(12) STANDARD PATENT (11) Application No. AU 2012271775 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(51)

(74)

(56)

Title
Techniques for adapting an interpretive run time application to multiple clients

International Patent Classification(s)
GOG6F 15/16 (2006.01) GOG6F 9/44 (2006.01)
GOG6F 3/048 (2006.01)
Application No: 2012271775 (22) Date of Filing: 2012.06.12
WIPO No: WO12/174022

Priority Data

Number (32) Date (33) Country
13/159,139 2011.06.13 us
Publication Date: 2012.12.20

Accepted Journal Date: 2016.10.13

Applicant(s)
Microsoft Technology Licensing, LLC

Inventor(s)
Rudolph, Christopher;Hammond, Michael;Anderson, Robert;Nissen, Erik;Nannenga,
John;lngalls, Andrew

Agent / Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000

Related Art
US 2008/0307043 A1
US 2008/0040484 A1

wo 2012/174022 A3 I} 1] A0 000 O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

20 December 2012 (20.12.2012)

WIPOIPCT

(10) International Publication Number

WO 2012/174022 A3

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
GO6F 15/16 (2006.01) GO6F 3/048 (2013.01)
GO6F 9/44 (2006.01)

International Application Number:
PCT/US2012/042104

International Filing Date:

12 June 2012 (12.06.2012)
Filing Language: English
Publication Language: English
Priority Data:
13/159,139 13 June 2011 (13.06.2011) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: RUDOLPH, Christopher; c/o Microsoft Cor-
poration, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). HAMMOND,
Michael; c¢/o Microsotft Corporation, LCA - International
Patents, One Microsoft Way, Redmond, Washington
98052-6399 (US). ANDERSON, Robert; c/o Microsoft
Corporation, LCA - International Patents, One Microsott

(8D

(84)

Way, Redmond, Washington 98052-6399 (US). NISSEN,
Erik; ¢/o Microsoft Corporation, LCA - International Pat-
ents, One Microsoft Way, Redmond, Washington 98052-
6399 (US). NANNENGA, John; c¢/o Microsoft Corpora-
tion, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). INGALLS, An-
drew; c/o Microsoft Corporation, LCA - International Pat-
ents, One Microsoft Way, Redmond, Washington 98052-
6399 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

[Continued on next page]

(54) Title: TECHNIQUES FOR ADAPTING AN INTERPRETIVE RUN TIME APPLICATION TO MULTIPLE CLIENTS

DESKTOP ARCHITECTURE

APPLICATION

User Interface Logic
Businass Logic
DB Access Logic

APPLICATION
UlLogie
Business Logic
DB Accuss Logic

DB AP|

FIG. 1B

(57) Abstract: Techniques to adapt an interpretive runtime engine to multiple
clients are described. An apparatus may comprise a logic device arranged to
execute a web client. The web client may comprise, among other elements, a
client adapter operative to detect a user event for a client user interface, send
changes to user event properties associated with the user event to a server ap-
plication, receive a graphical user interface (GUI) independent object and up -
; dated user event properties from the server application, and update a rendered
image in the client user interface using the GUI independent object and up-
dated user event properties received from the server application. Other em-
bodiments are described and claimed.

WO 2012/174022 A3 |00V 0 A

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, Published:
GW, ML, MR, NE, SN, TD, TG).

— as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

— with international search report (Art. 21(3))

Declarations under Rule 4.17: (88) Date of publication of the international search report:

— as to applicant’s entitlement to apply for and be granted 4 April 2013
a patent (Rule 4.17(ii))

15 Sep 2016

2012271775

10

15

20

25

30

BACKGROUND
[0001] A client-server architecture is a distributed application structure that partitions
computing tasks or workloads for an application program between two basic entities,
referred to as servers and clients. A server is a provider of resources or services. A client
is a requester of resources or services. A server is a physical or logical device that is
running one or more server programs which share their resources with clients. A client is
a physical or logical device that typically does not share any of its resources, but requests
content or service functions from a server. Clients and servers often communicate over a
computer network on separate hardware. However, in some cases both client and server
may reside in the same system. Clients therefore initiate communication sessions with
servers which await incoming requests.
[0002] One form of client-server architecture is a multi-tier architecture, often referred to
as n-tier architecture. A n-tier architecture is a client—server architecture in which certain
aspects of an application program are separated into multiple tiers. For example, an
application that uses middleware to service data requests between a user and a database
employs a multi-tier architecture. An n-tier application architecture provides a model for
developers to create a flexible and reusable application. By breaking up an application
into multiple tiers, developers only have to modify or add a specific tier (or layer), thereby
avoiding the need to rewrite an entire application.
[0003] A n-tier architecture provides many advantages when developing and modifying an
application program. However, there are difficulties in implementing a n-tier architecture
for a web-based environment where there are a large number of clients. Each client may
utilize different web technologies, including different web browsers, web services, and
web applications. Further, web technologies are designed to work with many different
types of underlying hardware and software architectures, including a variety of devices
having different input/output (/O) components, form factors, power requirements,
processing capabilities, communication capabilities, memory resources, and so forth. As
such, it may be difficult to implement one or more tiers across these many heterogeneous
devices and architectures. Furthermore, web versions of an application program may not
be compatible with non-web versions of an application program, thereby creating a need
for separate software architectures for each. It is with respect to these and other
disadvantages that the present improvements are needed.
[0003a] It is desired to address or ameliorate one or more disadvantages or limitations

associated with the prior art, or to at least provide a useful alternative.

15 Sep 2016

2012271775

10

15

20

25

30

SUMMARY
[0004] This Summary is provided to introduce a selection of concepts in a simplified form
that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended as an aid in determining the scope of the claimed subject matter.
[0004a] In one embodiment, the present invention provides a computer-implemented
method, comprising: receiving a control directive representing a user event in a client user
interface; determining whether user event properties associated with the user event are
changed; sending, from a web client, in a message, changed user event properties to a
server application executing on a server, comprising forwarding, by a user interface
manager operating on the server, the changed user event properties in the message to a
script interpreter for processing; the script interpreter communicating with a file manager
having access to a database for performing the execution of any application rules resulting
from the changed user event properties in the message: upon execution of the appropriate
application logic, an interpretive runtime engine producing a graphical user interface
(GUI) independent object having updated user event properties; sending, by the user
interface manager. the GUI independent object along with any updated user event
properties to the client; wherein the user interface manager, the script interpreter. the file
manager and the interpretive runtime are implemented on the server; receiving the
graphical user interface (GUI) independent object from the server application at the client;
and updating, by a client adapter, via a client user interface manager and a rendering
engine of the client, a rendered image in the client user interface based on the GUI
independent object and updated user event properties received from the server application;
wherein the updated user event properties comprise a property/value collection having one
or more tuples, with each tuple comprising an identifier for a user interface element, a
property for the user interface element, and a value for the property.
[0004b] In a further embodiment, the present invention provides an apparatus,
comprising: a logic device; and a web client operable on the logic device, the web client
comprising a client adapter operative to detect a user event for a client user interface, send
changes to user event properties associated with the user event to a server application,
receive a graphical user interface (GUI) independent object and updated user event
properties from the server application, and update a rendered image in the client user
interface using the GUI independent object and updated user event properties received

from the server application, the client adapter comprising a user interface manager to

2

15 Sep 2016

2012271775

wn

10

15

20

25

30

control the client user interface, and a rendering engine to update the rendered image
based on the GUI independent object and updated user event properties received from the
server application; the GUI independent object having updated user event properties, the
updated user event properties comprising a property/value collection comprising one or
more tuples each comprising an identifier for a user interface element, a property for the
user interface element, and a value for the property.
[0005] It is to be understood that both the foregoing general description and the
following detailed description are explanatory only and are not restrictive of aspects as
claimed.

BRIEF DESCRIPTION OF THE DRAWINGS
[0005a] Preferred embodiments of the present invention are hereinafter described, by way
of example only, with reference to the accompanying drawings, in which:
[0006] FIG. 1A illustrates a conventional desktop application architecture.
[0007] FIG. 1B illustrates a conventional 2-tier application architecture.
[0008] FIG. 1C illustrates a conventional 3-tier application architecture.
[0009] FIG. 2 illustrates a block diagram of an enhanced n-tier client-server architecture
having multiple clients and client adapters in accordance with one embodiment.
[0010] FIG. 3 illustrates a block diagram of an enhanced n-tier client-server architecture
having a single client and client adapter in accordance with one embodiment.
[0011] FIG. 4 illustrates a block diagram of an enhanced n-tier client-server architecture
having a graphical user interface (GUI) independent object for a client and client adapter
in accordance with one embodiment.
[0012] FIG. S illustrates a first logic flow of an enhanced n-tier client-server architecture
in accordance with one embodiment.
[0013] FIG. 6A illustrates a logic diagram of a GUI independent object in accordance
with one embodiment.
[0014] FIG. 6B illustrates a logic diagram of a specific GUI independent object in
accordance with one embodiment.
[0015] FIG. 7 illustrates a second logic flow of an enhanced n-tier client-server
architecture in accordance with one embodiment.
[0016] FIG. 8 illustrates an embodiment of a computing architecture suitable for an
enhanced n-tier client-server architecture in accordance with one embodiment.
[0017] FIG. 9 illustrates an embodiment of a communications architecture suitable for

an enhanced n-tier client-server architecture in accordance with one embodiment.

15 Sep 2016

2012271775

10

15

20

25

30

DETAILED DESCRIPTION
[0018] Various embodiments are generally directed to a client-server architecture suitable
for executing different types of application programs, such as commercial line-of-business
application programs, for example. Some embodiments are particularly directed to a n-tier
client-server architecture having multiple tiers (or layers) of an application program,
including at least one presentation tier. In one embodiment, for example, a 3-tier client-
server architecture may include a presentation tier implemented using techniques designed
to separate and enhance graphical user interface (GUI) rendering of user events when
adapting an interpretive runtime engine application to operate with many different types of
clients.
[0019] In one embodiment, for example, an apparatus may comprise a logic device
arranged to execute a web client. The web client may comprise, among other elements, a
client adapter operative to detect a user event for a client user interface, send changed user
event properties associated with the user event to a server application, receive a graphical
user interface (GUI) independent object and updated user event properties from the server
application, and update a rendered image in the client user interface using the GUI
independent object and updated user event properties received from the server application.
Other embodiments are described and claimed.
[0020] Various embodiments are generally directed to a client-server architecture suitable
for executing different types of commercial line-of-business application programs. Some
embodiments are particularly directed to an enhanced n-tier client-server architecture,
where 7 is a variable representing any positive integer. The enhanced n-tier architecture
may comprise multiple tiers (or layers) of an application program, including at least one
presentation tier. In one embodiment, for example, the enhanced n-tier architecture may
be implemented as a 3-tier architecture comprising a presentation tier, an application
processing tier, and a data management tier. The presentation tier generally implements
user interface logic, such as handling input/output operations. The application processing
tier generally implements application or business logic, such as processing data according
to a set of application rules. The data management tier generally implements data storage
and access, such as defining data schemas, storing data, processing data queries, and so
forth.
[0021] The enhanced n-tier client-server architecture may include a presentation tier
implemented using techniques designed to facilitate the separation and optimization of

GUI rendering and user events in an application using an interpretive runtime engine. It

3a

10

15

20

25

30

WO 2012/174022 PCT/US2012/042104

allows adapting an interpretive runtime engine application from a 2-tier client-server based
architecture to a hosted 3-tier environment while reducing changes to the interpretive
runtime engine application.

[0022] FIGS. 1A, 1B and 1C illustrate three conventional architectures for application
development by way of background to highlight advantages for various embodiments of
the enhanced n-tier client-server architecture. FIG. 1A illustrates a conventional desktop
architecture. FIG. 1B illustrates a conventional 2-tier architecture. FIG. 1C illustrates a
conventional 3-tier (or n-tier) architecture.

[0023] FIG. 1A is an example of a desktop architecture 100 in which all parts (or
application layers) of an application program 112 are implemented on a client computer
110 (e.g., a desktop computer). The application program 112 may comprise various
application layers implementing, for example, user interface (UI) logic, business logic, and
database access logic. The application program 112 may store and access application data
from a database 114, which is also implemented on the client computer 110.

[0024] FIG. 1B is an example of a 2-tier architecture 120 in which a database 114 is now
remote from the client computer 110. In the 2-tier architecture 120, the application
program 112 and its constituent application layers still exist on the client computer 110.
However, the database 114 has been moved from the client computer 110 to a database
server 116. The application program 112 running in the client computer 110 sends
requests for data via database application program interfaces (APIs) to the database server
116 that is communicatively coupled with the database 114. The requested data is then
returned to the application program 112 executing on the client computer 110.

[0025] FIG. 1C is an example of a 3-tier architecture 130. In the 3-tier architecture 130,
the application program 112 may be separated into distributed application programs 112,
124 executing on respective client computer 110 and a server 122. The application
program 112 may implement an application layer having UI logic. The application
program 124 may implement an application layer having business and database access
logic. The application program 112 running in the client computer 110 sends data to the
server 122 that is executing the application program 124. The application program 124
may then execute business logic and send requests for data to the database server 116 that
is communicatively coupled with database 114. The requested data and the results of the
executed business logic are then returned to the application program 112 and rendered in
the client computer 110. It should be noted that the database server 116 may be co-located

with the server 122 or be a part of the server 122. In other words, the hardware

4

10

15

20

25

30

WO 2012/174022 PCT/US2012/042104

architecture may be such that a single server 122 functions as both an application and
database server. A distinguishing factor between a 2-tier and a 3-tier (or n-tier)
architecture is that some or many of the application layers are moved out of the client
computer 110 and distributed among one or more other servers 116, 122.

[0026] A n-tier architecture, such as the 3-tier architecture 130, may provide many
advantages relative to a 2-tier architecture 120 when developing and modifying an
application program. For instance, a single tier may be modified or added without causing
a complete re-write of the entire application program. However, there are difficulties in
implementing a n-tier architecture for a web-based environment where there are a large
number of clients. Each client may utilize different web technologies, including different
web browsers, web services, and web applications. Further, web technologies are
designed to work with many different types of underlying hardware and software
architectures, including a variety of devices having different input/output (I/0)
components, form factors, power requirements, processing capabilities, communication
capabilities, memory resources, and so forth. As such, it may be difficult to implement a
given application layer, such as a presentation layer, uniformly across these many
heterogeneous devices and architectures without extensive customization of the
presentation layer to fit the unique configuration of each client. Furthermore, web
versions of an application program may not be compatible with non-web versions of an
application program, thereby creating a need for separate software architectures for each.
[0027] In various embodiments, an enhanced z-tier architecture provides a framework that
enables migration of a 2-tier client-server application architecture to a 3-tier application
architecture that utilizes a thin client for a presentation layer of an application program. In
one embodiment, for example, each client device may implement a thin client in the form
of a web client. A web client typically refers to a thin client application implemented
using web technologies, such as a web browser operating in a client computer, for
example. It may also refer to plug-ins and helper applications that enhance the browser to
support custom services from the site or server. Any references herein to a web client may
also refer to the functionality of a web browser.

[0028] FIG. 2 illustrates a client-server system 200. In one embodiment, the client-server
system 200 may comprise an enhanced n-tier client-server system. The enhanced n-tier
client-server system may separate an application program in multiple tiers, including a
presentation tier. The presentation tier may be implemented using techniques designed to

facilitate the separation and optimization of GUI rendering and user events in the

10

15

20

25

30

WO 2012/174022 PCT/US2012/042104

application program using an interpretive runtime engine. It allows adapting an
interpretive runtime engine application from a 2-tier client-server based architecture to a
hosted 3-tier environment while reducing changes needed for the interpretive runtime
engine application.

[0029] As previously described with reference to FIG. 1A, many applications follow a 2-
tier application architecture in which the application is organized into two interrelated
components - the database server and the client application. The database server may host
system and company data, along with extended business logic that allows it to process
some of the heavier operations that would be extremely time consuming to perform at the
client. Meanwhile, the client application may perform the functions of delivering the Ul,
providing data entry validation, and rendering reports, among other functions.

[0030] In the illustrated embodiment shown in FIG. 2, the client-server system 200 may
comprise a server 202 and multiple clients 204, 206. When implemented on different
hardware platforms, the server 202 and the clients 204, 206 may communicate with each
other via a network 250. When implemented on a same hardware platform, the server 202
and the clients 204, 206 may communicate with each other via suitable bus technologies
and architectures. Although FIG. 2 illustrates only a single server 202 and two clients 204,
206 for sake of clarity, it may be appreciated that the client-server system 200 may
implement any number of servers and clients as desired for a given implementation. The
embodiments are not limited in this context.

[0031] In one embodiment, the server 202 may comprise an electronic device
implementing a server application 210. The server application 210 may comprise any type
of server application, such as a commercial line-of-business application. Examples of
commercial line-of-business applications may include without limitation an accounting
program, an enterprise resource planning (ERP) application, a customer relationship
management (CRM) application, a supply chain management (SCM) application, and so
forth. These commercial line-of-business applications are sometimes referred to as
“middle-tier” applications as they are typically executed by servers or server arrays in
commercial enterprise networks, rather than client devices such as a desktop computer. A
specific example may include Microsoft® Dynamics GP, made by Microsoft Corporation,
Redmond, Washington. Microsoft Dynamics GP is a commercial accounting software
application. Another specific example of a commercial line-of-business application may

comprise a Microsoft Dynamics® AX made by Microsoft Corporation, Redmond,

10

15

20

25

30

WO 2012/174022 PCT/US2012/042104

Washington. Microsoft Dynamics AX is a commercial ERP software application.
However, the embodiments are not limited to these examples.

[0032] When the server 202 is executing code for the server application 210, the server
202 forms an interpretive runtime engine 212. The interpretive runtime engine 212
implements multiple application layers for the server application 210, referred to in the
client-server system 200 as application logic 214, database logic 216, and server
presentation logic 218. The server application 210 may be controlled and operated via
control directives received from the clients 204, 206 in the form of signals or messages
over the network 250.

[0033] In one embodiment, the clients 204, 206 may each comprise an electronic device
implementing respective web clients 230, 240. The web clients 230, 240 may each
comprise, for example, instances of a web browser executing on the respective clients 204,
206. The web browsers may also include plug-ins, web applications and helper
applications designed to enhance the web browsers to support custom services from the
server 202. Any references herein to web clients 230, 240 may also refer to functionality
of a web browser.

[0034] The clients 204, 206 may comprise respective client adapters 232, 242. Each of
the client adapters 232, 242 may be configured for use with a given client 204, 206. In
this manner, the server application 210 and the interpretive runtime engine 212 do not
need to be modified when accessed by different clients using different web technologies.
[0035] The client adapters 232, 242 may comprise respective client presentation logic 238,
248. The client presentation logic 238, 248 may be designed to present user interface
elements or views on an output device for the clients 204, 206, such as a digital display,
for example. The client presentation logic 238, 248 may be designed to interoperate with
the application logic 214, the database logic 216, and the server presentation logic 218 of
the server application 210 executing on the server 202, in accordance with the distributed
n-tier architecture implemented for the server application 210.

[0036] The client adapters 232, 242, and respective client presentation logic 238, 248,
may interoperate with the server presentation logic 218 to allow the server application 210
to be accessed via different clients 204, 206. Each client 204, 206 may implement
different versions of the server presentation logic 218 as the respective client presentation
logic 238, 248 to fit a particular configuration for the clients 204, 206. This may be
accomplished without having to re-write the server presentation logic 218, and more

importantly, the business logic 214 and the database logic 216. Further, the server

7

10

15

20

25

30

WO 2012/174022 PCT/US2012/042104

presentation logic 218 and the client presentation logic 238, 248 may interact in a manner
that reduces communication traffic and overhead for the network 250, thereby increasing
speed and performance while reducing latency associated with communication delays.
[0037] The server application 210 may communicate with the client adapters 232, 242, or
separate versions of each, separately or simultaneously. A scenario for simultaneous
operation may include when a user requires assistance, and an administrator desires to
view a second version of a user’s web client view.

[0038] In various embodiments, the server presentation logic 218 and the client
presentation logic 238, 248 may interact in an efficient manner utilizing a graphical user
interface (GUI) independent object 260. The GUI independent object 260 allows for GUI
elements, such as GUI screens (e.g., Microsoft Windows® Forms), to move freely
between desktop environments and web environments. The GUI independent object 260
allows the server application 210 to run as a service in the background, awaiting user
events that may be received either via a traditional OS form or a web client form, and still
be able to execute script events regardless of the type of form through which it was
submitted.

[0039] The GUI independent object 260 may contain, among other types of information,
user events and any user event properties that may influence the GUI dependent rendering
by the client adapters 232, 242 in addition to user event properties that may influence
application logic events. The GUI independent object 260 is generated and sent from the
interpretive runtime engine 212 to a the client adapters 232, 242, which is subsequently
rendered in a client user interface via the respective client presentation logic 238, 248.
[0040] FIG. 3 illustrates a specific implementation of a n-tier client-server system 300.
The client-server system 300 may comprise a server 302 and a client 304. The server 302
may be representative of, for example, the server 202 described with reference to FIG. 2.
The client 304 may be representative of, for example, one or both of the clients 204, 206
described with reference to FIG. 2.

[0041] In the illustrated embodiment shown in the client-server system 300, the server 302
may implement a server application 310. In one embodiment, for example, the server
application 310 may be coded using a Microsoft Dexterity® programming language,
among other suitable types of programming languages. When implemented as a Microsoft
Dexterity application, the server application 310 may be generally divided into two
distinct elements. The first element is an interpretive runtime engine 312 that addresses

the technology aspects of the application environment such as communicating with an

8

10

15

20

25

30

WO 2012/174022 PCT/US2012/042104

operating system (OS) and establishing and managing a connection to the database 320 via
a file manager 316. The second element is an application dictionary 313 that hosts the
application logic 315, such as the application rules, business rules, forms, reports,
resources, metadata, and the application code that enables responses to user commands
and input. Examples of application code may include sanScript code, a Microsoft Visual
Studio® addin, Microsoft Visual Basic® Application (VBA), Microsoft Dexterity
Continuum, and so forth. This architecture isolates the application logic 315 from Ul style
changes and platform advances, such as upgrades to a platform OS, for example.

[0042] The sanScript code is used to control how an application operates. The sanScript
code is typically written in small segments, or scripts, that are attached to objects in the
application dictionary 313, such as fields, menus, screens and forms. Scripts are run as the
user interacts with that particular object in the application. For example, a script applied
to a push button will run when the user clicks the button.

[0043] As shown, the client 304 may comprise a web client 330. The web client 330 may
be representative of, for example, one or both of the web clients 230, 240. The web client
330 may deliver a set of components and services oriented toward the user interface and
user interaction, including user input and lightweight user interface controls for use with
the server application 310. To achieve a smooth migration to a 3-tier architecture,
however, numerous technology challenges posed by the introduction of the web client
architecture need to be overcome to enable an efficient web client interface.

[0044] A goal of the embodiments described herein is to reduce modifications needed for
existing code and GUI metadata. To solve some of the aforementioned challenges,
various embodiments are directed toward techniques for decoupling a user interface
manager 318 and an OS rendering engine 322 from the interpretive runtime engine 312.
The user interface manager 318 is system software that controls the placement and
appearance of various user interface elements, such as a GUI screen, within a given GUI
system. The OS rendering engine 322 is system software for displaying content. The
interpretive runtime engine 312 is an executed version of the server application 310.
[0045] The use of forms (or screens) is a core component of any Microsoft Dexterity
application. The forms are a mechanism by which a user will interact with the server
application 310. When the server application 310 is implemented as a Microsoft Dexterity
application, for example, a Microsoft Dexterity screen typically includes sanScript code

associated with the controls for that screen. The sanScript code executes in response to

10

15

20

25

30

WO 2012/174022 PCT/US2012/042104

user events given the intended function of the screen and the controls (e.g., save a
transaction, post a batch) under the direction of the script interpreter 314.

[0046] In non-web versions of the server application 310, the Ul is administered by the
user interface manager 318, which in turn communicates with the OS rendering engine
322 to display the actual Microsoft Dexterity screen on the display screen with the control
clements previously laid out by a developer.

[0047] However, in order to facilitate the transition to the web client 3-tier architecture of
the client-server system 300, the user interface manager 318 and the OS rendering engine
322 may be decoupled from the functions of the interpretive runtime engine 312. This
allows the web client 332 to implement client versions of a user interface manager 336 and
a rendering engine 338 on the client 304. This further allows the interpretive runtime
engine 312, which is executing on the server 302, to produce a GUI independent object
360 for use by the web client 332. With a GUI independent object 360, a classic client can
continue to serve up a typical GUI screen (e.g., a Microsoft Win32® screen), while also
allowing the web client 330 of the client 304 to serve up a web-based representation of
that same screen, without having to change any of the underlying application logic 315 of
the server application 310.

[0048] Decoupling the user interface manager 318 and the OS rendering engine 322 from
the interpretive runtime engine 312 allows for screens (forms) to move freely between
non-web (e.g., desktop or Win32) environments and web environments. With the user
interface manager 318 and the OS rendering engine 322 decoupled, the server application
310 can run as a service in the background, awaiting user events that may be received
either via a traditional Win32 form or a web client form, and still be able to execute script
events regardless of the type of form through which it was submitted.

[0049] To facilitate this decoupling, the GUI dependent and GUI independent processing
layers of the server application 310 are first separated. Instead of direct communication
between these two layers, rendering and event metadata are exposed using the GUI
independent object 360. The GUI independent object 360 may contain any user event
properties that may influence the GUI dependent rendering by the client adapter 332, in
addition to user event properties that may influence application logic events. The GUI
independent object 360 is then sent to a (GUI dependent) client adapter 332 which is
rendered in a client user interface screen on a display for the client 304. Examples of
some client adapters 332 may include, but are not necessarily limited to, Microsoft

Silverlight®, HTML, Win32 GDI, .Net Forms, among others.

10

10

15

20

25

30

WO 2012/174022 PCT/US2012/042104

[0050] FIG. 4 illustrates a specific implementation of a n-tier client-server system 400.
The client-server system 400 may comprise a server 402 and a client 404. The server 402
may be representative of, for example, the servers 202, 302 described with reference to
FIGS. 2, 3. The client 404 may be representative of, for example, one or all of the clients
204, 206, 304 described with reference to FIGS. 2, 3.

[0051] On the server 402, there may be a server application 410 including an interpretive
runtime engine 412 that may be responsible for executing one or more application layers
or coupled with other components that run one or more application layers. The
interpretive runtime engine 412 may further comprise a script interpreter 414, a file
manager 416, and a user interface manager 418. The script interpreter 414 may be in
communication with the file manager 416 and server user interface manager 418. The file
manager 416 may also be in communication with a database 420.

[0052] On the client 404 there is a web client 430 executing a client adapter 432. The
client adapter 432 may include a user interface manager 436 and a rendering engine 438
for displaying content in a client user interface, such as a client user interface, in
accordance with the client presentation logic 238, 248 shown in FIG. 2.

[0053] FIG. 4 may represent a 3-tier application architecture in that certain application
layers may be distributed between the server 402 and client 404. For instance, the client
presentation logic 238 and/or 248 may reside on the client 404, while the application logic
214 and the database logic 216 may be distributed on the server 402, as shown in FIG. 2.
The illustrated architecture of FIG.4 has decoupled the functionality of the user interface
manager 436 and rendering engine 438 from the interpretive runtime engine 412 on the
server 402 and placed it with the client adapter 432 on the client 404.

[0054] In one embodiment, the interpretive runtime engine 412 may include a script
interpreter 414. The script interpreter 414 may be generally arranged to execute scripted
code in response to user events such as, but not limited to, saving a transaction or posting a
batch. Examples of scripted code may include pre-scripts, change scripts, and post-scripts,
among other types of scripts.

[0055] In one embodiment, the interpretive runtime engine 412 may include a file
manager 416. The file manager 416 may be generally arranged to perform file
management operations on files stored in a database 420. Examples of file management
operations may include create file, open file, copy file, move file, delete file, among

others.

11

10

15

20

25

30

WO 2012/174022 PCT/US2012/042104

[0056] In one embodiment, the interpretive runtime engine 412 may include a user
interface manager 436. The user interface manager 436 may be generally arranged to
control the placement and appearance of various user interface elements, such as screen
clements, within a user interface implementing a given GUI system.

[0057] In operation, a user may interact with a client user interface via the web client 430.
The web client 430 may comprise a web browser having user interface code for rendering
web-based content. The web client 430 may be implemented using various web
technologies, such as HTML, XHTML and XML, among others. Examples of a web
client 430 may include without limitation Internet Explorer® made by Microsoft
Corporation, Redmond, Washington, among other types of web browser software.

[0058] According to an embodiment, in operation a user may interact with a client user
interface via a web client 430 and may enter user events that may be received and
processed by the client adapter 432. Examples of user events may include without
limitation moving a pointer to a field, hovering over a field, selecting a field, a mouse
click on a button, filling in a text field, and similar operations. A user event may be
defined using a set of user event properties. In one embodiment, only changes to user
event properties need to be sent from the web client 430 to the server application 410,
rather than a complete set of user event properties. This differential technique may
conserve communication bandwidth and reduce latency.

[0059] A user event property may be any attribute that can be assigned to user interface
elements, such as fields, screens or graphical objects, displayed in a user interface layout.
The user event property describes attributes of a presentation style or presentation format
for corresponding user interface elements. The user event property may include, among
other types of information, a user interface element identifier (ID), a property (e.g., border,
font, font size, font color, background, background color, style, right alignment, center
alignment, right alignment, single space, double space, and so forth), and a property value
(e.g., false, true, 0, 1, etc.). For example, a GUI screen might have an identifier “Window
001” with a Resizeable property set to False, which means that the GUI screen cannot be
resized by the user at runtime. These are only a few examples, and any user interface
elements and user interface properties may be implemented as desired for a given
implementation. The embodiments are not limited in this context.

[0060] The web client 430 may send a set of changed user event properties 451 in a
message 450 to the server application 410. The user interface manager 418 operating on

the server 402 forwards the changed user event properties 451 in the message 450 to the

12

10

15

20

25

30

WO 2012/174022 PCT/US2012/042104

script interpreter 414 for processing. The server application 410 may ensure that
application inputs and application states are proper before executing any application logic
for the server application 410. The script interpreter 414 may then communicate with the
file manager 416 which has access to database 420 if needed to the execution of any
application rules resulting from the changed user event properties 451 in the message 450
received from the client 404. Upon execution of the appropriate application logic, the
interpretive runtime engine 412 may produce a GUI independent object 452. The GUI
independent object 452 may include, among other information, updated user event
properties 454. User interface manager 418 implemented by the server 402 may send the
GUI independent object 452 along with any updated user event properties 454 back to the
client 404. The client adapter 432 via client user interface manager 436 and rendering
engine 438 may then update the previously rendered image using the GUI independent
object 452 along with the updated user event properties 454 generated by and received
from the server application 410.

[0061] Operations for the above-described embodiments may be further described with
reference to one or more logic flows. It may be appreciated that the representative logic
flows do not necessarily have to be executed in the order presented, or in any particular
order, unless otherwise indicated. Moreover, various activities described with respect to
the logic flows can be executed in serial or parallel fashion. The logic flows may be
implemented using one or more hardware elements and/or software elements of the
described embodiments or alternative elements as desired for a given set of design and
performance constraints. For example, the logic flows may be implemented as logic (e.g.,
computer program instructions) for execution by a logic device (e.g., a general-purpose or
specific-purpose computer).

[0062] FIG. S illustrates an embodiment of a logic flow 500. The logic flow 500 may
illustrate operations performed in accordance with one or more embodiments. For
instance, the logic flow 500 may illustrate operations performed by the web client 430
and/or server application 410.

[0063] In the logic flow 500, a user interacts with a web client executing in a client side
user interface at block 502. For instance, the web client 430 may receive user input in the
form of one or more control directives received from an input device that affects one or
more user interface elements of a user interface as presented by the rendering engine 438.

The user input may interact with the user interface element causing a user event. For

13

10

15

20

25

30

WO 2012/174022 PCT/US2012/042104

instance, a user may select a field on a form presented in a GUI screen, and modify a value
for the field.

[0064] In the logic flow 500, a client adapter executing therein may interpret a control
directive representing the user events in a manner compatible with a server application
executing on the server at block 504. For instance, the client adapter 432 executed by the
web client 430 may interpret user events in a similar manner as the server application 410.
User events may include one or more user interactions with the user interface running on
the web client 430 such as, but not limited to, clicking a button, filling in a text field, and
so forth.

[0065] In the logic flow 500, the interpreting operation at block 504 examines the newly
input user event properties to determine if the user event properties have changed at
diamond 506 to an extent needed that the server application should be notified. For
instance, the client adapter 432 may examine any user inputs and corresponding changes
to properties of affected user interface elements to determine if the user event properties
have changed above some threshold amount. For instance, hovering above a field to bring
it in focus might be insufficient to trigger any changes in user event properties, while
selecting a field would be sufficient to notify the server application 410.

[0066] In the logic flow 500, in those cases where notification is required, the client
adapter may send any pending changed user event properties to the server application at
block 508. For instance, the client adapter 432 may send changed user event properties
451 in the message 450 to the server application 410 via the network 250. In some
embodiments, the client adapter 432 may send multiple sets of changed user event
properties 451 for multiple user events in the message 450 to the server application 410
executing on the server 402. This “batch” sending can be useful in many ways, including
assisting the server application 410 in user event timing. For instance, the script
interpreter 414 may time execution of various scripts (e.g., pre-scripts, change scripts,
post-scripts, etc.) to ensure an accurate sequence of updates to the server application 410.
The batch sending can also reduce communication overhead by sending fewer messages
450 across the network 250. Other advantages exist as well, and the embodiments are not
limited in this context.

[0067] In the logic flow 500, a runtime engine executing on the server may ensure proper
inputs/states for the server application at block 510 before business logic events may be

executed at block 512. For instance, the interpretive runtime engine 412 executing on the

14

10

15

20

25

30

WO 2012/174022 PCT/US2012/042104

server 402 may ensure proper application inputs and application states for the server
application 410 before executing any application or business logic.

[0068] In the logic flow 500, updated user event properties resulting from the execution of
the business logic along with a GUI independent object may be transferred back to the
client adapter at block 514. For instance, updated user event properties 454 resulting from
the execution of the application or business logic along with the GUI independent object
452 may be sent from the server application 410 to the web client 430 for transfer back to
the client adapter 432.

[0069] In the logic flow 500, the client adapter may then update the previously rendered
image in the client user interface at block 516 using the updated user event properties and
GUI independent object. For instance, the client adapter 432 receive the GUI independent
object 452, and the rendering engine 438 may update the previously rendered image in the
client user interface using the updated user event properties 454 and the GUI independent
object 452.

[0070] FIG. 6A illustrates an embodiment of how a GUI independent object 452 may be
created for a client adapter 432 using data from the server application 410. As previously
described, the client adapter 432 may receive a GUI independent object 452 having
updated user event properties 454. The updated user event properties 454 may comprise,
among other information, GUI independent object metadata 602. In one embodiment, the
GUI independent object metadata 602 may comprise fixed or static metadata. The
updated user event properties 454 may further comprise a property/value collection 604.
The fixed/static GUI independent object metadata 602 may be combined with the GUI
independent property/value collection 604 to yield a GUI independent object 606 that can
be rendered in the web client 430 by the client adapter 432.

[0071] FIG. 6B illustrates an embodiment of how a specific GUI independent object 452
may be created using the constructs set out in FIG. 6A. The updated user event propertics
454 may comprise, among other information, object metadata 612 and a property/value
collection 614.

[0072] The updated user event properties 454 may comprise object metadata 612 having
one or more user interface elements. In this example, the object metadata 612 includes
three user interface elements in the form of fields, labeled Field A, Field B and Field C.
Each of Fields A, B, and C are shown generically as a text box with a border around

default font text comprised of the phrases ‘Field A’, ‘Field B’, and ‘Field C’ respectively.

15

10

15

20

25

30

WO 2012/174022 PCT/US2012/042104

[0073] The updated user event properties 454 may further comprise a property/value
collection 614. In one embodiment, the property/value collection 614 may be
implemented in a data structure, such as a table having one or more tuples (or rows), with
each tuple comprising attributes (or columns) including an identifier for a user interface
element, a property for the user interface element, and a value for the property. The table
of identifiers, properties and values may correspond to the fields of the object metadata
612.

[0074] When combined together the result may be a GUI independent object 616. As
shown in the GUI independent object 616, Field A is unchanged from the generic
metadata version because none of its properties or values was changed in the
property/value collection 614. Field B is shown without its border because the property
‘border’ was set to the value ‘False’ in the property/value collection 614. The text in Field
C is shown in italics because the property ‘italic’ was set to the value “True’ in the
property/value collection 614. The object 616 can now be rendered on the client 404 in
the web client 430 by the rendering engine 438 of the client adapter 432.

[0075] FIG. 7 illustrates an embodiment of a logic flow 700. The logic flow 700 may
illustrate operations performed in accordance with one or more embodiments. For
instance, the logic flow 700 may illustrate operations performed by the web client 430
and/or the server application 410 for purposes of recovering a client adapter 432 that has
been destroyed.

[0076] Another benefit of the embodiments described herein is that a rendered image in a
given client 404 may be recovered if a client adapter 432 is destroyed. If a client adapter
432 is destroyed, the rendered image comprised of various GUI dependent objects 452 is
also destroyed. However, the server application 410 may continue to hold state in the
form of the GUI independent objects 452. As shown in Fig. 7, a user may interact with the
web client 430 executing in a client side user interface to create a new instance of a client
adapter 432 at block 702. The new instance of the client adapter 432 may then reconnect
to the server application 410 at block 704. Upon reconnection, the server application 410
may still maintain the last known state for all GUI independent objects 452. At block 706
the last known state for all GUI independent objects 452 is transferred back to, and
received by, the client 404. The last known state for all GUI independent objects 452 may
then be synchronized with the web client 430 of the client 404 at block 708. The result is
that a current state for the client adapter 432 may be effectively recovered using

information stored by the server application 410.

16

10

15

20

25

30

WO 2012/174022 PCT/US2012/042104

[0077] FIG. 8 illustrates an embodiment of an exemplary computing architecture 800
suitable for implementing various embodiments as previously described. The computing
architecture 800 includes various common computing elements, such as one or more
processors, co-processors, memory units, chipsets, controllers, peripherals, interfaces,
oscillators, timing devices, video cards, audio cards, multimedia input/output (I/O)
components, and so forth. The embodiments, however, are not limited to implementation
by the computing architecture 800.

[0078] As shown in FIG. 8, the computing architecture 800 comprises a processing unit
804, a system memory 806 and a system bus 808. The processing unit 804 can be any of
various commercially available processors. Dual microprocessors and other
multi-processor architectures may also be employed as the processing unit 804. The
system bus 808 provides an interface for system components including, but not limited to,
the system memory 806 to the processing unit 804. The system bus 808 can be any of
several types of bus structure that may further interconnect to a memory bus (with or
without a memory controller), a peripheral bus, and a local bus using any of a variety of
commercially available bus architectures.

[0079] The system memory 806 may include various types of memory units, such as read-
only memory (ROM), random-access memory (RAM), dynamic RAM (DRAM), Double-
Data-Rate DRAM (DDRAM), synchronous DRAM (SDRAM), static RAM (SRAM),
programmable ROM (PROM), erasable programmable ROM (EPROM), electrically
erasable programmable ROM (EEPROM), flash memory, polymer memory such as
ferroelectric polymer memory, ovonic memory, phase change or ferroelectric memory,
silicon-oxide-nitride-oxide-silicon (SONOS) memory, magnetic or optical cards, or any
other type of media suitable for storing information. In the illustrated embodiment shown
in FIG. 8, the system memory 806 can include non-volatile memory 810 and/or volatile
memory 812. A basic input/output system (BIOS) can be stored in the non-volatile
memory 810.

[0080] The computer 802 may include various types of computer-readable storage media,
including an internal hard disk drive (HDD) 814, a magnetic floppy disk drive (FDD) 816
to read from or write to a removable magnetic disk 818, and an optical disk drive 820 to
read from or write to a removable optical disk 822 (e.g., a CD-ROM or DVD). The HDD
814, FDD 816 and optical disk drive 820 can be connected to the system bus 808 by a
HDD interface 824, an FDD interface 826 and an optical drive interface 828, respectively.

17

10

15

20

25

30

WO 2012/174022 PCT/US2012/042104

The HDD interface 824 for external drive implementations can include at least one or both
of Universal Serial Bus (USB) and IEEE 1394 interface technologies.

[0081] The drives and associated computer-readable media provide volatile and/or
nonvolatile storage of data, data structures, computer-executable instructions, and so forth.
For example, a number of program modules can be stored in the drives and memory units
810, 812, including an operating system 830, one or more application programs 832, other
program modules 834, and program data 836. The one or more application programs 832,
other program modules 834, and program data 836 can include, for example, software
components for the client-server systems 200, 300 and 400.

[0082] A user can enter commands and information into the computer 802 through one or
more wire/wireless input devices, for example, a keyboard 838 and a pointing device, such
as a mouse 840. Other input devices may include a microphone, an infra-red (IR) remote
control, a joystick, a game pad, a stylus pen, touch screen, or the like. These and other
input devices are often connected to the processing unit 804 through an input device
interface 842 that is coupled to the system bus 808, but can be connected by other
interfaces such as a parallel port, IEEE 1394 serial port, a game port, a USB port, an IR
interface, and so forth.

[0083] One or more monitors 844 or other type of display devices are also connected to
the system bus 808 via an interface, such as a video adaptor 846. In addition to the
monitor 844, a computer typically includes other peripheral output devices, such as
speakers, printers, and so forth. One or more monitors 845 may also be connected to the
system bus 808 via an input device interface 842 and/or a hub, such as USB hub 843. The
monitors 845 may comprise various components, such as a video camera, array
microphone, touch sensors, motion sensors, speakers, and so forth. The components may
be connected to the input device interface 842 via the USB hub 843.

[0084] The computer 802 may operate in a networked environment using logical
connections via wire and/or wireless communications to one or more remote computers,
such as a remote computer 848. The remote computer 848 can be a workstation, a server
computer, a router, a personal computer, portable computer, microprocessor-based
entertainment appliance, a peer device or other common network node, and typically
includes many or all of the elements described relative to the computer 802, although, for
purposes of brevity, only a memory/storage device 850 is illustrated. The logical
connections depicted include wire/wireless connectivity to a local area network (LAN)

852 and/or larger networks, for example, a wide area network (WAN) 854. Such LAN

18

10

15

20

25

30

WO 2012/174022 PCT/US2012/042104

and WAN networking environments are commonplace in offices and companies, and
facilitate enterprise-wide computer networks, such as intranets, all of which may connect
to a global communications network, for example, the Internet.

[0085] When used in a LAN networking environment, the computer 802 is connected to
the LAN 852 through a wire and/or wireless communication network interface or adaptor
856. The adaptor 856 can facilitate wire and/or wireless communications to the LAN 852,
which may also include a wireless access point disposed thereon for communicating with
the wireless functionality of the adaptor 856.

[0086] When used in a WAN networking environment, the computer 802 can include a
modem 858, or is connected to a communications server on the WAN 854, or has other
means for establishing communications over the WAN 854, such as by way of the
Internet. The modem 858, which can be internal or external and a wire and/or wireless
device, connects to the system bus 808 via the input device interface 842. In a networked
environment, program modules depicted relative to the computer 802, or portions thereof,
can be stored in the remote memory/storage device 850. It will be appreciated that the
network connections shown are exemplary and other means of establishing a
communications link between the computers can be used.

[0087] The computer 802 is operable to communicate with wire and wireless devices or
entities using the IEEE 802 family of standards, such as wireless devices operatively
disposed in wireless communication (e.g., IEEE 802.11 over-the-air modulation
techniques) with, for example, a printer, scanner, desktop and/or portable computer,
personal digital assistant (PDA), communications satellite, any piece of equipment or
location associated with a wirelessly detectable tag (e.g., a kiosk, news stand, restroom),
and telephone. This includes at least Wi-Fi (or Wireless Fidelity), WiMax, and
Bluetooth™ wireless technologies. Thus, the communication can be a predefined
structure as with a conventional network or simply an ad hoc communication between at
least two devices. Wi-Fi networks use radio technologies called IEEE 802.11x (a, b, g,
etc.) to provide secure, reliable, fast wireless connectivity. A Wi-Fi network can be used
to connect computers to each other, to the Internet, and to wire networks (which use IEEE
802.3-related media and functions).

[0088] FIG. 9 illustrates a block diagram of an exemplary communications architecture
900 suitable for implementing various embodiments as previously described. The
communications architecture 900 includes various common communications elements,

such as a transmitter, receiver, transceiver, radio, network interface, baseband processor,

19

10

15

20

25

30

WO 2012/174022 PCT/US2012/042104

antenna, amplifiers, filters, and so forth. The embodiments, however, are not limited to
implementation by the communications architecture 900.

[0089] As shown in FIG. 9, the communications architecture 900 includes one or more
clients 902 and servers 904. The clients 902 may implement the web client 330. The
servers 904 may implement the runtime engine 312. The clients 902 and the servers 904
are operatively connected to one or more respective client data stores 908 and server data
stores 910 that can be employed to store information local to the respective clients 902 and
servers 904, such as cookies and/or associated contextual information.

[0090] The clients 902 and the servers 904 may communicate information between each
other using a communication framework 906. The communications framework 906 may
implement any well-known communications techniques, such as techniques suitable for
use with packet-switched networks (e.g., public networks such as the Internet, private
networks such as an enterprise intranet, and so forth), circuit-switched networks (e.g., the
public switched telephone network), or a combination of packet-switched networks and
circuit-switched networks (with suitable gateways and translators). The clients 902 and
the servers 904 may include various types of standard communication elements designed
to be interoperable with the communications framework 906, such as one or more
communications interfaces, network interfaces, network interface cards (NIC), radios,
wireless transmitters/receivers (transceivers), wired and/or wireless communication media,
physical connectors, and so forth. By way of example, and not limitation, communication
media includes wired communications media and wireless communications media.
Examples of wired communications media may include a wire, cable, metal leads, printed
circuit boards (PCB), backplanes, switch fabrics, semiconductor material, twisted-pair
wire, co-axial cable, fiber optics, a propagated signal, and so forth. Examples of wireless
communications media may include acoustic, radio-frequency (RF) spectrum, infrared and
other wireless media. One possible communication between a client 902 and a server 904
can be in the form of a data packet adapted to be transmitted between two or more
computer processes. The data packet may include a cookie and/or associated contextual
information, for example.

[0091] Various embodiments may be implemented using hardware elements, software
elements, or a combination of both. Examples of hardware elements may include devices,
logic devices, components, processors, microprocessors, circuits, circuit elements (e.g.,
transistors, resistors, capacitors, inductors, and so forth), integrated circuits, application

specific integrated circuits (ASIC), programmable logic devices (PLD), digital signal

20

10

15

20

25

30

WO 2012/174022 PCT/US2012/042104

processors (DSP), field programmable gate array (FPGA), memory units, logic gates,
registers, semiconductor device, chips, microchips, chip sets, and so forth. Examples of
software elements may include software components, programs, applications, computer
programs, application programs, system programs, machine programs, operating system
software, middleware, firmware, software modules, routines, subroutines, functions,
methods, procedures, software interfaces, application program interfaces (API), instruction
sets, computing code, computer code, code segments, computer code segments, words,
values, symbols, or any combination thereof. Determining whether an embodiment is
implemented using hardware elements and/or software elements may vary in accordance
with any number of factors, such as desired computational rate, power levels, heat
tolerances, processing cycle budget, input data rates, output data rates, memory resources,
data bus speeds and other design or performance constraints, as desired for a given
implementation.

[0092] Some embodiments may comprise an article of manufacture. An article of
manufacture may comprise a computer-readable storage medium arranged to store logic.
Examples of a computer-readable storage media include any storage medium capable of
storing electronic data, including volatile memory or non-volatile memory, removable or
non-removable memory, erasable or non-erasable memory, writeable or re-writeable
memory, and so forth. Examples of the logic may include various software elements, such
as software components, programs, applications, computer programs, application
programs, system programs, machine programs, operating system software, middleware,
firmware, software modules, routines, subroutines, functions, methods, procedures,
software interfaces, application program interfaces (API), instruction sets, computing
code, computer code, code segments, computer code segments, words, values, symbols, or
any combination thereof. In one embodiment, for example, an article of manufacture may
store executable computer program instructions that, when executed by a computer, cause
the computer to perform methods and/or operations in accordance with the described
embodiments. The executable computer program instructions may include any suitable
type of code, such as source code, compiled code, interpreted code, executable code, static
code, dynamic code, and the like. The executable computer program instructions may be
implemented according to a predefined computer language, manner or syntax, for
instructing a computer to perform a certain function. The instructions may be
implemented using any suitable high-level, low-level, object-oriented, visual, compiled

and/or interpreted programming language.

21

15 Sep 2016

2012271775

10

15

20

25

30

[0093] Some embodiments may be described using the expression “one embodiment” or
“an embodiment” along with their derivatives. These terms mean that a particular feature,
structure, or characteristic described in connection with the embodiment is included in at
least one embodiment. The appearances of the phrase “in one embodiment” in various
places in the specification are not necessarily all referring to the same embodiment.
[0094] Some embodiments may be described using the expression "coupled" and
"connected" along with their derivatives. These terms are not necessarily intended as
synonyms for each other. For example, some embodiments may be described using the
terms “connected” and/or “coupled” to indicate that two or more elements are in direct
physical or electrical contact with each other. The term "coupled,” however, may also
mean that two or more elements are not in direct contact with each other, but yet still co-
operate or interact with each other.

[0095] It is emphasized that the Abstract of the Disclosure is provided to allow the reader
to quickly ascertain the nature of the technical disclosure. It is submitted with the
understanding that it will not be used to interpret or limit the scope or meaning of the
claims. In addition, in the foregoing Detailed Description, it can be seen that various
features are grouped together in a single embodiment for the purpose of streamlining the
disclosure. This method of disclosure is not to be interpreted as reflecting an intention that
the claimed embodiments require more features than are expressly recited in each claim.
Rather, as the following claims reflect, inventive subject matter lies in less than all
features of a single disclosed embodiment. Thus the following claims are hereby
incorporated into the Detailed Description, with each claim standing on its own as a
separate embodiment. In the appended claims, the terms "including" and "in which" are
used as the plain-English equivalents of the respective terms "comprising" and "wherein,"
respectively. Moreover, the terms "first," "second," "third," and so forth, are used merely
as labels, and are not intended to impose numerical requirements on their objects.

[0096] Although the subject matter has been described in language specific to structural
features and/or methodological acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the specific features or acts described
above. Rather, the specific features and acts described above are disclosed as example
forms of implementing the claims.

[0097] Throughout this specification and the claims which follow, unless the context
requires otherwise, the word "comprise", and variations such as "comprises" and

"comprising", will be understood to imply the inclusion of a stated integer or step or group

22

15 Sep 2016

2012271775

wn

of integers or steps but not the exclusion of any other integer or step or group of integers
or steps.

[0098] The reference in this specification to any prior publication (or information derived
from it), or to any matter which is known, is not, and should not be taken as an
acknowledgment or admission or any form of suggestion that that prior publication (or
information derived from it) or known matter forms part of the common general

knowledge in the field of endeavour to which this specification relates.

23

15 Sep 2016

2012271775

10

15

20

25

30

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A computer-implemented method, comprising:
receiving a control directive representing a user event in a client user interface;
determining whether user event properties associated with the user event are
changed,
sending, from a web client, in a message, changed user event properties to a server
application executing on a server, comprising forwarding, by a user interface manager
operating on the server, the changed user event properties in the message to a script
interpreter for processing;
the script interpreter communicating with a file manager having access to a
database for performing the execution of any application rules resulting from the changed
user event properties in the message:
upon execution of the appropriate application logic, an interpretive runtime
engine producing a graphical user interface (GUI) independent object having
updated user event properties;
sending, by the user interface manager. the GUI independent object along
with any updated user event properties to the client;
wherein the user interface manager, the script interpreter. the file manager
and the interpretive runtime are implemented on the server;
receiving the graphical user interface (GUI) independent object from the server
application at the client; and
updating, by a client adapter, via a client user interface manager and a rendering
engine of the client, a rendered image in the client user interface based on the GUI
independent object and updated user event properties received from the server application;
wherein the updated user event properties comprise a property/value collection
having one or more tuples, with each tuple comprising an identifier for a user interface

element, a property for the user interface element, and a value for the property.
2. The computer-implemented method of claim 1, comprising receiving the GUI

independent object having updated user event properties, the updated user event properties

comprising object metadata having one or more user interface elements.

24

15 Sep 2016

2012271775

10

15

20

25

30

3. The computer-implemented method of claim 1, comprising sending multiple
changed user event properties for multiple user events in a message to the server

application executing on the server.

4. The computer-implemented method of claim 1, comprising updating one or more
user interface elements of the rendered image in the client user interface based on the GUI

independent object and updated user event properties received from the server application.

5. The computer-implemented method of claim 1 comprising:

creating a new instance of a client adapter when a previous instance of a client
adapter and its associated rendered image comprised of GUI dependent objects have been
destroyed,;

reconnecting the new instance of the client adapter to the server application;

receiving a last known state for all GUI independent objects from the server
application; and

synchronizing in the new instance of the client adapter the last known state for all

GUI independent objects received from the server application.

6. An article of manufacture comprising a storage medium containing instructions

that when executed enable a system to perform the method of any of claims 1, 2, 3, 4, or 5.

7. An apparatus, comprising;

a logic device; and

a web client operable on the logic device, the web client comprising a client
adapter operative to detect a user event for a client user interface, send changes to user
event properties associated with the user event to a server application, receive a graphical
user interface (GUI) independent object and updated user event properties from the server
application, and update a rendered image in the client user interface using the GUI
independent object and updated user event properties received from the server application;

the client adapter comprising a user interface manager to control the client user
interface, and a rendering engine to update the rendered image based on the GUI
independent object and updated user event properties received from the server application;

the GUI independent object having updated user event properties, the updated user

event properties comprising a property/value collection comprising one or more tuples

25

15 Sep 2016

2012271775

[S—
o

15

each comprising an identifier for a user interface element, a property for the user interface

element, and a value for the property.

8. The apparatus of claim 7, the GUI independent object having updated user event
properties, the updated user event properties comprising object metadata, the object

metadata comprising one or more user interface elements.

0. The apparatus of claim 7, the web client operative to:

create a new instance of the client adapter when a previous instance of the client
adapter and its associated rendered image comprised of one or more GUI dependent
objects have been destroyed; wherein the new instance of the client adapter is operative to
reconnect to the server application, receive a last known state for all GUI independent
objects from the server application, and synchronize in the new instance of the client
adapter the last known state for all GUI independent objects received from the server

application.

26

WO 2012/174022 PCT/US2012/042104

1/10
o DESKTOP ARCHITECTURE 100
RS R R T ';]t; mmmmmmmmmmmmmmm
n
APPLICATION

User Interface Logic = -
Business Logic i, Database A
DB Access Logic e

Desktop “Client” Computer Buoe s con wo v 200 woo wer o wce o aoes o> vec Goew can e G G w0 e c6n B0 e G 00 i

FIG. 1A

L
Q

2-TIER ARCHITECTURE
Client Computer :‘ ————————————————— 1
! APPLICATION
: Ul Logic
! Business Logic 112
| DB Access Logic

DB API

Server

FIG. 1B

WO 2012/174022 PCT/US2012/042104

2/10
3-TIER ARCHITECTURE 130
Client C t Tt T T T T T O T T |
ient Computer : /1./112 I
I
|
: |
N | : APPLICATION |
110 : I Ul Logic |
|
! I
|
|
————— e
P ——————
|
122 : A 124 |
| APPLICATION [
1 Business Logic |
% | DB Access Logic :
o | '
" DB API |
X " !
[}
Server |________________|
116 114
=
S
0
X
DB Server

FIG. 1C

PCT/US2012/042104

WO 2012/174022

3/10

\.

§F 21307
UOHIDIUISIA]

121D

423dvpy U2

_ CFC

v

mal 924

0y

i

/ 90¢

\.

Q€ 21807
:Q.Eszmwmkm

e

£23dopy 1210

_ CEC

a4

wmaiD o4

0¢C

a4

/ roc

¢ 'O

122190
Juapuadapuj

1119

09¢

00T W2Isag

0ce

asvgoivq

\.

7

\.

J

QI J1307T
EQ.ESENMS&Q km\Em%

m QI 21307 asvquin(q u

ﬁ 1 21507 uouvsiyddy u

oUISUT aguny aaraidioguy

J/

clc ~; uonvoyddy 124495

0I1¢

Va4

/ coc

PCT/US2012/042104

WO 2012/174022

4/10

t O

.

\,\%mm

-

_

ouIsUg
Suriopuoy

~

J

A

r

\.

A2ZDUDIN
20Df123uU] 42S)

~

J

9ec 7V,

21dvpy 121D

v

_ CEE

uatD oM

0¢e

Vv

/ o€

Juapuadapuy

00§ WoISAS

/ o€

cce 0ce
\ INEMNMI /
BuLiopudy | asogmivq
_/ SO _
Y Y A
(4 ™\
_ MMNMMMW _ L2SDUDpY
= _ oA
LT | 125)) | :
N — —
SIE 21807
%R\QIH uonvoyddy
d2j2.4d.423u] 3d149G
\V\Em:m auirguny aanaLdiaguy Aivuonoiq
\JI£_ ; ; J \ " J
cI m\,\ uonvoyddy 124405 7 m\,\
sV
0I¢

PCT/US2012/042104

WO 2012/174022

5/10

A~ §Er

-

ouIsuyg
3uriopuay

A

\.

A23DUD N
20D f12JU] 42S/)

9517V,

21dvpy 121D

a0 o4

/ ror

A K |

44

1494

sa1i2doid
JU2AT 42S))
pampdp)

122190
Juapuadopuy
no
——

Y

IS¥
sanodoid

AT 42S))
pasuvy’)

23DSSIP

S

0§y

/

00% WoIsag

ocr
asvguivq
A
()
(7 A
Y y
A23DUD N
2 sonfiopg A23DUDIN
1251 o1ld
A
(91 \(
y
A2jo.4d423u] 11499 Q
\,\wﬁms awnuny aaraLdiom
\F[¥ 1oUT WU dAL] Jujy)
L I w\,\ uoynonddy 10108)
Va4
orv

/ cor

WO 2012/174022

5027

User Interacts with Client Side
User Interface and Enters User
Events via User Interface (Ul)

504”{

Client Adapter Interprets User
Events in a Manner Compatible
with Server Application

506

Determine if User Event

6/10

PCT/US2012/042104

Business Logic Executed on
Server Side by Server
Application

L, 512

l

Server Application Transfers a
GUI Independent Object and
Updated User Event Properties
Back to Client Adapter

e 514

!

Client Adapter Updates
Previously Rendered Image in
Client GUI Using GUI
Independent Object and Updated
User Event Properties

- 516

Properties Have Changed,

YES
4

508

Client Adapter Sends Changed
User Event Properties to Server
Application

510

Proper Inputs/States for Server

Application Ensured Prior to
Business Logic Execution

FIG. 5

END

WO 2012/174022

7/10
GUI Independent GUI Independent
Object Metadata Property/Value
(fixed/static) Collection
604
602
FIG. 6A
Object Metadata Property/Value
Collection

FIield A || Field B

Field C

ID Property Value

Field B | Border | False

Field C | Italic | True

~

612

7

614

FIG. 6B

PCT/US2012/042104

GUI Independent
Object

606

GUI Independent
Object

Field A | Field B

Field C

~ O

616

WO 2012/174022

8/10

700

702

Create a New Instance of a Client
Adapter

l

704 ™

Reconnect New Instance of Client
Adapter to Server Application

l

706

Receive Last Known State for All
GUI Independent Objects from
Server Application

708

Synchronize Last Known State for
All GUI Independent Objects in
New Instance of Client Adapter

FIG. 7

PCT/US2012/042104

WO 2012/174022

9/10

PROCESSING UNIT =

SYSTEM
MEMORY

VOLATILE {gb=""

BUS

£

VIDEO

PCT/US2012/042104

00

830

iMQHP'I;RATING SYSTEM {

832

| APPLICATIONS |

[MobULEs |

OPTICAL
DRIVE

o 845
MONITOR

Camera E

W

INPUT
@3 DEVICE

NETWORK }

INTERFACE |

838

sl REMOTE
COMPUTER(S)

N =
| ADAPTOR " (WIRED/WIRELESS)

| MEMORY,
{_STORAGE }

WO 2012/174022 PCT/US2012/042104

10/10

b
D
D

902 904 ~
CLIENT(S) SERVER(S)
y COMMUNICATION Y
FRAMEWORK
908 910
\ 4 9206 \ 4
CLIENT DATA STORE(S) SERVER DATA STORE(S)

FIG. 9

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

