
(12) STANDARD PATENT (11) Application No. AU 2012271775 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Techniques for adapting an interpretive run time application to multiple clients

(51) International Patent Classification(s)
G06F 15/16 (2006.01) G06F 9/44 (2006.0 1)
G06F 3/048 (2006.01)

(21) Application No: 2012271775 (22) Date of Filing: 2012.06.12

(87) WIPO No: WO12/174022

(30) Priority Data

(31) Number (32) Date (33) Country
13/159,139 2011.06.13 US

(43) Publication Date: 2012.12.20
(44) Accepted Journal Date: 2016.10.13

(71) Applicant(s)
Microsoft Technology Licensing, LLC

(72) Inventor(s)
Rudolph, Christopher;Hammond, Michael;Anderson, Robert;Nissen, Erik;Nannenga,
John;lngalls, Andrew

(74) Agent / Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000

(56) Related Art
US 2008/0307043 Al
US 2008/0040484 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2012/174022 A3
20 December 2012 (20.12.2012) W I P 0 I P C T

(51) International Patent Classification: Way, Redmond, Washington 98052-6399 (US). NISSEN,
G06F 15/16 (2006.01) G06F 3/048 (2013.01) Erik; c/o Microsoft Corporation, LCA - International Pat
G06F 9/44 (2006.01) ents, One Microsoft Way, Redmond, Washington 98052

(21) International Application Number: 6399 (US). NANNENGA, John; c/o Microsoft Corpora

PCT/US2012/042104 tion, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). INGALLS, An

(22) International Filing Date: drew; c/o Microsoft Corporation, LCA - International Pat
12 June 2012 (12.06.2012) ents, One Microsoft Way, Redmond, Washington 98052

(25) Filing Language: English 6399 (US).

(81) Designated States (unless otherwise indicated, for every
(26) Publication Language: English kind of national protection available): AE, AG, AL, AM,

(30) Priority Data: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
13/159,139 13 June 2011 (13.06.2011) US CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,

DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT, HN,
(71) Applicant (for all designated States except US): MI- HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,

CROSOFT CORPORATION [US/US]; One Microsoft KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
Way, Redmond, Washington 98052-6399 (US). MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,

(72) Inventors: RUDOLPH, Christopher; c/o Microsoft Cor- OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,

poration, LCA - International Patents, One Microsoft Way, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

Redmond, Washington 98052-6399 (US). HAMMOND, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Michael; c/o Microsoft Corporation, LCA - International (84) Designated States (unless otherwise indicated, for every
Patents, One Microsoft Way, Redmond, Washington kind of regional protection available): ARIPO (BW, GH,
98052-6399 (US). ANDERSON, Robert; c/o Microsoft GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
Corporation, LCA - International Patents, One Microsoft UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

[Continued on next page]

(54) Title: TECHNIQUES FOR ADAPTING AN INTERPRETIVE RUN TIME APPLICATION TO MULTIPLE CLIENTS

(57) Abstract: Techniques to adapt an interpretive runtime engine to multiple
DESKTOP ARCHITECTURE clients are described. An apparatus may comprise a logic device arranged to

114 execute a web client. The web client may comprise, among other elements, a
N client adapter operative to detect a user event for a client user interface, send

I L changes to user event properties associated with the user event to a server ap
plication, receive a graphical user interface (GUI) independent object and up

-------- dated user event properties from the server application, and update a rendered
image in the client user interface using the GUI independent object and up
dated user event properties received from the server application. Other em

FIG. 1A bodiments are described and claimed.

2-TIER ARCHITECTURE

ClnCo p

I APPLICATION

-1 L --- - - -- - -

FIG. 1B

W O 2 0 1 2 /1 7 4 0 2 2 A 3 ||lll ll|||l ll|||lllllllllll1||||||||||||||||||||||||||||| 1||||||||||||||||||||||||||
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK' - as to the applicant's entitlement to claim the priority of
EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, t e au
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, he earlier application (Rule 4.17(iii
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Published:
GW, ML, MR, NE, SN, TD, TG). - with international search report (Art. 21(3))

Declarations under Rule 4.17: (88) Date of publication of the international search report:
as to applicant's entitlement to apply for and be granted 4 April 2013
a patent (Rule 4.17(ii))

BACKGROUND

[0001] A client-server architecture is a distributed application structure that partitions

computing tasks or workloads for an application program between two basic entities,

referred to as servers and clients. A server is a provider of resources or services. A client

5 is a requester of resources or services. A server is a physical or logical device that is

running one or more server programs which share their resources with clients. A client is

a physical or logical device that typically does not share any of its resources, but requests

content or service functions from a server. Clients and servers often communicate over a

computer network on separate hardware. However, in some cases both client and server

10 may reside in the same system. Clients therefore initiate communication sessions with

servers which await incoming requests.

[0002] One form of client-server architecture is a multi-tier architecture, often referred to

as n-tier architecture. A n-tier architecture is a client-server architecture in which certain

aspects of an application program are separated into multiple tiers. For example, an

15 application that uses middleware to service data requests between a user and a database

employs a multi-tier architecture. An n-tier application architecture provides a model for

developers to create a flexible and reusable application. By breaking up an application

into multiple tiers, developers only have to modify or add a specific tier (or layer), thereby

avoiding the need to rewrite an entire application.

20 [0003] A n-tier architecture provides many advantages when developing and modifying an

application program. However, there are difficulties in implementing a n-tier architecture

for a web-based environment where there are a large number of clients. Each client may

utilize different web technologies, including different web browsers, web services, and

web applications. Further, web technologies are designed to work with many different

25 types of underlying hardware and software architectures, including a variety of devices

having different input/output (1/0) components, form factors, power requirements,

processing capabilities, communication capabilities, memory resources, and so forth. As

such, it may be difficult to implement one or more tiers across these many heterogeneous

devices and architectures. Furthermore, web versions of an application program may not

30 be compatible with non-web versions of an application program, thereby creating a need

for separate software architectures for each. It is with respect to these and other

disadvantages that the present improvements are needed.

[0003a] It is desired to address or ameliorate one or more disadvantages or limitations

associated with the prior art, or to at least provide a useful alternative.

1

SUMMARY

[0004] This Summary is provided to introduce a selection of concepts in a simplified form

that are further described below in the Detailed Description. This Summary is not

intended to identify key features or essential features of the claimed subject matter, nor is

5 it intended as an aid in determining the scope of the claimed subject matter.

[0004a] In one embodiment, the present invention provides a computer-implemented

method, comprising: receiving a control directive representing a user event in a client user

interface; determining whether user event properties associated with the user event are

changed; sending, from a web client, in a message, changed user event properties to a

10 server application executing on a server, comprising forwarding, by a user interface

manager operating on the server, the changed user event properties in the message to a

script interpreter for processing; the script interpreter communicating with a file manager

having access to a database for performing the execution of any application rules resulting

from the changed user event properties in the message: upon execution of the appropriate

15 application logic, an interpretive runtime engine producing a graphical user interface

(GUI) independent object having updated user event properties; sending, by the user

interface manager. the GUI independent object along with any updated user event

properties to the client; wherein the user interface manager, the script interpreter. the file

manager and the interpretive runtime are implemented on the server; receiving the

20 graphical user interface (GUI) independent object from the server application at the client;

and updating, by a client adapter, via a client user interface manager and a rendering

engine of the client, a rendered image in the client user interface based on the GUI

independent object and updated user event properties received from the server application;

wherein the updated user event properties comprise a property/value collection having one

25 or more tuples, with each tuple comprising an identifier for a user interface element, a

property for the user interface element, and a value for the property.

[0004b] In a further embodiment, the present invention provides an apparatus,

comprising: a logic device; and a web client operable on the logic device, the web client

comprising a client adapter operative to detect a user event for a client user interface, send

30 changes to user event properties associated with the user event to a server application,

receive a graphical user interface (GUI) independent object and updated user event

properties from the server application, and update a rendered image in the client user

interface using the GUI independent object and updated user event properties received

from the server application, the client adapter comprising a user interface manager to

2

control the client user interface, and a rendering engine to update the rendered image

based on the GUI independent object and updated user event properties received from the

server application; the GUI independent object having updated user event properties, the

updated user event properties comprising a property/value collection comprising one or

5 more tuples each comprising an identifier for a user interface element, a property for the

user interface element, and a value for the property.

[0005] It is to be understood that both the foregoing general description and the

following detailed description are explanatory only and are not restrictive of aspects as

claimed.

10 BRIEF DESCRIPTION OF THE DRAWINGS

[0005a] Preferred embodiments of the present invention are hereinafter described, by way

of example only, with reference to the accompanying drawings, in which:

[0006] FIG. 1A illustrates a conventional desktop application architecture.

[0007] FIG. 1B illustrates a conventional 2-tier application architecture.

15 [0008] FIG. 1C illustrates a conventional 3-tier application architecture.

[0009] FIG. 2 illustrates a block diagram of an enhanced n-tier client-server architecture

having multiple clients and client adapters in accordance with one embodiment.

[0010] FIG. 3 illustrates a block diagram of an enhanced n-tier client-server architecture

having a single client and client adapter in accordance with one embodiment.

20 [0011] FIG. 4 illustrates a block diagram of an enhanced n-tier client-server architecture

having a graphical user interface (GUI) independent object for a client and client adapter

in accordance with one embodiment.

[0012] FIG. 5 illustrates a first logic flow of an enhanced n-tier client-server architecture

in accordance with one embodiment.

25 [0013] FIG. 6A illustrates a logic diagram of a GUI independent object in accordance

with one embodiment.

[0014] FIG. 6B illustrates a logic diagram of a specific GUI independent object in

accordance with one embodiment.

[0015] FIG. 7 illustrates a second logic flow of an enhanced n-tier client-server

30 architecture in accordance with one embodiment.

[0016] FIG. 8 illustrates an embodiment of a computing architecture suitable for an

enhanced n-tier client-server architecture in accordance with one embodiment.

[0017] FIG. 9 illustrates an embodiment of a communications architecture suitable for

an enhanced n-tier client-server architecture in accordance with one embodiment.

3

DETAILED DESCRIPTION

[0018] Various embodiments are generally directed to a client-server architecture suitable

for executing different types of application programs, such as commercial line-of-business

application programs, for example. Some embodiments are particularly directed to a n-tier

5 client-server architecture having multiple tiers (or layers) of an application program,

including at least one presentation tier. In one embodiment, for example, a 3-tier client

server architecture may include a presentation tier implemented using techniques designed

to separate and enhance graphical user interface (GUI) rendering of user events when

adapting an interpretive runtime engine application to operate with many different types of

10 clients.

[0019] In one embodiment, for example, an apparatus may comprise a logic device

arranged to execute a web client. The web client may comprise, among other elements, a

client adapter operative to detect a user event for a client user interface, send changed user

event properties associated with the user event to a server application, receive a graphical

15 user interface (GUI) independent object and updated user event properties from the server

application, and update a rendered image in the client user interface using the GUI

independent object and updated user event properties received from the server application.

Other embodiments are described and claimed.

[0020] Various embodiments are generally directed to a client-server architecture suitable

20 for executing different types of commercial line-of-business application programs. Some

embodiments are particularly directed to an enhanced n-tier client-server architecture,

where n is a variable representing any positive integer. The enhanced n-tier architecture

may comprise multiple tiers (or layers) of an application program, including at least one

presentation tier. In one embodiment, for example, the enhanced n-tier architecture may

25 be implemented as a 3-tier architecture comprising a presentation tier, an application

processing tier, and a data management tier. The presentation tier generally implements

user interface logic, such as handling input/output operations. The application processing

tier generally implements application or business logic, such as processing data according

to a set of application rules. The data management tier generally implements data storage

30 and access, such as defining data schemas, storing data, processing data queries, and so

forth.

[0021] The enhanced n-tier client-server architecture may include a presentation tier

implemented using techniques designed to facilitate the separation and optimization of

GUI rendering and user events in an application using an interpretive runtime engine. It

3a

WO 2012/174022 PCT/US2012/042104

allows adapting an interpretive runtime engine application from a 2-tier client-server based

architecture to a hosted 3-tier environment while reducing changes to the interpretive

runtime engine application.

[0022] FIGS. 1A, 1B and 1C illustrate three conventional architectures for application

5 development by way of background to highlight advantages for various embodiments of

the enhanced n-tier client-server architecture. FIG. 1A illustrates a conventional desktop

architecture. FIG. lB illustrates a conventional 2-tier architecture. FIG. IC illustrates a

conventional 3-tier (or n-tier) architecture.

[0023] FIG. 1A is an example of a desktop architecture 100 in which all parts (or

10 application layers) of an application program 112 are implemented on a client computer

110 (e.g., a desktop computer). The application program 112 may comprise various

application layers implementing, for example, user interface (UI) logic, business logic, and

database access logic. The application program 112 may store and access application data

from a database 114, which is also implemented on the client computer 110.

15 [0024] FIG. 1B is an example of a 2-tier architecture 120 in which a database 114 is now

remote from the client computer 110. In the 2-tier architecture 120, the application

program 112 and its constituent application layers still exist on the client computer 110.

However, the database 114 has been moved from the client computer 110 to a database

server 116. The application program 112 running in the client computer 110 sends

20 requests for data via database application program interfaces (APIs) to the database server

116 that is communicatively coupled with the database 114. The requested data is then

returned to the application program 112 executing on the client computer 110.

[0025] FIG. IC is an example of a 3-tier architecture 130. In the 3-tier architecture 130,

the application program 112 may be separated into distributed application programs 112,

25 124 executing on respective client computer 110 and a server 122. The application

program 112 may implement an application layer having UI logic. The application

program 124 may implement an application layer having business and database access

logic. The application program 112 running in the client computer 110 sends data to the

server 122 that is executing the application program 124. The application program 124

30 may then execute business logic and send requests for data to the database server 116 that

is communicatively coupled with database 114. The requested data and the results of the

executed business logic are then returned to the application program 112 and rendered in

the client computer 110. It should be noted that the database server 116 may be co-located

with the server 122 or be a part of the server 122. In other words, the hardware

4

WO 2012/174022 PCT/US2012/042104

architecture may be such that a single server 122 functions as both an application and

database server. A distinguishing factor between a 2-tier and a 3-tier (or n-tier)

architecture is that some or many of the application layers are moved out of the client

computer 110 and distributed among one or more other servers 116, 122.

5 [0026] A n-tier architecture, such as the 3-tier architecture 130, may provide many

advantages relative to a 2-tier architecture 120 when developing and modifying an

application program. For instance, a single tier may be modified or added without causing

a complete re-write of the entire application program. However, there are difficulties in

implementing a n-tier architecture for a web-based environment where there are a large

10 number of clients. Each client may utilize different web technologies, including different

web browsers, web services, and web applications. Further, web technologies are

designed to work with many different types of underlying hardware and software

architectures, including a variety of devices having different input/output (I/O)

components, form factors, power requirements, processing capabilities, communication

15 capabilities, memory resources, and so forth. As such, it may be difficult to implement a

given application layer, such as a presentation layer, uniformly across these many

heterogeneous devices and architectures without extensive customization of the

presentation layer to fit the unique configuration of each client. Furthermore, web

versions of an application program may not be compatible with non-web versions of an

20 application program, thereby creating a need for separate software architectures for each.

[0027] In various embodiments, an enhanced n-tier architecture provides a framework that

enables migration of a 2-tier client-server application architecture to a 3-tier application

architecture that utilizes a thin client for a presentation layer of an application program. In

one embodiment, for example, each client device may implement a thin client in the form

25 of a web client. A web client typically refers to a thin client application implemented

using web technologies, such as a web browser operating in a client computer, for

example. It may also refer to plug-ins and helper applications that enhance the browser to

support custom services from the site or server. Any references herein to a web client may

also refer to the functionality of a web browser.

30 [0028] FIG. 2 illustrates a client-server system 200. In one embodiment, the client-server

system 200 may comprise an enhanced n-tier client-server system. The enhanced n-tier

client-server system may separate an application program in multiple tiers, including a

presentation tier. The presentation tier may be implemented using techniques designed to

facilitate the separation and optimization of GUI rendering and user events in the

5

WO 2012/174022 PCT/US2012/042104

application program using an interpretive runtime engine. It allows adapting an

interpretive runtime engine application from a 2-tier client-server based architecture to a

hosted 3-tier environment while reducing changes needed for the interpretive runtime

engine application.

5 [0029] As previously described with reference to FIG. 1A, many applications follow a 2

tier application architecture in which the application is organized into two interrelated

components - the database server and the client application. The database server may host

system and company data, along with extended business logic that allows it to process

some of the heavier operations that would be extremely time consuming to perform at the

10 client. Meanwhile, the client application may perform the functions of delivering the UI,

providing data entry validation, and rendering reports, among other functions.

[0030] In the illustrated embodiment shown in FIG. 2, the client-server system 200 may

comprise a server 202 and multiple clients 204, 206. When implemented on different

hardware platforms, the server 202 and the clients 204, 206 may communicate with each

15 other via a network 250. When implemented on a same hardware platform, the server 202

and the clients 204, 206 may communicate with each other via suitable bus technologies

and architectures. Although FIG. 2 illustrates only a single server 202 and two clients 204,

206 for sake of clarity, it may be appreciated that the client-server system 200 may

implement any number of servers and clients as desired for a given implementation. The

20 embodiments are not limited in this context.

[0031] In one embodiment, the server 202 may comprise an electronic device

implementing a server application 210. The server application 210 may comprise any type

of server application, such as a commercial line-of-business application. Examples of

commercial line-of-business applications may include without limitation an accounting

25 program, an enterprise resource planning (ERP) application, a customer relationship

management (CRM) application, a supply chain management (SCM) application, and so

forth. These commercial line-of-business applications are sometimes referred to as

"middle-tier" applications as they are typically executed by servers or server arrays in

commercial enterprise networks, rather than client devices such as a desktop computer. A

30 specific example may include Microsoft@ Dynamics GP, made by Microsoft Corporation,

Redmond, Washington. Microsoft Dynamics GP is a commercial accounting software

application. Another specific example of a commercial line-of-business application may

comprise a Microsoft Dynamics@ AX made by Microsoft Corporation, Redmond,

6

WO 2012/174022 PCT/US2012/042104

Washington. Microsoft Dynamics AX is a commercial ERP software application.

However, the embodiments are not limited to these examples.

[0032] When the server 202 is executing code for the server application 210, the server

202 forms an interpretive runtime engine 212. The interpretive runtime engine 212

5 implements multiple application layers for the server application 210, referred to in the

client-server system 200 as application logic 214, database logic 216, and server

presentation logic 218. The server application 210 may be controlled and operated via

control directives received from the clients 204, 206 in the form of signals or messages

over the network 250.

10 [0033] In one embodiment, the clients 204, 206 may each comprise an electronic device

implementing respective web clients 230, 240. The web clients 230, 240 may each

comprise, for example, instances of a web browser executing on the respective clients 204,

206. The web browsers may also include plug-ins, web applications and helper

applications designed to enhance the web browsers to support custom services from the

15 server 202. Any references herein to web clients 230, 240 may also refer to functionality

of a web browser.

[0034] The clients 204, 206 may comprise respective client adapters 232, 242. Each of

the client adapters 232, 242 may be configured for use with a given client 204, 206. In

this manner, the server application 210 and the interpretive runtime engine 212 do not

20 need to be modified when accessed by different clients using different web technologies.

[0035] The client adapters 232, 242 may comprise respective client presentation logic 238,

248. The client presentation logic 238, 248 may be designed to present user interface

elements or views on an output device for the clients 204, 206, such as a digital display,

for example. The client presentation logic 238, 248 may be designed to interoperate with

25 the application logic 214, the database logic 216, and the server presentation logic 218 of

the server application 210 executing on the server 202, in accordance with the distributed

n-tier architecture implemented for the server application 210.

[0036] The client adapters 232, 242, and respective client presentation logic 238, 248,

may interoperate with the server presentation logic 218 to allow the server application 210

30 to be accessed via different clients 204, 206. Each client 204, 206 may implement

different versions of the server presentation logic 218 as the respective client presentation

logic 238, 248 to fit a particular configuration for the clients 204, 206. This may be

accomplished without having to re-write the server presentation logic 218, and more

importantly, the business logic 214 and the database logic 216. Further, the server

7

WO 2012/174022 PCT/US2012/042104

presentation logic 218 and the client presentation logic 238, 248 may interact in a manner

that reduces communication traffic and overhead for the network 250, thereby increasing

speed and performance while reducing latency associated with communication delays.

[0037] The server application 210 may communicate with the client adapters 232, 242, or

5 separate versions of each, separately or simultaneously. A scenario for simultaneous

operation may include when a user requires assistance, and an administrator desires to

view a second version of a user's web client view.

[0038] In various embodiments, the server presentation logic 218 and the client

presentation logic 238, 248 may interact in an efficient manner utilizing a graphical user

10 interface (GUI) independent object 260. The GUI independent object 260 allows for GUI

elements, such as GUI screens (e.g., Microsoft Windows@ Forms), to move freely

between desktop environments and web environments. The GUI independent object 260

allows the server application 210 to run as a service in the background, awaiting user

events that may be received either via a traditional OS form or a web client form, and still

15 be able to execute script events regardless of the type of form through which it was

submitted.

[0039] The GUI independent object 260 may contain, among other types of information,

user events and any user event properties that may influence the GUI dependent rendering

by the client adapters 232, 242 in addition to user event properties that may influence

20 application logic events. The GUI independent object 260 is generated and sent from the

interpretive runtime engine 212 to a the client adapters 232, 242, which is subsequently

rendered in a client user interface via the respective client presentation logic 238, 248.

[0040] FIG. 3 illustrates a specific implementation of a n-tier client-server system 300.

The client-server system 300 may comprise a server 302 and a client 304. The server 302

25 may be representative of, for example, the server 202 described with reference to FIG. 2.

The client 304 may be representative of, for example, one or both of the clients 204, 206

described with reference to FIG. 2.

[0041] In the illustrated embodiment shown in the client-server system 300, the server 302

may implement a server application 310. In one embodiment, for example, the server

30 application 310 may be coded using a Microsoft Dexterity@ programming language,

among other suitable types of programming languages. When implemented as a Microsoft

Dexterity application, the server application 310 may be generally divided into two

distinct elements. The first element is an interpretive runtime engine 312 that addresses

the technology aspects of the application environment such as communicating with an

8

WO 2012/174022 PCT/US2012/042104

operating system (OS) and establishing and managing a connection to the database 320 via

a file manager 316. The second element is an application dictionary 313 that hosts the

application logic 315, such as the application rules, business rules, forms, reports,

resources, metadata, and the application code that enables responses to user commands

5 and input. Examples of application code may include sanScript code, a Microsoft Visual

Studio@ addin, Microsoft Visual Basic@ Application (VBA), Microsoft Dexterity

Continuum, and so forth. This architecture isolates the application logic 315 from UI style

changes and platform advances, such as upgrades to a platform OS, for example.

[0042] The sanScript code is used to control how an application operates. The sanScript

10 code is typically written in small segments, or scripts, that are attached to objects in the

application dictionary 313, such as fields, menus, screens and forms. Scripts are run as the

user interacts with that particular object in the application. For example, a script applied

to a push button will run when the user clicks the button.

[0043] As shown, the client 304 may comprise a web client 330. The web client 330 may

15 be representative of, for example, one or both of the web clients 230, 240. The web client

330 may deliver a set of components and services oriented toward the user interface and

user interaction, including user input and lightweight user interface controls for use with

the server application 310. To achieve a smooth migration to a 3-tier architecture,

however, numerous technology challenges posed by the introduction of the web client

20 architecture need to be overcome to enable an efficient web client interface.

[0044] A goal of the embodiments described herein is to reduce modifications needed for

existing code and GUI metadata. To solve some of the aforementioned challenges,

various embodiments are directed toward techniques for decoupling a user interface

manager 318 and an OS rendering engine 322 from the interpretive runtime engine 312.

25 The user interface manager 318 is system software that controls the placement and

appearance of various user interface elements, such as a GUI screen, within a given GUI

system. The OS rendering engine 322 is system software for displaying content. The

interpretive runtime engine 312 is an executed version of the server application 310.

[0045] The use of forms (or screens) is a core component of any Microsoft Dexterity

30 application. The forms are a mechanism by which a user will interact with the server

application 310. When the server application 310 is implemented as a Microsoft Dexterity

application, for example, a Microsoft Dexterity screen typically includes sanScript code

associated with the controls for that screen. The sanScript code executes in response to

9

WO 2012/174022 PCT/US2012/042104

user events given the intended function of the screen and the controls (e.g., save a

transaction, post a batch) under the direction of the script interpreter 314.

[0046] In non-web versions of the server application 310, the UI is administered by the

user interface manager 318, which in turn communicates with the OS rendering engine

5 322 to display the actual Microsoft Dexterity screen on the display screen with the control

elements previously laid out by a developer.

[0047] However, in order to facilitate the transition to the web client 3-tier architecture of

the client-server system 300, the user interface manager 318 and the OS rendering engine

322 may be decoupled from the functions of the interpretive runtime engine 312. This

10 allows the web client 332 to implement client versions of a user interface manager 336 and

a rendering engine 338 on the client 304. This further allows the interpretive runtime

engine 312, which is executing on the server 302, to produce a GUI independent object

360 for use by the web client 332. With a GUI independent object 360, a classic client can

continue to serve up a typical GUI screen (e.g., a Microsoft Win32@ screen), while also

15 allowing the web client 330 of the client 304 to serve up a web-based representation of

that same screen, without having to change any of the underlying application logic 315 of

the server application 310.

[0048] Decoupling the user interface manager 318 and the OS rendering engine 322 from

the interpretive runtime engine 312 allows for screens (forms) to move freely between

20 non-web (e.g., desktop or Win32) environments and web environments. With the user

interface manager 318 and the OS rendering engine 322 decoupled, the server application

310 can run as a service in the background, awaiting user events that may be received

either via a traditional Win32 form or a web client form, and still be able to execute script

events regardless of the type of form through which it was submitted.

25 [0049] To facilitate this decoupling, the GUI dependent and GUI independent processing

layers of the server application 310 are first separated. Instead of direct communication

between these two layers, rendering and event metadata are exposed using the GUI

independent object 360. The GUI independent object 360 may contain any user event

properties that may influence the GUI dependent rendering by the client adapter 332, in

30 addition to user event properties that may influence application logic events. The GUI

independent object 360 is then sent to a (GUI dependent) client adapter 332 which is

rendered in a client user interface screen on a display for the client 304. Examples of

some client adapters 332 may include, but are not necessarily limited to, Microsoft

Silverlight@, HTML, Win32 GDI, .Net Forms, among others.

10

WO 2012/174022 PCT/US2012/042104

[0050] FIG. 4 illustrates a specific implementation of a n-tier client-server system 400.

The client-server system 400 may comprise a server 402 and a client 404. The server 402

may be representative of, for example, the servers 202, 302 described with reference to

FIGS. 2, 3. The client 404 may be representative of, for example, one or all of the clients

5 204, 206, 304 described with reference to FIGS. 2, 3.

[0051] On the server 402, there may be a server application 410 including an interpretive

runtime engine 412 that may be responsible for executing one or more application layers

or coupled with other components that run one or more application layers. The

interpretive runtime engine 412 may further comprise a script interpreter 414, a file

10 manager 416, and a user interface manager 418. The script interpreter 414 may be in

communication with the file manager 416 and server user interface manager 418. The file

manager 416 may also be in communication with a database 420.

[0052] On the client 404 there is a web client 430 executing a client adapter 432. The

client adapter 432 may include a user interface manager 436 and a rendering engine 438

15 for displaying content in a client user interface, such as a client user interface, in

accordance with the client presentation logic 238, 248 shown in FIG. 2.

[0053] FIG. 4 may represent a 3-tier application architecture in that certain application

layers may be distributed between the server 402 and client 404. For instance, the client

presentation logic 238 and/or 248 may reside on the client 404, while the application logic

20 214 and the database logic 216 may be distributed on the server 402, as shown in FIG. 2.

The illustrated architecture of FIG.4 has decoupled the functionality of the user interface

manager 436 and rendering engine 438 from the interpretive runtime engine 412 on the

server 402 and placed it with the client adapter 432 on the client 404.

[0054] In one embodiment, the interpretive runtime engine 412 may include a script

25 interpreter 414. The script interpreter 414 may be generally arranged to execute scripted

code in response to user events such as, but not limited to, saving a transaction or posting a

batch. Examples of scripted code may include pre-scripts, change scripts, and post-scripts,

among other types of scripts.

[0055] In one embodiment, the interpretive runtime engine 412 may include a file

30 manager 416. The file manager 416 may be generally arranged to perform file

management operations on files stored in a database 420. Examples of file management

operations may include create file, open file, copy file, move file, delete file, among

others.

11

WO 2012/174022 PCT/US2012/042104

[0056] In one embodiment, the interpretive runtime engine 412 may include a user

interface manager 436. The user interface manager 436 may be generally arranged to

control the placement and appearance of various user interface elements, such as screen

elements, within a user interface implementing a given GUI system.

5 [0057] In operation, a user may interact with a client user interface via the web client 430.

The web client 430 may comprise a web browser having user interface code for rendering

web-based content. The web client 430 may be implemented using various web

technologies, such as HTML, XHTML and XML, among others. Examples of a web

client 430 may include without limitation Internet Explorer@ made by Microsoft

10 Corporation, Redmond, Washington, among other types of web browser software.

[0058] According to an embodiment, in operation a user may interact with a client user

interface via a web client 430 and may enter user events that may be received and

processed by the client adapter 432. Examples of user events may include without

limitation moving a pointer to a field, hovering over a field, selecting a field, a mouse

15 click on a button, filling in a text field, and similar operations. A user event may be

defined using a set of user event properties. In one embodiment, only changes to user

event properties need to be sent from the web client 430 to the server application 410,

rather than a complete set of user event properties. This differential technique may

conserve communication bandwidth and reduce latency.

20 [0059] A user event property may be any attribute that can be assigned to user interface

elements, such as fields, screens or graphical objects, displayed in a user interface layout.

The user event property describes attributes of a presentation style or presentation format

for corresponding user interface elements. The user event property may include, among

other types of information, a user interface element identifier (ID), a property (e.g., border,

25 font, font size, font color, background, background color, style, right alignment, center

alignment, right alignment, single space, double space, and so forth), and a property value

(e.g., false, true, 0, 1, etc.). For example, a GUI screen might have an identifier "Window

001" with a Resizeable property set to False, which means that the GUI screen cannot be

resized by the user at runtime. These are only a few examples, and any user interface

30 elements and user interface properties may be implemented as desired for a given

implementation. The embodiments are not limited in this context.

[0060] The web client 430 may send a set of changed user event properties 451 in a

message 450 to the server application 410. The user interface manager 418 operating on

the server 402 forwards the changed user event properties 451 in the message 450 to the

12

WO 2012/174022 PCT/US2012/042104

script interpreter 414 for processing. The server application 410 may ensure that

application inputs and application states are proper before executing any application logic

for the server application 410. The script interpreter 414 may then communicate with the

file manager 416 which has access to database 420 if needed to the execution of any

5 application rules resulting from the changed user event properties 451 in the message 450

received from the client 404. Upon execution of the appropriate application logic, the

interpretive runtime engine 412 may produce a GUI independent object 452. The GUI

independent object 452 may include, among other information, updated user event

properties 454. User interface manager 418 implemented by the server 402 may send the

10 GUI independent object 452 along with any updated user event properties 454 back to the

client 404. The client adapter 432 via client user interface manager 436 and rendering

engine 438 may then update the previously rendered image using the GUI independent

object 452 along with the updated user event properties 454 generated by and received

from the server application 410.

15 [0061] Operations for the above-described embodiments may be further described with

reference to one or more logic flows. It may be appreciated that the representative logic

flows do not necessarily have to be executed in the order presented, or in any particular

order, unless otherwise indicated. Moreover, various activities described with respect to

the logic flows can be executed in serial or parallel fashion. The logic flows may be

20 implemented using one or more hardware elements and/or software elements of the

described embodiments or alternative elements as desired for a given set of design and

performance constraints. For example, the logic flows may be implemented as logic (e.g.,

computer program instructions) for execution by a logic device (e.g., a general-purpose or

specific-purpose computer).

25 [0062] FIG. 5 illustrates an embodiment of a logic flow 500. The logic flow 500 may

illustrate operations performed in accordance with one or more embodiments. For

instance, the logic flow 500 may illustrate operations performed by the web client 430

and/or server application 410.

[0063] In the logic flow 500, a user interacts with a web client executing in a client side

30 user interface at block 502. For instance, the web client 430 may receive user input in the

form of one or more control directives received from an input device that affects one or

more user interface elements of a user interface as presented by the rendering engine 438.

The user input may interact with the user interface element causing a user event. For

13

WO 2012/174022 PCT/US2012/042104

instance, a user may select a field on a form presented in a GUI screen, and modify a value

for the field.

[0064] In the logic flow 500, a client adapter executing therein may interpret a control

directive representing the user events in a manner compatible with a server application

5 executing on the server at block 504. For instance, the client adapter 432 executed by the

web client 430 may interpret user events in a similar manner as the server application 410.

User events may include one or more user interactions with the user interface running on

the web client 430 such as, but not limited to, clicking a button, filling in a text field, and

so forth.

10 [0065] In the logic flow 500, the interpreting operation at block 504 examines the newly

input user event properties to determine if the user event properties have changed at

diamond 506 to an extent needed that the server application should be notified. For

instance, the client adapter 432 may examine any user inputs and corresponding changes

to properties of affected user interface elements to determine if the user event properties

15 have changed above some threshold amount. For instance, hovering above a field to bring

it in focus might be insufficient to trigger any changes in user event properties, while

selecting a field would be sufficient to notify the server application 410.

[0066] In the logic flow 500, in those cases where notification is required, the client

adapter may send any pending changed user event properties to the server application at

20 block 508. For instance, the client adapter 432 may send changed user event properties

451 in the message 450 to the server application 410 via the network 250. In some

embodiments, the client adapter 432 may send multiple sets of changed user event

properties 451 for multiple user events in the message 450 to the server application 410

executing on the server 402. This "batch" sending can be useful in many ways, including

25 assisting the server application 410 in user event timing. For instance, the script

interpreter 414 may time execution of various scripts (e.g., pre-scripts, change scripts,

post-scripts, etc.) to ensure an accurate sequence of updates to the server application 410.

The batch sending can also reduce communication overhead by sending fewer messages

450 across the network 250. Other advantages exist as well, and the embodiments are not

30 limited in this context.

[0067] In the logic flow 500, a runtime engine executing on the server may ensure proper

inputs/states for the server application at block 510 before business logic events may be

executed at block 512. For instance, the interpretive runtime engine 412 executing on the

14

WO 2012/174022 PCT/US2012/042104

server 402 may ensure proper application inputs and application states for the server

application 410 before executing any application or business logic.

[0068] In the logic flow 500, updated user event properties resulting from the execution of

the business logic along with a GUI independent object may be transferred back to the

5 client adapter at block 514. For instance, updated user event properties 454 resulting from

the execution of the application or business logic along with the GUI independent object

452 may be sent from the server application 410 to the web client 430 for transfer back to

the client adapter 432.

[0069] In the logic flow 500, the client adapter may then update the previously rendered

10 image in the client user interface at block 516 using the updated user event properties and

GUI independent object. For instance, the client adapter 432 receive the GUI independent

object 452, and the rendering engine 438 may update the previously rendered image in the

client user interface using the updated user event properties 454 and the GUI independent

object 452.

15 [0070] FIG. 6A illustrates an embodiment of how a GUI independent object 452 may be

created for a client adapter 432 using data from the server application 410. As previously

described, the client adapter 432 may receive a GUI independent object 452 having

updated user event properties 454. The updated user event properties 454 may comprise,

among other information, GUI independent object metadata 602. In one embodiment, the

20 GUI independent object metadata 602 may comprise fixed or static metadata. The

updated user event properties 454 may further comprise a property/value collection 604.

The fixed/static GUI independent object metadata 602 may be combined with the GUI

independent property/value collection 604 to yield a GUI independent object 606 that can

be rendered in the web client 430 by the client adapter 432.

25 [0071] FIG. 6B illustrates an embodiment of how a specific GUI independent object 452

may be created using the constructs set out in FIG. 6A. The updated user event properties

454 may comprise, among other information, object metadata 612 and a property/value

collection 614.

[0072] The updated user event properties 454 may comprise object metadata 612 having

30 one or more user interface elements. In this example, the object metadata 612 includes

three user interface elements in the form of fields, labeled Field A, Field B and Field C.

Each of Fields A, B, and C are shown generically as a text box with a border around

default font text comprised of the phrases 'Field A', 'Field B', and 'Field C' respectively.

15

WO 2012/174022 PCT/US2012/042104

[0073] The updated user event properties 454 may further comprise a property/value

collection 614. In one embodiment, the property/value collection 614 may be

implemented in a data structure, such as a table having one or more tuples (or rows), with

each tuple comprising attributes (or columns) including an identifier for a user interface

5 element, a property for the user interface element, and a value for the property. The table

of identifiers, properties and values may correspond to the fields of the object metadata

612.

[0074] When combined together the result may be a GUI independent object 616. As

shown in the GUI independent object 616, Field A is unchanged from the generic

10 metadata version because none of its properties or values was changed in the

property/value collection 614. Field B is shown without its border because the property

'border' was set to the value 'False' in the property/value collection 614. The text in Field

C is shown in italics because the property 'italic' was set to the value 'True' in the

property/value collection 614. The object 616 can now be rendered on the client 404 in

15 the web client 430 by the rendering engine 438 of the client adapter 432.

[0075] FIG. 7 illustrates an embodiment of a logic flow 700. The logic flow 700 may

illustrate operations performed in accordance with one or more embodiments. For

instance, the logic flow 700 may illustrate operations performed by the web client 430

and/or the server application 410 for purposes of recovering a client adapter 432 that has

20 been destroyed.

[0076] Another benefit of the embodiments described herein is that a rendered image in a

given client 404 may be recovered if a client adapter 432 is destroyed. If a client adapter

432 is destroyed, the rendered image comprised of various GUI dependent objects 452 is

also destroyed. However, the server application 410 may continue to hold state in the

25 form of the GUI independent objects 452. As shown in Fig. 7, a user may interact with the

web client 430 executing in a client side user interface to create a new instance of a client

adapter 432 at block 702. The new instance of the client adapter 432 may then reconnect

to the server application 410 at block 704. Upon reconnection, the server application 410

may still maintain the last known state for all GUI independent objects 452. At block 706

30 the last known state for all GUI independent objects 452 is transferred back to, and

received by, the client 404. The last known state for all GUI independent objects 452 may

then be synchronized with the web client 430 of the client 404 at block 708. The result is

that a current state for the client adapter 432 may be effectively recovered using

information stored by the server application 410.

16

WO 2012/174022 PCT/US2012/042104

[0077] FIG. 8 illustrates an embodiment of an exemplary computing architecture 800

suitable for implementing various embodiments as previously described. The computing

architecture 800 includes various common computing elements, such as one or more

processors, co-processors, memory units, chipsets, controllers, peripherals, interfaces,

5 oscillators, timing devices, video cards, audio cards, multimedia input/output (I/O)

components, and so forth. The embodiments, however, are not limited to implementation

by the computing architecture 800.

[0078] As shown in FIG. 8, the computing architecture 800 comprises a processing unit

804, a system memory 806 and a system bus 808. The processing unit 804 can be any of

10 various commercially available processors. Dual microprocessors and other

multi-processor architectures may also be employed as the processing unit 804. The

system bus 808 provides an interface for system components including, but not limited to,

the system memory 806 to the processing unit 804. The system bus 808 can be any of

several types of bus structure that may further interconnect to a memory bus (with or

15 without a memory controller), a peripheral bus, and a local bus using any of a variety of

commercially available bus architectures.

[0079] The system memory 806 may include various types of memory units, such as read

only memory (ROM), random-access memory (RAM), dynamic RAM (DRAM), Double

Data-Rate DRAM (DDRAM), synchronous DRAM (SDRAM), static RAM (SRAM),

20 programmable ROM (PROM), erasable programmable ROM (EPROM), electrically

erasable programmable ROM (EEPROM), flash memory, polymer memory such as

ferroelectric polymer memory, ovonic memory, phase change or ferroelectric memory,

silicon-oxide-nitride-oxide-silicon (SONOS) memory, magnetic or optical cards, or any

other type of media suitable for storing information. In the illustrated embodiment shown

25 in FIG. 8, the system memory 806 can include non-volatile memory 810 and/or volatile

memory 812. A basic input/output system (BIOS) can be stored in the non-volatile

memory 810.

[0080] The computer 802 may include various types of computer-readable storage media,

including an internal hard disk drive (HDD) 814, a magnetic floppy disk drive (FDD) 816

30 to read from or write to a removable magnetic disk 818, and an optical disk drive 820 to

read from or write to a removable optical disk 822 (e.g., a CD-ROM or DVD). The HDD

814, FDD 816 and optical disk drive 820 can be connected to the system bus 808 by a

HDD interface 824, an FDD interface 826 and an optical drive interface 828, respectively.

17

WO 2012/174022 PCT/US2012/042104

The HDD interface 824 for external drive implementations can include at least one or both

of Universal Serial Bus (USB) and IEEE 1394 interface technologies.

[0081] The drives and associated computer-readable media provide volatile and/or

nonvolatile storage of data, data structures, computer-executable instructions, and so forth.

5 For example, a number of program modules can be stored in the drives and memory units

810, 812, including an operating system 830, one or more application programs 832, other

program modules 834, and program data 836. The one or more application programs 832,

other program modules 834, and program data 836 can include, for example, software

components for the client-server systems 200, 300 and 400.

10 [0082] A user can enter commands and information into the computer 802 through one or

more wire/wireless input devices, for example, a keyboard 838 and a pointing device, such

as a mouse 840. Other input devices may include a microphone, an infra-red (IR) remote

control, a joystick, a game pad, a stylus pen, touch screen, or the like. These and other

input devices are often connected to the processing unit 804 through an input device

15 interface 842 that is coupled to the system bus 808, but can be connected by other

interfaces such as a parallel port, IEEE 1394 serial port, a game port, a USB port, an IR

interface, and so forth.

[0083] One or more monitors 844 or other type of display devices are also connected to

the system bus 808 via an interface, such as a video adaptor 846. In addition to the

20 monitor 844, a computer typically includes other peripheral output devices, such as

speakers, printers, and so forth. One or more monitors 845 may also be connected to the

system bus 808 via an input device interface 842 and/or a hub, such as USB hub 843. The

monitors 845 may comprise various components, such as a video camera, array

microphone, touch sensors, motion sensors, speakers, and so forth. The components may

25 be connected to the input device interface 842 via the USB hub 843.

[0084] The computer 802 may operate in a networked environment using logical

connections via wire and/or wireless communications to one or more remote computers,

such as a remote computer 848. The remote computer 848 can be a workstation, a server

computer, a router, a personal computer, portable computer, microprocessor-based

30 entertainment appliance, a peer device or other common network node, and typically

includes many or all of the elements described relative to the computer 802, although, for

purposes of brevity, only a memory/storage device 850 is illustrated. The logical

connections depicted include wire/wireless connectivity to a local area network (LAN)

852 and/or larger networks, for example, a wide area network (WAN) 854. Such LAN

18

WO 2012/174022 PCT/US2012/042104

and WAN networking environments are commonplace in offices and companies, and

facilitate enterprise-wide computer networks, such as intranets, all of which may connect

to a global communications network, for example, the Internet.

[0085] When used in a LAN networking environment, the computer 802 is connected to

5 the LAN 852 through a wire and/or wireless communication network interface or adaptor

856. The adaptor 856 can facilitate wire and/or wireless communications to the LAN 852,

which may also include a wireless access point disposed thereon for communicating with

the wireless functionality of the adaptor 856.

[0086] When used in a WAN networking environment, the computer 802 can include a

10 modem 858, or is connected to a communications server on the WAN 854, or has other

means for establishing communications over the WAN 854, such as by way of the

Internet. The modem 858, which can be internal or external and a wire and/or wireless

device, connects to the system bus 808 via the input device interface 842. In a networked

environment, program modules depicted relative to the computer 802, or portions thereof,

15 can be stored in the remote memory/storage device 850. It will be appreciated that the

network connections shown are exemplary and other means of establishing a

communications link between the computers can be used.

[0087] The computer 802 is operable to communicate with wire and wireless devices or

entities using the IEEE 802 family of standards, such as wireless devices operatively

20 disposed in wireless communication (e.g., IEEE 802.11 over-the-air modulation

techniques) with, for example, a printer, scanner, desktop and/or portable computer,

personal digital assistant (PDA), communications satellite, any piece of equipment or

location associated with a wirelessly detectable tag (e.g., a kiosk, news stand, restroom),

and telephone. This includes at least Wi-Fi (or Wireless Fidelity), WiMax, and

25 BluetoothTM wireless technologies. Thus, the communication can be a predefined

structure as with a conventional network or simply an ad hoc communication between at

least two devices. Wi-Fi networks use radio technologies called IEEE 802.1 1x (a, b, g,

etc.) to provide secure, reliable, fast wireless connectivity. A Wi-Fi network can be used

to connect computers to each other, to the Internet, and to wire networks (which use IEEE

30 802.3-related media and functions).

[0088] FIG. 9 illustrates a block diagram of an exemplary communications architecture

900 suitable for implementing various embodiments as previously described. The

communications architecture 900 includes various common communications elements,

such as a transmitter, receiver, transceiver, radio, network interface, baseband processor,

19

WO 2012/174022 PCT/US2012/042104

antenna, amplifiers, filters, and so forth. The embodiments, however, are not limited to

implementation by the communications architecture 900.

[0089] As shown in FIG. 9, the communications architecture 900 includes one or more

clients 902 and servers 904. The clients 902 may implement the web client 330. The

5 servers 904 may implement the runtime engine 312. The clients 902 and the servers 904

are operatively connected to one or more respective client data stores 908 and server data

stores 910 that can be employed to store information local to the respective clients 902 and

servers 904, such as cookies and/or associated contextual information.

[0090] The clients 902 and the servers 904 may communicate information between each

10 other using a communication framework 906. The communications framework 906 may

implement any well-known communications techniques, such as techniques suitable for

use with packet-switched networks (e.g., public networks such as the Internet, private

networks such as an enterprise intranet, and so forth), circuit-switched networks (e.g., the

public switched telephone network), or a combination of packet-switched networks and

15 circuit-switched networks (with suitable gateways and translators). The clients 902 and

the servers 904 may include various types of standard communication elements designed

to be interoperable with the communications framework 906, such as one or more

communications interfaces, network interfaces, network interface cards (NIC), radios,

wireless transmitters/receivers (transceivers), wired and/or wireless communication media,

20 physical connectors, and so forth. By way of example, and not limitation, communication

media includes wired communications media and wireless communications media.

Examples of wired communications media may include a wire, cable, metal leads, printed

circuit boards (PCB), backplanes, switch fabrics, semiconductor material, twisted-pair

wire, co-axial cable, fiber optics, a propagated signal, and so forth. Examples of wireless

25 communications media may include acoustic, radio-frequency (RF) spectrum, infrared and

other wireless media. One possible communication between a client 902 and a server 904

can be in the form of a data packet adapted to be transmitted between two or more

computer processes. The data packet may include a cookie and/or associated contextual

information, for example.

30 [0091] Various embodiments may be implemented using hardware elements, software

elements, or a combination of both. Examples of hardware elements may include devices,

logic devices, components, processors, microprocessors, circuits, circuit elements (e.g.,

transistors, resistors, capacitors, inductors, and so forth), integrated circuits, application

specific integrated circuits (ASIC), programmable logic devices (PLD), digital signal

20

WO 2012/174022 PCT/US2012/042104

processors (DSP), field programmable gate array (FPGA), memory units, logic gates,

registers, semiconductor device, chips, microchips, chip sets, and so forth. Examples of

software elements may include software components, programs, applications, computer

programs, application programs, system programs, machine programs, operating system

5 software, middleware, firmware, software modules, routines, subroutines, functions,

methods, procedures, software interfaces, application program interfaces (API), instruction

sets, computing code, computer code, code segments, computer code segments, words,

values, symbols, or any combination thereof. Determining whether an embodiment is

implemented using hardware elements and/or software elements may vary in accordance

10 with any number of factors, such as desired computational rate, power levels, heat

tolerances, processing cycle budget, input data rates, output data rates, memory resources,

data bus speeds and other design or performance constraints, as desired for a given

implementation.

[0092] Some embodiments may comprise an article of manufacture. An article of

15 manufacture may comprise a computer-readable storage medium arranged to store logic.

Examples of a computer-readable storage media include any storage medium capable of

storing electronic data, including volatile memory or non-volatile memory, removable or

non-removable memory, erasable or non-erasable memory, writeable or re-writeable

memory, and so forth. Examples of the logic may include various software elements, such

20 as software components, programs, applications, computer programs, application

programs, system programs, machine programs, operating system software, middleware,

firmware, software modules, routines, subroutines, functions, methods, procedures,

software interfaces, application program interfaces (API), instruction sets, computing

code, computer code, code segments, computer code segments, words, values, symbols, or

25 any combination thereof. In one embodiment, for example, an article of manufacture may

store executable computer program instructions that, when executed by a computer, cause

the computer to perform methods and/or operations in accordance with the described

embodiments. The executable computer program instructions may include any suitable

type of code, such as source code, compiled code, interpreted code, executable code, static

30 code, dynamic code, and the like. The executable computer program instructions may be

implemented according to a predefined computer language, manner or syntax, for

instructing a computer to perform a certain function. The instructions may be

implemented using any suitable high-level, low-level, object-oriented, visual, compiled

and/or interpreted programming language.

21

[0093] Some embodiments may be described using the expression "one embodiment" or

"an embodiment" along with their derivatives. These terms mean that a particular feature,

structure, or characteristic described in connection with the embodiment is included in at

least one embodiment. The appearances of the phrase "in one embodiment" in various

5 places in the specification are not necessarily all referring to the same embodiment.

[0094] Some embodiments may be described using the expression "coupled" and

"connected" along with their derivatives. These terms are not necessarily intended as

synonyms for each other. For example, some embodiments may be described using the

terms "connected" and/or "coupled" to indicate that two or more elements are in direct

10 physical or electrical contact with each other. The term "coupled," however, may also

mean that two or more elements are not in direct contact with each other, but yet still co

operate or interact with each other.

[0095] It is emphasized that the Abstract of the Disclosure is provided to allow the reader

to quickly ascertain the nature of the technical disclosure. It is submitted with the

15 understanding that it will not be used to interpret or limit the scope or meaning of the

claims. In addition, in the foregoing Detailed Description, it can be seen that various

features are grouped together in a single embodiment for the purpose of streamlining the

disclosure. This method of disclosure is not to be interpreted as reflecting an intention that

the claimed embodiments require more features than are expressly recited in each claim.

20 Rather, as the following claims reflect, inventive subject matter lies in less than all

features of a single disclosed embodiment. Thus the following claims are hereby

incorporated into the Detailed Description, with each claim standing on its own as a

separate embodiment. In the appended claims, the terms "including" and "in which" are

used as the plain-English equivalents of the respective terms "comprising" and "wherein,"

25 respectively. Moreover, the terms "first," "second," "third," and so forth, are used merely

as labels, and are not intended to impose numerical requirements on their objects.

[0096] Although the subject matter has been described in language specific to structural

features and/or methodological acts, it is to be understood that the subject matter defined

in the appended claims is not necessarily limited to the specific features or acts described

30 above. Rather, the specific features and acts described above are disclosed as example

forms of implementing the claims.

[0097] Throughout this specification and the claims which follow, unless the context

requires otherwise, the word "comprise", and variations such as "comprises" and

"comprising", will be understood to imply the inclusion of a stated integer or step or group

22

of integers or steps but not the exclusion of any other integer or step or group of integers

or steps.

[0098] The reference in this specification to any prior publication (or information derived

from it), or to any matter which is known, is not, and should not be taken as an

5 acknowledgment or admission or any form of suggestion that that prior publication (or

information derived from it) or known matter forms part of the common general

knowledge in the field of endeavour to which this specification relates.

23

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A computer-implemented method, comprising:

receiving a control directive representing a user event in a client user interface;

5 determining whether user event properties associated with the user event are

changed;

sending, from a web client, in a message, changed user event properties to a server

application executing on a server, comprising forwarding, by a user interface manager

operating on the server, the changed user event properties in the message to a script

10 interpreter for processing;

the script interpreter communicating with a file manager having access to a

database for performing the execution of any application rules resulting from the changed

user event properties in the message:

upon execution of the appropriate application logic, an interpretive runtime

15 engine producing a graphical user interface (GUI) independent object having

updated user event properties;

sending, by the user interface manager. the GUI independent object along

with any updated user event properties to the client;

wherein the user interface manager, the script interpreter. the file manager

20 and the interpretive runtime are implemented on the server;

receiving the graphical user interface (GUI) independent object from the server

application at the client; and

updating, by a client adapter, via a client user interface manager and a rendering

engine of the client, a rendered image in the client user interface based on the GUI

25 independent object and updated user event properties received from the server application;

wherein the updated user event properties comprise a property/value collection

having one or more tuples, with each tuple comprising an identifier for a user interface

element, a property for the user interface element, and a value for the property.

30 2. The computer-implemented method of claim 1, comprising receiving the GUI

independent object having updated user event properties, the updated user event properties

comprising object metadata having one or more user interface elements.

24

3. The computer-implemented method of claim 1, comprising sending multiple

changed user event properties for multiple user events in a message to the server

application executing on the server.

5 4. The computer-implemented method of claim 1, comprising updating one or more

user interface elements of the rendered image in the client user interface based on the GUI

independent object and updated user event properties received from the server application.

5. The computer-implemented method of claim 1 comprising:

10 creating a new instance of a client adapter when a previous instance of a client

adapter and its associated rendered image comprised of GUI dependent objects have been

destroyed;

reconnecting the new instance of the client adapter to the server application;

receiving a last known state for all GUI independent objects from the server

15 application; and

synchronizing in the new instance of the client adapter the last known state for all

GUI independent objects received from the server application.

6. An article of manufacture comprising a storage medium containing instructions

20 that when executed enable a system to perform the method of any of claims 1, 2, 3, 4, or 5.

7. An apparatus, comprising:

a logic device; and

a web client operable on the logic device, the web client comprising a client

25 adapter operative to detect a user event for a client user interface, send changes to user

event properties associated with the user event to a server application, receive a graphical

user interface (GUI) independent object and updated user event properties from the server

application, and update a rendered image in the client user interface using the GUI

independent object and updated user event properties received from the server application;

30 the client adapter comprising a user interface manager to control the client user

interface, and a rendering engine to update the rendered image based on the GUI

independent object and updated user event properties received from the server application;

the GUI independent object having updated user event properties, the updated user

event properties comprising a property/value collection comprising one or more tuples

25

each comprising an identifier for a user interface element, a property for the user interface

element, and a value for the property.

8. The apparatus of claim 7, the GUI independent object having updated user event

5 properties, the updated user event properties comprising object metadata, the object

metadata comprising one or more user interface elements.

9. The apparatus of claim 7, the web client operative to:

create a new instance of the client adapter when a previous instance of the client

10 adapter and its associated rendered image comprised of one or more GUI dependent

objects have been destroyed; wherein the new instance of the client adapter is operative to

reconnect to the server application, receive a last known state for all GUI independent

objects from the server application, and synchronize in the new instance of the client

adapter the last known state for all GUI independent objects received from the server

15 application.

26

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

