	A	4/1995	Yates et al.
5,405,072	A	4/1995	Zlock et al.
5,407,293	A	4/1995	Crainich
5,413,268	A	5/1995	Green et al.
5,415,334	A	5/1995	Williamson, IV et al.
5,415,335	A	5/1995	Knodell, Jr.
5,417,361	A	5/1995	Williamson, IV
5,423,471	A	6/1995	Mastri et al.
5,425,745	A	6/1995	Green et al.
5,431,322	A	7/1995	Green et al.
5,431,323	A	7/1995	Smith et al.
5,433,721	A	7/1995	Hooven et al.
5,441,193	A	8/1995	Gravener
5,445,304	A	8/1995	Plyley et al.
5,447,265	A	9/1995	Vidal et al.
5,452,837	A	9/1995	Williamson, IV et al.
5,456,401	A	10/1995	Green et al.
5,464,300	A	11/1995	Crainich
5,465,895	A	11/1995	Knodel et al.
5,467,911	A	11/1995	Tsuruta et al.
5,470,007	A	11/1995	Plyley et al.
5,470,010	A	11/1995	Rothfuss et al.
5,472,132	A	12/1995	Savage et al.
5,474,566	A	12/1995	Alesi et al.
5,476,206	A	12/1995	Green et al.
5,478,003	A	12/1995	Green et al.
5,480,089	A	1/1996	Blewett
5,482,197	A	1/1996	Green et al.
5,484,095	A	1/1996	Green et al.
5,484,451	A	1/1996	Akopov et al.
5,485,947	A	1/1996	Olson et al.
5,485,952	A	1/1996	Fontayne
5,486,185	A	1/1996	Freitas et al.
5,487,499	A	1/1996	Sorrentino et al.
5,487,500	A	1/1996	Knodel et al.
5,489,058	A	2/1996	Plyley et al.
5,490,856	A	2/1996	Person et al.
5,497,933	A	3/1996	DeFonzo et al.
5,501,689	A	3/1996	Green et al.
5,505,363	A	4/1996	Green et al.
5,507,426	A	4/1996	Young et al.
5,518,163	A	5/1996	Hooven
5,518,164	A	5/1996	Hooven
5,529,235	A	6/1996	Boiarski et al.
5,531,744	A	7/1996	Nardella et al.
5,535,934	A	7/1996	Boiarski et al.
5,535,935	A	7/1996	Vidal et al.
5,535,937	A	7/1996	Boiarski et al.
5,540,375	A	7/1996	Bolanos et al.
5,542,594	A	8/1996	McKean et al.
5,549,628	A	8/1996	Cooper et al.
5,551,622	A	9/1996	Yoon
5,553,765	A	9/1996	Knodel et al.
5,554,164	A	9/1996	Wilson et al.
5,554,169	A	9/1996	Green et al.
5,560,530	A	10/1996	Bolanos et al.
5,560,532	A	10/1996	DeFonzo et al.
5,562,239	A	10/1996	Boiarski et al.
5,562,241	A	10/1996	Knodel et al.
5,562,682	A	10/1996	Oberlin et al.
5,562,701	A	10/1996	Huitema et al.
5,564,615	A	10/1996	Bishop et al.
5,571,116	A	11/1996	Bolanos et al.
5,573,169	A	11/1996	Green et al.
5,573,543	A	11/1996	Akopov et al.
5,575,799	A	11/1996	Bolanos et al.
5,575,803	A	11/1996	Cooper et al.
5,577,654	A	11/1996	Bishop

References Cited

U.S. PATENT DOCUMENTS

5,579,107	A	11/1996	Wright et al.
5,584,425	A	12/1996	Savage et al.
5,586,711	A	12/1996	Plyley et al.
5,588,580	A	12/1996	Paul et al.
5,588,581	A	12/1996	Conlon et al.
5,597,107	A	1/1997	Knodel et al.
5,601,224	A	2/1997	Bishop et al.
5,607,095	A	3/1997	Smith et al.
5,615,820	A	4/1997	Viola
5,618,291	A	4/1997	Thompson et al.
5,624,452	A	4/1997	Yates
5,626,587	A	5/1997	Bishop et al.
5,628,446	A	5/1997	Geiste et al.
5,630,539	A	5/1997	Plyley et al.
5,630,540	A	5/1997	Blewett
5,630,541	A	5/1997	Williamson, IV et al.
5,632,432	A	5/1997	Schulze et al.
5,634,584	A	6/1997	Okorocha et al.
5,636,779	A *	6/1997	Palmer 227/175.2
5,636,780	A	6/1997	Green et al.
5,645,209	A	7/1997	Green et al.
5,647,526	A	7/1997	Green et al.
5,651,491	A	7/1997	Heaton et al.
5,653,373	A	8/1997	Green et al.
5,653,374	A	8/1997	Young et al.
5,653,721	A	8/1997	Knodel et al.
5,655,698	A	8/1997	Yoon
5,657,921	A	8/1997	Young et al.
5,658,300	A	8/1997	Bito et al.
5,662,258	A	9/1997	Knodel et al.
5,662,259	A	9/1997	Yoon
5,662,260	A	9/1997	Yoon
5,662,662	A	9/1997	Bishop et al.
5,662,666	A	9/1997	Onuki et al.
5,665,085	A	9/1997	Nardella
5,667,517	A	9/1997	Hooven
5,669,544	A	9/1997	Schulze et al.
5,673,840	A	10/1997	Schulze et al.
5,673,841	A	10/1997	Schulze et al.
5,673,842	A	10/1997	Bittner et al.
5,676,674	A	10/1997	Bolanos et al.
5,680,981	A	10/1997	Mililli et al.
5,680,982	A	10/1997	Schulze et al.
5,680,983	A	10/1997	Plyley et al.
5,690,269	A	11/1997	Bolanos et al.
5,692,668	A	12/1997	Schulze et al.
5,697,542	A	12/1997	Knodel et al.
5,702,409	A	12/1997	Rayburn et al.
5,704,534	A	1/1998	Huitema et al.
5,706,997	A	1/1998	Green et al.
5,709,334	A	1/1998	Sorrentino et al.
5,711,472	A	1/1998	Bryan
5,713,505	A	2/1998	Huitema
5,715,988	A	2/1998	Palmer
5,716,366	A	2/1998	Yates
5,718,359	A *	2/1998	Palmer et al. 227/175.2
5,725,536	A	3/1998	Oberlin et al.
5,725,554	A	3/1998	Simon et al.
5,728,110	A	3/1998	Vidal et al.
5,732,806	A	3/1998	Foshee et al.
5,735,848	A	4/1998	Yates et al.
5,743,456	A	4/1998	Jones et al.
5,749,893	A	5/1998	Vidal et al.
5,752,644	A	5/1998	Bolanos et al.
5,762,255	A	6/1998	Chrisman et al.
5,762,256	A	6/1998	Mastri et al.
5,769,303	A	6/1998	Knodel et al.
5,769,892	A	6/1998	Kingwell
5,772,099	A	6/1998	Gravener
5,772,673	A	6/1998	Cuny et al.
5,779,130	A	7/1998	Alesi et al.
5,779,131	A	7/1998	Knodel et al
5,779,132	A	7/1998	Knodel et al
5,782,396	A	7/1998	Mastri et al.
5,782,397	A	7/1998	Koukline

5,782,834	A	7/1998	Lucey et al.
5,785,232	A*	7/1998	Vidal et al. 227/176.1
5,797,536	A	8/1998	Smith et al.
5,797,537	A	8/1998	Oberlin et al.
5,797,538	A	8/1998	Heaton et al.
5,810,811	A	9/1998	Yates et al.
5,810,855	A	9/1998	Rayburn et al.
5,814,055	A	9/1998	Knodel et al.
5,814,057	A	9/1998	Oi et al.
5,816,471	A	10/1998	Plyley et al.
5,817,109	A	10/1998	McGarry et al.
5,820,009	A	10/1998	Melling et al.
5,823,066	A	10/1998	Huitema et al.
5,826,776	A	10/1998	Schulze et al.
5,829,662	A	11/1998	Allen et al.
5,833,695	A	11/1998	Yoon
5,836,147	A	11/1998	Schnipke
5,862,972	A	1/1999	Green et al.
5,865,361	A	2/1999	Milliman et al.
5,871,135	A	2/1999	Williamson, IV et al.
5,873,873	A	2/1999	Smith et al.
5,878,938	A	3/1999	Bittner et al.
5,893,506	A	4/1999	Powell 227/175.3
5,894,979	A	4/1999	Powell
5,897,562	A	4/1999	Bolanos et al.
5,901,895	A	5/1999	Heaton et al.
5,911,352	A	6/1999	Racenet et al.
5,911,353	A	6/1999	Bolanos et al.
5,918,791	A	7/1999	Sorrentino et al.
5,919,198	A	7/1999	Graves, Jr. et al.
5,922,001	A	7/1999	Yoon
5,931,847	A	8/1999	Bittner et al.
5,941,442	A	8/1999	Geiste et al. 227/175.1
5,954,259	A	9/1999	Viola et al.
5,964,774	A	10/1999	McKean et al.
5,980,510	A	11/1999	Tsonton et al.
5,988,479	A	11/1999	Palmer
6,004,335	A	12/1999	Vaitekunas et al.
6,010,054	A	1/2000	Johnson et al.
6,032,849	A	3/2000	Mastri et al.
6,045,560	A	4/2000	McKean et al.
6,063,097	A	5/2000	Oi et al.
6,079,606	A	6/2000	Milliman et al.
6,099,551	A	8/2000	Gabbay
6,109,500	A	8/2000	Alli et al.
6,131,789	A	10/2000	Schulze et al.
6,131,790	A	10/2000	Piraka
6,155,473	A *	12/2000	Tompkins et al. 227/175.2
6,197,017	B1	3/2001	Brock et al.
6,202,914	B1	3/2001	Geiste et al.
6,241,139	B1	6/2001	Milliman et al.
6,250,532	B1	6/2001	Green et al.
6,264,086	B1	7/2001	McGuckin, Jr.
6,264,087	B1	7/2001	Whitman
6,269,977	B1	8/2001	Moore
6,279,809	B1	8/2001	Nicolo
6,315,183	B1	11/2001	Piraka
6,315,184	B1	11/2001	Whitman
6,325,810	B1	12/2001	Hamilton et al.
6,330,965	B1	12/2001	Milliman et al.
6,391,038	B2	5/2002	Vargas et al.
6,398,797	B2	6/2002	Bombard et al.
6,436,097	B1	8/2002	Nardella
6,439,446	B1	8/2002	Perry et al.
6,443,973	B1	9/2002	Whitman
6,463,623	B2	10/2002	Ahn et al.
6,478,804	B2	11/2002	Vargas et al.
6,488,196	B1	12/2002	Fenton, Jr.
6,503,257	B2	1/2003	Grant et al.
6,505,768	B2	1/2003	Whitman
6,544,274	B2	4/2003	Danitz et al.
6,554,844	B2	4/2003	Lee et al.
6,565,554	B1	5/2003	Niemeyer
6,587,750	B2	7/2003	Gerbi et al.
6,592,597	B2	7/2003	Grant et al.
6,594,552	B1	7/2003	Nowlin et al.
6,602,252	B2	8/2003	Mollenauer
6,612,053	B2	9/2003	Liao
6,619,529	B2	9/2003	Green et al.

References Cited

U.S. PATENT DOCUMENTS

D480,808	S	10/2003	Wells et al.
6,644,532	B2	11/2003	Green et al.
6,656,193	B2	12/2003	Grant et al.
6,669,073	B2	12/2003	Milliman et al.
6,681,978	B2	1/2004	Geiste et al.
6,698,643	B2	3/2004	Whitman
6,716,232	B1	4/2004	Vidal et al.
6,722,552	B2	4/2004	Fenton, Jr.
6,731,473	B2	5/2004	Li et al.
6,755,338	B2	6/2004	Hahnen et al.
6,783,524	B2	8/2004	Anderson et al.
6,786,382	B1	9/2004	Hoffman
6,808,262	B2	10/2004	Chapoy et al.
6,817,509	B2	11/2004	Geiste et al.
6,830,174	B2	12/2004	Hillstead et al.
6,835,199	B2	12/2004	McGuckin, Jr. et al.
6,843,403	B2	1/2005	Whitman
RE38,708	E	3/2005	Bolanos et al.
6,877,647	B2	4/2005	Green et al.
6,879,880	B2	4/2005	Nowlin et al.
6,889,116	B2	5/2005	Jinno
6,905,057	B2	6/2005	Swayze et al.
6,945,444	B2	9/2005	Gresham et al.
6,953,138	B1	10/2005	Dworak et al.
6,953,139	B2	10/2005	Milliman et al.
6,959,852	B2	11/2005	Shelton, IV et al.
6,962,594	B1	11/2005	Thevenet
6,964,363	B2	11/2005	Wales et al.
6,978,921	B2	12/2005	Shelton, IV et al.
6,981,628	B2	1/2006	Wales
6,986,451	B1	1/2006	Mastri et al.
6,988,649	B2	1/2006	Shelton, IV et al.
6,991,627	B2	1/2006	Madhani et al.
6,994,714	B2	2/2006	Vargas et al.
7,000,818	B2	2/2006	Shelton, IV et al.
7,000,819	B2	2/2006	Swayze et al.
7,032,799	B2*	4/2006	Viola et al. 227/175.1
7,044,352	B2	5/2006	Shelton, IV et al.
7,044,353	B2	5/2006	Mastri et al.
7,055,730	B2	6/2006	Ehrenfels et al.
7,055,731	B2	6/2006	Shelton, IV et al.
7,059,508	B2	6/2006	Shelton, IV et al.
7,070,083	B2	7/2006	Jankowski
7,083,075	B2	8/2006	Swayze et al.
7,097,089	B2	8/2006	Marczyk
7,111,769	B2	9/2006	Wales et al.
7,114,642	B2	10/2006	Whitman
7,121,446	B2	10/2006	Arad et al.
7,128,253	B2	10/2006	Mastri et al.
7,128,254	B2	10/2006	Shelton, IV et al.
7,140,527	B2	11/2006	Ehrenfels et al.
7,140,528	B2	11/2006	Shelton, IV
7,143,923	B2	12/2006	Shelton, IV et al.
7,143,924	B2	12/2006	Scirica et al.
7,143,925	B2	12/2006	Shelton, IV et al.
7,143,926	B2	12/2006	Shelton, IV et al.
7,147,138	B2	12/2006	Shelton, IV
7,159,750	B2	1/2007	Racenet et al.
7,168,604	B2	1/2007	Milliman et al.
7,172,104	B2	2/2007	Scirica et al.
7,188,758	B2	3/2007	Viola et al.
7,207,471	B2	4/2007	Heinrich et al.
7,213,736	B2	5/2007	Wales et al.
7,225,963	B2	6/2007	Scirica
7,225,964	B2	6/2007	Mastri et al.
7,238,195	B2	7/2007	Viola
7,246,734	B2	7/2007	Shelton, IV
7,258,262	B2	8/2007	Mastri et al.
7,278,562	B2	10/2007	Mastri et al.
7,278,563	B1	10/2007	Green
7,287,682	B1	10/2007	Ezzat et al.
7,293,685	B2	11/2007	Ehrenfels et al.
7,296,722	B2	11/2007	Ivanko
7,296,724	B2	11/2007	Green et al.
7,296,772	B2	11/2007	Wang

7,300,444	B1	11/2007	N
7,303,107	B2	12/2007	Milliman et al.
7,303,108	B2	12/2007	Shelton, IV
7,308,998	B2	12/2007	Mastri et al.
7,326,232	B2	2/2008	Viola et al.
7,328,828	B2	2/2008	Ortiz et al.
7,328,829	B2	2/2008	Arad et al.
7,334,717	B2	2/2008	Rethy et al.
7,354,447	B2	4/2008	Shelton, IV et al.
7,357,287	B2	4/2008	Shelton, IV et al.
7,364,061	B2	4/2008	Swayze et al.
7,367,485	B2	5/2008	Shelton, IV et al.
7,377,928	B2	5/2008	Zubik et al.
7,380,695	B2	6/2008	Doll et al.
7,380,696	B2	6/2008	Shelton, IV et al.
7,396,356	B2	7/2008	Mollenauer
7,398,907	B2	7/2008	Racenet et al.
7,399,310	B2	7/2008	Edoga et al.
7,401,720	B1	7/2008	Durrani
7,401,721	B2	7/2008	Holsten et al.
7,404,508	B2	7/2008	Smith et al.
7,404,509	B2	7/2008	Ortiz et al.
7,407,074	B2	8/2008	Ortiz et al.
7,407,075	B2	8/2008	Holsten et al.
7,407,077	B2	8/2008	Ortiz et al.
7,407,078	B2	8/2008	Shelton, IV et al.
7,416,101	B2	8/2008	Shelton, IV et al.
7,419,080	B2	9/2008	Smith et al.
7,419,081	B2	9/2008	Ehrenfels et al.
7,419,495	B2	9/2008	Menn et al.
7,422,139	B2	9/2008	Shelton, IV et al.
7,424,965	B2	9/2008	Racenet et al.
7,431,189	B2	10/2008	Shelton, IV et al.
7,431,730	B2	10/2008	Viola
7,434,715	B2	10/2008	Shelton, IV et al.
7,434,717	B2	10/2008	Shelton, IV et al.
7,438,208	B2	10/2008	Larson
7,438,209	B1	10/2008	Hess et al.
7,441,684	B2	10/2008	Shelton, IV et al.
7,441,685	B1	10/2008	Boudreaux
7,448,525	B2	11/2008	Shelton, IV et al.
7,451,904	B2	11/2008	Shelton, IV
7,455,208	B2	11/2008	Wales et al
7,455,676	B2	11/2008	Holsten et al.
7,458,494	B2	12/2008	Matsutani et al.
7,461,767	B2	12/2008	Viola et al.
7,462,185	B1	12/2008	Knodel
7,464,846	B2	12/2008	Shelton, IV et al.
7,464,847	B2	12/2008	Viola et al.
7,464,848	B2	12/2008	Green et al.
7,464,849	B2	12/2008	Shelton, IV et al.
7,467,740	B2	12/2008	Shelton, IV et al.
7,472,814	B2	1/2009	Mastri et al.
7,472,815	B2	1/2009	Shelton, IV et al.
7,472,816	B2	1/2009	Holsten et al.
7,473,258	B2	1/2009	Clauson et al.
7,481,347	B2	1/2009	Roy
7,481,348	B2	1/2009	Marczyk
7,481,349	B2	1/2009	Holsten et al.
7,481,824	B2	1/2009	Gillum et al.
7,487,899	B2	2/2009	Shelton, IV et al.
7,490,749	B2	2/2009	Schall et al.
7,494,039	B2	2/2009	Racenet et al.
7,500,979	B2	3/2009	Hueil et al.
7,503,474	B2	3/2009	Hillstead et al.
7,506,790	B2	3/2009	Shelton, IV
7,506,791	B2	3/2009	Omaits et al.
7,510,107	B2	3/2009	Timm et al.
7,513,408	B2	4/2009	Shelton, IV et al.
7,517,356	B2	4/2009	Heinrich
7,537,602	B2	5/2009	Whitman
7,543,729	B2	6/2009	Ivanko
7,543,730	B1	6/2009	Marczyk
7,543,731	B2	6/2009	Green et al.
7,552,854	B2	6/2009	Wixey et al.
7,556,185	B2	7/2009	Viola
7,556,186	B2	7/2009	Milliman
7,559,450	B2	7/2009	Wales et al.
7,559,452	B2	7/2009	Wales et al.

References Cited

U.S. PATENT DOCUMENTS

7,559,453	B2	7/2009	Heinrich et al.	
7,559,937	B2	7/2009	de la Torre et al.	
7,565,993	B2	7/2009	Milliman et al.	
7,568,603	B2	8/2009	Shelton, IV et al.	
7,568,604	B2	8/2009	Ehrenfels et al.	
7,571,845	B2	8/2009	Viola	
7,575,144	B2	8/2009	Ortiz et al.	
7,584,880	B2	9/2009	Racenet et al.	
7,588,174	B2	9/2009	Holsten et al.	
7,588,175	B2	9/2009	Timm et al.	
7,588,176	B2	9/2009	Timm et al.	
7,588,177	B2	9/2009	Racenet	
7,597,229	B2	10/2009	Boudreaux et al.	
7,597,230	B2	10/2009	Racenet et al.	
7,600,663	B2	10/2009	Green	
7,604,150	B2	10/2009	Boudreaux	
7,604,151	B2	10/2009	Hess et al.	
7,607,557	B2	10/2009	Shelton, IV et al.	
7,611,038	B2	11/2009	Racenet et al.	
7,617,961	B2	11/2009	Viola	
7,624,902	B2	12/2009	Marczyk et al.	
7,624,903	B2	12/2009	Green et al.	
7,631,793	B2	12/2009	Rethy et al.	
7,631,794	B2*	12/2009	Rethy et al.	227/175.1
7,635,073	B2	12/2009	Heinrich	
7,635,074	B2	12/2009	Olson et al.	
7,635,373	B2	12/2009	Ortiz	
7,637,409	B2	12/2009	Marczyk	
7,637,410	B2	12/2009	Marczyk	
7,641,091	B2	1/2010	Olson et al.	
7,641,093	B2	1/2010	Doll et al.	
7,641,095	B2	1/2010	Viola	
7,644,848	B2	1/2010	Swayze et al.	
7,648,055	B2	1/2010	Marczyk	
7,651,017	B2	1/2010	Ortiz et al.	
7,654,431	B2	2/2010	Hueil et al.	
7,658,311	B2	2/2010	Boudreaux	
7,658,312	B2	2/2010	Vidal et al.	
7,665,646	B2	2/2010	Prommersberger	
7,665,647	B2	2/2010	Shelton, IV et al.	
7,669,746	B2	3/2010	Shelton, IV	
7,670,334	B2	3/2010	Hueil et al.	
7,673,780	B2	3/2010	Shelton, IV et al.	
7,673,781	B2	3/2010	Swayze et al.	
7,673,782	B2	3/2010	Hess et al.	
7,673,783	B2	3/2010	Morgan et al.	
7,678,121	B1	3/2010	Knodel	
7,681,772	B2	3/2010	Green et al.	
7,682,367	B2	3/2010	Shah et al.	
7,682,368	B1	3/2010	Bombard et al.	
7,690,547	B2	4/2010	Racenet et al.	
7,694,865	B2	4/2010	Scirica	
7,699,205	B2	4/2010	Ivanko	
7,703,653	B2	4/2010	Shah et al.	
7,721,930	B2	5/2010	McKenna et al.	
7,721,931	B2	5/2010	Shelton et al.	
7,721,933	B2	5/2010	Ehrenfels et al.	
7,721,935	B2	5/2010	Racenet et al.	
7,726,537	B2	6/2010	Olson et al.	
7,726,538	B2	6/2010	Holsten et al.	
7,726,539	B2	6/2010	Holsten et al.	
7,731,072	B2	6/2010	Timm et al.	
7,735,703	B2	6/2010	Morgan et al.	
7,740,159	B2	6/2010	Shelton et al.	
7,740,160	B2	6/2010	Viola	
7,743,960	B2	6/2010	Whitman	
7,744,628	B2	6/2010	Viola	
7,753,245	B2	7/2010	Boudreaux et al.	
7,753,248	B2	7/2010	Viola	
7,757,924	B2	7/2010	Gerbi et al.	
7,757,925	B2	7/2010	Viola et al.	
7,762,445	B2	7/2010	Heinrich et al.	
7,766,209	B2	8/2010	Baxter, III et al.	
7,766,210	B2	8/2010	Shelton, IV et al.	
7,766,924	B1	8/2010	Bombard et al.	

7,766,928	B2	8/2010	E
7,770,774	B2	8/2010	Mastri et al.
7,770,775	B2	8/2010	Shelton, IV et al.
7,776,060	B2	8/2010	Mooradian et al
7,780,055	B2	8/2010	Scirica et al.
7,784,662	B2	8/2010	Wales et al.
7,789,283	B2	9/2010	Shah
7,789,889	B2	9/2010	Zubik et al.
7,793,812	B2	9/2010	Moore et al.
7,793,814	B2	9/2010	Racenet et al.
7,794,475	B2	9/2010	Hess et al.
7,798,385	B2	9/2010	Boyden et al.
7,798,386	B2	9/2010	Schall et al.
7,799,039	B2	9/2010	Shelton, IV et al.
7,810,690	B2	10/2010	Bilotti et al.
7,810,691	B2	10/2010	Boyden et al.
7,810,692	B2	10/2010	Hall et al.
7,810,693	B2	10/2010	Broehl et al.
7,815,090	B2	10/2010	Marczyk
7,815,091	B2	10/2010	Marczyk
7,815,092	B2	10/2010	Whitman et al.
7,819,296	B2	10/2010	Hueil et al.
7,819,297	B2	10/2010	Doll et al.
7,819,298	B2	10/2010	Hall et al.
7,819,299	B2	10/2010	Shelton, IV et al.
7,819,896	B2	10/2010	Racenet
7,823,760	B2	11/2010	Zemlok et al.
7,823,761	B2	11/2010	Boyden et al.
7,824,426	B2	11/2010	Racenet et al.
7,828,186	B2	11/2010	Wales
7,828,187	B2	11/2010	Green et al.
7,828,188	B2	11/2010	Jankowski
7,828,189	B2	11/2010	Holsten et al.
7,832,408	B2	11/2010	Shelton, IV et al.
7,832,611	B2	11/2010	Boyden et al.
7,832,612	B2	11/2010	Baxter, III et al.
7,837,079	B2	11/2010	Holsten et al.
7,837,081	B2	11/2010	Holsten et al.
7,841,503	B2	11/2010	Sonnenschein et a
7,845,533	B2	12/2010	Marczyk et al.
7,845,534	B2	12/2010	Viola et al.
7,845,535	B2	12/2010	Scircia
7,845,537	B2	12/2010	Shelton, IV et al.
7,845,538	B2	12/2010	Whitman
7,850,703	B2	12/2010	Bombard et al.
7,857,183	B2	12/2010	Shelton, IV
7,857,184	B2	12/2010	Viola
7,857,185	B2	12/2010	Swayze et al.
7,857,186	B2	12/2010	Baxter, III et al.
7,861,906	B2	1/2011	Doll et
7,861,907	B2	1/2011	Green et al.
7,866,524	B2	1/2011	Krehel
7,866,525	B2	1/2011	Scirica
7,866,526	B2	1/2011	Green et al.
7,866,527	B2	1/2011	Hall et al.
7,866,528	B2	1/2011	Olson et al.
7,870,989	B2	1/2011	Viola et al.
7,886,952	B2	2/2011	Scirica et al.
7,891,532	B2	2/2011	Mastri et al.
7,891,533	B2	2/2011	Green et al.
7,891,534	B2	2/2011	Wenchell et al.
7,896,214	B2	3/2011	Farascioni
7,900,805	B2	3/2011	Shelton, IV et al.
7,901,416	B2	3/2011	Nolan et al.
7,905,380	B2	3/2011	Shelton, IV et al.
7,905,381	B2	3/2011	Baxter, III et al.
7,909,039	B2	3/2011	Hur
7,909,220	B2	3/2011	Viola
7,909,221	B2	3/2011	Viola et al.
7,909,224	B2	3/2011	Prommersberger
7,913,891	B2	3/2011	Doll et al.
7,913,893	B2	3/2011	Mastri et al.
7,914,543	B2	3/2011	Roth et al.
7,918,230	B2	4/2011	Whitman et al.
7,918,276	B2	4/2011	Guignard et al.
7,922,061	B2	4/2011	Shelton, IV et al.
7,922,063	B2	4/2011	Zemlok et al.
7,922,064	B2	4/2011	Boyden et al.
7,926,691	B2	4/2011	Viola et al.

References Cited

U.S. PATENT DOCUMENTS

7,926,692	B2	4/2011	Racenet et al.
7,934,628	B2	5/2011	Wenchell et al.
7,934,630	B2	5/2011	Shelton, Iv et al.
7,934,631	B2	5/2011	Balbierz et al.
7,942,300	B2	5/2011	Rethy et al.
7,942,303	B2	5/2011	Shah
7,950,560	B2	5/2011	Zemlok et al.
7,950,561	B2	5/2011	Aranyi
7,950,562	B2	5/2011	Beardsley et al.
7,954,682	B2	6/2011	Giordano et al.
7,954,683	B1	6/2011	Knodel et al.
7,954,684	B2	6/2011	Boudreaux
7,954,685	B2	6/2011	Viola
7,954,686	B2	6/2011	Baxter, III et al.
7,954,687	B2	6/2011	Zemlok et al.
7,959,051	B2	6/2011	Smith et al.
7,963,431	B2	6/2011	Scirica
7,963,432	B2	6/2011	Knodel et al.
7,963,433	B2	6/2011	Whitman et al.
7,967,178	B2	6/2011	Scirica et al.
7,967,179	B2	6/2011	Olson et al.
7,967,180	B2	6/2011	Scirica
7,975,894	B2	7/2011	Boyden et al.
7,980,443	B2	7/2011	Scheib et al.
7,988,026	B2	8/2011	Knodel et al.
7,988,027	B2	8/2011	Olson et al.
7,988,028	B2	8/2011	Farascioni et al.
7,992,758	B2	8/2011	Whitman et al.
7,997,468	B2	8/2011	Farascioni
7,997,469	B2	8/2011	Olson et al.
8,002,795	B2	8/2011	Beetel
8,006,885	B2	8/2011	Marczyk
8,006,887	B2	8/2011	Marczyk
8,007,505	B2	8/2011	Weller et al.
8,007,513	B2	8/2011	Nalagatla et al.
8,011,550	B2	9/2011	Aranyi et al.
8,011,551	B2	9/2011	Marczyk et al.
8,011,552	B2	9/2011	Ivanko
8,011,553	B2	9/2011	Mastri et al.
8,011,555	B2	9/2011	Tarinelli et al.
8,012,170	B2	9/2011	Whitman et al.
8,015,976	B2	9/2011	Shah
8,016,177	B2	9/2011	Bettuchi et al.
8,016,178	B2	9/2011	Olson et al.
8,020,742	B2	9/2011	Marczyk
8,020,743	B2	9/2011	Shelton, IV
8,028,882	B2	10/2011	Viola
8,028,883	B2	10/2011	Stopek
8,028,884	B2	10/2011	Sniffin et al.
8,033,438	B2	10/2011	Scirica
8,033,440	B2	10/2011	Wenchell et al.
8,033,441	B2	10/2011	Marczyk
8,033,442	B2	10/2011	Racenet et al.
8,034,077	B2	10/2011	Smith et al.
8,038,044	B2	10/2011	Viola
8,038,045	B2	10/2011	Bettuchi et al.
8,052,024	B2	11/2011	Viola et al.
8,056,787	B2	11/2011	Boudreaux et al.
8,056,788	B2	11/2011	Mastri et al.
8,056,791	B2	11/2011	Whitman
8,061,577	B2	11/2011	Racenet et al.
8,066,166	B2	11/2011	Demmy et al.
8,070,033	B2	12/2011	Milliman et al.
8,070,035	B2	12/2011	Holsten et al.
8,074,858	B2	12/2011	Marczyk et al.
8,074,859	B2	12/2011	Kostrzewski
8,074,862	B2	12/2011	Shah
8,083,118	B2	12/2011	Milliman et al.
8,083,119	B2	12/2011	Prommersberger
8,083,120	B2	12/2011	Shelton et al.
8,087,563	B2	1/2012	Milliman et al.
8,091,753	B2	1/2012	Viola
8,091,754	B2	1/2012	Ehrenfels et al.
8,091,756	B2	1/2012	Viola
8,096,459	B2	1/2012	Ortiz et al.

8,096,460	B2	1/2012	Blier et al.	
8,100,309	B2	1/2012	Marezyk	
8,100,310	B2	1/2012	Zemlok	
8,113,406	B2	2/2012	Holsten et al.	
8,113,407	B2	2/2012	Holsten et al.	
8,113,408	B2	2/2012	Wenchell et al.	
8,113,409	B2	2/2012	Cohen et al.	
8,113,410	B2	2/2012	Hall et al.	
8,123,101	B2	2/2012	Racenet et al.	
8,127,975	B2	3/2012	Olson et al.	
8,127,976	B2	3/2012	Scirica et al.	
8,132,703	B2	3/2012	Milliman et al.	
8,132,705	B2	3/2012	Viola et al.	
8,132,706	B2	3/2012	Marczyk et al.	
8,136,713	B2	3/2012	Hathaway et al.	
8,141,762	B2	3/2012	Bedi et al.	
8,152,041	B2	4/2012	Kostrzewski	
8,157,148	B2	4/2012	Scirica	
8,157,151	B2	4/2012	Ingmanson et al.	
8,167,185	B2	5/2012	Shelton, IV et al.	
8,167,186	B2	5/2012	Racenet et al.	
8,172,121	B2	5/2012	Krehel	
8,172,124	B2	5/2012	Shelton, IV et al.	
8,181,837	B2	5/2012	Roy	
8,186,555	B2	5/2012	Shelton, IV et al.	
8,186,558	B2	5/2012	Sapienza	
8,186,560	B2	5/2012	Hess et al.	
8,196,795	B2	6/2012	Moore et al.	
8,196,796	B2	6/2012	Shelton, IV et al.	
8,205,619	B2	6/2012	Shah et al.	
8,205,780	B2	6/2012	Sorrentino et al.	
8,205,781	B2	6/2012	Baxter, III et al.	
8,216,236	B2	7/2012	Heinrich et al.	
8,220,688	B2	7/2012	Laurent et al.	
8,220,690	B2	7/2012	Hess et al.	
8,225,979	B2	7/2012	Farascioni et al.	
8,231,040	B2	7/2012	Zemlok et al.	
8,231,041	B2	7/2012	Marczyk et al.	
8,235,272	B2	8/2012	Nicholas et al.	
8,236,010	B2	8/2012	Ortiz et al.	
8,241,322	B2	8/2012	Whitman et al.	
8,245,897	B2	8/2012	Tzakis et al.	
8,245,898	B2	8/2012	Smith et al.	
8,245,899	B2	8/2012	Swensgard et al.	
8,252,009	B2	8/2012	Weller et al.	
8,267,300	B2	9/2012	Boudreaux	
8,272,554	B2	9/2012	Whitman et al.	
2004/0007608	A1*	1/2004	Ehrenfels et al.	227/176.1
2004/0108357	A1	6/2004	Milliman	
2004/0199180	A1	10/2004	Knodel et al.	
2004/0199181	A1	10/2004	Knodel et al.	
2004/0232201	A1	11/2004	Wenchell	
2004/0243151	A1	12/2004	Demmy	
2004/0267310	A1	12/2004	Racenet	
2005/0103819	A1	5/2005	Racenet	
2005/0119669	A1	6/2005	Demmy	
2005/0159778	A1*	7/2005	Heinrich et al.	606/216
2005/0189397	A1	9/2005	Jankowski	
2005/0216055	A1	9/2005	Scirica et al.	
2005/0222616	A1*	10/2005	Rethy et al.	606/215
2006/0049229	A1	3/2006	Milliman et al.	
2006/0180634	A1	8/2006	Shelton, IV et al.	
2006/0289602	A1	12/2006	Wales et al.	
2007/0027469	A1	2/2007	Smith et al.	
2007/0073341	A1	3/2007	Smith et al.	
2007/0084897	A1	4/2007	Shelton, IV et al.	
2007/0084899	A1	4/2007	Taylor	
2007/0102472	A1	5/2007	Shelton, IV	
2007/0106317	A1	5/2007	Shelton, IV	
2007/0119901	A1	5/2007	Ehrenfels et al.	
2007/0145096	A1	6/2007	Viola et al.	
2007/0170225	A1	7/2007	Shelton, IV et al.	
2007/0175949	A1	8/2007	Shelton, IV et al.	
2007/0175950	A1	8/2007	Shelton, IV et al.	
2007/0175951	A1	8/2007	Shelton, IV et al.	
2007/0175955	A1	8/2007	Shelton, IV et al.	
2007/0179528	A1	8/2007	Soltz et al.	
2007/0194079	A1	8/2007	Hueil et al.	
2007/0194081	A1	8/2007	Hueil et al.	

References Cited

U.S. PATENT DOCUMENTS

2007/0194082	A1	8/2007	Morgan et al.	
2007/0221700	A1	9/2007	Ortiz et al.	
2007/0295780	A1	12/2007	Shelton et al.	
2008/0029570	A1	2/2008	Shelton et al.	
2008/0029573	A1	2/2008	Shelton et al.	
2008/0029574	A1	2/2008	Shelton et al.	
2008/0029575	A1	2/2008	Shelton et al.	
2008/0078800	A1	4/2008	Hess et al.	
2008/0078802	A1	4/2008	Hess et al.	
2008/0078803	A1	4/2008	Shelton et al.	
2008/0078804	A1	4/2008	Shelton et al.	
2008/0078806	A1	4/2008	Omaits et al.	
2008/0078808	A1	4/2008	Hess et al.	
2008/0110961	A1	5/2008	Voegele et al.	
2008/0149685	A1	6/2008	Smith et al.	
2008/0169328	A1	7/2008	Shelton	
2008/0169329	A1	7/2008	Shelton et al.	
2008/0169330	A1	7/2008	Shelton et al.	
2008/0169331	A1	7/2008	Shelton et al.	
2008/0169332	A1	7/2008	Shelton et al.	
2008/0169333	A1	7/2008	Shelton et al.	
2008/0287987	A1	11/2008	Boyden et al.	
2008/0296344	A1	12/2008	Cropper et al.	
2008/0296346	A1	12/2008	Shelton, IV et al.	
2008/0308602	A1	12/2008	Timm et al.	
2008/0308603	A1	12/2008	Shelton, IV et al.	
2009/0001121	A1	1/2009	Hess et al.	
2009/0001124	A1	1/2009	Hess et al.	
2009/0001130	A1	1/2009	Hess et al.	
2009/0005808	A1	1/2009	Hess et al.	
2009/0065549	A1	3/2009	Viola	
2009/0078739	A1	3/2009	Viola	
2009/0090763	A1	4/2009	Zemlok et al.	
2009/0090766	A1	4/2009	Knodel	
2009/0173766	A1*	7/2009	Wenchell	227/178.1
2009/0200355	Al^{*}	8/2009	Baxter et al.	227/176.1
2009/0209946	A1	8/2009	Swayze et al.	
2009/0209990	A1	8/2009	Yates et al.	
2009/0236395	A1	9/2009	Scirica	
2009/0242610	A1	10/2009	Shelton, IV et al.	
2009/0255974	A1	10/2009	Viola	
2009/0272787	A1	11/2009	Scirica	
2009/0277946	A1	11/2009	Marczyk	
2009/0277949	A1	11/2009	Viola et al.	
2009/0283568	A1	11/2009	Racenet et al.	
2009/0306708	A1	12/2009	Shah	
2009/0308907	A1*	12/2009	Nalagatla et al.	227/175.2
2010/0012703	A1	1/2010	Calabrese et al.	
2010/0012704	A1	1/2010	Racenet et al.	
2010/0069942	A1	3/2010	Shelton, IV	
2010/0072251	A1*	3/2010	Baxter et al.	227/175.2
2010/0072254	A1	3/2010	Aranyi et al.	
2010/0076429	A1	3/2010	Heinrich	
2010/0076459	A1	3/2010	Farascioni	
2010/0089970	A1	4/2010	Smith	
2010/0127041	A1	5/2010	Morgan et al.	
2010/0127042	A1	5/2010	Shelton, IV	
2010/0133317	A1	6/2010	Shelton, IV et al.	
2010/0133318	A1	6/2010	Boudreaux	
2010/0147921	A1	6/2010	Olson	
2010/0147922	A1	6/2010	Olson	
2010/0155453	A1	6/2010	Bombard et al.	
2010/0170931	A1	7/2010	Viola	
2010/0193566	A1	8/2010	Scheib et al.	
2010/0224668	A1	9/2010	Fontayne et al.	
2010/0230468	A1	9/2010	Viola	
2010/0237130	A1	9/2010	Scirica	
2010/0243709	A1	9/2010	Hess et al.	
2010/0249802	A1	9/2010	May et al.	
2010/0252611	A1	10/2010	Ezzat et al	
2010/0252612	A1	10/2010	Viola	
2010/0264192	A1	10/2010	Marczyk	
2010/0264193	A1	10/2010	Huang et al.	
2010/0264194	A1	10/2010	Huang et al.	
2010/0282817	A1	11/2010	Ehrenfels et al.	

2010/0294828
$2010 / 1029482$ 2010/0301095 A1 2010/0305552 A1 2010/0308100 A1 2010/0320252 A1 2010/0320254 A1 2011/0006099 A1 2011/0006101 A1 2011/0006103 A1 2011/0011914 A1 2011/0011915 A1 2011/0017801 A1 2011/0024477 A1 2011/0024478 A1 2011/0036887 A1 2011/0036888 A1 2011/0036890 A1 2011/0036891 A1 2011/0036892 A1 2011/0042439 A1 2011/0042441 A1 2011/0062213 A1 2011/0068145 A1 2011/0068148 A1 2011/0084114 A1 2011/0084115 A1 2011/0087276 A1 2011/0089221 A1 2011/0095067 A1 2011/0101067 A1 2011/0101069 A1 2011/0108603 A1 2011/0114702 A1 2011/1012104 2011/0132961 Al 2011/0132963 A1 2011/0132964 A1 2011/0132965 A1 2011/0139851 A1 2011/0144640 A1 2011/0147433 A1 2011/0147434 A1 2011/0155781 A1 2011/0155784 A1 2011/0155786 A1 2011/0155787 A1 2011/0155788 A1 2011/0163146 A1 2011/0163147 A1 2011/0163149 A1 2011/0163150 A1 2011/0168757 A1 2011/0168760 A1 2011/0174862 A1 2011/0174863 A1 2011/0180585 A1 2011/0186614 A1 2011/0192881 A1 2011/0192882 A1 2011/0192883 A1 2011/0198385 A1 2011/0198386 A1 2011/0204119 A1 2011/0204120 A1 2011/0210157 A1 2011/0215132 A1 2011/0215133 A1 2011/0226837 A1 2011/0233258 A1 2011/0233259 A1 2011/0240713 A1 2011/0240714 A1 2011/0253765 A1 2011/0257679 A1

11/2010 Bindra et al.
1/2010 Giordano et al.
12/2010 Shelton, IV et al. 12/2010 Shelton, IV et al. 12/2010 Boudreaux 12/2010 Viola et al. 12/2010 Zemlok et al.
1/2011 Hall et al.
1/2011 Hall et al.
1/2011 Laurent et al.
1/2011 Baxter, III et al.
1/2011 Shelton, IV
1/2011 Zemlok et al.
2/2011 Hall
2/2011 Shelton, IV
2/2011 Zemlok et al.
2/2011 Pribanic et al.
2/2011 Ma
2/2011 Zemlok et al.
2/2011 Marczyk et al.
2/2011 Johnson et al.
2/2011 Shelton, IV et al.
3/2011 Scirica et al.
3/2011 Bedi et al.
3/2011 Hall et al.
4/2011 Marczyk et al.
4/2011 Bedi et al.
4/2011 Bedi et al.
4/2011 Masiakos et al.
4/2011 Ohdaira
5/2011 Johnson et al.
5/2011 Bombard et al.
5/2011 Racenet et al.
5/2011 Farascioni
5/2011 Malinouskas et al
6/2011 Whitman et al.
6/2011 Giordano et al.
6/2011 Weisenburgh, II et al.
6/2011 Moore et al.
6/2011 McCuen
6/2011 Heinrich et al.
6/2011 Shelton, IV et al.
6/2011 Hueil et al.
6/2011 Swensgard et al.
6/2011 Shelton, IV et al.
6/2011 Shelton, IV
6/2011 Baxter, III et al.
6/2011 Hillstead et al.
7/2011 Ortiz et al
7/2011 Laurent et al.
7/2011 Viola
7/2011 Farascioni
7/2011 Viola et al.
$7 / 2011$ Viola et al.
7/2011 Shelton, IV et al.
7/2011 Shelton, IV et al.
7/2011 Czernik et al.
8/2011 Kasvikis
8/2011 Balbierz et al.
8/2011 Hess et al.
8/2011 Whitman et al.
8/2011 Whitman et al.
8/2011 Viola
8/2011 McCuen
8/2011 Crainich
9/2011 Knodel et al.
9/2011 Aranyi et al.
9/2011 Aranyi
9/2011 Baxter, III et al.
9/2011 Boudreaux
9/2011 Olson
10/2011 Scirica et al.
10/2011 Whitman et al.
10/2011 Nicholas et al.
10/2011 Ishitsuki et al.

US 9,289,209 B2

(56)	References Cited		EP	0591946	4/1994
			EP	0592243	4/1994
	U.S. PATENT DOCUMENTS		EP	0593920	4/1994
			EP	0598202	5/1994
	FOREIGN PATENT DOCUMENTS		EP	0598579	5/1994
			EP	0600182	6/1994
DE	2903159	1/1980	EP	0621006	10/1994
DE	3114135	10/1982	EP	0621009	10/1994
DE	4213426	10/1992	EP	0656188	6/1995
DE	4300307	7/1994	EP	0365153	8/1995
EP	0041022	12/1981	EP	0666057	8/1995
EP	O0136950	4/1985	EP	0705571	4/1996
EP	0140552	5/1985	Pr	0760230	3/1997
EP	0156774	10/1985	FR	2542188	9/1984
EP	0216532	4/1987	FR	2660851	10/1991
EP	O0220029	4/1987	FR	2681775	10/1991
EP	0213817	11/1987	GB	1352554	4/1971
EP	0273468	7/1988	GB	1452185	10/1976
EP	0324166	7/1989	GB	1555455	11/1979
EP	0324635	7/1989	GB	2048685	12/1980
EP	0324637	7/1989	GB	2070499	9/1981
EP	0324638	7/1989	GB	2141066	12/1984
EP	O0369324	5/1990	GB	2165559	4/1986
EP	0373762	6/1990	SU	659146	4/1979
EP	0380025	8/1990	SU	728848	5/1980
EP	0399701	11/1990	SU	980703	12/1982
EP	0449394	10/1991	SU	990220	1/1983
EP	0484677	5/1992	WO WO	WO 8302247	7/1983
EP	0489436	6/1992		WO 89/10094	11/1989
EP	0503662	9/1992	WO	WO 9210976	7/1992
EP	0514139	11/1992	$\begin{aligned} & \text { WO } \\ & \text { WO } \end{aligned}$	WO 9308754	$5 / 1993$ $8 / 1993$
EP	0536903	4/1993		WO 9314706	8/1993
EP	0537572	4/1993	OTHER PUBLICATIONS		
EP	0539762	5/1993			
EP	0545029	6/1993	Chinese Office Action dated Jul. 10, 2015, issued in Chinese Appli-		
EP	0552050	7/1993			
EP	0552423	7/1993	cation No. 201210192042.		
EP	0579038	1/1994			
EP	O0589306	3/1994	* cited by examiner		

FIG. 2

FIG. 2B

FIG. 5

FIG. 9C

FIG. 12A
FIG. 12B

FIG. 22

FIG. 25

FIG. 30

FIG. 31

SURGICAL FASTENER APPLYING APPARATUS

This application claims priority from provisional application Ser. No. 61/494,985, filed Jun. 9, 2011, the entire contents of which are incorporated herein by reference.

BACKGROUND

1. Technical Field

The present disclosure relates to a surgical fastener applying apparatus and, more particularly, to a surgical fastener applying apparatus having reusable and disposable components.

2. Discussion of Related Art

Surgical fastener applying apparatus, wherein tissue is first grasped or clamped between opposing jaw structures and then joined by means of surgical fasteners, are well known in the art. In some such apparatus, a knife is provided to cut the tissue which has been joined by the fasteners. The fasteners are typically in the form of surgical staples, although, other surgical fasteners may also be utilized, such as, for example, clips or two part polymeric surgical fasteners.

Surgical fastener applying apparatus typically include two elongated beam members which are used to capture or clamp tissue therebetween. Typically, one of the beam members carries a disposable cartridge assembly which houses a plurality of staples arranged in at least two lateral rows, while the other beam member includes an anvil which defines a surface for forming the staple legs as the staples are driven from the cartridge assembly. Where two part fasteners are used, the beam member which includes the anvil carries a mating part of the two part fastener, e.g. the receiver. Generally, the staple formation process is affected by the interaction between one or more longitudinally moving camming members and a series of individual staple pushers. As the camming members travel longitudinally through the cartridge carrying beam member, the individual pusher members are biased upwardly into a backspan of the staples supported within the cartridge assembly to sequentially eject the staples from the cartridge. A knife may be provided to travel with the camming members between the staple rows to cut the tissue between the rows of formed staples. An example of such an instrument is disclosed in U.S. Pat. No. 7,631,794, which is incorporated herein in its entirety by reference.

Because of the dangers associated with improper sterilization, surgical fastener applying apparatus are typically disposable after use. Although the cartridge assembly may be replaced to perform multiple fastener applying operations on a single patient, the fastener applying apparatus is typically disposable after a surgical procedure has been completed. This requirement of disposability may increase the costs associated with surgical procedures. Although reusable fastener applying apparatus have been developed, such apparatus can be overly complex and prove difficult to sterilize.

A need exists in the art for a fastener applying apparatus which includes reusable components, is not overly complex and is configured to facilitate proper sterilization after use in a surgical procedure.

SUMMARY

The present invention relates to a surgical fastener applying apparatus for applying surgical fasteners to tissue. In one embodiment, the apparatus includes an anvil half-section including a distal anvil portion and a proximal handle portion. A cartridge receiving half-section defines an elongated chan-
nel member having a distal portion dimensioned to releasably receive a single use loading unit and a proximal portion configured to support a firing assembly. A clamping lever is secured to the cartridge receiving half-section and includes a proximal portion and a distal portion and a handle portion supporting an engagement member. A firing assembly is configured to be releasably supported within the proximal portion of the cartridge receiving half-section. The firing assembly includes a stationary housing, a firing lever, a cam bar fixedly secured to the firing lever, and a pivotal locking member including a latch portion. The clamping lever is operably associated with the anvil half-section and the cartridge receiving half-section and is movable from an unclamped position to a clamped position to releasably secure the anvil portion of the anvil half-section in close approximation with the single use loading unit. In the clamped position, the engagement member of the clamping lever releasably engages the latch portion of the locking member to releasably retain the clamping lever in the clamped position.

In one embodiment, the engagement member includes a cylindrical post, although other engagement member configurations are also envisioned. The latch portion, in one embodiment, includes a hook member engageable with the engagement member of the clamping lever. The locking member can include a pair of pivot members which are pivotally supported in openings defined in a proximal end of the stationary housing of the firing assembly. A spring member can be supported on the clamping lever and positioned to engage the cartridge receiving half-section to urge the clamping lever to the unclamped position. A biasing member can be provided to urge the latch portion inwardly towards the stationary housing.

In one embodiment, a finger engagement member is positioned on the locking member wherein the finger engagement member is depressed to release the latch portion from the engagement member of the clamping lever. The finger engagement member can be positioned proximal of the firing lever. In one embodiment, the finger engagement member is positioned on one end of the locking member and the latch portion is positioned on the other end of the locking member.

In one embodiment, the latch portion extends through an opening in the proximal end of the stationary housing and below a bottom surface of the elongate channel member.

In one embodiment, the firing assembly and single use loading unit are disposable and the anvil half-section, cartridge receiving half-section and clamping lever are reusable.

In one embodiment, the elongated channel member has first and second cutouts to receive the pivot members to releasably secure the firing assembly within the proximal portion of the channel member.

The stationary housing can include a U-shaped frame including a bottom wall and a pair of sidewalls, wherein each of the sidewalls has a proximal end defining the openings and the pivot members are dimensioned to extend through the openings at a position to be received in cutouts formed in a proximal end of the cartridge receiving half-section to releasably retain the stationary housing within the proximal portion of the elongated channel member.

The firing assembly can include a guide block axially fixed within the U-shaped frame and a slide block slidably positioned with the U-shaped frame, wherein the firing lever is pivotally secured to the slide block and the cam bar is fixedly secured to the slide block such that the slide block is slidable through the U-shaped frame to advance the cam bar through the distal portion of the elongated channel member. The firing
assembly can further include a knife actuating bar which is configured to engage a knife supported within the single use loading unit.

The cartridge receiving half-section can include a sidewall defining a depression and the clamping lever can include a sidewall defining a protrusion wherein the protrusion is positionable within the depression to retain the clamping lever.

In one embodiment, the clamping lever is releasably secured to the cartridge receiving half-section.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the presently disclosed surgical fastener applying apparatus will now be described herein with reference to the accompanying figures wherein:

FIG. 1 is a side perspective view from the distal end of one embodiment of the presently disclosed surgical fastener applying apparatus in the clamped position;

FIG. 2 is a side perspective view from the proximal end of the surgical fastener applying apparatus shown in FIG. 1 in the clamped position;

FIG. 2A is a side perspective view of the surgical fastener applying apparatus shown in FIG. 1 in the open position;

FIG. 2B is an enlarged view of the indicated area of detail shown in FIG. 2A;

FIG. 3 is a side perspective view with parts separated of the surgical fastener applying apparatus shown in FIG. 1;

FIG. 3A is a side cross-sectional view of the clamp lever of the fastener applying apparatus shown in FIG. 1;

FIG. 4 is a side perspective view of the cartridge receiving half-section of the surgical fastener applying apparatus shown in FIG. 1 with the single use loading unit and the firing assembly supported therein;

FIG. 5 is an enlarged view of the indicated area of detail shown in FIG. 4;

FIG. 6 is a perspective view from above of the cartridge receiving half-section of the surgical fastener applying apparatus with the SULU and the firing assembly supported therein;

FIG. 7 is an enlarged view of the indicated area of detail shown in FIG. 6;

FIG. 8 is a front end perspective view from above of the firing assembly of the surgical fastener applying apparatus shown in FIG. 3;

FIG. 9 is an enlarged view of the indicated area of detail shown in FIG. 8:

FIG. 9 A is a top perspective view of the channel member with the firing assembly releasably secured therein;

FIG. 9 B is an enlarged view of the indicated area of detail shown in FIG. 9A;

FIG. 9C is a top perspective view of a central portion of the channel member;

FIG. 10 is a rear end perspective view from above of the firing assembly shown in FIG. 8;

FIG. 11 is an enlarged view of the indicated area of detail shown in FIG. 10;

FIG. $\mathbf{1 2}$ is a side perspective view of the firing assembly shown in FIG. 10 with parts separated;

FIG. 12A is a bottom perspective view of the cam bar of the firing assembly shown in FIG. 12;

FIG. 12B is a bottom perspective view of the firing lever of the firing assembly shown in FIG. 12;

FIG. 13 is a side perspective view of the SULU of the surgical fastener applying apparatus shown in FIG. 1;

FIG. 14 is an enlarged view of the indicated area of detail shown in FIG. 13;

FIG. 15 is a front perspective view of the SULU shown in FIG. 13;
FIG. 16 is an enlarged view of the indicated area of detail shown in FIG. 15;
FIG. 17 is a side perspective view with parts separated of the SULU shown in FIG. 15;

FIG. 18 is a side cross-sectional view of the surgical fastener applying apparatus shown in FIG. 1 in the open position;
FIG. 19 is an enlarged view of the indicated area of detail shown in FIG. 18;
FIG. 20 is an enlarged view of the indicated area of detail shown in FIG. 18;

FIG. 21 is a perspective view of the proximal end of the surgical fastener applying apparatus shown in FIG. 18 in the open position;

FIG. 22 is an enlarged view of the indicated area of detail shown in FIG. 18;

FIG. 23 is a perspective view from below of the proximal end of the clamping lever of the surgical fastener applying apparatus shown in FIG. 1;
FIG. 24 is a side perspective view of the surgical fastener applying apparatus shown in FIG. $\mathbf{1}$ in the clamped position;

FIG. 25 is a side cross-sectional view of the surgical fastener applying apparatus shown in FIG. 24 in the clamped position;
FIG. 26 is an enlarged view of the indicated area of detail shown in FIG. 25;

FIG. 27 is an enlarged view of the indicated area of detail shown in FIG. 25;
FIG. 28 is a cross-sectional view taken along section lines 28-28 of FIG. 26;

FIG. 29 is a top view of the surgical fastener applying apparatus shown in FIG. 1 as the firing assembly is moved through an actuating stroke to eject fasteners from the fastener applying apparatus;

FIG. 30 is a side cross-sectional view of the surgical fastener applying apparatus shown in FIG. 29 with the firing assembly in the actuated position;

FIG. $\mathbf{3 1}$ is an enlarged view of the indicated area of detail shown in FIG. 30;

FIG. 32 is an enlarged view of the indicated are of detail shown in FIG. 30;
FIG. 33 is a side cross-sectional view of the surgical fastener applying apparatus shown in FIG. 1 after the apparatus has been fired and moved to the open position; and

FIG. 34 is an enlarged view of the indicated area of detail shown in FIG. 33.

DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the presently disclosed surgical fastener applying apparatus in accordance with the present disclosure will now be described in detail with reference to the drawings wherein like reference numerals identify similar or identical structural elements. As used herein, as is traditional, the term "proximal" refers to the end of the apparatus which is closer to the user and the term distal refers to the end of the apparatus which is further away from the user.

FIGS. 1-34 illustrate one embodiment of the presently disclosed surgical fastener applying apparatus designated generally as surgical stapler 10. Referring specifically to FIGS. 1-3, surgical stapler 10 includes an anvil half-section 12, a cartridge receiving (supporting) half-section 14, a clamping lever 16, a single use loading unit or cartridge 18 (hereinafter "SULU") and a firing assembly 20. In one embodiment, anvil half-section 12, cartridge receiving halfsection 14 and clamping lever 16 are constructed to be reus-
able components and, as such, are constructed from a biocompatible material suitable for sterilization and repeated use, e.g., stainless steel. In contrast, SULU 18 and firing assembly 20 are constructed to be disposable and, as such, may be constructed from any suitable biocompatible material, e.g., plastics, metals, combinations thereof, having the requisite strength characteristics. SULU 18 and firing assembly 20 can alternatively be constructed as an integral unit to be loaded as a single unit into the cartridge receiving half-section 18.

Referring to FIGS. 3-7, cartridge receiving half-section 14 defines an elongated channel member 22 which defines a substantially U-shaped channel 24 having a distal portion $24 a$ dimensioned to releasably receive a SULU 18 and a proximal portion $24 b$ dimensioned to releasably receive firing assembly 20. Firing assembly 20 includes a stationary housing 26 (see also FIG. 12) having a proximal end including openings 28 which receive ends of pivot members 29. Pivot members 29 pivotally support a locking member 206 on a proximal end of stationary housing 26 and extend through openings 28 into recesses 30 (FIG. 3) formed in a proximal portion of cartridge receiving half-section $\mathbf{1 4}$ to releasably secure the proximal end of firing assembly $\mathbf{2 0}$ within the proximal portion $\mathbf{2 4} b$ of channel member 22 as will be discussed in further detail below. The distal end of firing assembly 20 defines a triangular cutout $64 d$. Cutout $64 d$ is positioned to receive a protrusion 65 formed on an inner wall of channel member 22 (see FIGS. 9A-9C) to releasably secure the distal end of firing assembly 20 within channel member 22. The structure of firing assembly 20 will also be discussed in further detail below. SULU 18 includes a pair of distal protrusions 32 which are positioned in cutouts $\mathbf{3 4}$ formed at the distal end of channel member 22 to releasably secure SULU 18 within the distal portion $24 a$ of channel member 22. During assembly, firing assembly $\mathbf{2 0}$ must be inserted into proximal portion $\mathbf{2 4} b$ of channel member $\mathbf{2 2}$ before SULU 18 is inserted into distal portion $24 a$ of channel member 22 as will be discussed below. To position SULU 18 in channel member 22, protrusions 32 on SULU 18 are positioned within cutouts $\mathbf{3 4}$ while SULU 18 is positioned above and at an angle to channel member 22. Thereafter, SULU 18 can be rotated downwardly into distal portion $24 a$ of U-shaped channel 24 . This allows for the drive components of firing assembly 20 to properly align with components of SULU 18 and also facilitates engagement of the firing assembly 20 with a knife 40 (FIG. 17) supported within SULU 18. A proximal end of SULU 18 includes an outwardly extending serrated surface 42 (FIG. 7) to facilitate gripping of the proximal end of SULU 18 to allow for removal and/or replacement of SULU 18 from channel member 22. Prior to movement of stapler 10 to the clamped position, as will be discussed below, serrated gripping surface 42 will not fully seat within distal portion $24 a$ of channel member 22.

Referring to FIGS. 8-12, firing assembly 20 includes stationary housing 26, a knife actuating bar 44, a cam bar 46, a guide block 48, a firing lever 50 , a slide block 52 , a pedal 54 and pivotal locking member 206 (FIG. 12). In one embodiment, stationary housing 26 includes a U-shaped frame 60 including a bottom wall 62 and a pair of sidewalls 64 . The distal end of each sidewall 64 defines a proximal step $64 b$, a distal angled portion $64 c$ and the triangular cutout $64 d$. As discussed above, triangular cutout $64 d$ is positioned to receive the protrusion 65 (FIG. 9B) formed on an inner wall of channel member 22. A proximal end of each sidewall 64 includes a pair of transversely extending deformable wall portions 66 (FIG. 11) which are spaced from a proximal end of slide block 52 and define an area between wall portions 66 and slide
block $\mathbf{5 2}$ for pivotally receiving locking member 206 as will be discussed in further detail below.

Guide block 48 includes a body defining three longitudinal slots $70 a-c$ and a pair of outwardly extending protrusions 72. In one embodiment, each protrusion 72 is substantially cylindrical and includes a tapered portion $72 a$ (FIG. 9). Alternately, other protrusion configurations are envisioned. Protrusions 72 are dimensioned to be received in openings 74 (FIG. 12) formed in sidewalls 64 of stationary housing 26 to axially fix guide block 48 within the distal end of stationary housing 26. Protrusions 72 allow for a degree of pivotal movement of guide block 48 within U-shaped frame 60 . As will be discussed in further detail below, guide block 48 is pivotal from a first position (FIG. 19) in locking engagement with notches $\mathbf{4 9}$ and 51 of knife actuating bar $\mathbf{4 4}$ to a second position (FIG. 26) disengaged from notches 49 and 51 of knife actuating bar 44 in response to movement of stapler 10 to the clamped position. A torsion spring is provided about protrusion 72 to urge guide block 48 into locking engagement with notches $\mathbf{4 9}$ and $\mathbf{5 1}$. Each of slots $70 a$ and $70 c$ is dimensioned to slidably receive a respective sidewall 114 of cam bar 46. Similarly, slot $70 b$ is dimensioned to slidably receive knife actuating bar 44.

Slide block 52 includes a hub $\mathbf{8 0}$ which includes a resilient finger $80 a$ configured to be snap-fit into a pivot hole 82 formed in firing lever $\mathbf{5 0}$. Firing lever $\mathbf{5 0}$ is pivotal about hub 80 when the slide block 52 is in a retracted position to facilitate actuation of the firing assembly 20 from either side of stapler 10 . Pedal 54 is reciprocally received within a hole 84 formed in slide block 52. Pedal 54 includes a split body portion $54 a$ which is configured to straddle a proximal end 102 of knife actuating bar 44. In one embodiment, split body portion $54 a$ includes an angled distal surface 86. A pin 88 extends upwardly from pedal 54 through hole 84 in slide block 52. A biasing member 90 is positioned between split body portion $\mathbf{5 4} a$ and slide block 52, about pin $\mathbf{8 8}$ to urge pedal 54 downwardly away from slide block 52 to an extended position. In the retracted position of slide block 52, pedal 54 is received in a cutout 55 formed in a bottom wall $22 a$ of channel member 22 (FIG. 20).
Firing lever 50 includes first and second finger engagement members $\mathbf{5 0} a$ and $\mathbf{5 0}$, either one of which can be selectively engaged to move the firing lever $\mathbf{5 0}$ through a firing stroke from either side of stapler 10. An arcuate recess 94 (FIG. 12B) is formed in a bottom surface of firing lever $\mathbf{5 0}$ which slidably receives pin 88 of pedal 54 to define the range of rotation through which firing lever $\mathbf{5 0}$ can pivot about hub $\mathbf{8 0}$ of slide block 52. As used herein, a firing stroke is defined as movement of firing lever 50 from a fully retracted position (FIG 25) to a fully advanced position (FIG. 30). A stop recess $94 a$ is formed at each end of arcuate recess 94 . Stop recesses $94 a$ are configured and dimensioned to receive the end of pin 88 of pedal 54 to prevent pivotal movement of firing lever 50 about hub $\mathbf{8 0}$ during a firing stroke of surgical stapler $\mathbf{1 0}$. More specifically, when the firing assembly 20 is actuated to advance slide block 52 distally within stationary housing 26 , angled distal surface 86 of pedal 54 engages channel member 22 and is cammed out of cutout 55 (FIG. 27) to urge pin 88 upwardly into a stop recess $94 a$ to prevent pivotal movement of firing lever 50 during movement of firing lever 50 through a firing stroke. As is evident, pin 88 must be positioned beneath a stop recess $\mathbf{9 4} a$ to allow pedal $\mathbf{5 4}$ to lift upwardly from cutout $\mathbf{5 5}$ to allow firing lever $\mathbf{5 0}$ to be moved through the firing stroke. Thus, firing lever 50 must be pivoted to one side or the other of firing assembly 20 before the firing lever 50 can be moved through a firing stroke.

Knife actuating bar 44 includes a proximal end having a stepped portion $\mathbf{1 0 0}$ which includes a proximal first step 102 having a first height and a second step 104 having a second height which is greater than the first height. A distal end of actuating bar 44 includes an upturned hook portion 106 and upper and lower notches 49 and 51. A finger 108 projects upwardly from knife actuating bar 44 between first and second steps 102 and 104. As shown in FIG. 27, finger 108 is slidably received within a recess $\mathbf{1 1 0}$ formed in an underside of slide block 52. When slide block 52 is advanced distally within stationary housing 26 , finger 108 moves within recess 110 such that slide block 52 moves in relation to knife actuating bar 44 until finger 108 engages a wall 112 (FIG. 32) defining a proximal end of recess 110 . When finger 108 engages wall 112, further distal movement of slide block 52 will also effect distal movement of knife actuating bar 44. As will be evident below, this arrangement allows for staples to be ejected from SULU 18 prior to cutting of tissue.

Referring to FIGS. 12 and 12A, cam bar 46 includes a pair of sidewalls 114 and a base wall 116. The proximal end $114 a$ of each sidewall 114 includes a raised wall portion 118. Each raised wall portion 118 is configured to be fixedly received in a slot (not shown) formed in an underside of slide block 52 to fixedly secure the proximal end of cam bar 46 to slide block 52. Alternately, slide block 52 may be molded about the proximal end of knife actuating bar 44 . The distal end of each sidewall 114 includes an angled camming surface $114 b$. Base wall 116 defines a distally extending elongated slot 123 which extends from the distal end of cam bar $\mathbf{4 6}$ along a substantial length of the cam bar 46 and a proximally extending longitudinal slot 121. Slot 121 is positioned to facilitate the passage of pedal 54 through cutout 55 of channel member 22 when slide block 52 is in the retracted position (see FIG. 27).

Sidewalls 114 of cam bar 46 are slidably positioned in slots $70 a$ and $70 c$ of guide block 48 and knife actuating bar 44 is slidably positioned in longitudinal slot $70 b$ of guide block 48. When firing assembly 20 is supported in channel member 22 and firing lever $\mathbf{5 0}$ is pivoted to one side of stationary housing 26 and pushed distally, slide block 52 is moved distally within stationary housing 26. As slide block $\mathbf{5 2}$ begins to move distally, tapered surface 86 of pedal 54 engages a proximal edge of channel member 22 defining cutout 55 to urge pedal 54 upwardly out of cutout 55, through slot 121 of cam bar 46, and onto an inner surface of stationary housing 26 of firing assembly 20 (FIG. 27). As this occurs, pin 88 of pedal 54 moves into a stop recess $94 a$ to prevent further pivotal movement of firing lever $\mathbf{5 0}$. If firing lever $\mathbf{5 0}$ is not pivoted to a position in which pin $\mathbf{8 8}$ is positioned beneath a stop recess $94 a$, pedal 54 will be prevented from moving upwardly out of cutout 55 and firing lever 50 will be prevented from moving through a firing stroke. As firing lever $\mathbf{5 0}$ is moved distally, finger 108 moves within recess 110 such that knife actuating bar 44 remains stationary as cam bar 46 is advanced distally. When finger 108 engages proximal wall 112 defining recess 110 , knife actuating bar 44 is moved distally with slide block 52 and cam bar 46. As will be discussed below, when cam bar 46 and knife actuating bar 44 are moved distally within stationary housing 26 of firing assembly 20 and channel member 22, angled camming surfaces $114 b$ of cam bar 46 are moved through SULU 18 to eject fasteners from SULU 18. Simultaneously, although with a preset delay equal to the length of recess 110 (FIG. 32), knife actuating bar 44 drives a knife blade $\mathbf{4 0}$ through SULU 18 to dissect tissue.
U.S. Pat. No. 7,631,794 ("the '794 patent") discloses a surgical fastener applying apparatus which includes a firing assembly similar to that described above. The ' 794 patent is incorporated herein by reference in its entirety.

FIGS. 13-17 illustrate SULU 18. Referring to FIG. 17, SULU 18 includes a body 120, a plurality of staple pushers 122 (only one is shown), a bottom cover 124, a knife 40 having an angled sharpened leading edge or blade $40 a$, a plurality of staples $\mathbf{1 2 6}$ (only one is shown), and a pivotally mounted safety lockout $\mathbf{1 2 8}$. A proximal end of body $\mathbf{1 2 0}$ includes a flexible finger $120 a$ which projects slightly beyond the outer wall defining body 120 (see also FIG. 5). Finger $120 a$ frictionally engages an inner wall of channel member 22 to retain the proximal end of SULU 18 within channel member 22 when SULU 18 is releasably positioned within channel member 22. As is known in the art, body $\mathbf{1 2 0}$ has a plurality of rows of staple retaining slots 130, e.g., four, six, etc. and a linear slotted knife track 132 centrally disposed in body $\mathbf{1 2 0}$ Surgical stapler 10 can be dimensioned to receive or accommodate SULU's of different staple line lengths including, e.g., $60 \mathrm{~mm}, 80 \mathrm{~mm}$ and 100 mm . Knife 40 includes a downturned hook portion $40 b$ which is positioned to engage upturned hook portion 106 (FIG. 12) of knife actuating bar 44 when SULU 18 is positioned within channel member 22.
In the illustrated embodiment, body $\mathbf{1 2 0}$ includes two staggered rows of slots $\mathbf{1 3 0}$ formed on either side of linear slotted knife track 132. The staggered rows of slots $\mathbf{1 3 0}$ extend beyond the distal end of knife track $\mathbf{1 3 2}$ to facilitate staple formation beyond the distal end of the stroke of the knife blade 40.

Staple pushers 122 may be configured to extend into one or more slots 130. In one embodiment, a single pusher is associated with each slot 130. Alternately, as illustrated in FIG. 17, each pusher 122 can be configured to extend into two adjacent slots $\mathbf{1 3 0}$ and is positioned beneath respective staples 126 which are retained in slots $\mathbf{1 3 0}$. As is known in the art, each pusher $\mathbf{1 2 2}$ includes a lower cam surface $\mathbf{1 2 2} a$ which is positioned to engage one of cam surfaces $114 b$ (FIG. 12) on the distal end of cam bar 46 such that movement of cam bar 46 through SULU 18 sequentially lifts each respective pusher 122 within its respective slot or slots 130 to eject staples from slots 130.
Bottom cover 124 partially encloses a channel 125 (FIG. 18) formed within the cartridge body 120 . A longitudinal ridge 134 is formed on an upper surface of bottom cover 124 and provides a bearing surface for a knife supporting member 136 which is secured to a bottom edge of knife $\mathbf{4 0}$. Knife 40 may be secured to supporting member 136 via pins, welding or other known fastening techniques. During a firing stroke, knife $\mathbf{4 0}$ is guided along knife track $\mathbf{1 3 2}$ as the firing lever 50 is advanced through channel member 22. A pair of slots 138 are defined between the sides of ridge 134 and an outer wall of cartridge body $\mathbf{1 2 0}$. Longitudinal ridge 134 is positioned within body $\mathbf{1 2 0}$ and dimensioned to be slidably received in elongated slot 120 (FIG. 12A) of cam bar $\mathbf{4 6}$ such that cam bar 46 is slidably movable through cartridge body $\mathbf{1 2 0}$ about longitudinal ridge $\mathbf{1 3 4}$ to eject staples 126 from SULU 18 .

Safety lockout 128 is pivotally disposed on an upper proximal end of body $\mathbf{1 2 0}$ and is pivotal about a pivot member $\mathbf{1 5 0}$ from a locked orientation (FIG. 26) to unlocked orientation (FIG. 34). Pivot member 150 is received in openings 154 in body 120. A biasing member, e.g., spring 152, is positioned between knife supporting member 136 and safety lockout 128 to urge safety lockout $\mathbf{1 2 8}$ towards the unlocked orientation. Safety lockout $\mathbf{1 2 8}$ includes a proximal hook $\mathbf{1 5 6}$ which is positioned to receive an engagement member 158 formed on the knife $\mathbf{4 0}$ to retain the safety lockout 128 in the locked orientation when the knife 40 is in the retracted position (FIG. 19). When the knife 40 is moved towards the advanced position during a firing stroke, engagement member 158 is moved away from proximal hook $\mathbf{1 5 6}$ to allow safety lockout $\mathbf{1 2 8}$ to
pivot towards the unlocked position in response to the urging of spring 152. It is noted that safety lockout $\mathbf{1 2 8}$ is prevented from pivoting to the unlocked position when the anvil halfsection 12 and cartridge receiving half-section 14 are in the clamped position because the top surface $128 a$ of safety lockout 128 engages an inner surface of anvil half-section 12 to prevent pivoting of safety lockout $\mathbf{1 2 8}$. Safety lockout 128 defines a slot 160 dimensioned to slidably receive the knife 40. In the retracted position of the knife 40, the leading edge $40 a$ of knife $\mathbf{4 0}$ is confined within slot $\mathbf{1 6 0}$ safety lockout 128 to prevent accidental engagement and injury to medical personnel with leading edge $\mathbf{4 0} a$ of knife 40 .

Referring again to FIGS. 2-3, anvil half-section 12 includes a proximal handle portion $12 a$ and a distal anvil portion $12 b$. Anvil portion $\mathbf{1 2} b$ includes a staple deforming portion 198 which, as known in the art, includes a plurality of staple deforming recesses and faces a top surface of SULU 18 when SULU 18 is positioned in the channel member 22. As is also known in the art, the staple deforming portion 198 includes a central longitudinal slot (not shown) for receiving the knife 40 as the knife 40 is moved through the SULU 18. The staple deforming portion 198 can be formed integrally with anvil half-section 12, or in the alternative, secured to anvil halfsection 12 by a fastening process such as welding. A pair of locating fingers 170 (FIG. 3) are positioned adjacent the proximal end of the staple deforming portion 198 of anvil portion $\mathbf{1 2} b$. Locating fingers $\mathbf{1 7 0}$ are received in grooves in SULU 18 to properly align SULU 18 with staple determining portion 198 when the apparatus is in a clamped position.

A central portion of anvil half-section 12 includes a pair of cylindrical lateral support members 172. During assembly of anvil half-section 12 and cartridge receiving half-section 14 , lateral support members $\mathbf{1 7 2}$ are supported in U-shaped recesses $\mathbf{1 7 4}$ defined in a central portion 173 of cartridge receiving half-section 14 (FIG. 28). A distal wall of central portion 173 defines a tissue stop (FIG. 3). Lateral support members 172 are also positioned to be received in cutouts 176 formed on spaced flange portions 178 of clamping lever 16 when the clamping lever 16 is moved to the clamped position. Proximal handle portion $12 a$ is ergonomically formed and includes a thumb-engaging abutment 180 and a gripping portion 182. A proximal end of handle portion $12 a$ includes a downwardly extending finger 184 which includes a pair of opposed teardrop shaped protrusions 186 which will be discussed in further detail below. Alternately, protrusions 186 may assume a variety of configurations.

Cartridge receiving half-section 14 includes spaced centrally disposed U-shaped recesses 174 positioned to support lateral support members $\mathbf{1 7 2}$ of anvil half-section 12. The proximal end of cartridge receiving half-section 14 includes a pair of vertical support members 188. Each vertical support member 188 includes an elongated vertical slot $188 a$ having a rounded bottom surface. Vertical slots $188 a$ are dimensioned to receive protrusions 186 formed on finger 184 of anvil half-section 12 (FIG. 21) when the anvil half-section 12 is supported on the cartridge receiving half-section 14 during assembly. By positioning protrusion 186 within the vertical slots $188 a$, anvil half-section 12 can be pivoted in a scissorlike manner with respect to the cartridge receiving half-section 14 between open and closed positions. In one embodiment, protrusions 186 have a teardrop profile. At least one sidewall of cartridge receiving half-section 14 includes a depression 189 (see FIG. 3) which will be discussed in further detail below.

Clamping lever 16 also includes a handle portion 190 including a grip $190 a$ and a thumb engaging abutment 192.As discussed above, a pair of spaced flange portions 178 are
supported on the distal end of clamping lever 16. Each flange portion $\mathbf{1 7 8}$ defines a cutout $\mathbf{1 7 6}$ dimensioned to receive a respective lateral support member 172 of anvil half-section 12 when stapler 10 is moved towards clamped position (FIG. 2B). The distal end of clamping lever 16 also defines a pair of openings 194 which are dimensioned to receive a pivot member 187. Pivot member 187 is dimensioned to extend through openings 195 in cartridge receiving half-section 14 and openings 194 in clamp lever 16 to pivotally secure clamp lever 16 to cartridge receiving half-section 14 .

As shown in FIG. 3A, an inner wall of clamping lever 16 includes a protrusion 201. Protrusion 201 is positioned within depression 189 (FIG. 2A) formed in the sidewall of cartridge receiving half-section 14 to releasably retain clamp lever 16 from moving counterclockwise (as viewed in the orientation of FIG. 3) to an angled position for cleaning and/or where it can be disengaged from cartridge receiving half-section 14 as explained below.

In order to load firing assembly 20 into proximal portion $24 b$ of channel member 22 , the stationary housing 26 of firing assembly 20 is slid into the channel member 22 through the proximal end of channel member 22 until pivot members 29 are received in recesses $\mathbf{3 0}$ formed in the proximal end of channel member 22. After firing assembly 20 is loaded, the SULU 18 can be loaded into distal portion $24 a$ in the manner discussed above.
Referring to FIGS. 2 and 2B, after SULU 18 and firing assembly 20 are loaded into channel member 22, anvil section 12 can be assembled to cartridge receiving half-section 14 . To attach anvil half-section 12 to cartridge receiving half-section 14, protrusions 186 of fingers 184 are positioned in vertical slots $188 a$ of vertical support member 188 of cartridge receiving half-section 14 . Thereafter, anvil half-section 12 is rotated towards cartridge receiving half-section 14 to position lateral supports members 172 in U-shaped recesses 174.

In order to position surgical stapler 10 in the clamped position, clamping lever 16 is rotated in a counter-clockwise direction from the position shown in FIG. 2A. As clamping lever $\mathbf{1 6}$ is rotated, lateral support members $\mathbf{1 7 2}$ are received in cutouts 176 (FIG. 2) of flange portions 178 and cammed towards cartridge receiving half-section 14 . As shown in FIG. 3, a spring member 200 is secured to an inner surface of clamping lever 16, such as by welding, at a position to engage cartridge receiving portion 14 to urge clamping lever 16 to the non-clamped position shown in FIG. 2A. In the clamped position shown in FIG. 1, the staple deforming portion 198 is positioned in close approximation with the top surface of SULU 18.

Referring to FIGS. 3, 3A and 12, as discussed above, a pivotal locking member 206 is pivotally supported on the proximal end of stationary housing 26 of firing assembly 20. Pivotal locking member 206 includes pivot members 29 which extend through openings 28 defined in stationary housing 26. A finger engagement member 212 is positioned on one end of locking member 206 and a latch portion 210 is positioned on the other end of locking member 206. Latch portion 206 includes a hook member $210 a$. A biasing member 214 is positioned about a pivot member 29 to urge latch portion 210 inwardly towards stationary housing 26 of firing assembly 20. When locking member 206 is secured on firing assembly 26, latch portion 210 extends downwardly through an opening 216 in a proximal end of stationary housing 26 to a position below a bottom surface of channel member 22 (FIG. 20). As discussed above, the ends of pivot members 29 are received in cutouts 30 formed in the proximal end of cartridge receiving half-section 14 to releasably secure firing assembly 20 within proximal channel portion $24 b$ of channel member 22 (FIG.
21). Cutouts 30 are partially defined by downturned fingers 220 to retain firing assembly 26 within channel member 22 (FIG. 3).

Referring to FIG. 3A, a proximal end of clamping lever 16 includes an engagement member, e.g., cylindrical transverse post 218 , which is positioned to be engaged by hook member $210 a$ of latch portion 210 when the clamp lever $\mathbf{1 6}$ is moved to the clamped position (FIG. 27). Although a post is illustrated, other engagement member configurations are envisioned. As can be seen by viewing FIG. 27, as clamping lever 16 is moved towards the clamped position, an angled face 222 of latch portion 210 engages post 218. This engagement causes locking member 206 to pivot about pivot members 29 such that hook member $210 a$ of latch portion 210 passes by and then snaps into engagement with post $\mathbf{2 1 8}$. To release latch portion 210 from post 218, engagement member 212 of locking member 206 is depressed to pivot latch portion 210 out of engagement with post 218. When this occurs, spring member 200 urges clamping lever $\mathbf{1 6}$ to the unclamped position.

Referring to FIGS. 3, 12, 19 and 26, as discussed above, guide block 48 is pivotally supported in stationary housing 26 of firing assembly 20 . Guide block 48 includes a distally extending nose portion 220 (FIGS. 12 and 26) which rests beneath SULU 18 when SULU 18 is supported in channel member 22. The internal surface of guide block 48 includes locking surfaces 222 (FIG. 19) which are received in notches 49 and 51 of knife actuating bar 44 when the stapler 10 is in an unclamped position. When the SULU 18 is positioned in the channel member 22, prior to moving clamp lever 16 to the clamped position, SULU 18 is positioned atop nose portion 220 and is not fully seated in the channel member 22, as discussed above. When the stapler 10 is moved to the clamped position, locating fingers 170 (FIG. 3) engage a top surface of body $\mathbf{1 2 0}$ of SULU 18 to fully seat SULU 18 in channel member 22. As discussed above, locating fingers $\mathbf{1 7 0}$ are received in grooves in SULU 18 to properly position SULU 18 in relation to anvil portion $12 b$. As SULU 18 is fully seated in channel member 22, SULU 18 presses downwardly on nose portion 220 of guide block 48 to pivot guide block 48 about protrusions 72. When guide block 48 pivots, locking surfaces $\mathbf{2 2 2}$ move from notches $\mathbf{4 9}$ and $\mathbf{5 1}$ to unlock knife actuating bar $\mathbf{4 4}$ (FIG. 26). This configuration prevents movement of the knife actuating bar 44 in relation to guide block 48 prior to clamping to ensure that the knife actuating bar 44 and SULU knife 40 remain properly positioned for operational engagement prior to use.

Referring to FIGS. 24-28, when stapler 10 is in the clamped, unfired position, slide block 52 of firing assembly 20 is in the retracted position at the proximal end of channel member 22 and stationary housing 26. See FIG. 27. In this position, pedal 54 is positioned in cutout 55 of channel member $\mathbf{2 2}$ and pin 88 of pedal 54 is positioned in arcuate recess 94 of firing lever $\mathbf{5 0}$ beneath stop recesses $\mathbf{9 4} a$. As such, firing lever $\mathbf{5 0}$ can be pivoted to facilitate actuation of stapler $\mathbf{1 0}$ from either side of the stapler 10. In addition, in this position of slide block 52, finger 108 of knife actuating bar 44 is positioned adjacent the distal wall of recess 110 of slide block 52. Latch portion 210 of locking member 206 is also engaged with post 218 to retain clamping lever 16 in the clamped position.

Referring to FIG. 26, when slide block 52 is in the retracted position, knife 40 and cam surfaces $114 b$ of cam bar 46 are positioned in the proximal end of SULU 18 and, proximal hook $\mathbf{1 5 6}$ of safety lockout $\mathbf{1 2 8}$ is positioned in engagement with engagement member 158 of knife $\mathbf{4 0}$ to retain safety lockout 128 in the locked orientation. In addition, down-
turned hook portion $\mathbf{4 0} b$ of knife $\mathbf{4 0}$ is engaged with upturned hook portion 106 of knife actuating bar $\mathbf{4 4}$ to connect firing assembly 20 to knife 40 of SULU 18.
Referring to FIGS. 29-32, when the firing lever 50 is advanced distally in the direction indicated by arrow "A" in FIG. 29, slide block 52 is moved distally within stationary housing 26 of firing assembly 20 to effect corresponding movement of cam bar 46 and delayed movement of knife actuating bar 44. As discussed above, the delayed movement of the knife actuating bar 44 is equal to the length of recess 110 of slide block 52 and results from movement of finger 108 of knife actuating bar $\mathbf{4 4}$ within recess 110 of slide block 52. Movement of knife actuating bar 44 with slide block 52 begins when finger 108 abuts the proximal wall 112 of recess 110. As cam bar 46 is moved distally through stationary housing 26 of firing assembly 20 , cam surfaces $114 b$ on sidewalls 114 of cam bar $\mathbf{4 6}$ are advanced through SULU 18 to sequentially engage pushers $\mathbf{1 2 2}$ to eject staples $\mathbf{1 2 6}$ from slots $\mathbf{1 3 0}$ of body $\mathbf{1 2 0}$. Concurrently, since the distal end of knife actuating bar $\mathbf{4 4}$ is engaged with knife $\mathbf{4 0}$, knife $\mathbf{4 0}$, after the preset delay, is advanced through SULU 18 to incise tissue between the staple lines.

As shown in phantom in FIG. 32, when slide block 52 moves distally within stationary housing $\mathbf{2 6}$, pedal 54 rides up over channel member 22 and moves along inner surface of stationary housing 26 of firing assembly 20 . When this occurs, pin 88 of pedal $\mathbf{5 4}$ moves into a stop recess $\mathbf{9 4} a$ to prevent further pivotal movement of firing lever 50.

Referring to FIGS. 31 and 32, when knife 40 is moved distally within SULU 18, engagement member 158 of knife 40 is disengaged with proximal hook 156 of safety lockout 128.

Referring to FIGS. 33 and 34, when the firing lever 50 is returned to its proximal-most position to retract cam bar 46 and knife 40, and the locking member 206 is depressed to disengage latch portion 210 from post 218, spring 200 urges clamping lever 16 to its unclamped position to allow stapler $\mathbf{1 0}$ to move to the open position. In the open position, anvil half-section 12 is spaced from cartridge receiving half-section 14 and spring 152 (FIG. 17) pivots safety lockout 128 in the direction indicated by arrow B in FIG. 34 about pivot member 150 to its unlocked position such that safety lockout $\mathbf{1 2 8}$ projects upwardly from SULU 18. In the unlocked position, safety lockout $\mathbf{1 2 8}$ prevents movement of the stapler $\mathbf{1 0}$ back to the clamped position. In order to reuse stapler 10, used SULU 18 must be replaced with a new SULU 18.

During a surgical procedure, SULU $\mathbf{1 8}$ can be replaced multiple times to facilitate multiple uses of stapler $\mathbf{1 0}$ on a single patient. If an integrated unit is provided, the SULU and firing assembly can be replaced multiple times. Since each SULU 18 is provided with a fresh knife 40 , tearing of tissue is minimized. After the surgical procedure, the used SULU(S) 18 and the firing assembly 20 can be removed from the channel member 22 and disposed of in an appropriate manner. The anvil half-section 12, cartridge receiving half-section 14 and clamping lever 16 can now be sterilized, such as by autoclaving, and reused with a new SULU 18 and firing assembly 20 in the manner discussed above. Because the locking member 206 forms part of the firing assembly 20 and is disposable, fewer areas remain on the reusable components for tissue and fluids to become trapped. As such, the reusable components of the apparatus can be more easily sterilized. Note for cleaning/sterilization, the clamping lever 16 can be rotated clockwise from the position of FIG. 2A so the protrusion 201 is out of engagement with the depression $\mathbf{1 8 9}$ of cartridge receiving half-section and the clamping lever 16 moved to a greater angle with respect to cartridge receiving
half-section 14, e.g., about 90° or even an obtuse angle. This facilitates cleaning/sterilization. In some embodiments, once rotated out of depression 189, the clamping lever 16 can be separated from the cartridge receiving half-section 14.

It will be understood that various modifications may be made to the embodiments of the surgical fastener applying apparatus disclosed herein. Therefore, the above description should not be construed as limiting, but merely as exemplifications of embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the present disclosure.

What is claimed is:

1. A surgical fastener applying apparatus comprising:
an anvil half-section including a distal anvil portion and a proximal handle portion;
a cartridge receiving half-section defining an elongated channel member, the elongated channel member having a distal portion dimensioned to releasably receive a single use loading unit and a proximal portion configured to support a firing assembly,
a clamping lever secured to the cartridge receiving halfsection, the clamping lever having a proximal portion and a distal portion and including a handle portion supporting an engagement member; and
a firing assembly configured to be releasably supported within the proximal portion of the cartridge receiving half-section and including a stationary housing releasably received within the proximal portion of the cartridge receiving half section, a firing lever, a cam bar fixedly secured to the firing lever, and a pivotal locking member including a latch portion, the pivotal locking member being pivotally supported on a proximal end of the stationary housing;
the clamping lever being operably associated with the anvil half-section and the cartridge receiving half-section and being movable from an unclamped position to a clamped position to releasably secure the anvil portion of the anvil half-section in close approximation with the single use loading unit, wherein in the clamped position, the engagement member of the clamping lever releasably engages the latch portion of the locking member to releasably retain the clamping lever in the clamped position.
2. The surgical fastener applying apparatus according to claim 1, wherein the engagement member includes a cylindrical post.
3. The surgical fastener applying apparatus according to claim 1, wherein the locking member includes a pair of pivot members which are pivotally supported in openings defined in a proximal end of the stationary housing of the firing assembly.
4. The surgical fastener applying apparatus according to claim 2, wherein the latch portion includes a hook member engageable with the engagement member of the clamping lever.
5. The surgical fastener applying apparatus according to claim 1, further comprising a finger engagement member positioned on the locking member, wherein the finger engagement member is depressed to release the latch portion from the engagement member of the clamping lever.
6. The surgical fastener applying apparatus according to claim 5 , wherein the finger engagement member is positioned proximal of the firing lever.
7. The surgical fastener applying apparatus according to claim 5, wherein the finger engagement member is positioned , receiving half-section, the clamping lever mov able to move the protrusion out of engagement within the depression to enable detachment of the clamping lever from the cartridge receiving half-section.
