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Access a physical storage device that responds 2600
to instructions in a first storage protocol.

Translate instructions between the first

2602
storage protocol and a second storage protocol.

Use the second protocol, presenting the physical
storage device to an operating system, such that
the storage of the physical storage 2604
device can be dynamically provisioned, whether the
physical storage device is local or remote to
a host computing system that uses the operating system.

Fig. 26
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Provide a converged storage and networking
controller, wherein a gateway provides a connection
for network and storage traflic between a storage
component and a networking component of the device
without intervention of the operating system of a host
computer.

2700

Map the at least one application or container to a
target physical storage device that is controlled by the
converged storage and networking controller, such that

the application or container can access the target 2702
physical storage, without intervention of the operating
system of the host system to which the target physical

storage is attached, when the application or container
1s moved to another computing system.

Fig. 27
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Provide a converged storage and networking
controller, wherein a gateway provides a
connection for network and storage traffic 2800
between a storage component and a networking
component of the device without intervention of
the operating system of a host computer.

Without intervention of the operating system of a
host computer, manage at least one quality of
service (QoS) parameter related to a network in
the data path of which the storage and networking
controller 1s deployed, such managing being
based on at least one of the storage traffic and the
network traffic that is handled by the converged
storage and networking controller.

2802

Fig. 28



US 10,635,316 B2

Sheet 29 of 69

Apr. 28, 2020

U.S. Patent

BN

62 b4

2 5pon

I
AN

v sy,
Ty

AN SpRasUEA
PR B

3,

L oBpon

SO
B

R0 BINAN

utegddyy

0062



US 10,635,316 B2

Sheet 30 of 69

Apr. 28,2020

U.S. Patent

o¢ Bi4

000€



US 10,635,316 B2

Sheet 31 of 69

Apr. 28,2020

U.S. Patent

e Big

5 %v«..%w#i%

SRR THAAN SR

00LE

BT AN




US 10,635,316 B2

Sheet 32 of 69

Apr. 28, 2020

U.S. Patent

zg Bid

Faas e i

UCIRSHGSLRE ] Jaing

FORE | ROUPAEING
NOAN

¥

{3 o)
B By
AL PRy

oy

PR AN

§ ROy
AN BRI

£ FHDRBOT
APEAN HOUDY

00ce

abiupions s

k 4

ABAET .@mamﬁxw
NOTWIAN | T~ Z0ze

L BT
AN Fraig

{1 SSEOBNOTD
AN AR

o008
WoE Y

HBACE AN

o008
O LY




US 10,635,316 B2

Sheet 33 of 69

Apr. 28,2020

U.S. Patent

el

sacipums mopum
18inq poosdxy 3ng paAleoey

00¢ce

IR

e¢ Bi4

ezl e oy

w117l gl esop (R

{4 ) 1oy

(TG PRy

Ptot 15y

{7 ‘gl e

ey
e

ez o 1 g soaus gy ™

{e'ez 1] g) ppssy wonbay

o

AURY

IRIDE

y0oee



US 10,635,316 B2

Sheet 34 of 69

Apr. 28,2020

U.S. Patent

{ {2'9'g}

& et

RCDLM RODUW
paedy m@&wm@ﬁ

\

00vE

Breitiz A hl

L

Hrosl gl oy

{2 18] e

{016} 190y
.w‘t!:

{5 18 e

d2ravel 2] el wpeisy gy |

(12'9'5'7] '1.8) npeis 1senbay

coee

iepuss

POEE



US 10,635,316 B2

Sheet 35 of 69

Apr. 28, 2020

U.S. Patent

g¢ ‘61

o

Ty PRI

R —

SN

00G€

ey

y

dpeel drn

A, s A :

WA WM e s el e e e e

SHRUSURIRI
FHeY

PRI



US 10,635,316 B2

Sheet 36 of 69

Apr. 28,2020

U.S. Patent

BRI

009¢

9¢ "Bi4

S
G

3 P

e
"

T AIRT Frr g e

e

e e e e e B R W WA

) P e

e vete e

SN

doeei] g ey &

g




US 10,635,316 B2

Sheet 37 of 69

Apr. 28,2020

U.S. Patent

DHMRIRE L B DRARDG
Budyonds ACL HOMYS
Y SN SpUBS
AR IS0 S
By 0 s Aue g

004€

IBASOBY

L€ B4

3

218 ypoi WOnEaY

sl el gl vow

{r g ypoEd
a*..l:.

(o) e

(& 8l Wioed

{18 ey

oozl g noms pmen

i

Hp'e 7] '8l upein menbay

3R

MBU B BN
UDIBSEOSUBIY
0 syl Burssin
SHnar BRUSY

PG



US 10,635,316 B2

Sheet 38 of 69

Apr. 28,2020

U.S. Patent

{

OPUIA

eel

PGP

pnsdyy  pOARDEN

008¢

g¢ “bi4

i

mw e e %&3 Maﬁm

m» el wmw WIEE

{e'ee gl oy

{pahmsosg

{5 5} Ry

s
=
M

(2 “a) 1ooed

{1 ‘@) wgoed

”

A m g ws M%@

{iv'e
*..lf
ey
NSNS

1} upsany manbuy

@& gm%%&
iyt
Apgsae unsg
iy siawond
1 SepRGIL
JSAERDEN

BHRNG
wa@w&% g \M@m%
,m& m@m%w a1 ,mw

BAEL BING (B
Ui DRjE0sse
symped uaig
EOL 8NV H

BpRg



US 10,635,316 B2

Sheet 39 of 69

Apr. 28,2020

U.S. Patent

{

i

e

AEOPUIAA
e

ey

CEE

MOPUIAL
CHIATEOR M

006¢€

ezl

6¢ Bid

k.

[£55'%] ‘08) 1ai0y 156nbaH

i

el

("

mw m&mﬁw GRS

Trez 1 Fatipeo ueso

RO AR A wmxn

3 JSBNLEM

DAL
R G W v ) B eh e s

M

ezl e wpein wesn

fr'e

3B

¥

211°8) v 1senboy

IPUSG

dn soudy
IDTUDE MY

e peBusioun
SAADIDLEA J5ING

snonasd pue

e sy sopay

ASAROE BU1



US 10,635,316 B2

Sheet 40 of 69

Apr. 28,2020

U.S. Patent

PEed

{

{2}

vzl

{724

{}

8

RODLEAL  AODUIAR
pEpmedsy  pOABIEN

000

o B4

e

Ug'g'el ‘7a) e Ronte

]

o

UGS gy

G2 o el IV L) posasy e

ool iah upan wanbay

e TRl 8 S0y

4@%.%%%@%

pasmoad (p'E'L g sEfed
(rezsl el wpau) wesp

oy
"

r'e'z'1l gy wpar wanbay

A

DEISALSD
AFUSSBOIR B
yosoud gy nun
o Aleas W
S501 ioed sy
R Bpues
LIS SBARDEY

S LB



US 10,635,316 B2

Sheet 41 of 69

Apr. 28,2020

U.S. Patent

{ {

4 ezl
MOPUIM AMDDUIM
paosdny  pasensy

\

0oLy

Ly i

{za) woy

{28} BUUBYD 1 1959y Tt

>

e

{Lael 2] i) vpsa) s

JDMBODM

(l2'g°g'2] 1@} ypeiD 1senbay

mpUeg



US 10,635,316 B2

Sheet 42 of 69

Apr. 28,2020

U.S. Patent

¢y b
N3dO | 2000X0:1000X0 | <20:00:00:+3:99:83 10:00:00:¥0:99:84
RS pi abueyoxg ebiey JOjenu)
00y




US 10,635,316 B2

Sheet 43 of 69

Apr. 28,2020

U.S. Patent

ey Bid

SNjes IWAN buipueg SMEIS JWAN Buiaeosy 338010
{uonoasgns
Jaje) ui paueidxs) puetiio) sieas) Jaddn woy
dnues|g NOFWAN Buiaeosy 1@ 1889y JBjoluo) "Uogy dNNVITO
pesy 10} Apy 194% Buineoay pea) 10} Apy Je)x Buipueg
OUIM 10} Apy] JoixX Buipusg | olIAA 10} Ay Jagx Buneoey | Y¥34X VIva
PUBLIWIOS JINAN Buianieosy puBLLIWoD JWAN Buipusg NIdO
1obie} s0y 196611 Joyeniuy joj s8bBiiy 118

/

00ey




US 10,635,316 B2

Sheet 44 of 69

Apr. 28, 2020

U.S. Patent

vy Bid

fy gy gl e

, [
"HE A

80 T meg

T R0
"2 At

iy SO

128124 4V 474

0ovy

i ubma onond
e

Pl wopmed v

L2, UL IO 69T RS

g sogneds D0y W

11484
L BOSRG SiaNnng
: AL U
P A SR Rl




US 10,635,316 B2

Sheet 45 of 69

Apr. 28,2020

U.S. Patent

yovy

Gt bi

TR——
g Apy sepe

{18 OO " 9) AP Y
+ {607 WY B Pl DRy
oty ORI

covy

00svy

Ay sy Buion
R W
RO SRR
U PURHBUOTY
preaR g U




US 10,635,316 B2

Sheet 46 of 69

Apr. 28,2020

U.S. Patent

yafuey

/

1481474

9y Bid4

o ) e

TR 0 '8 seg

mmwm..sm w&vmﬁ
b A gy

T Ay sep wenboy

{uejo) “H) g pee

\_ A0} 4%

009y

A A py 4
yeanlmg UBh Ky
s oy Apem
B 0 SHEDAS

L sapasal ey
B UL DEDN
B I0 LOIGERA BH

ST



US 10,635,316 B2

Sheet 47 of 69

Apr. 28, 2020

U.S. Patent

LY Bid

.. () puary gy
e o)

yOovv Z0vY

004¥y

SIS
DUE DUBLILICS 0]




US 10,635,316 B2

Sheet 48 of 69

Apr. 28, 2020

U.S. Patent

8y Bt

e {ueio] W) pwin uupy
jabie] ey

voyy Z0v

008¥y



US 10,635,316 B2

Sheet 49 of 69

Apr. 28,2020

U.S. Patent

yabue g

yovy

6V

(3) smeng

(g gl e

e eSO “3) Apy e

(487101 *3) PO UIpY

cOvy

006¥

"Bi4

e

o

ejep

o

o BT LA

BHO0LD



US 10,635,316 B2

Sheet 50 of 69

Apr. 28,2020

U.S. Patent

Y062

¥00S

0009

0s “Bi4

<008

P

¢06¢



US 10,635,316 B2

Sheet 51 of 69

Apr. 28,2020

U.S. Patent

LG "Big

A5ed
HOQY
“HAAN

ganthie |
AL N

VI HOKE

I I I

nn

vN* driesry
oxg

o0
SHAN

FOBUEL OA
SJ0IBD IBALG

P L I R

PUD FWAN | o SIAN

i oyBHIY FAUCT FNAN

/ /
7T

covy
0019



US 10,635,316 B2

Sheet 52 of 69

Apr. 28,2020

U.S. Patent

z6 by

dsow
WOy

sayd
ADL N

st s
YATD HOXE

ACL HOX3

Y

Gy
AN

S -
{AG dnuesny
P N

-

TRy AN

B S

PO AN LT SAN

IS O
FBI00 BAN0

ey o AT TNAN

YOy 2015

covy

;o

002G



US 10,635,316 B2

Sheet 53 of 69

Apr. 28, 2020

U.S. Patent

g "By

{3823 B i . | Y
- b R H e meea wy
el 7k ypaa) psenbay >
e w2 oo -
* - £4 Y vurr S
* PR AR o R
fler w2l o wenpmn - P
* o Wt R AP A R
- el
{1 0¢ Ay ey -
e - {518 1 spm0 pies
$1] 1 upen mordey -
Bifiisow 1. -
- {3 "1} posy augg
a0 L upm) pesy "
- : {14113 ppmen werhing

ey IDPEnIY

Yoy covy

00¢es



US 10,635,316 B2

Sheet 54 of 69

Apr. 28,2020

U.S. Patent

¥G "Oid

Gt 4 e wow

i 7 srmg gD

froRcd

Heeh 12l preen pean

(58 1) BN pEag

.

i) ) DR

¥y

i1 L e peey

e e b v weeis e

dzg 7z e v e menbay

TN

i) pomey gy

A sap ) L PO prey

s
o 4

&

111} mpsap) porhay

yobim g

14444
00vg

ARGy

covy



US 10,635,316 B2

Sheet 55 of 69

Apr. 28,2020

U.S. Patent

GG "Bt

Jopsuny e
WZE A SHUI g Su0D By o sposy sBuRynve saoue sy

pigricy e
" SIURYE WOt

WAL SYRRI 4o
- D45 BB QUM
b {45 B BUAS
. (L By oqy
- £ vy g

{sipd Ap 94y -
=" {apd DU SRR

DALY MO0 2
% mw&mwﬁm %E@.

wifiey JOREA
\ vOvY ¢ovy

0065



US 10,635,316 B2

Sheet 56 of 69

Apr. 28,2020

U.S. Patent

96 b4
sdoip
0Lt FAS 1voed oMy ynm O/ Mze abuis
doip
66 LS 13o0ed su0 WM Off MZE 9Buig
FASES rAst) sdodp ou yum O/ Mez L eibuig
88 Ja 4 sdoip ou yiim O Mze |ibuig
Z61 1z sdoip ou Yum sQff M elesed gi
Ll 61 sdoip ou Ym Off My 2ibuis

JNAN MBY | dig pue NOTWAN

yim sievoed g10] | uim siedoed (BI04 OLBUB0G

009¢




US 10,635,316 B2

Sheet 57 of 69

Apr. 28,2020

U.S. Patent

0045

LS "B

8149

Y0LS

TS




US 10,635,316 B2

Sheet 58 of 69

Apr. 28,2020

U.S. Patent

(PUBLALIOD FNAN)
0 51 9p0od0 NOFWAN

0 81 epood( 419

{1pyoed pUBLRLIDD

0088

96 by

{peoiied) DUBLIUOT AN

HEL

ang

2posdsy NUIWAN

{339 0¢) pt wousnbeg pASY

{310 #2) Pt 1sung

b} BUUBYD

BPOOC 18

adhl 418

DA "pasy NOZWAN = 8dAL]

Bel oy

QVINS

OVINS

OVINd

OVING




US 10,635,316 B2

Sheet 59 of 69

Apr. 28,2020

U.S. Patent

SPUBUILIDTS

AR 0 180

{ PUBLLILIOT

AN payoEg)

L 51 8post NOIWNAN
0 st apodd() dig

{oed
PUBLILIOT paysieq
418} L 81 9dAL 419

0065

65 Bid4

M, PUBLIIOD) AN

M GECL

st (K

SPUBLLILLOTS TNAN WIN

BROSUC NOTWAN A%

{sug 0} pi sousnbeg pasy

{3ug ¥21 ol

1808 P} puueyy

2pood( d18

adA} 418

3R PABY

NOTHAN = 8di1 T

Bey o

OVINS

OVIAS

OVIAd

OVING




US 10,635,316 B2

Sheet 60 of 69

Apr. 28,2020

U.S. Patent

IDISURS BIBD Uo
LOHRULION sopaoud
uyiBiue ) pue 1esH0

- Apy

s 1senbey <= ¢
Apy Ja «= 7
apond(y NOIINAN
0 st apood( 418

Mw@amm PUBLLILLICD
digl osiediy 419

0009

09 B4

yibuay

KL

Sposd(y NOSNAN

{sug 0g) pl sousnbeg pasy

{suq v2} Pl ising

Pl fEUUEYD

epoad d18

adhy 419

JOp PASH

Bey o1

OVINS

OVINS

OVIAd

OVIAd




US 10,635,316 B2

Sheet 61 of 69

Apr. 28,2020

U.S. Patent

{21801 WAN]
¥ 81 8pO0U0 NOTAN

1% Doty J41d

{vord Blep
dig) psiediy 419

00L9

19 B4

{profed) Bieg) AN

gyfue

WEYG

XL

Xl

BpOSUC NOIWAN

pARY

{53 0g} pi souanbag pasy

{s0G $2) P sing

Pl fOUUBYD

8poodQ dig

Bthl 418

FOA PAEM

NOTIWAN = 80413

Gey oy

OVIS

OVINS

OVING

OVIAd




US 10,635,316 B2

Sheet 62 of 69

Apr. 28,2020

U.S. Patent

SCOIL 8 SQIKE 0 B0

SRUORe NUBSID <= §
wanboay dnuesiy <= ¥
51 8pOOUCy NOIWAN

{3 81 8pod( 418

{1voed pUBLRLIOD
diglostedd] dig

0029

29 b4

GiIKL

1241

s aBurymey wny

BpOSUC NOSINAN

PaEE

{suq pg) pi sousnbeg pasy

{sug ¥} P sang

o Ry

Spootdy (18

adhl 19

ap pasy NOSWAN = 8041

Bep oy

OVINS

OVINS

OVING

OVING




US 10,635,316 B2

Sheet 63 of 69

Apr. 28,2020

U.S. Patent

€9 b1

(e XL 0

SiyEs 288 spondo e
0 el BB UG 1L {aut or) ot sosenbey aTie)

s

M BRI W

DIy e

R IS o B

{Ep0 ¥ o T 0 R
W SanbeY o B RS 2 P 3

FPOMYS 18 4
G ald ARV 48 ety d18

{pveoed nuung -
AL T S adhy 418 By pasy MOTZHAN = BUALH

Bey oy

OVINS

OVIAIS IVING

OVIAd

00€9

@w.,m %&&

{HEL 9 OiKi==
AR 18 0

BHG LD puw

o BT wn
BB




US 10,635,316 B2

Sheet 64 of 69

Apr. 28,2020

U.S. Patent

R

MOPUIM

1SING JUSLIND Ul POAIBOSY 0l MOV
MOPUIA 180G

WIBLND Ul POAISDAT JON 10 MOV
MOPUIM 18INQ

JU2N0 Joj pajuesd 1psiD 0 1PBID WEBID
AMOPUIM 1S.NG snoe.d

Ul paalaoeal Apeally L0 IO eI

yoyoed eleq L npain 1senbayy

1eoed pUBWIWOY payoleg 0l 1pain) 1senbay

1eyord puBLLLOD L0 Hpain 1senbayy

Suiueap

{(Areuiq) suq L0

19M984 |04U0D

009




US 10,635,316 B2

Sheet 65 of 69

Apr. 28,2020

U.S. Patent

69 bi-

LIOMIEN

M . _ HSH SO0 WL |

I
p0ce

IO
UCISSHASUIRE] 150

| Uy WoLdg

_—T 18|j0ju0) |
abeio)g|

ke
SELIERY MNOSAN

FEET FAVAN
HAAN e

SEBRGaUGD
SN POE A0

RO v06Z

by 2JeM i
pijeH B 3ed
0169 0dd

bV JOSS820id NIOMIBN
8069

e {hedl P0M U0 0T THYAN

089 et o s
{1el0) 199H U0 WA
\

¢069

0049



US 10,635,316 B2

Sheet 66 of 69

Apr. 28,2020

U.S. Patent

99 bi4
PN RS WY .
TRt ;

‘ w%%&
e GOISRRUBURL L RNy
$0Z¢€

aiey
T BB NOHNAN
z0z¢
SRy
| BN MDY
062

YOI
2062 = | AN Ml

SHOHIGT

AN B0
7 aempien NB@\\ et 7~ J0SS9001d YIOMION
0LGo 8069
! (led) 190 WD JONIC AN

e

rose F1d73 1B0H U0 AT
\ IS h iy &

2059

0099



US 10,635,316 B2

Sheet 67 of 69

Apr. 28,2020

U.S. Patent

TAYAS)

Paa) 754 19 *Bi- idyv

e 153 e 9dss

i vdid 119 25

T £dD

vSH 7dd — _x%M qgass

£5°9 Td'y P bl

J piL9 TS
e
_— 2029 T .
2049

av < = /_n_< 2
S |eass o 2ass e |10SS

o9l mm._m mm;.u_ m&..& m&;m aal4 29l ®®._n_ @@g&

90l | @814 | @0l % eal4 | @al4 | oviy Wm 2814 | @814 | saiq %
O <) O
= oy oy

oo | doug | a1 | 7 o014 | 9914 | ®aid | O 4 o0u4 | @814 | 93l | O

o014 | 8814 | 9814 9914 | 9914 | 9914 o914 | 9814 | 9014 '

0014 | 9014 | @814 0014 | @814 | 9014 ool4 | @814 | 9914

9014 | 8814 | 9014 % 5014 | ®8i4 | 99814 % 90i | @814 | 9814 %
O O [P
~ -~ -~

eaid | eald | T | < eaid |eaid | H | g 914 | ®ad | 4 |

sl el o] N[o]a2]3] Nojse|v]| N
~ 7~ J ~ 90.9
0129 90.9 8019 9029 079



US 10,635,316 B2

Sheet 68 of 69

Apr. 28,2020

U.S. Patent

¢l89

189

89 "fid
L9 0189 ¢Q.9 0.9
LdSS LASS LASS
d D g 9aif | 98l | 88l o014 | @814 | 9814
Av H O % 9814 | @3l | 99l4 % 9014 | 9814 | 9914 %
O 0O O
X = o
4 = 1 | < 9al4 | 83l | 8ald | T, o0l | 984 | 9ald | T
S o () 8814 | @8l4 | 98l4 98l | @014 | 9314 '
9014 | 9814 | 9014 a D ke 2914 | @214 | 9844
o W W
93l | 99l | 99l w.. w. 99l | 9814 | 9814 w,.
= ~ Py
98i4 | 88J4 | 894 | o v eald | ®al4 | ( 9
o0l | 99l | 99l D q 4 4
/ <~ 90.9
7089 089 0.9



US 10,635,316 B2

Sheet 69 of 69

Apr. 28,2020

U.S. Patent

ZIN:Y 0TS TID:4| 6970
1IN0 SS9 903
8N:d 7S 70:d
aNn-o 64l £dD
L1:N 9Y4:H cd:'g TAWAS
ELN T90 T \ 20/9
depy 20.9
P Z
e €dss ¢adss 1SS
¢0.9 b O | ®8l4 9ald | ®8I4 | T al{ | 4 | 994
2814 d 0944 % 93l | 99l4 | ©vl4 % 299l | 98l | 994 %
O O O
O | 8914 | 98l M o014 | M r Mi 3 | @844 | 9814 m
o014 | @814 | 9014 * 0014 | @814 | 9814 gaid{| Q | eeid *
09l4 | @3l | 99l 9914 | ©8l4 | 93l o9l | 934 | 998l
sai4 | ®aid| N % | | o814 | 8014 % eoi4 |sa14 | D %
O ) )
sa14 | ®ai4 | @2l | T H | 9914 | 9014 M sai4| g | o0 wm
N | @214 | 8814 é o014 | @aid | © 4 0014 | 9014 // v 4
\v4
90.9 90.9 vosg 909



US 10,635,316 B2

1
METHODS AND SYSTEMS FOR DATA
STORAGE USING SOLID STATE DRIVES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. provisional
patent application Ser. No. 62/301,743 filed Mar. 1, 2016,
titled: METHODS AND SYSTEMS FOR DATA STOR-
AGE USING SOLID STATE DRIVES. This application is
a continuation in part of U.S. patent application Ser. No.
14/640,717 filed Mar. 6, 2015, titled: METHODS AND
SYSTEMS FOR CONVERGED NETWORKING AND
STORAGE, which claims the benefit of U.S. provisional
patent application Ser. No. 62/017,257, filed Jun. 26, 214,
titled: AN APPARATUS FOR VIRTUALIZED CUSTER
10, and U.S. provisional patent application Ser. No. 61/950,
036, filed Mar. 8, 2014, titled: METHOD AND APPARA-
TUS FOR APPLICATION DRIVEN STORAGE ACCESS.
Each of the patent applications mentioned above is incor-
porated herein by reference in its entirety.

FIELD OF THE INVENTION

This application relates to the fields of networking and
data storage, and more particularly to the field of converged
networking and storage systems.

BACKGROUND OF THE INVENTION

Storage protocols have been designed in the past to
provide reliable delivery of data. Examples include Fibre
channel (FC), Fibre Channel over Ethernet (FCoE), and
iSCSI, including RDMA-capable transports (e.g., Infini-
band™, etc). NVMe is a relatively recent storage protocol
that is designed for a new class of storage media, such as
NAND Flash™, and the like. As the name NVMe (Non
volatile Media—express) suggests, NVMe is a protocol
highly optimized for media that is close to the speeds of
DRAM, as opposed that of to Hard Disk Drives (HDDs).
NVMe is typically accessed on a host system via a driver
over the PCle interface of the host. However, as noted
above, methods and systems disclosed herein provide for
accessing NVMe over a network. Since the latency of
DRAM and similar media is orders of magnitude lower than
that of HDDs, the approach for accessing NVMe over a
network may preferably entail minimal overhead (in terms
of latency). As such, there is a need to design a protocol to
access NVMe devices over the network via a lightweight
protocol.

Also, NVMe is designed to operate over a PCle interface,
where there are hardly any packet drops. So, the error
recovery mechanisms built into conventional NVMe are
based primarily on large I/O timeouts implemented in the
host driver. To enable use of NVMe over a network, a need
exists to account for errors that result from packet drops.

The proliferation of scale-out applications has led to very
significant challenges for enterprises that use such applica-
tions. Enterprises typically choose between solutions like
virtual machines (involving software components like
hypervisors and premium hardware components) and so-
called “bare metal” solutions (typically involving use of an
operating system like Linux™ and commodity hardware. At
large scale, virtual machine solutions typically have poor
input-output (I0) performance, inadequate memory, incon-
sistent performance, and high infrastructure cost. Bare metal
solutions typically have static resource allocation (making

25

30

40

45

50

55

2

changes in resources difficult and resulting in inefficient use
of the hardware), challenges in planning capacity, inconsis-
tent performance, and operational complexity. In both cases,
inconsistent performance characterizes the existing solu-
tions. A need exists for solutions that provide high perfor-
mance in multi-tenant deployments, that can handle
dynamic resource allocation, and that can use commodity
hardware with a high degree of utilization.

FIG. 1 depicts the general architecture of a computing
system 102, such as a server, functions and modules of
which may be involved in certain embodiments disclosed
herein. Storage functions (such as access to local storage
devices on the server 102, such as media 104 (e.g., rotating
media or flash) and network functions such as forwarding
have traditionally been performed separately in either soft-
ware stacks or hardware devices (e.g., involving a network
interface controller 118 or a storage controller 112, for
network functions or storage functions, respectively).
Within an operating system stack 108 (which may include an
operating system and a hypervisor in some embodiments
including all the software stacks associated with storage and
networking functions for the computing system), the soft-
ware storage stack typically includes modules enabling use
of various protocols that can be used in storage, such as the
small computer system interface (SCSI) protocol, the serial
ATA (SATA) protocol, the non-volatile memory express
(NVMe) protocol (a protocol for accessing disk-attached
storage (DAS), like solid-state drives (SSDs), through the
PCI Express (PCle) bus 110 of a typical computing system
102) or the like. The PCle bus 110 may provide an inter-
connection between a CPU 106 (with processor(s) and
memory) and various 1O cards. The storage stack also may
include volume managers, etc. Operations within the storage
software stack may also include data protection, such as
mirroring or RAID, backup, snapshots, deduplication, com-
pression and encryption. Some of the storage functions may
be offloaded into a storage controller 112. The software
network stack includes modules, functions and the like for
enabling use of various networking protocols, such as Trans-
mission Control Protocol/Internet Protocol (TCP/IP), the
domain name system protocol (DNS), the address resolution
protocol (ARP), forwarding protocols, and the like. Some of
the network functions may be offloaded into a network
interface controller 118 (or NIC) or the network fabric
switch, such as via an ethernet connection 120, in turn
leading to a network (with various switches, routers and the
like). In virtualized environments, a NIC 118 may be virtu-
alized into several virtual NICs as specified by SR-IOV
under the PCI Express standard. Although not specified by
the PCI Express standard and not as common, storage
controllers can also be virtualized in a similar manner. This
approach allows virtual entities, such as virtual machines,
access to their own private resource.

Referring to FIG. 2, one major problem with hypervisors
is with the complexity of 1O operations. For example, in
order to deal with an operation involving data across two
different computers (computer system 1 and computer sys-
tem 2 in FIG. 2), data must be copied repeatedly, over and
over, as it moves among the different software stacks
involved in local storage devices 104, storage controllers
112, the CPUs 106, network interface controller 118 and the
hypervisor/operating systems 108 of the computers, result-
ing in large numbers of inefficient data copies for each 10
operation whenever an activity is undertaken that involves
moving data from one computer to another, changing the
configuration of storage, or the like. The route 124 is one of
many examples of the complex routes that data may take
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from one computer to another, moving up and down the
software stacks of the two computers. Data that is sought by
computing system 2 may be initially located in a local
storage device 104, such as a disk, of computing system 1,
then pulled by a storage controller card 112 (involving an 1O
operation and copying), send over the PCle bus 110 (another
10 operation) to the CPU 108 where it is handled by a
hypervisor or other software component of the OS stack 108
of computing system 1. Next, the data may be delivered
(another 10 operation) through the network controller 118
and over the network 122 (another set of 10 operations) to
computing system 2. The route continues on computing
system 2, where data may travel through the network
controller 118 and to the CPU 106 of computing system 2
(involve additional 10 operations), then sent over the PCle
bus 110 to the local storage controller 112 for storage, then
back to the hypervisor/OS stack 108 for actual use. These
operations may occur across a multiplicity of pairs of
computing systems, with each exchange involving this kind
of proliferation of 1O operations (and many other routes are
possible, each involving significant numbers of operations).
Many such complex data replication and transport activities
among computing systems are required in scaleout situa-
tions, which are increasingly adopted by enterprises. For
example, when implementing a scaleout application like
MongoDB™, customers must repeatedly run real time que-
ries during rebalancing operations, and perform large scale
data loading. Such activities involve very large numbers of
10 operations, which result in poor performance in hyper-
visor solutions. Users of those applications also frequently
re-shard (change the shards on which data is deployed),
resulting in big problems for bare metal solutions that have
static storage resource allocations, as migration of data from
one location to another also involves many copying and
transport operations, with large numbers of IO operations.
As the amount of data used in scaleout applications grows
rapidly, and the connectedness among disparate systems
increases (such as in cloud deployments involving many
machines), these problems grow exponentially. A need exists
for storage and networking solutions that reduce the number
and complexity of 10 operations and otherwise improve the
performance and scaleability of scaleout applications with-
out requiring expensive, premium hardware.

Referring still to FIG. 2, for many applications and use
cases, data (and in turn, storage) needs to be accessed across
the network between computing systems 102. Three high-
level steps of this operation include the transfer of data from
the storage media of one computing system out of a box,
movement across the network 122, and the transfer of data
into a second box (second computing system 102) to the
storage media 104 of that second computing system 102.
First, out of the box transfer, may involve intervention from
the storage controller 112, the storage stack in the OS 108,
the network stack in the OS 108, and the network interface
controller 118. Many traversals and copying across internal
busses (PCle 110 and memory) as well as CPU 106 pro-
cessing cycles are spent. This not only degrades perfor-
mance (creating latency and throughput issues) of the opera-
tion, but also adversely affects other applications that run on
the CPU. Second, once the data leaves the box, 102 and
moves onto the network 122, it is treated like any other
network traffic and needs to be forwarded/routed to its
destination. Policies are executed and decisions are made. In
environments where a large amount of traffic is moving,
congestion can occur in the network 122, causing degrada-
tion in performance as well as problems with availability
(e.g., dropped packets, lost connections, and unpredictable
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latencies). Networks have mechanisms and algorithms to
avoid spreading of congestion, such as pause functions,
backward congestion notification (BCN), explicit conges-
tion notification (ECN), etc. However, these are reactive
methods; that is, they detect formation of congestion points
and push back on the source to reduce congestion, poten-
tially resulting in delays and performance impacts. Third,
once the data arrives at its “destination” computing system
102, it needs to be processed, which involves intervention
from the network interface controller 118, the network stack
in the OS 108, the storage stack in the OS 108, and the
storage controller 112. As with out of the box operations
noted above, many traversals and copying across internal
busses as well as CPU 106 processing cycles are spent.
Further, the final destination of the data may well reside in
still a different box. This can be the result of a need for more
data protection (e.g., mirroring or across-box RAID) or the
need for de-duplication. If so, then the entire sequence of
out-of-the box, across the network, and into the box data
transfer needs to be repeated again. As described, limitations
of this approach include degradation in raw performance,
unpredictable performance, impact on other tenants or
operations, availability and reliability, and inefficient use of
resources. A need exists for data transfer systems that avoid
the complexity and performance impacts of the current
approaches.

As an alternative to hypervisors (which provide a separate
operating system for each virtual machine that they man-
age), technologies such as Linux™ containers have been
developed (which enable a single operating system to man-
age multiple application containers). Also, tools such as
Dockers have been developed, which provide provisioning
for packaging applications with libraries. Among many
other innovations described throughout this disclosure, an
opportunity exists for leveraging the capabilities of these
emerging technologies to provide improved methods and
systems for scaleout applications.

Another area in which current approaches are problematic
is in the area of the strategies used to write data to individual
solid state drives (SSDs) and to groups of SSDs) over time,
where current “garbage collection” processes typically
require moving significant amounts of data through a series
of copying and pasting operations (entailing large numbers
of 1/0O operations in conventional systems), such as to copy
and paste all of the valid data from an old block that contains
some invalid data into a new block, so that the old block can
be erased in its entirety to make it available for writing of
new data. For an application this “garbage collection” period
results in an unpredictable response time. A need exists for
more efficient storage strategies that reduce the number of
operations required to write data to collections of SSDs, and
also to minimize the response time variation for the appli-
cation.

SUMMARY

Methods and systems are provided herein for enabling
converged networking and storage, such methods and sys-
tems including, without limitation, methods and systems for
managing a collection of physically attached and network-
distributed data storage resources as a virtualized cluster of
storage resources. In embodiments, in the virtualized cluster
behaves in response to an operating system as if the virtu-
alized cluster of storage resources were entirely composed
of physically attached storage resources without requiring
modification of the operating system.
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Methods and systems involving converged networking
and storage may employ various strategies for writing data
to a collection of resources, such as in a virtualized cluster,
for garbage collection and the like. Such methods and
systems may include writing of data to a collection of solid
state drives in the virtualized cluster, wherein the solid state
drives are defined as a single logical storage resource for an
operating system. In embodiments, write operations of the
operating system are managed by the converged networking
and storage system to occur in stripes across the blocks of
the collection of solid state drives. In embodiments, the solid
state drives are grouped into a plurality of sub-groups and
wherein an operator of the converged networking and stor-
age system can designate different sub-groups at different
times for performing garbage collection.

Such methods and systems may further include a solid
state drive within the virtualized cluster of resources and an
application programming interface of the solid state drive by
which the converged networking and storage system can
instruct the solid state drive when to perform a garbage
collection process of the solid state drive. In embodiments,
a collection of solid state drives in the virtualized cluster
have varying drive writes per day (DWPD) capabilities and
the virtualized cluster is configured to operate as a unified
logical storage resource to satisfy a DWPD requirement of
an application that uses the virtualized cluster.

Such methods and systems may further include a system
for providing dual-level encryption relating to data stored on
a solid state drive (SSD) in the collection of storage
resources, wherein encryption is provided on the SSD of the
data that is stored on the SSD and encryption is provided in
a converged networking and storage controller of the con-
verged networking and storage system. In embodiments, a
different encryption key may be used at the converged
networking and storage controller for two different sets of
data that are stored on the same SSD. In embodiments, the
system includes an interface for allocating the different keys
to different tenants that can use the SSD in a multi-tenant
configuration.

Such methods and systems may further include writing
data to a solid state drive (SSD) in the collection of storage
resources, wherein the system writes data to the SSD
sequentially to selected pages of at least one block of the
SSD, provides gaps between the sequentially written pages
of the block and maintains a map of the locations to which
the pages are written. In embodiments, locations to which
the pages are written are randomly allocated. In embodi-
ments, the pages are written using an elevator algorithm.

In embodiments, the system provides a job de-duplication
capability for networking and storage jobs. In embodiments,
the system has a capability for global de-duplication and
erasure encoding across a plurality of storage resources in
the collection. In embodiments, the system uses a hash-
based system for locating data on a storage resource within
the collection of storage resources. In embodiments, the
system provides in-line hashing and routing of data in a
network without requiring writing of data to memory in
order to perform a hash calculation. In embodiments, the
system has in-line erasure encoding in a network without
requiring the writing of data to memory in order to perform
erasure encoding. In embodiments, the system has in-line
de-duplication of redundant blocks.

In embodiments, the collection of storage resources
includes disk attached solid state drives and network-at-
tached storage resources. In embodiments, addition of addi-
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tional storage resources to the cluster does not require the
user of the cluster to rebalance the allocation of data storage
across the cluster.

Referring to FIG. 29 and subsequent figures, methods and
systems are provided herein to enable use of NVME over a
network, such as an Ethernet network. Such methods and
systems are referred to in some cases as NVMEoN, of which
an embodiment is NVME over Ethernet, or NVMEoE. In
order to run NVMe over a network (such as Ethernet) where
there tend to be packet drops, a protocol is provided that (a)
provides guaranteed delivery of NVMe commands and data
over the network and (b) converges quickly from network
drops without adversely affecting /O performance. The
embodiments described below provide specification of a
protocol to run NVMe reliably over a network, such as
Ethernet, that can drop packets.

The NVMEOoN protocol enabled herein is designed with
no assumption made about the underlying network being
Layer 2 or Layer 3. The endpoints may be defined generi-
cally, with constraint as to the type of host. Various options
for network encapsulation for implementation and standard-
ization are described below.

Among other characteristics, the NVMEoN protocol may
fit into the generic NVME architecture and be standardiz-
able; work independent of other lossless protocols in the
network, including with built-in error detection and recov-
ery; minimize overhead introduced in the network; dynami-
cally carve receiver’s resources (buffers) across multiple
senders; and be easily implementable through a combination
of hardware and software modules (e.g., to achieve minimal
latency overhead and to use hardware functions where
beneficial).

Elements of the methods and systems disclosed herein
may include various components, processes, features and the
like, which are described in more detail below. These may
include an NVMEoN Exchange Layer, a layer in NVMEoN
that maintains exchanges for every NVME command. Also
provided below is a Burst Transmission Protocol (BTP)
layer in NVMEON that provides guaranteed delivery. Also
provided is a proxy NVME controller, an NVME controller
that is used to terminate PCle level transactions of NVME
commands and transport them over a network. Also, one or
more remote NVME controllers may include virtual NVME
controllers that can handle NVME commands received over
a network.

As noted elsewhere throughout this disclosure, a “node”
may refer to any host computer on a network, such as any
server. An initiator may comprise a node that initiates a
command (such as an NVME command), while a target may
comprise a node that is a destination of an NVME command.
A mode may include an NVME driver, which may be a
conventional NVME driver that runs on a Linux or Windows
server. The host may include a host CPU, a processor on
which applications run. A host may have an embedded CPU,
a processor on which NVMEoN-specific control agents run.

As described below, NVMEoN may involve exchanges.
Each NVME command may be translated by the NVMEoN
exchange layer, such as at an initiator, into a unique
exchange for purposes of tracking the exchanges over a
network. An Exchange Status Block (ESB), may comprise a
table of open exchanges and their state information.

The conventional NVME protocol on a host typically runs
with an NVME Diriver (e.g., in the Linux kernel) accessing
an NVME controller over PCle. The NVME controller
translates the NVME I/O commands into actual reads/
writes, such as to a NAND Flash drive. NVMEoN, as
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disclosed herein, extends this NVME protocol over a net-
work with no assumptions as to the absence of losses in the
network.

Provided herein are methods and systems that include a
converged storage and network controller in hardware that
combines initiator, target storage functions and network
functions into a single data and control path, which allows
a “cut-through” path between the network and storage,
without requiring intervention by a host CPU. For ease of
reference, this is referred to variously in this disclosure as a
converged hardware solution, a converged device, a con-
verged adaptor, a converged 1O controller, a “datawise”
controller, or the like throughout this disclosure, and such
terms should be understood to encompass, except where
context indicates otherwise, a converged storage and net-
work controller in hardware that combines target storage
functions and network functions into a single data and
control path.

Among other benefits, the converged solution will
increase raw performance of a cluster of computing and/or
storage resources; enforce service level agreements (SLAs)
across the cluster and help guarantee predictable perfor-
mance; provide a multi-tenant environment where a tenant
will not affect its neighbor; provide a denser cluster with
higher utilization of the hardware resulting in smaller data
center footprint, less power, fewer systems to manage;
provide a more scalable cluster; and pool storage resources
across the cluster without loss of performance.

The various methods and systems disclosed herein pro-
vide high-density consolidation of resources required for
scaleout applications and high performance multi-node
pooling. These methods and systems provide a number of
customer benefits, including dynamic cluster-wide resource
provisioning, the ability to guarantee quality-of-service
(QoS), Security, Isolation etc. on network and storage func-
tions, and the ability to use shared infrastructure for pro-
duction and testing/development.

Also provided herein are methods and systems to perform
storage functions through the network and to virtualize
storage and network devices for high performance and
deterministic performance in single or multi-tenant environ-
ments.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having the
capability to handle multi-tenant operations.

Also provided herein, are methods and systems for vir-
tualization of storage devices, such as those using NVMe
and similar protocols, and the translation of those virtual
devices to different physical devices, such as ones using
SATA.

The methods and systems disclosed herein also include
methods and systems for end-to-end congestion control
involving only the hardware on the host (as opposed to the
network fabric) that includes remote credit management and
a distributed scheduling algorithm at the box level.

Also provided herein are various methods and systems
that are enabled by the converged network/storage control-
ler, including methods and systems for virtualization of a
storage cluster or of other elements that enable a cluster,
such as a storage adaptor, a network adaptor, a container
(e.g., a Linux container), a Solaris zone or the like. Among
advantages, one aspect of virtualizing a cluster is that
containers can become location-independent in the physical
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cluster. Among other advantages, this allows movement of
containers among machines in a vastly simplified process
described below.

Provided herein are methods and systems for virtualizing
direct-attached storage (DAS), so that the operating system
stack 108 still sees a local, persistent device, even if the
physical storage is moved and is remotely located; that is,
provided herein are methods and systems for virtualization
of DAS. In embodiments this may include virtualizing DAS
over a fabric, that is, taking a DAS storage system and
moving it outside the box and putting it on the network. In
embodiments this may include carving DAS into arbitrary
name spaces. In embodiments the virtualized DAS is made
accessible as if it were actual DAS to the operating system,
such as being accessible by the OS 108 over a PCle bus via
NVMe. Thus, provided herein is the ability to virtualize
storage (including DAS) so that the OS 108 sees it as DAS,
even if the storage is actually accessed over a network
protocol such as Ethernet, and the OS 108 is not required to
do anything different than would be required with local
physical storage.

Provided herein are methods and systems for providing
DAS across a fabric, including exposing virtualized DAS to
the OS 108 without requiring any modification of the OS
108.

Also provided herein are methods and systems for virtu-
alization of a storage adaptor (referring to a target storage
system).

Provided herein are methods and systems for combining
storage initiation and storage targeting in a single hardware
system. In embodiments, these may be attached by a PCle
bus 110. A single root virtualization function (SR-IOV) may
be applied to take any standard device and have it act as if
it is hundreds of such devices. Embodiments disclosed
herein include using SR-IOV to give multiple virtual
instances of a physical storage adaptor. SR-IOV is a PCle
standard that virtualizes 1/0 functions, and while it has been
used for network interfaces, the methods and systems dis-
closed herein extend it to use for storage devices. Thus,
provided herein is a virtual target storage system.

Embodiments may include a switch form factor or net-
work interface controller, wherein the methods and systems
disclosed herein may include a host agent (either in software
or hardware). Embodiments may include breaking up vir-
tualization between a front end and a back end.

Embodiments may include various points of deployment
for a converged network and target storage controller. While
some embodiments locate the converged device on a host
computing system 102, in other cases the disk can be moved
to another box (e.g., connected by Ethernet to a switch that
switches among various boxes below. While a layer may be
needed to virtualize, the storage can be separated, so that one
can scale storage and computing resources separately. Also,
one can then enable blade servers (i.e., stateless servers).
Installations that would have formerly involved expensive
blade servers and attached to storage area networks (SANs)
can instead attach to the switch. In embodiments this com-
prises a “rackscale” architecture where resources are disag-
gregated at the rack level.

Methods and systems disclosed herein include methods
and systems for virtualizing various types of non-DAS
storage as DAS in a converged networking/target storage
appliance. In embodiments, one may virtualize whatever
storage is desired as DAS, using various front end protocols
to the storage systems while exposing storage as DAS to the
OS stack 108.
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Methods and systems disclosed herein include virtualiza-
tion of a converged network/storage adaptor. From a traffic
perspective, one may combine systems into one. Combining
the storage and network adaptors, and adding in virtualiza-
tion, gives significant advantages. Say there is a single host
102 with two PCle buses 110. To route from the PCle 110,
you can use a system like RDMA to get to another machine/
host 102. If one were to do this separately, one has to
configure the storage and the network RDMA system sepa-
rately. One has to join each one and configure them at two
different places. In the converged scenario, the whole step of
setting up QoS, seeing that this is RDMA and that there is
another fabric elsewhere is a zero touch process, because
with combined storage and networking the two can be
configured in a single step. That is, once one knows the
storage, one doesn’t need to set up the QoS on the network
separately.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having
virtualization of a converged network/storage adaptor.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a
combination of a network adaptor and a storage adaptor with
target storage in a converged network/storage appliance and
storage system having a capability for handling a collection
of physically attached or network-distributed storage
resources as a virtualized cluster of storage resources and
having virtualization of a storage adaptor that refers to target
storage resources.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a
software system for handling combined traffic streams in a
converged networking and target storage adaptor.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having the
capability to allow a user to set a desired QoS independent
of the need to configure QoS for a network or a fabric.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a
capability for single-step and single entity configuration of
QoS for storage and networking resources.

Method and systems disclosed herein include virtualiza-
tion and/or indirection of networking and storage functions,
embodied in the hardware, optionally in a converged net-
work adaptor/storage adaptor appliance. While virtualiza-
tion is a level of indirection, protocol is another level of
indirection. The methods and systems disclosed herein may
convert a protocol suitable for use by most operating sys-
tems to deal with local storage, such as NVMe, to another
protocol, such as SAS, SATA, or the like. One may expose
a consistent interface to the OS 108, such as NVMe, and in
the back end one may convert to whatever storage media is
cost-effective. This gives a user a price/performance advan-
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tage. If components are cheaper/faster, one can connect any
one of them. The back end could be anything, including
NVMe.

Provided herein are methods and systems that include a
converged data path for network and storage functions in an
appliance. Alternative embodiments may provide a con-
verged data path for network and storage functions in a
switch.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a
converged data path for network functions and storage
functions in a networking and storage system.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a
software system for unified handling of networking func-
tions and storage initiation and management.

In embodiments, methods and systems disclosed herein
include storage/network tunneling, wherein the tunneling
path between storage systems over a network does not
involve the operating system of a source or target computer.
In conventional systems, one had separate storage and
network paths, so accessing storage remotely, required
extensive copying to and from memory, I/O buses, etc.
Merging the two paths means that storage traffic is going
straight onto the network. The OS 108 of each computer sees
only a local disk. Another advantage is simplicity of pro-
gramming. A user does not need to separately program a
SAN, meaning that the methods disclosed herein include a
one-step programmable SAN. Rather than requiring discov-
ery and specification of zones, and the like, encryption,
attachment, detachment and the like may be centrally, and
programmatically done.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having
storage-network tunneling where the tunneling is indepen-
dent of the operating system.

Embodiments disclosed herein may include virtualizing
the storage to the OS 108 so that the OS 108 sees storage as
a local disk. The level of indirection involved in the methods
and systems disclosed herein allows the converged system to
hide not only the location, but the media type, of storage
media. All the OS sees is that there is a local disk, even if
the actual storage is located remotely and/or is or a different
type, such as a SAN. Thus, virtualization of storage is
provided, where the OS 108 and applications do not have to
change. One can hide all of the management, policies of
tiering, polices of backup, policies of protection and the like
that are normally needed to configure complex storage types
behind.

Methods and systems are provided for selecting where
indirection occurs in the virtualization of storage. Virtual-
ization of certain functions may occur in hardware (e.g., in
an adaptor on a host, in a switch, and in varying form factors
(e.g., FPGA or ASICs) and in software. Different topologies
are available, such as where the methods and systems
disclosed herein are deployed on a host machine, on a top of
the rack switch, or in a combination thereof. Factors that go
into the selection include ease of use. Users who want to run
stateless servers may prefer a top of rack. Ones who don’t
care about that approach might prefer the controller on the
host.
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Methods and systems disclosed herein include providing
NVMe over Ethernet. These approaches can be the basis for
the tunneling protocol that is used between devices. NVMe
is a suitable DAS protocol that is intended conventionally to
go to a local PCle. Embodiments disclosed herein may
tunnel the NVMe protocol traffic over Ethernet. NVMe
(non-volatile memory express) is a protocol that in Linux
and Windows provides access to PCle-based Flash Storage.
This provides high performance by by-passing the software
stacks used in conventional systems.

Embodiments disclosed herein may include providing an
NVMe device that is virtualized and dynamically allocated.
In embodiments one may piggy back NVMe, but carve up
and virtualize and dynamically allocate an NVMe device. In
embodiments there is no footprint in the software. The
operating system stays the same (just a small driver that sees
the converged network/storage card). This results in virtual
storage presented like a direct attached disk, but the differ-
ence is that now we can pool such devices across the
network.

Provided herein are methods and systems for providing
the simplicity of direct attached storage (DAS) with the
advantages of sharing like in a storage area network (SAN).
Each converged appliance in various embodiments dis-
closed herein may be a host, and any storage drives may be
local to a particular host but seen by the other hosts (as in a
SAN or other network-accessible storage). The drives in
each box enabled by a network/storage controller of the
present disclosure behave like a SAN (that is, are available
on the network), but the management methods are much
simpler. When a storage administrator sets up a SAN, a
typical enterprise may have a whole department setting up
zones for a SAN (e.g., a fiber channel switch), such as
setting up “who sees what.” That knowledge is pre-loaded
and a user has to ask the SAN administrator to do the work
to set it up. There is no programmability in a typical legacy
SAN architecture. The methods and systems disclosed
herein provide local units that are on the network, but the
local units can still access their storage without having to go
through complex management steps like zone definition, etc.
These devices can do what a SAN does just by having both
network and storage awareness. As such, they represent the
first programmatic SAN.

Methods and systems disclosed herein may include per-
sistent, stateful, disaggregated storage enabled by a hard-
ware appliance that provides converged network and storage
data management.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having
persistent, stateful, disaggregated storage enabled by a sys-
tem that provides converged network and storage data
management.

Methods and systems disclosed herein may also include
convergence of network and storage data management in a
single appliance, adapted to support use of containers for
virtualization. Such methods and systems are compatible
with the container ecosystem that is emerging, but offering
certain additional advantages.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having the
capability to use containers.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
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physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a
capability for providing visibility across a plurality of con-
tainers, such that containers can access information with
respect to other containers and can be operated as a cluster.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a
container as a first class network end point.

Methods and systems are disclosed herein for implement-
ing virtualization of NVMe. Regardless how many sources
to how many destinations, as long as the data from the
sources is serialized first before going into the hub, then the
hub distributes to data to the designated destination sequen-
tially. If so, then data transport resources such as DMA
engine can be reduced to only one copy. This may include
various use scenarios. In one scenario, for NVMe virtual
functions (VFs), if they are all connected to the same PCle
bus, then regardless how many VFs are configured, the data
would be coming into this pool of VFs serially, so there is
only one DMA engine and only one storage block (for
control information) is needed. In another use scenario, for
a disk storage system with a pool of discrete disks/control-
lers, if the data is originated from the physical bus, i.e. PCle,
since the data is serially coming into this pool of disks, then
regardless how many disks/controllers are in the pool, the
transport resources such as the DMA engine can be reduced
to only one instead of one per controller.

In accordance with various exemplary and non-limiting
embodiments, a device comprises a converged input/output
controller that includes a physical target storage media
controller, a physical network interface controller; and a
gateway between the storage media controller and the net-
work interface controller, wherein gateway provides a direct
connection for storage traffic and network traffic between the
storage media controller and the network interface control-
ler.

In accordance with various exemplary and non-limiting
embodiments, a method of virtualization of a storage device
comprises accessing a physical storage device that responds
to instructions in a first storage protocol, translating instruc-
tions between the first storage protocol and a second storage
protocol and using the second protocol, presenting the
physical storage device to an operating system, such that the
storage of the physical storage device can be dynamically
provisioned, whether the physical storage device is local or
remote to a host computing system that uses the operating
system.

In accordance with various exemplary and non-limiting
embodiments, a method of facilitating migration of at least
one of an application and a container comprises providing a
converged storage and networking controller, wherein a
gateway provides a connection for network and storage
traffic between a storage component and a networking
component of the device without intervention of the oper-
ating system of a host computer and mapping the at least one
application or container to a target physical storage device
that is controlled by the converged storage and networking
controller, such that the application or container can access
the target physical storage, without intervention of the
operating system of the host system to which the target
physical storage is attached, when the application or con-
tainer is moved to another computing system.

In accordance with various exemplary and non-limiting
embodiments, a method of providing quality of service
(QoS) for a network, comprises providing a converged
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storage and networking controller, wherein a gateway pro-
vides a connection for network and storage traffic between
a storage component and a networking component of the
device without intervention of the operating system, a hyper-
visor, or other software running on the CPU of a host
computer and, also without intervention of the operating
system, hypervisor, or other software running on the CPU of
a host computer, managing at least one quality of service
(QoS) parameter related to a network in the data path of
which the storage and networking controller is deployed,
such managing being based on at least one of the storage
traffic and the network traffic that is handled by the con-
verged storage and networking controller.

QoS may be based on various parameters, such as one or
more of a bandwidth parameter, a network latency param-
eter, an 1O performance parameter, a throughput parameter,
a storage type parameter and a storage latency parameter.
QoS may be maintained automatically when at least one of
an application and a container that is serviced by storage
through the converged storage and network controller is
migrated from a host computer to another computer. Simi-
larly, QoS may be maintained automatically when at least
one target storage device that services at least one of an
application and a container through the converged storage
and network controller is migrated from a first location to
another location or multiple locations. For example, storage
may be scaled, or different storage media types may be
selected, to meet storage needs as requirements are
increased. In embodiments, a security feature may be pro-
vided, such as encryption of network traffic data, encryption
of data in storage, or both. Various storage features may be
provided as well, such as compression, protection levels
(e.g., RAID levels), use of different storage media types,
global de-duplication, and snapshot intervals for achieving
at least one of a recovery point objective (RPO) and a
recovery time objective (RTO).

In embodiments, the methods and systems described
herein include storage strategies that provide improved
efficiencies in the use of SSDs, including collections of
SSDs, such as to reduce the number of operations required
to write and modify data on the SSDs. These methods and
systems include system level write strategies, such as write
strategies where writes are striped across different sets of
solid state drives (“SSDs), with certain SSDs performing
garbage collection at identified points in time, where group-
ings of the particular SSDs that used for writes and garbage
collection are varied from time period to time period. These
methods and systems also include methods and systems for
drive arrangement optimization. These methods and systems
also provide additional capabilities, such as providing sys-
tem level encryption strategies. Also, these methods and
systems include providing novel writing strategies for SSDs,
including write strategies that leave unwritten pages within
a block of data during a series of write operations, so that the
new data can be written to the unwritten pages on subse-
quent passes through the SSD. The arrangement of written
and unwritten pages may be random, or may be arranged
according to a defined pattern. A series of write operations
may be ordered across multiple blocks of an SSD and/or
across blocks distributed across multiple SSDs. A map may
be maintained at the system level to keep track of what data
has been written at what time to what pages, blocks, and
SSDs. Such write strategies may be used to avoid many of
the difficulties of garbage collection processes and to pro-
vide much more efficient usage of storage resources, requir-
ing far fewer operations than current garbage collection
processes. Such storage strategies may be used in combina-
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tion with the various other capabilities of the embodiments
of the converged storage and networking solution described
throughout this disclosure.

BRIEF DESCRIPTION OF THE FIGURES

The accompanying figures where like reference numerals
refer to identical or functionally similar elements throughout
the separate views and which together with the detailed
description below are incorporated in and form part of the
specification, serve to further illustrate various embodiments
and to explain various principles and advantages all in
accordance with the systems and methods disclosed herein.

FIG. 1 illustrates a general architecture in accordance with
an exemplary and non-limiting embodiment.

FIG. 2 illustrates a computer system in accordance with
an exemplary and non-limiting embodiment.

FIG. 3 illustrates a converged solution in accordance with
an exemplary and non-limiting embodiment.

FIG. 4 illustrates two computing systems enabled by a
converged solution in accordance with an exemplary and
non-limiting embodiment.

FIG. 5 illustrates a converged controller in accordance
with an exemplary and non-limiting embodiment.

FIG. 6 illustrates a deployment of a converged controller
in accordance with an exemplary and non-limiting embodi-
ment.

FIG. 7 illustrates a plurality of systems in accordance with
an exemplary and non-limiting embodiment.

FIG. 8 illustrates a block diagram of a field-program-
mable gate array (FPGA) in accordance with an exemplary
and non-limiting embodiment.

FIG. 9 illustrates an architecture of a controller card in
accordance with an exemplary and non-limiting embodi-
ment.

FIG. 10 illustrates a software stack in accordance with an
exemplary and non-limiting embodiment.

FIGS. 11-15 illustrate the movement of an application
container across multiple systems in accordance with an
exemplary and non-limiting embodiment.

FIG. 16 illustrates packet transmission in accordance with
an exemplary and non-limiting embodiment.

FIG. 17 illustrates a storage access scheme in accordance
with an exemplary and non-limiting embodiment.

FIG. 18 illustrates the operation of a file system in
accordance with an exemplary and non-limiting embodi-
ment.

FIG. 19 illustrates the operation of a distributed file server
in accordance with an exemplary and non-limiting embodi-
ment.

FIG. 20 illustrates a high performance distributed file
server (DFS) in accordance with an exemplary and non-
limiting embodiment.

FIG. 21 illustrates a system in accordance with an exem-
plary and non-limiting embodiment.

FIG. 22 illustrates a host in accordance with an exemplary
and non-limiting embodiment.

FIG. 23 illustrates an application accessing a block of data
in accordance with an exemplary and non-limiting embodi-
ment.

FIG. 24 illustrates an application accessing a block of data
in accordance with an exemplary and non-limiting embodi-
ment.

FIG. 25 illustrates a system in accordance with an exem-
plary and non-limiting embodiment.

FIG. 26 illustrates a method according to an exemplary
and non-limiting embodiment.
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FIG. 27 illustrates a method according to an exemplary
and non-limiting embodiment.

FIG. 28 illustrates a method according to an exemplary
and non-limiting embodiment.

FIG. 29 illustrates an exemplary two-node architecture for
the methods and systems described herein.

FIG. 30 illustrates an exemplary three-node architecture
for the methods and systems described herein.

FIG. 31 illustrates an exemplary architecture with a proxy
NVME controller and a remote NVME controller.

FIG. 32 illustrates a block diagram of exchange layer
NVME operation.

FIG. 33 illustrates a burst transmission protocol flow
diagram.

FIG. 34 illustrates a flow diagram for preventing duplicate
transmission of delivered packets.

FIG. 35 illustrates a request credit loss scenario flow
diagram.

FIG. 36 illustrates a grant credit loss scenario flow dia-
gram.

FIG. 37 illustrates a command/data packet loss scenario
flow diagram.

FIG. 38 illustrates an ACK loss scenario flow diagram.

FIG. 39 illustrates a multiple loss scenario flow diagram.

FIG. 40 illustrates an alternate multiple loss scenario flow
diagram.

FIG. 41 illustrates a channel reset scenario flow diagram.

FIG. 42 illustrates a use of an Exchange Status Block.

FIG. 43 illustrates a table of exchange state triggers.

FIG. 44 illustrates a write command flow diagram.

FIG. 45 illustrates a read command flow diagram.

FIG. 46 illustrates a target ready indicator flow diagram.

FIG. 47 illustrates an administrative command exchange
flow diagram.

FIG. 48 illustrates use of multiple Xfer Rdy packets.

FIG. 49 illustrates admin command data length contraint.

FIG. 50 illustrates a sequence of steps for error recovery.

FIG. 51 illustrates time out flow due to repeated NVME
first packet drops.

FIG. 52 illustrates time out flow due to repeated NVME
subsequent packet drops.

FIG. 53 illustrates a complete write command flow.

FIG. 54 illustrates a complete read command flow.

FIG. 55 illustrates a PCle transmission over a network.

FIG. 56 illustrates a table of comparing different flow
scenarios.

FIG. 57 illustrates a flow control enabling architecture
diagram.

FIG. 58 illustrates NVMEoN encapsulation of an NVME
Command Packet 5800 in an embodiment.

FIG. 59 illustrates NVMEoN encapsulation of a batched
NVME Command Packet 5900 in an embodiment.

FIG. 60 illustrates an NVMEoN Xfer Rdy command 6000
in an embodiment.

FIG. 61 illustrates NVMEoN encapsulation of a NVME
Data Packet 6100 in an embodiment.

FIG. 62 illustrates an NVMEoN Exchange Cleanup
Request/Response 6200 in an embodiment.

FIG. 63 illustrates BTP control packets 6300 in an
embodiment.

FIG. 64 illustrates handling of undefined BTP opcodes.

FIG. 65 illustrates an architecture for software-based
NVMEoN deployment.

FIG. 66 illustrates an architecture for hardware-based
NVMEoN deployment.

FIG. 67 illustrates a log-based storage system in which
data are written across a collection of SSDs and at different
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time periods different groups of SSDs are employed for
writing data and for garbage collection, respectively.

FIG. 68 illustrates a sequence of operations involved in
writing pages of data, followed by a garbage collection
process.

FIG. 69 illustrates a system level write strategy in which
new pages of data are serially written to random pages
across a collection of SSDs in a storage system.

Skilled artisans will appreciate that elements in the figures
are illustrated for simplicity and clarity and have not nec-
essarily been drawn to scale. For example, the dimensions of
some of the elements in the figures may be exaggerated
relative to other elements to help to improve understanding
of embodiments of the systems and methods disclosed
herein.

DETAILED DESCRIPTION OF THE
INVENTION

The present disclosure will now be described in detail by
describing various illustrative, non-limiting embodiments
thereof with reference to the accompanying drawings and
exhibits. The disclosure may, however, be embodied in
many different forms and should not be construed as being
limited to the illustrative embodiments set forth herein.
Rather, the embodiments are provided so that this disclosure
will be thorough and will fully convey the concept of the
disclosure to those skilled in the art. The claims should be
consulted to ascertain the true scope of the disclosure.

Before describing in detail embodiments that are in accor-
dance with the systems and methods disclosed herein, it
should be observed that the embodiments reside primarily in
combinations of method steps and/or system components
related to converged networking and storage. Accordingly,
the system components and method steps have been repre-
sented where appropriate by conventional symbols in the
drawings, showing only those specific details that are per-
tinent to understanding the embodiments of the systems and
methods disclosed herein so as not to obscure the disclosure
with details that will be readily apparent to those of ordinary
skill in the art.

Referring to FIG. 3, the converged solution 300 may
include three important aspects and may be implemented in
a hardware device that includes a combination of hardware
and software modules and functions. First, a cut-through
data path 304 may be provided between a network controller
118 and a storage controller 112, so that access of the storage
to and from the network can be direct, without requiring any
intervention of the OS stack 108, the PCle bus 110, or the
CPU 106. Second, cut through storage stack access, such as
to storage devices 302, may be provided, such as access of
the storage to and from entities on the local host, which
allows bypassing of complex legacy software stacks for
storage access, such as SCSI/SAS/SATA stacks. Third, end-
to-end congestion management and flow control of the
network may be provided, such as by a mechanism to
reserve and schedule the transfer of data across the network,
which guarantees the availability of the target’s data to
remote initiators and minimizes the congestion of the traffic
as it flows through intermediate network fabric switches.
The first and second aspects remove software stacks (hence
the CPU 106 and memory) from the path of the data,
eliminating redundant or unnecessary movement and pro-
cessing. End-to-end congestion management and flow con-
trol delivers a deterministic and reliable transport of the data.

As noted above, one benefit of the converged solution 300
is that the operating system stack 108 connects to the
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converged solution 300 over a conventional PCle 110 or a
similar bus, so that the OS stack 108 seces the converged
solution 300, and any storage that it controls through the
cut-through to storage devices 302, as one or more local,
persistent devices, even if the physical storage is remotely
located. Among other things, this comprises the capability
for virtualization of DAS 308, which may include virtual-
izing DAS 308 over a fabric, that is, taking a DAS 308
storage system and moving it outside the computing system
102 and putting it on the network. The storage controller 112
of the converged solution 300 may connect to and control
DAS 308 on the network 122 via various known protocols,
such as SAS, SATA, or NVMe. In embodiments virtualiza-
tion may include carving DAS 308 into arbitrary name
spaces. In embodiments the virtualized DAS 308 is made
accessible as if it were actual, local, physical DAS to the
operating system, such as being accessible by the OS 108
over a PCle bus 110 to the storage controller 112 of the
converged solution 300 via a standard protocol such as
NVMe. Again, the OS 108 sees the entire solution 300 as a
local, physical device, such as DAS. Thus, provided herein
is the ability to virtualize storage (including DAS and other
storage types, such as SAN 310) so that the OS 108 sees any
storage type as DAS, even if the storage is actually accessed
over a network 122, and the OS 108 is not required to do
anything different than would be required with local physi-
cal storage. In the case where the storage devices 302 are
SAN 310 storage, the storage controller 112 of the con-
verged solution may control the SAN 310 through an
appropriate protocol used for storage area networks, such as
the Internet Small Computing System Interface (iSCSI),
Fibre Channel (FC), or Fibre Channel over Ethernet (FCoE).
Thus, the converged solution 300 provides a translation for
the OS stack 108 from any of the other protocols used in
storage, such as Ethernet, SAS, SATA, NVMe, iSCSI, FC or
FCoE, among others, to a simple protocol like NVMe that
makes the disparate storage types and protocols appear as
local storage accessible over PCle 110. This translation in
turns enables virtualization of a storage adaptor (referring to
any kind of target storage system). Thus, methods and
systems disclosed herein include methods and systems for
virtualizing various types of non-DAS storage as DAS in a
converged networking/target storage appliance 300. In
embodiments, one may virtualize whatever storage is
desired as DAS, using various protocols to the storage
systems while exposing storage as DAS to the OS stack 108.
Thus, provided herein are methods and systems for virtual-
ization of storage devices, such as those using NVMe and
similar protocols, and the translation of those virtual devices
to different physical devices, such as ones using SATA.
Storage/network tunneling 304, where the tunneling path
between storage systems over the network 122 does not
involve the operating system of a source or target computer
enables a number of benefits. In conventional systems, one
has separate storage and network paths, so accessing storage
remotely required extensive copying to and from memory,
1/0 buses, etc. Merging the two paths means that storage
traffic is going straight onto the network. An advantage is
simplicity of programming. A user does not need to sepa-
rately program a SAN 310, meaning that the methods
disclosed herein enable a one-step programmable SAN 310.
Rather than requiring discovery and specification of zones,
and the like, configuration, encryption, attachment, detach-
ment and the like may be centrally, and programmatically
done. As an example, a typical SAN is composed of “ini-
tiators,” “targets,” and a switch fabric, which connects the
initiators and targets. Typically, which initiators see which
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targets are defined/controlled by the fabric switches, called
“zones.” Therefore, if an initiator moves or a target moves,
zones need to be updated. The second control portion of a
SAN typically lies with the “targets.” They can control
which initiator port can see what logical unit numbers
(LUNSs) (storage units exposed by the target). This is typi-
cally referred to as LUN masking and LUN mapping. Again,
if an initiator moves locations, one has to re-program the
“Target”. Consider now that in such an environment if an
application moves from one host to another (such as due to
a failover, load re-balancing, or the like) the zoning and
LUN masking/mapping needs to be updated. Alternatively,
one could pre-program the SAN, so that every initiator sees
every target. However, doing so results in an un-scalable and
un-secure SAN. In the alternate solution described through-
out this disclosure, such a movement of an application, a
container, or a storage device does NOT require any SAN
re-programming, resulting in a zero touch solution. The
mapping maintained and executed by the converged solution
300 allows an application or a container, the target storage
media, or both, to be moved (including to multiple locations)
and scaled independently, without intervention by the OS, a
hypervisor, or other software running on the host CPU.

The fact that the OS 108 sees storage as a local disk allows
simplified virtualization of storage. The level of indirection
involved in the methods and systems disclosed herein allows
the converged system 300 to hide not only the location, but
the media type, of storage media. All the OS 108 sees is that
there is a local disk, even if the actual storage is located
remotely and/or is or a different type, such as a SAN 310.
Thus, virtualization of storage is provided through the
converged solution 300, where the OS 108 and applications
do not have to change. One can hide all of the management,
policies of tiering, polices of backup, policies of protection
and the like that are normally needed to configure complex
storage types behind.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having
virtualization of storage to an operating system, such that the
operating system sees various types of storage as a local
disk.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a
facility for selectively managing where indirection occurs in
a system for virtualization of storage.

The converged solution 300 enables the simplicity of
direct attached storage (DAS) with the advantages of a
storage area network (SAN). Each converged appliance 300
in various embodiments disclosed herein may act as a host,
and any storage devices 302 may be local to a particular host
but seen by the other hosts (as is the case in a SAN 310 or
other network-accessible storage). The drives in each box
enabled by a network/storage controller of the present
disclosure behave like a SAN 310 (e.g., are available on the
network), but the management methods are much simpler.
When a storage administrator normally sets up a SAN 310,
a typical enterprise may have a whole department setting up
zones for a SAN 310 (e.g., a fiber channel switch), such as
setting up “who sees what.” That knowledge must be
pre-loaded, and a user has to ask the SAN 310 administrator
to do the work to set it up. There is no programmability in
a typical legacy SAN 310 architecture. The methods and
systems disclosed herein provide local units that are on the
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network, but the local units can still access their storage
without having to go through complex management steps
like zone definition, etc. These devices can do what a SAN
does just by having both network and storage awareness. As
such, they represent the first programmatic SAN.

The solution 300 can be described as a “Converged 10
Controller” that controls both the storage media 302 and the
network 122. This converged controller 300 is not just a
simple integration of the storage controller 112 and the
network controller (NIC) 118. The actual functions of the
storage and network are merged such that storage functions
are performed as the data traverses to and from the network
interface. The functions may be provided in a hardware
solution, such as an FPGA (one or more) or ASIC (one or
more) as detailed below.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a
field programmable hardware device that provides con-
verged network and storage data path management.

Referring to FIG. 4, two or more computing systems 102
enabled by converged solutions 300 may serve as hosts for
respective storage targets, where by merging storage and
network and controlling both interfaces, direct access to the
storage 302 can be achieved remotely over the network 122
without traversing internal busses or CPU/software work,
such as by a point-to-point path 400 or by an Ethernet switch
402 to another computer system 102 that is enabled by a
converged solution 300. The highest performance (high
IOPs and low latency) can be achieved. Further, storage
resources 302 can now be pooled across the cluster. In FIG.
4, this is conceptually illustrated by the dotted oval 404.

In embodiments, the converged solution 300 may be
included on a host computing system 102, with the various
components of a conventional computing system as depicted
in FIG. 1, together with the converged 1O controller 300 as
described in connection with FIG. 3. Referring to FIG. 5, in
alternative embodiments, the converged controller 300 may
be disposed in a switch, such as a top of the rack switch, thus
enabling a storage enabled switch 500. The switch may
reside on the network 122 and be accessed by a network
controller 118, such as of a conventional computing system
102.

Referring to FIG. 6, systems may be deployed in which a
converged controller 300 is disposed both on one or more
host computing systems 102 and on a storage enabled switch
500, which may be connected to systems 102 that are
enabled by converged solutions 300 and to non-enabled
systems 102. As noted above, target storage 302 for the
converged controller(s) 300 on the host computing system
102 and on the storage enabled switch 500 can be visible to
each other across the network, such as being treated as a
unified resource, such as to virtualization solutions. In sum,
intelligence, including handling converged network and
storage traffic on the same device, can be located in a host
system, in a switch, or both in various alternative embodi-
ments of the present disclosure.

Embodiments disclosed herein may thus include a switch
form factor or a network interface controller, or both which
may include a host agent (either in software or hardware).
These varying deployments allow breaking up virtualization
capabilities, such as on a host and/or on a switch and/or
between a front end and a back end. While a layer may be
needed to virtualize certain functions, the storage can be
separated, so that one can scale storage and computing
resources separately. Also, one can then enable blade servers
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(i.e., stateless servers). Installations that would have for-
merly involved expensive blade servers and attached storage
area networks (SANs) can instead attach to the storage
enabled switch 500. In embodiments this comprises a “rack-
scale” architecture, where resources are disaggregated at the
rack level.

Methods and systems are provided for selecting where
indirection occurs in the virtualization of storage. Virtual-
ization of certain functions may occur in hardware (e.g., in
a converged adaptor 300 on a host 102, in a storage enabled
switch 500, in varying hardware form factors (e.g., FPGAs
or ASICs) and in software. Different topologies are avail-
able, such as where the methods and systems disclosed
herein are deployed on a host machine 102, on a top of the
rack switch 500, or in a combination thereof. Factors that go
into the selection of where virtualization should occur
include ease of use. Users who want to run stateless servers
may prefer a top of rack storage enabled switch 500. Ones
who don’t care about that approach might prefer the con-
verged controller 300 on the host 102.

FIG. 7 shows a more detailed view of a set of systems that
are enabled with converged controllers 300, including two
computer systems 102 (computer system 1 and computer
system 2), as well as a storage enabled switch 500. Storage
devices 302, such as DAS 308 and SAN 310 may be
controlled by the converged controller 300 or the storage
enabled switch 500. DAS 308 may be controlled in either
case using SAS, SATA or NVMe protocols. SAN 310 may
be controlled in either case using iSCSI, FC or FCoE.
Connections among hosts 102 that have storage controllers
300 may be over a point-to-point path 400, over an Ethernet
switch 402, or through a storage enabled switch 500, which
also may provide a connection to a conventional computing
system. As noted above, the multiple systems with intelli-
gent converged controllers 300 can each serve as hosts and
as storage target locations that the other hosts see, thereby
providing the option to be treated as a single cluster of
storage for purposes of an operating system 108 of a
computing system 102.

Method and systems disclosed herein include virtualiza-
tion and/or indirection of networking and storage functions,
embodied in the hardware converged controller 300, option-
ally in a converged network adaptor/storage adaptor appli-
ance 300. While virtualization is a level of indirection,
protocol is another level of indirection. The methods and
systems disclosed herein may convert a protocol suitable for
use by most operating systems to deal with local storage,
such as NVMe, to another protocol, such as SAS, SATA, or
the like. One may expose a consistent interface to the OS
108, such as NVMe, and on the other side of the converged
controller 300 one may convert to whatever storage media
302 is cost-effective. This gives a user a price/performance
advantage. If components are cheaper/faster, one can con-
nect any one of them. The side of the converged controller
300 could face any kind of storage, including NVMe.
Furthermore the storage media type may be any of the
following including, but not limited, to HDD, SSD (based on
SLC, MLC, or TLC Flash), RAM etc or a combination
thereof.

In embodiments, a converged controller may be adapted
to virtualize NVMe virtual functions, and to provide access
to remote storage devices 302, such as ones connected to a
storage-enabled switch 500, via NVMe over an Ethernet
switch 402. Thus, the converged solution 300 enables the
use of NVMe over Ethernet 700, or NVMeoE. Thus, meth-
ods and systems disclosed herein include providing NVMe
over Ethernet. These approaches can be the basis for the
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tunneling protocol that is used between devices, such as the
host computing system 102 enabled by a converged con-
troller 300 and/or a storage enabled switch 500. NVMe is a
suitable DAS protocol that is intended conventionally to go
to a local PCle 110. Embodiments disclosed herein may
tunnel the NVMe protocol traffic over Ethernet. NVMe
(non-volatile memory express) is a protocol that in Linux
and Windows provides access to PCle-based Flash. This
provides high performance via by-passing the software
stacks used in conventional systems, while avoiding the
need to translate from NVMe (as used by the OS stack 108)
and the traffic tunneled over Ethernet to other devices.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a
capability for using a Non-Volatile Memory Express proto-
col over an Ethernet.

FIG. 8 is a block diagram of an FPGA 800, which may
reside on an IO controller card and enable an embodiment of
a converged solution 300. Note that while a single FPGA
800 is depicted, the various functional blocks could be
organized into multiple FPGAs, into one or more customer
Application Specific Integrated Circuits (ASICs), or the like.
For example, various networking blocks and various storage
blocks could be handled in separate (but interconnected)
FPGAs or ASICs. References throughout this disclosure to
an FPGA 800 should be understood, except where context
indicates otherwise, to encompass these other forms of
hardware that can enable the functional capabilities reflected
in FIG. 8 and similar functions. Also, certain functional
groups, such as for networking functions and/or storage
functions, could be embodied in merchant silicon.

The embodiment of the FPGA 800 of FIG. 8 has four main
interfaces. First, there is PCle interface, such as to the PCle
bus 110 of a host computer 102. Thus, the card is a PCle end
point. Second, there is a DRAM/NVRAM interface. For
example, a DDR interface may be provided to external
DRAM or NVRAM, used by the embedded CPUs, meta-
data and data structures, and packet/data buffering. Third,
there is a storage interface to media, such as DAS 308 and
SAN 310. Storage interfaces can include ones for SAS,
SATA, NVMe, iSCSI, FC and/or FCoE, and could in
embodiments be any interface to rotating media, flash, or
other persistent form of storage, either local or over a
cut-through to a network-enabled storage like SAN 310.
Fourth, a network interface is provided, such as Ethernet to
a network fabric. The storage interfaces and the network
interfaces can be used, in part, to enable NVMe over
Ethernet.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having an
interface that allows an operator to handle storage area
network resources with an interface that is used for disk
attached storage.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a
pool of virtualized, converged networking/storage devices
that appear to an operating system as disk attached storage.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
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as a virtualized cluster of storage resources and having disk
attached storage across a network fabric.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having an
integrated framework for network management and storage
management, including controlling target storage functions
and handling network fabric capabilities.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having
network policies for containers exposed with network man-
agement function in a unified network and storage manage-
ment interface.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a
network and storage management interface that allow sepa-
rated handling storage functions and network functions for
a unified networking and storage system.

The internal functions of the FPGA 800 may include a
number of enabling features for the converged solution 300
and other aspects of the present disclosure noted throughout.
A set of virtual endpoints (VNVMe) 802 may be provided for
the host. Analogous to the SR-IOV protocol that is used for
the network interface, this presents virtual storage targets to
the host. In this embodiment of the FPGA 800, NVMe has
benefits of low software overhead, which in turn provides
high performance. A virtual NVMe device 802 can be
dynamically allocated/de-allocated/moved and resized. As
with SR-IOV, there is one physical function (PF) 806 that
interfaces with a PCle driver 110 (see below), and multiple
virtual functions 807 (VF) in which each appears as an
NVMe device.

Also provided in the FPGA 800 functions are one or more
read and write direct memory access (DMA) queues 804,
referred to in some cases herein as a DM A engine 804. These
may include interrupt queues, doorbells, and other standard
functions to perform DMA to and from the host computing
system 102.

A device mapping facility 808 on the FPGA 800 may
determine the location of the virtual NVMe devices 802. The
location options would be local (i.e.—attached to one of the
storage media interfaces 824 shown), or remote on another
host 102 of a storage controller 300. Access to a remote
vNVMe device requires going through a tunnel 828 to the
network 122.

A NVMe virtualization facility 810 may translate NVMe
protocol instructions and operations to the corresponding
protocol and operations of the backend storage media 302,
such as SAS or SATA (in the case of use of NVMe on the
backend storage medium 302, no translation may be needed)
where DAS 308 is used, or such as iSCSI, FC or FCoE in the
case where SAN 310 storage is used in the backend.
References to the backend here refer to the other side of the
converged controller 300 from the host 102.

A data transformation function 812 may format the data as
it is stored onto the storage media 302. These operations
could include re-writes, transformation, compression, pro-
tection (such as RAID), encryption and other functions that
involve changing the format of the data in any way as
necessary to allow it to be handled by the applicable type of
target storage medium 308. In some embodiments, storage
medium 308 may be remote.
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In embodiments, storage read and write queues 814 may
include data structures or buffering for staging data during a
transfer. In embodiments, temporary memory, such as
DRAM of NVRAM (which may be located off the FPGA
800) may be used for temporary storage of data.

A local storage scheduler and shaper 818 may prioritize
and control access to the storage media 302. Any applicable
SLA policies for local storage may be enforced in the
scheduler and shaper 818, which may include strict priori-
ties, weighted round robin scheduling, IOP shapers, and
policers, which may apply on a per queue, per initiator, per
target, or per c-group basis, and the like.

A data placement facility 820 may implement an algo-
rithm that determines how the data is laid out on the storage
media 302. That may involve various placement schemes
known to those of skill in the art, such as striping across the
media, localizing to a single device 302, using a subset of the
devices 302, or localizing to particular blocks on a device
302.

A storage metadata management facility 822 may include
data structures for data placement, block and object i-nodes,
compression, deduplication, and protection. Metadata may
be stored either in off-FPGA 800 NVRAM/DRAM or in the
storage media 302.

A plurality of control blocks 824 may provide the inter-
face to the storage media. These may include SAS, SATA,
NVMe, PCle, iSCSI, FC and/or FCoE, among other possible
control blocks, in each case as needed for the appropriate
type of target storage media 302.

A storage network tunnel 828 of the FPGA 800 may
provide the tunneling/cut-through capabilities described
throughout this disclosure in connection with the converged
solution 300. Among other things, the tunnel 828 provides
the gateway between storage traffic and network traffic. It
includes encapsulation/de-encapsulation or the storage traf-
fic, rewrite and formatting of the data, and end-to-end
coordination of the transfer of data. The coordination may be
between FPGAs 800 across nodes within a host computing
system 102 or in more than one computing system 102, such
as for the point-to-point path 400 described in connection
with FIG. 4. Various functions, such as sequence numbers,
packet loss, time-outs, and retransmissions may be per-
formed. Tunneling may occur over Ethernet, including by
FCoE or NVMeoE.

A virtual network interface card facility 830 may include
a plurality of SR-IOV endpoints to the host 102, presented
as virtual network interface cards. One physical function
(PF) 836 may interfaces with a PCle driver 110 (see software
description below), and multiple virtual functions (VF) 837,
in which each appear as a network interface card (NIC) 118.

A set of receive/transmit DMA queues 832 may include
interrupt queues, doorbells, and other standard functions to
perform DMA to and from the host 102.

A classifier and flow management facility 834 may per-
form standard network traffic classification, typically to
IEEE standard 802.1Q class of service (COS) mappings or
other priority levels.

An access control and rewrite facility 838 may handle
access control lists (ACLs) and rewrite policies, including
access control lists typically operating on Ethernet tuples
(MAC SA/DA, 1P SA/DA, TCP ports, etc.) to reclassify or
rewrite packets.

A forwarding function 840 may determines destination of
the packet, such as through layer 2 (I.2) or layer 3 (L3)
mechanisms.
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A set of network receive and transmit queues 842 may
handle data structures or buffering to the network interface.
Oft-FPGA 800 DRAM may be used for packet data.

A network/remote storage scheduler and policer 844 may
provide priorities and control access to the network inter-
face. SLA policies for remote storage and network traffic
may be enforced here, which may include strict priorities,
weighted round robin, IOP and bandwidth shapers, and
policers on a per queue, per initiator, per target, per c-group,
or per network flow basis, and the like.

A local network switch 848 may forward packets between
queues in the FPGA, so that traffic does not need to exit the
FPGA 800 to the network fabric 122 if the destination is
local to the FPGA 800 or the host 102.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a
storage initialization and target functions in a network
switch with attached disks.

An end-to-end congestion control/credit facility 850 may
prevent network congestion. This is accomplished with two
algorithms. First there may be an end-to-end reservation/
credit mechanism with a remote FPGA 800. This may be
analogous to a SCSI transfer ready function, where the
remote FPGA 800 permits the storage transfer if it can
immediately accept the data. Similarly, the local FPGA 800
allocates credits to remote FPGAs 800 as they request a
transfer. SLA policies for remote storage may also be
enforced here. Second there may be a distributed scheduling
algorithm, such as an iterative round-robin algorithm, such
as the iSLIP algorithm for input-queues proposed in the
publication “The iSLIP Scheduling Algorithm for Input-
Queues Switches”, by Nick McKeown, IEEE/ACM
TRANSACTIONS ON NETWORKING, VOL. 7, NO. 2,
APRIL 1999. The algorithm may be performed cluster wide
using the intermediate network fabric as the crossbar.

A rewrite, tag, and CRC facility 852 may encapsulate/de-
encapsulate the packet with the appropriate tags and CRC
protection.

A set of interfaces 854, such as MAC interfaces, may
provide an interface to Ethernet.

A set of embedded CPU and cache complexes 858 may
implement a process control plan, exception handling, and
other communication to and from the local host and network
remote FPGAs 800.

A memory controller 860, such as a DDR controller, may
act as a controller for the external DRAM/NVRAM.

As a result of the integration of functions provided by the
converged solution 300, as embodied in one example by the
FPGA 800, provided herein are methods and systems for
combining storage initiation and storage targeting in a single
hardware system. In embodiments, these may be attached by
a PCle bus 110. A single root virtualization function (SR-
IOV) or the like may be applied to take any standard device
(e.g., any storage media 302 device) and have it act as if it
is hundreds of such devices. Embodiments disclosed herein
include using a protocol like SR-IOV to give multiple virtual
instances of a physical storage adaptor. SR-IOV is a PCle
standard that virtualizes 1/0 functions, and while it has been
used for network interfaces, the methods and systems dis-
closed herein extend it to use for storage devices. Thus,
provided herein is a virtualized target storage system. In
embodiments the virtual target storage system may handle
disparate media as if the media are a disk or disks, such as
DAS 310.



US 10,635,316 B2

25

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having the
capability for virtualization in the input/output data path of
a storage resources.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a
network device with storage initiation and a storage target on
the device.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a
software system for managing a converged networking and
target storage initiation and handling system.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having
virtualization embodied in hardware in a converged network
and storage system.

Enabled by embodiments like the FPGA 800, embodi-
ments of the methods and systems disclosed herein may also
include providing an NVMe device that is virtualized and
dynamically allocated. In embodiments one may piggyback
the normal NVMe protocol, but carve up, virtualize and
dynamically allocate the NVMe device. In embodiments
there is no footprint in the software. The operating system
108 stays the same or nearly the same (possibly having a
small driver that sees the converged network/storage card
300). This results in virtual storage that looks like a direct
attached disk, but the difference is that now we can pool such
storage devices 302 across the network 122.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having
pooled hardware storage resources that are virtualized to an
operating system, such that what appears to be a physical
disk expands in capacity without requiring a copying or
rebalancing operation by the operating system that accesses
the storage.

Methods and systems are disclosed herein for implement-
ing virtualization of NVMe. Regardless how many sources
are related to how many destinations, as long as the data
from the sources is serialized first before going into the hub,
then the hub distributes to data to the designated destination
sequentially. If so, then data transport resources such as the
DMA queues 804, 832 can be reduced to only one copy. This
may include various use scenarios. In one scenario, for
NVMe virtual functions (VFs), if they are all connected to
the same PCle bus 110, then regardless how many VFs 807
are configured, the data would be coming into this pool of
VFs 807 serially, so there is only one DMA engine 804, and
only one storage block (for control information) is needed.

In another use scenario, for a disk storage system with a
pool of discrete disks/controllers, if the data is originated
from the physical bus, i.e. PCle 110, since the data is serially
coming into this pool of disks, then regardless how many
disks/controllers are in the pool, the transport resources such
as the DMA engine 804 can be reduced to only one instead
of one per controller.

Methods and systems disclosed herein may also include
virtualization of a converged network/storage adaptor 300.

40

45

50

55

65

26

From a traffic perspective, one may combine systems into
one. Combining the storage and network adaptors, and
adding in virtualization, gives significant advantages. Say
there is a single host 102 with two PCle buses 110. To route
from the PCle 110, you can use a system like remote direct
memory access (RDMA) to get to another machine/host
102. If one were to do this separately, one has to configure
the storage and the network RDMA systems separately. One
has to join each one and configure them at two different
places. In the converged solution 300, the whole step of
setting up QoS, seeing that this is RDMA and that there is
another fabric elsewhere is a zero touch process, because
with combined storage and networking the two can be
configured in a single step. That is, once one knows the
storage, one doesn’t need to set up the QoS on the network
separately. Thus, single-step configuration of network and
storage for RDMA solutions is enabled by the converged
solution 300.

Referring again to FIG. 4, remote access is enabled by the
FPGA 800 or similar hardware as described in connection
with FIG. 8. The virtualization boundary is indicated in FI1G.
4 by the dotted line 408. To the left of this line, virtual
storage devices (e.g., NVMe 802) and virtual network
interfaces 830 are presented to the operating system 108.
The operating system cannot tell these are virtual devices.
To the right of the virtualization boundary 408 are physical
storage devices 302 (e.g., using SATA or other protocols
noted above) and physical network interfaces. Storage vir-
tualization functions are implemented by the vNVMe 802
and the NVMe virtualization facility 810 of FIG. 8. Network
virtualization functions are implemented by the vNIC facil-
ity 830. Location of the physical storage media is also
hidden from the operating system 108. Effectively, the
physical disks 302 across servers can be pooled and
accessed remotely. The operating system 108 issues a read
or write transaction to the storage media 302 (it is a virtual
device, but the operation system 108 sees it as a physical
device). If the physical storage media 302 happens to be
remote, the read/write transaction is mapped to the proper
physical location, encapsulated, and tunneled through Eth-
ernet. This process may be implemented by the device
mapping facility 808, the NVMe virtualization facility 810,
the data transformation facility 812 and the storage-network
tunnel 828 of FIG. 8. The target server (second computing
system) un-tunnels the storage read/write and directly
accesses its local storage media 302. If the transaction is a
write, the data is written to the media 302. If the transaction
is a read, the data is prepared, mapped to the origin server,
encapsulated, and tunneled through Ethernet. The transac-
tion completion arrives at the origin operating system 102.
In a conventional system, these steps would require software
intervention in order to process the storage request, data
formatting, and network access. As shown, all of these
complex software steps are avoided.

Referring to FIG. 9, a simplified block diagram is pro-
vided of an architecture of a controller card 902, as one
embodiment of a converged solution 300 as described
throughout this disclosure. The controller card 902 may be,
for example, a standard, full-height, half-length PCle card,
such as a Gen3 x16 card. However, a non-standard card size
is acceptable, preferably sized so that it can fit into various
types of targeted chassis. The PCle form factor limits the
stack up and layers used on the PCB.

The controller card 902 may be used as an add-on card on
a commodity chassis, such as a 2 RU, 4 node chassis. Each
node of the chassis (called a sled) is typically 1 RU and 6.76"
wide. The motherboard typically may provide a PCle Gen3
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x16 connector near the back. A riser card may be used to
allow the Controller card 902 to be installed on top of the
motherboard; thus, the clearance between the card and the
motherboard may be limited to roughly on slot width.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having the
capability to provide dynamic resource allocation and guar-
anteed performance in deployments using commodity net-
working and storage hardware.

In embodiments, the maximum power supplied by the
PCle connector is 75 W. The controller card 902 may
consume about 60 W or less.

The chassis may provide good airflow, but the card should
expect a 10 C rise in ambient temperature, because in this
example the air will be warmed by dual Xeon processors and
16 DIMMs. The maximum ambient temperature for most
servers is 35 C, so the air temperature at the controller card
902 will likely be 45 C or higher in some situations. Custom
heat sinks and baffles may be considered as part of the
thermal solution.

There are two FPGAs in the embodiment of the controller
card 902 depicted in FIG. 9, a datapath FPGA, or datapath
chip 904, and a networking FPGA, or networking chip 908.

The datapath chip 904 provides connectivity to the host
computer 102 over the PCle connector 110. From the host
processor’s point of view, the controller card 902 looks like
multiple NVMe devices. The datapath chip 904 bridges
NVMe to standard SATA/SAS protocol and in this embodi-
ment controls up to six external disk drives over SATA/SAS
links. Note that SATA supports up to 6.0 Gbps, while SAS
supports up to 12.0 Gbps.

The networking chip 908 switches the two 10G Ethernet
ports of the NIC device 118 and the eCPU 1018 to two
external 10G Ethernet ports. It also contains a large number
of data structures for used in virtualization.

The motherboard of the host 102 typically provides a
PCle Gen3 x16 interface that can be divided into two
separate PCle Gen3 x8 busses in the Intel chipset. One of the
PCle Gen3 x8 bus 110 is connected to the Intel NIC device
118. The second PCle Gen3 x8 bus 110 is connected to a
PLX PCle switch chip 1010. The downstream ports of the
switch chip 1010 are configured as two PCle Gen3 x8 busses
110. One of the busses 110 is connected to the eCPU while
the second is connected to the datapath chip 904.

The datapath chip 904 uses external memory for data
storage. A single x72 DDR3 channel 1012 should provide
sufficient bandwidth for most situations. The networking
chip 908 also uses external memory for data storage, and a
single x72 DDR3 channel is likely to be sufficient for most
situations. In addition, the data structures require the use of
non-volatile memory, such as one that provides high per-
formance and sufficient density, such as Non-volatile DIMM
(NVDIMM, which typically has a built-in power switching
circuit and super-capacitors as energy storage clements for
data retention.

The eCPU 1018 communicates with the networking 908
using two sets of interfaces. It has a PCle Gen2x4 interface
for NVMe-like communication. The eCPU 1018 also has
two 10G Ethernet interfaces that connect to the networking
chip 908, such as through its 1.2 switch.

An AXI bus 1020 (a bus specification of the ARM chipset)
will be used throughout the internal design of the two chips
904, 908. To allow seamless communication between the
datapath chip 904 and the networking chip 908, the AXI bus
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1020 is used for chip-to-chip connection. The Xilinx
Aurora™ protocol, a serial interface, may be used as the
physical layer.

The key requirements for FPGA configuration are that (1)
The datapath chip 904 must be ready before PCle configu-
ration started (QSPI Flash memory (serial flash memory
with quad SPI bus interface) may be fast enough) and (2) the
chips are preferably field upgradeable. The Flash memory
for configuration is preferably large enough to store at least
3 copies of the configuration bitstream. The bitstream refers
to the configuration memory pattern used by Xilinx™
FPGAs. The bitstream is typically stored in non-volatile
memory and is used to configure the FPGA during initial
power-on. The eCPU 1018 may be provided with a facility
to read and write the configuration Flash memories. New
bitstreams may reside with the processor of the host 102.
Security and authentication may be handled by the eCPU
1018 before attempting to upgrade the Flash memories.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having
hardware-level storage security in a cluster of storage
resources.

In a networking subsystem, the Controller card 902 may
handle all network traffic between the host processor and the
outside world. The Networking chip 908 may intercept all
network traffics from the NIC 118 and externally.

The Intel NIC 118 in this embodiment connects
two10GigE, XFI interfaces 1022 to the Networking chip
908. The embedded processor will do the same. The Net-
working chip 908 will perform an [.2 switching function and
route Ethernet traffic out to the two external 10GigE ports.
Similarly, incoming 10GigE traffic will be directly to either
the NIC 118, the eCPU 1018, or internal logic of the
Networking chip 908.

The controller card 902 may use SFP+ optical connectors
for the two external 10G Ethernet ports. In other embodi-
ments, the card may support I0GBASE-T using an external
PHY and RJ45 connectors; but a separate card may be
needed, or a custom paddle card arrangement may be needed
to allow switching between SFP+ and RJ45.

All the management of the external port and optics,
including the operation of the LEDs, may be controlled by
the Networking chip 908. Thus, signals such as PRST,
12C/MDIO, etc may be connected to the Networking chip
908 instead of the NIC 118.

In a storage subsystem, the Datapath chip 904 may drive
the mini-SAS HD connectors directly. In embodiments such
as depicted in FIG. 10, the signals may be designed to
operate at 12 Gbps to support the latest SAS standard.

To provide efficient use of board space, two x4 mini-SAS
HD connectors may be used. All eight sets of signals may be
connected to the Datapath chip 904, even though only six
sets of signals might be used at any one time.

On the chassis, high-speed copper cables may be used to
connect the mini-SAS HD connectors to the motherboard.
The placement of the mini-SAS HD connectors may take
into account the various chassis’ physical space and routing
of the cables.

The power to the controller card 902 may be supplied by
the PCle x16 connector. No external power connection
needs to be used. Per PCle specification, the PCle x16
connector may supply only up to 25 W of power after power
up. The controller card 902 may be designed such that it
draws less than 25 W until after PCle configuration. Thus, a
number of interfaces and components may need to be held
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in reset after initial power up. The connector may supply up
to 75 W of power after configuration, which may be
arranged such that the 75 W is split between the 3.3V and
12V rails.

FIG. 10 shows a software stack 1000, which includes a
driver 1002 to interface to the converged solution 300, such
as one enabled by the FPGA 800. The NVMe controller
1004 is the set of functions of the hardware (e.g., FPGA 800)
that serves the function of an NVMe controller and allocates
virtual devices 1012 to the host. In FIG. 10, devl, dev2, dev3
are examples of virtual devices 1012 which are dynamically
allocated to containers 1018 LXC1, LXC2, and LXC3,
respectively. The NVMe to SATA bridge 1008 is the part of
the hardware sub-system (e.g., FPGA 800) that converts and
maps virtual devices 1012 (devl, dev2, dev3) to storage
devices 302 (e.g., SSDs in the figure). The connection 1010
is the part of the hardware system that provides a SATA
connection (among other possible connection options noted
above). The Ethernet link 120, which can expose virtual
devices 1012 (i.e devl, dev2, dev3) to other host(s) 102
connected via the Ethernet link 120 using a storage tunnel-
ing protocol. The PCI-E (NVMe driver) 1002 may program
and drive the hardware subsystem for the storage side. This
driver 1002 may run on the host as part of the operating
system (e.g., Linux OS in this example). The block layer
1014 may be a conventional SCSI sub-system of the Linux
operating system, which may interface with the converged
solution PCle driver 1002 to expose virtual storage devices
1012. The containers 1018 (LXC1, LXC2, LXC3) may
request and dynamically be allocated virtual storage devices
1012 (devl, dev2 and dev3, respectively).

FIGS. 11 through 15 show an example of the movement
of an application container 1018 (e.g., a Linux container)
across multiple systems 102, first in the absence of a
converged solution 300 and then in the presence of such a
converged solution 300. FIG. 11 shows an example of two
conventional computer systems 102 with conventional stor-
age controllers 112 and network controllers 118 hosting
virtualized software in an OS/Hypervisor stack 108. Com-
puter System 1 (C1) has a configuration similar to the one
shown in FIG. 1 with CPU, memory and conventional
storage controller 112 and network controller 118. The
system runs an operating system 108, such as Linux™,
Microsoft Windows™, etc, and/or hypervisor software, such
as Xen, VMware, etc. to provide support for multiple
applications natively or over virtualized environments, such
as via virtual machines or containers. In this computer
system 102, application Appl 1102 is running inside a
virtual machine VM1 1104. Applications App2 1108 and
App3 1112 are running within virtualized containers LXC1
1110 and LXC2 1114 respectively. In addition to these,
application App4 1118 is running natively over the Operat-
ing System 108. Although typically, a practical scenario
might have only virtual machines or containers or native
applications (not all three), here it is depicted in a combined
fashion deliberately to cover all cases of virtualized envi-
ronments. Computer System 2 (C2) 102 has similar con-
figuration supporting App5 and App6 in a container and
natively, respectively. Each of these applications access their
storage devices 302 independent of each other, namely Appl
uses S1, App2 uses S2, etc. These storage devices 302
(designated S1-S6) are not limited to being independent
physical entities. They could be logically carved out of one
or more physical storage elements as deemed necessary. As
one can see, (represented by the arrow from each storage
device 302 to an application), the data flow between the
storage 302 and the application 1102, 1108, 1112, 1118
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passes through the storage controller 112 and the operating
system/hypervisor stack 108 before it reaches the applica-
tion, entailing the challenges described in connection with
FIG. 1.

Referring to FIG. 12, when an application or a container
is moved from C1 to C2, its corresponding storage device
needs to be moved too. The movement could be needed due
to the fact that C1 might be running out of resources (such
as CPU, memory, etc.) to support the existing applications
(Appl-App4) over a period of time, such as because of
behavioral changes within these applications.

Typically, it is easier to accomplish the movement within
a reasonable amount of time as long as the application states
and the storage are reasonable in terms of size. Typically
storage-intense applications may use large amounts (e.g.,
multiple terabytes) of storage, in which case, it may not be
practical to move the storage 302 within an acceptable
amount of time. In that case, storage may continue to stay
where it was and software-level shunting/tunneling would
be undertaken to access the storage remotely, as shown in
FIG. 13.

As shown in FIG. 13, App2 1108, after its movement to
computer system C2, continues to access its original storage
S2 located on computer system C1 by traversing through
Operating Systems or Hypervisors 108 of both the systems
C1 and C2. This is because the mapping of storage access
through the network controllers 118 to that storage controller
112 and its attached storage devices 302 is done by the
Operating System or Hypervisor software stack 108 running
within the main CPU.

As shown in FIG. 13 after its movement to C2, App2 1108
continues to access its original storage S2 located in C1 by
traversing through Operating Systems or Hypervisors 108 of
both the systems C1 and C2. This is because, the mapping
of storage access through the network controllers 118 from
C2 to C1 and over to that storage controller 112 of C1 is
done by the Operating System or Hypervisor software 108
running within the main CPU of each computer system.

Consider a similar scenario when a converged controller
300 is applied as shown in the FIG. 14. As one can see, the
scenario is almost identical to FIG. 11, except the Converged
10 Controller 300 replaces the separate storage controller
112 and network controller 118. In this case, when App2
1108 along with its container LXC1 is moved to C2 (as
shown in FIG. 15), the storage S2 is not moved, and the
access is optimized by avoiding the traversal through any
software (Operating System, Hypervisor 108 or any other)
running in main CPU present in computing system C1.

Thus, provided herein is a novel way of bypassing the
main CPU where a storage device is located, which in turn
(a) allows one to reduce latency and bandwidth significantly
in accessing a storage across multiple computer systems and
(b) vastly simplifies and improves situations in which an
application needs to be moved away from a machine on
which its storage is located.

Ethernet networks behave on a best effort basis and hence
lossy in nature as well as bursty. Any packet could be lost
forever or buffered and delivered in bursty and delayed
manner along with other packets. Whereas, typical storage
centric applications are sensitive to losses and bursts, it is
important that when storage traffic is sent over Ethernet
networks.

Conventional storage accesses over their buses/networks
involve reliable and predictable methods. For example,
Fibre Channel networks employ credit based flow control to
limit number of accesses made by end systems. And the
number of credits given to an end system is based on
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whether the storage device has enough command buffers to
receive and fulfill storage requests in predictable amount of
time fulfilling required latency and bandwidth needs. The
figure below shows some credit schemes adopted by differ-
ent types of buses such as SATA, Fibre Channel (FC), SCSI,
SAS, etc.

Referring to FIG. 16, Ethernet networks behave on a best
effort basis and hence tend to be lossy in nature, as well as
bursty. Any packet could be lost forever or buffered and
delivered in a delayed manner, in a congestion-inducing
burst, along with many other packets. Typical storage-
centric applications are sensitive to losses and bursts, so it is
important when storage traffic is sent over buses and Eth-
ernet networks, that those involve reliable and predictable
methods for maintaining integrity. For example, Fibre Chan-
nel networks conventionally employ credit-based flow con-
trol to limit the number of accesses made by end systems at
any one time. The number of credits given to an end system
can be based on whether the storage device 302 has enough
command buffers to receive and fulfill storage requests in a
predictable amount of time that satisfies required latency and
bandwidth requirements. FIG. 16 shows some of the credit
schemes adopted by different types of buses such as a SATA
bus 1602, Fibre Channel (FC) 1604, and SCSI/SAS con-
nection 1608, among other types of such schemes.

As one can see, for example, an FC controller 1610 may
have its own buffering up to a limit of ‘N’ storage commands
before sending them to an FC-based storage device 1612,
but the FC device 1612 might have a different buffer limit,
say ‘M’ in this example, which could be greater than, equal
to, or less than ‘N’. A typical credit-based scheme uses target
level (in this example, one of the storage devices 302, such
as the FC Device 1602, is the target) aggregate credits,
information about which is propagated to various sources (in
this example, the controller, such as the FC Controller 1610,
is the source) which are trying to access the target 302. For
example, if two sources are accessing a target that has a
queue depth of ‘N,” then sum of the credits given to the
sources would not exceed ‘N, so that at any given time the
target will not receive more than ‘N’ commands. The dis-
tribution of credits among the sources may be arbitrary, or
it may be based on various types of policies (e.g., priorities
based on cost/pricing, SLLAs, or the like). When the queue is
serviced, by fulfilling the command requests, credits may be
replenished at the sources as appropriate. By adhering to this
kind of credit-based storage access, losses that would result
from queues at the target being overwhelmed can be
avoided.

Typical storage accesses over Ethernet, such as FCOE,
iSCSI, and the like, may extend the target-oriented, credit-
based command fulfillment to transfers over Ethernet links.
In such cases, they may be target device-oriented, rather than
being source-oriented. Provided herein are new credit based
schemes that can instead be based on which or what kind of
source should get how many credits. For example, the
converged solution 300 described above, which directly
interfaces the network to the storage, may employ a multi-
plexer to map a source-oriented, credit-based scheduling
scheme to a target device oriented credit based scheme, as
shown in FIG. 17.

As shown in FIG. 17, four sources are located over
Ethernet and there are two target storage devices 302.
Typical target-oriented, credit-based schemes would expose
two queues (one per target), or two connections per source
to each of the targets. Instead, as shown in FIG. 17, the
queues (Q1,Q2,Q3,Q4) 1702 are on a per-source basis, and
they mapped/multiplexed to two target-oriented queues (Q5,
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Q6) 1704 across the multiplexor (S) 1708. By employing
this type of source-oriented, credit-based scheme, one may
guarantee access bandwidth and predictable access latency,
independent of the number of target storage devices 302. As
an example, one type of multiplexing is to make sure queue
size ‘P’ of Q1 does not exceed ‘L+M’ of Q5 and Q6, so that
Q1 is not overwhelmed by its source.

In embodiments, methods and systems to provide access
to blocks of data from a storage device 302 is described. In
particular, a novel approach to allowing an application to
access its data, fulfilling a specific set of access requirements
is described.

As used herein, the term “application-driven data storage”
(ADS) encompasses storage that provides transparency to
any application in terms of how the application’s data is
stored, accessed, transferred, cached and delivered to the
application. ADS may allow applications to control these
individual phases to address the specific needs of the par-
ticular application. As an example, an application might be
comprised of multiple instances of itself, as well as multiple
processes spread across multiple Linux nodes across the
network. These processes might access multiple files in
shared or exclusive manners among them. Based on how the
application wants to handle these files, these processes may
want to access different portions of the files more frequently,
may need quick accesses or use once and throw away. Based
on these criteria, it might want to prefetch and/or retain
specific portions of a file in different tiers of cache and/or
storage for immediate access on per session or per file basis
as it wishes. These application specific requirements cannot
be fulfilled in a generic manner such as disk striping of entire
file system, prefetching of read-ahead sequential blocks,
reserving physical memory in the server or LRU or FIFO
based caching of file contents.

Application-driven data storage 1/O is not simply appli-
cable to the storage entities alone. It impacts the entire
storage stack in several ways. First, it impacts the storage
1/O stack in the computing node where the application is
running comprising the Linux paging system, buffering,
underlying File system client, TCP/IP stack, classification,
QoS treatment and packet queuing provided by the network-
ing hardware and software. Second, it impacts the network-
ing infrastructure that interconnects the application node and
its storage, comprising Ethernet segments, optimal path
selections, buffering in switches, classification and QoS
treatment of latency-sensitive storage traffic as well as
implosion issues related to storage I/O. Also, it impacts the
storage infrastructure which stores and maintains the data in
terms of files comprising the underlying file layout, redun-
dancy, access time, tiering between various types of storage
as well as remote repositories.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a
capability for coordination of management of storage infra-
structure.

Methods and systems disclosed herein include ones relat-
ing to the elements affecting a typical application within an
application node and how a converged solution 300 may
change the status quo to address certain critical requirements
of applications.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having
application-driven storage access.
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Conventional Linux stacks may consist of simple building
blocks, such generic memory allocation, process scheduling,
file access, memory mapping, page caching, etc. Although
these are essential for an application to run on Linux, this is
not optimal for certain categories of applications that are
input/output (TO) intensive, such as NoSQL. NoSQL appli-
cations are very 1O intensive, and it is harder to predict their
data access in a generic manner. If applications have to be
deployed in a utility-computing environment, it is not ideal
for Linux to provide generic minimal implementations of
these building blocks. It is preferred for these building
blocks to be highly flexible and have application-relevant
features that can be controllable from the application(s).

Although every application has its own specific require-
ments, in an exemplary embodiment, the NoSQL class of
applications has the following requirements which, when
addressed by the Linux stack, could greatly improve the
performance of NoSQL applications and other 1O intensive
applications. The requirements are first, the use of file level
priority. The Linux file system should provide access level
priority between different files at a minimum. For example,
an application process (consisting of multiple threads)
accessing two different files with one file given higher
priority over the other (such as one database/table/index
over the other). This would enable the precious storage /O
resources be preferentially utilized based on the data being
accessed. One would argue that this could be indirectly
addressed by running one thread/process be run at a higher
or lower priority, but those process level priorities are not
communicated over to file system or storage components.
Process or thread level priorities are meant only for utilizing
CPU resources. Moreover, it is possible that same thread
might be accessing these two files and hence will be utilizing
the storage resources at two different levels based on what
data (file) being accessed. Second, there may be a require-
ment for access level preferences. A Linux file system may
provide various preferences (primarily SLA) during a ses-
sion of a file (opened file), such as priority between file
sessions, the amount of buffering of blocks, the retention/life
time preferences for various blocks, alerts for resource
thresholds and contentions, and performance statistics. As an
example, when a NoSQL application such as MongoDB or
Cassandra would have two or more threads for writes and
reads, where if writes may have to be given preference over
reads, a file session for write may have to be given prefer-
ence over a file session for read for the same file. This
capability enables two sessions of the same file to have two
different priorities.

Many of the NoSQL applications store different types of
data into the same file; for example, MongoDB stores user
collections as well as (b-tree) index collections in the same
set of database files. MongoDB may want to keep the index
pages (btree and collections) in memory in preference over
user collection pages. When these files are opened, Mon-
goDB may want to influence the Linux, File and storage
systems to treat the pages according to MongoDB policies as
opposed to treating these pages in a generic FIFO or LRU
basis agnostic of the application’s requirements.

Resource alerts and performance statistics enable an
NoSQL database to understand the behavior of the under-
lying File and storage system and could service its database
queries accordingly or trigger actions to be carried out such
as sharding of the database or reducing/increasing of File
1/0O preference for other jobs running in the same host (such
as backup, sharding, number read/write queries serviced,
etc.). For example, performance stats about min, max and
average number of IOPs and latencies as well as top ten

30

40

45

34

candidate pages thrashed in and out of host memory in a
given period of time would enable an application to fine tune
itself dynamically adjusting the parameters noted above.

A requirement may also exist for caching and tiering
preferences. A Linux file system may need to have a
dynamically configurable caching policy while applications
are accessing their files. Currently, Linux file systems typi-
cally pre-fetch contiguous blocks of a file, hoping that
applications are reading the file in a sequential manner like
a stream. Although it is true for many legacy applications
like web servers and video streamers, emerging NoSQL
applications do not follow sequential reads strictly. These
applications read blocks randomly. As an example, Mon-
goDB stores the document keys in index tables in b-tree, laid
out flat on a portion of a file, which, when a key is searched,
accesses the blocks randomly until it locates the key. More-
over, these files are not dedicated to such b-tree based index
tables alone. These files are shared among various types of
tables (collections) such as user documents and system
index files. Because of this, a Linux file system cannot
predict what portions of the file need to be cached, read
ahead, swapped out for efficient memory usage, etc.

In embodiments of the methods and systems described
herein, there is a common thread across various applications
in their requirements for storage. In particular, latency and
IOPs for specific types of data at specific times and places
of need are very impactful on performance of these appli-
cations.

For example, to address the host level requirements listed
above, disclosed herein are methods and systems for a well
fine-tuned file-system client that enables applications to
completely influence and control the storing, retrieving,
retaining and tiering of data according to preference within
the host and elsewhere.

As shown in FIG. 18, a File System (FS) client 1802
keeps separate buffer pools for separate sessions of a file
(fd1 and fd2). It also pre-allocates and maintains aggregate
memory pools for each application or set of processes. The
SLA-Broker 1804 may be exercised by the application either
internally within the process/thread where the file /O is
carried out or externally from another set of processes, to
influence the FS Client 1802 to provide appropriate storage
1/0 SLAs dynamically. Controlling the SLA from an exter-
nal process enables a legacy application with no knowledge
of these newer storage control features immediately without
modifying the application itself.

Methods and systems disclosed herein may provide exten-
sive tiering services for data retrieval across network and
hosts. As one can see in FIG. 19 below, a High Performance
Distributed File Server (DFS) 1902 enables application to
run in the Platform 1904 in a containerized form to deter-
mine and execute what portions of files should reside in
which media (DRAM, NVRAM, SSD or HDDs) in cached
form storage form dynamically. These application contain-
ers 1908 can determine other storage policies such as
whether a file has to be striped, mirrored, raided and disaster
recovered (DR’ed) as well.

The methods and systems disclosed herein also provide
extensive caching service, wherein an application container
in the High Performance DFS 1902 can proactively retrieve
specific pages of a file from local storage and/or remote
locations and push these pages to specific places for fast
retrieval later when needed. For instance, the methods and
systems may local memory and SSD usages of the hosts
running the application and proactively push pages of an
application’s interest into any of these hosts’ local memory/
SSD. The methods and systems may use the local tiers of
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memory, SSD and HDD provisioned for this purpose in the
DFS platform 1904 for very low latency retrieval by the
application at a later time of its need.

The use of extending the cache across hosts of the
applications is immense. For example, in MongoDB when
the working set temporarily grows beyond its local host’s
memory, thrashing happens, and it significantly reduces the
query handling performance. This is because when a needed
file data page is discarded in order to bring in a new page to
satisfy a query and subsequently, if the original page has to
be brought back, the system has to reread the page afresh
from the disk subsystem, thereby incurring huge latency in
completing a query. Application-driven storage access helps
these kinds of scenarios by keeping a cache of the discarded
page elsewhere in the network (in another application host’s
memory/SSD or in local tiers of storage of the High Per-
formance DFS system 1902) temporarily until MongoDB
requires the page again and thereby significantly reducing
the latency in completing the query.

Referring to FIG. 20, High Performance DFS 1902 takes
advantage of DRAM and SSD resources across the appli-
cation hosts in a single, unified RAM and SSD-based
tier/cache 2002, in order to cache and serve the application
data as necessary and as influenced and controlled by the
application.

A system comprising of a set of hosts (H1 through HN),
a file or block server 2102 and a storage subsystem 2104 is
disclosed herein as shown in the FIG. 21. A host H1-HN is
typically a computer running an application that needs
access to data permanently or temporarily stored in storage.
The file or volume server 2102 may be a data organizer and
a data server, typically running a hardware comprising a
central processing unit (CPU), memory and special hard-
ware to connect to external devices such as networking and
storage devices. The file or volume server 2102 organizes
user data in terms of multiple fixed or variable number of
bytes called blocks. It stores these blocks of data in an
internal or external storage. A random, but logically related,
sequence of blocks is organized into a file or a volume. One
or more Hosts H1-HN can access these files or volumes
through an application programming interface (API) or any
other protocol. A file or volume server can serve one or more
files and volumes to one or more hosts. It is to be noted that
a host and a file or volume server can be in two different
physical entities connected directly or through a network or
they could be logically located together in a single physical
computer.

Storage 2104 may be a collection of entities capable of
retaining a piece of data temporarily or permanently. This is
typically comprised of static or dynamic random access
memory (RAM), solid state storage (SSD), hard disk drive
(HDD) or a combination of all of these. Storage could be an
independent physical entity connected to a File or volume
server 2102 through a link or a network. It could also be
integrated with file or volume server 2102 in a single
physical entity. Hence, hosts H1-HN, file or volume server
2102 and storage 2104 could be physically collocated in a
single hardware entity.

A host is typically comprised of multiple logical entities
as shown in FIG. 22. An application 2202 typically runs in
a host and would access its data elements through an API
provided by its local operating system 2204 or any other
entity in place of it. The operating system 2204 typically has
a standard API interface to interface to a file system through
their file system client 2206. A file system client 2206 is a
software entity running within the host to interface with a
file or volume server 2210 either located remotely or locally.
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It would provide the data elements needed by application
2202, which are present in a single or multiple files or
volumes, by retrieving them from file or volume server 2210
and keeping them in the host’s memory 2208 until the
application completes its processing of the elements of data.
In a typical application scenario, a specific piece of data
would be read and/or modified multiple number of times as
required. It is also typical that an entire file or volume,
consisting of multiple data elements, is potentially much
larger than the size of local memory 2208 in certain types of
applications. This makes operating system 2204 and file
system client 2206 more complicated in its implementation
in order to decide what blocks of data to be retained in or
evicted from memory 2208 based on the prediction that the
application 2202 may or may not access them in future. So
far, the existing implementations execute some generic and
application-independent methods, such as first-in-first-out
(FIFO) or least-recently-used (LRU), to retain or evict the
blocks of data in memory in order to bring in new blocks of
data from file or volume server 2210. Moreover, when a
memory occupied by a block of data is to be reclaimed for
storing another block of data, the original data is simply
erased without the consideration for its future use. Normally,
the disk subsystem in is very slow and incurs high latency
when a block of data is read from it and transferred by file
or volume server 2210 to file system client 2206 to memory
2208. So, when the original block of data is erased, the
application might have to wait longer if it tries to access the
original data in near future. The main problem with this kind
of implementation is that none of the modules in the path of
data access, namely operating system 2204, file system
client 2206, memory 2208, block server 2210 and storage
have any knowledge of what, when and how often a block
of data is going be accessed by application 2202.

An example scenario depicting an application 2202
accessing a block of data from storage 2212 is shown in FIG.
23. The numbered circles are to show the steps involved in
the process of accessing a block of data. These steps are
explained below. First, application 2202 uses API of file or
Operating System 2204 to access a block of data. operating
system 2204 invokes an equivalent API for file system client
2206 to access the same. Second, file system client 2206
tries to find if the data exists in its local memory buffers
dedicated for this purpose. If found, steps (3) through (7)
below are skipped. Third, sends a command to retrieve the
data from block server 2210. Fourth, block server 2210
sends a read command to storage 2212 to read the block of
data from the storage. Fifth, storage 2212 returns the block
of data to block server 2210 after reading it from the storage.
Sixth, block server 2210 returns the block of data to file
system client 2206. Seventh, file system client 2206 saves
the data in a memory buffer in memory 2208 for any future
access. Eighth, file system client 2206 returns the requested
data to the application 2202.

In the methods and systems disclosed herein, in order to
address performance requirements related to data access by
most newer class of applications in the area of NoSQL and
BigData, it is proposed that the components in the data block
access comprising operating system 2204, file system client
2206, memory 2208, block server 2210 and storage 2212 be
controlled by any application 2202. Namely, we propose the
following. First, enable operating system 2204 to provide
additional API to allow applications to control file system
client 2206. Second, enhance file system client 2206 to
support the following: (a) allow application 2202 to create a
dedicated pool of memory in memory 2208 for a particular
file or volume, in the sense, a file or volume will have a
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dedicated pool of memory buffers to hold data specific to it
which are not shared or removed for the purposes of other
files or volumes; (b) allow application 2202 to create a
dedicated pool of memory in memory 2208 for a particular
session with a file or volume such that two independent
sessions with a file or volume will have independent
memory buffers to hold their data. As an example, a criti-
cally important file session may have large number of
memory buffers in memory 2208, so that the session can
take advantage of more data being present for quicker and
frequent access, whereas a second session with the same file
may be assigned with very few buffers and hence it might
have to incur more delay and reuse of its buffers to access
various parts of the file; (c) allow application 2202 to create
an extended pool of buffers beyond memory 2208 across
other hosts or block server 2210 for quicker access. This
enables blocks of data be kept in memory 2208 of other
hosts as well as any memory 2402 present in the file or block
server 2210; (d) allow application 2202 to make any block
of data to be more persistent in memory 2208 relative to
other blocks of data for a file, volume or a session. This
allows an application to pick and choose a block of data to
be always available for immediate access and not let oper-
ating system 2204 or file system client 2206 to evict it based
on their own eviction policies; and (e) allow application
2202 to make any block of data to be less persistent in
memory memory 2208 relative to other blocks of data for a
file, volume or a session. This allows an application to let
know operating system 2204 and file system client 2206 to
evict and reuse the buffer of the data block as and when they
choose to. This helps in retaining other normal blocks of data
for longer period of time. Third, enable block server 2210 to
host application specific modules in terms of application
container 2400 as shown in the FIG. 24 with the following
capabilities: (a) enable application container 2400 to fetch
blocks of data of interest to application 2202 ahead of time
and store them in local memory 2402 for later quick access
and avoid the latency penalty associated with storage 2212
and (b) enable storing of evicted pages from memory 2208
of hosts in local memory 2402 for any later access by
application 2202.

The application driven feature of (2)(c) above needs
further explanation. There are two scenarios. The first one
involves block of data being retrieved from the memory of
block server 2210. The other scenario involves retrieving the
same from another host. Assuming the exact same block data
has been read from storage 2212 by two hosts (H1) and (H2),
the methods and systems disclosed herein provide a system
such as depicted in FIG. 25. When a block of data is noticed
to be present in another host (H2), it is directly retrieved
from it by file system client 2206 instead asking block server
2210 to retrieve it from storage 2212, which will be slower
and incurs high latency.

In embodiments, if file system client 2206 decides to evict
a block of data from (D1) because of storing a more
important block of data in its place, file system client 2206
could send the evicted block of data to file system client
2206' to be stored in memory 2208' on its behalf.

It should be noted that the abovementioned techniques
can be applied to achieving fast failover in case of failure(s)
of Hosts. Furthermore the caching techniques described
above; especially pertaining to RAM can use used to achieve
failover with a warm cache. FIG. 25 shows an example of a
fast failover system with a warm cache. The end result is that
during a failure of a node, the end application on a new node
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will not undergo a time period before the cache (in RAM) is
warmed and thereby incur a period of lower application
performance.

Provided herein is a system and method with a processor
and a file server with an application specific module to
control the storage access according to the application’s
needs.

Also provided herein is a system and method with a
processor and a data (constituting blocks of fixed size bytes,
similar or different objects with variable number of bytes)
storage enabling an application specific module to control
the storage access according to the application’s needs.

Also provided herein is a system and method which
retrieves a stale file or storage data block, previously main-
tained for the purposes of an application’s use, from a host’s
memory and/or its temporary or permanent storage element
and stores it in another host’s memory or and/or its tempo-
rary or permanent storage element, for the purposes of use
by the application at a later time.

Also provided herein is a system and method which
retrieves any file or storage data block, previously main-
tained for the purposes of an application’s use, from a host’s
memory and/or its temporary or permanent storage element
and stores it in another host’s memory or and/or its tempo-
rary or permanent storage element, for the purposes of use
by the application at a later time.

Also provided herein is a system and method which
utilizes memory and/or its temporary or permanent storage
element of a host to store any file or storage data block which
would be subsequently accessed by an application running
in another host for the purposes of reducing latency of data
access.

File or storage data blocks, previously maintained for the
purposes of an application’s use, from a host’s memory
and/or its temporary or permanent storage element, may be
stored in another host’s memory or and/or its temporary or
permanent storage element, for the purposes of use by the
application at a later time.

The mechanism of transferring a file or storage data block,
previously maintained for the purposes of an application’s
use, from a host’s memory and/or its temporary or perma-
nent storage element to another host over a network.

In accordance with various exemplary and non-limiting
embodiments, there is disclosed a device comprising a
converged input/output controller that includes a physical
target storage media controller, a physical network interface
controller and a gateway between the storage media con-
troller and the network interface controller, wherein gateway
provides a direct connection for storage traffic and network
traffic between the storage media controller and the network
interface controller.

In accordance with some embodiments, the device may
further comprise a virtual storage interface that presents
storage media controlled by the storage media controller as
locally attached storage, regardless of the location of the
storage media. In accordance with yet other embodiments,
the device may further comprise a virtual storage interface
that presents storage media controlled by the storage media
controller as locally attached storage, regardless of the type
of the storage media. In accordance with yet other embodi-
ments, the device may further comprise a virtual storage
interface that facilitates dynamic provisioning of the storage
media, wherein the physical storage may be either local or
remote.

In accordance with yet other embodiments, the device
may further comprise a virtual network interface that facili-
tates dynamic provisioning of the storage media, wherein
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the physical storage may be either local or remote. In
accordance with yet other embodiments, the device may be
adapted to be installed as a controller card on a host
computing system, in particular, wherein the gateway oper-
ates without intervention by the operating system of the host
computing system.

In accordance with yet other embodiments, the device
may include at least one field programmable gate array
providing at least one of the storage functions and the
network functions of the device. In accordance with yet
other embodiments, the device may be configured as a
network-deployed switch. In accordance with yet other
embodiments, the device may further comprise a functional
component of the device for translating storage media
instructions between a first protocol and at least one other
protocol.

With reference to FIG. 26, there is illustrated an exem-
plary and non-limiting method of virtualization of a storage
device. First, at step 2600 there is accessed a physical
storage device that responds to instructions in a first storage
protocol. Next, at step 2602, there are translated instructions
between the first storage protocol and a second storage
protocol. Lastly, at step 2604, using the second protocol, the
physical storage device is presented to an operating system,
such that the storage of the physical storage device can be
dynamically provisioned, whether the physical storage
device is local or remote to a host computing system that
uses the operating system.

In accordance with various embodiments, the first proto-
col is at least one of a SATA protocol, an NVMe protocol,
a SAS protocol, an iSCSI protocol, a fiber channel protocol
and a fiber channel over Ethernet protocol. In other embodi-
ments, the second protocol is an NVMe protocol.

In some embodiments, the method may further comprise
providing an interface between an operating system and a
device that performs the translation of instructions between
the first and second storage protocols and/or providing an
NVMe over Ethernet connection between the device that
performs the translation of instructions and a remote, net-
work-deployed storage device.

With reference to FIG. 27, there is illustrated an exem-
plary and non-limiting method of facilitating migration of at
least one of an application and a container. First, at step
2700, there is provided a converged storage and networking
controller, wherein a gateway provides a connection for
network and storage traffic between a storage component
and a networking component of the device without inter-
vention of the operating system of a host computer. Next, at
step 2702, the at least one application or container is mapped
to a target physical storage device that is controlled by the
converged storage and networking controller, such that the
application or container can access the target physical stor-
age, without intervention of the operating system of the host
system to which the target physical storage is attached, when
the application or container is moved to another computing
system.

In accordance with various embodiments, the migration is
of' a Linux container or a scaleout application.

In accordance with yet other embodiments, the target
physical storage is a network-deployed storage device that
uses at least one of an iSCSI protocol, a fiber channel
protocol and a fiber channel over Ethernet protocol. In yet
other embodiments, the target physical storage is a disk
attached storage device that uses at least one of a SAS
protocol, a SATA protocol and an NVMe protocol.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
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physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having
virtualization of at least one type of non-disk-attached
storage such that it is handled as if it is disk attached storage
in a converged networking/storage.

With reference to FIG. 28, there is illustrated an exem-
plary and non-limiting method of providing quality of
service (QoS) for a network. First, at step 2800, there is
provided a converged storage and networking controller,
wherein a gateway provides a connection for network and
storage traffic between a storage component and a network-
ing component of the device without intervention of the
operating system of a host computer. Next, at step 2802,
without intervention of the operating system of a host
computer, there is managed at least one quality of service
(QoS) parameter related to a network in the data path of
which the storage and networking controller is deployed,
such managing being based on at least one of the storage
traffic and the network traffic that is handled by the con-
verged storage and networking controller.

Referring to the architecture 2900 depicted in FIG. 29, the
general philosophy followed in this proposal is not to send
every PCle access over the network as that would result in
an inefficient implementation of [/Os with a heavy overhead
(see Performance section). The idea is to terminate PCle
transactions and encapsulate NVME /O commands (Read,
Write, etc) and the Admin command sets (the relevant ones)
with their data into network packets. To this end, there are
two key components that can be used to enable NVMEoN,
a proxy NVME controller 2902 and a remote (virtual)
NVME controller 2904. The proxy NVME controller 2902
handles all PCle transactions from the NVME driver. Func-
tions such as doorbell management, queue management,
PRP list processing and DMAs are performed by this
controller locally on the node on which the NVME driver
resides. The proxy NVME controller 2902 also encapsulates
all NVME commands and data into network packets and
sends them to the (virtual) remote controller 2904. The
remote (virtual) NVME controller 2904 is a virtual control-
ler in that there is no PCle interface on the network facing
side of this NVME controller 2904. NVME commands
addressed to this controller are received over the network. At
the target node, there may be a remote, virtual NVME
controller 2904 instantiated for each <Initiator, Proxy
NVME Controller> pair that can send NVME commands to
that node. With this level of abstraction, the NVME driver
(such as, in this example, of node 1) is agnostic as to whether
a certain controller is located locally on node 1 or remotely
or node 2 (or any other location connected to the network.

Referring to the architecture 3000 of FIG. 30, in embodi-
ments certain rules or guidelines may be provided for
implementing proxy and remote NVME controllers. For
example, on a target, NVME namespaces that are to be
exposed over a network may be required to be exposed
through remote NVME controllers 2904. In embodiments, a
single NVME namespace can be exposed via more than one
remote NVME Controller. On an initiator, when an NVME
namespace that needs to be accessed is located over the
network, it can be exposed to the host operating system
through a Proxy NVME controller 2902. There can be
multiple Proxy NVME controllers 2902 instantiated on a
given node for purposes of accessing remote NVME
namespaces. The discovery association of namespaces to
Proxy/Remote NVME controllers 2902 is an implementa-
tion choice. On a Target, each remote NVME controller
2904 may be associated with a single <Initiator, Proxy
NVME Controller> pair. A given node can have any number
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of local NVME controllers and proxy NVME controllers
2902. Each of them should preferably have a controller ID
that is locally unique to that node. Remote controllers 2904,
being virtual, don’t need to have any controller IDs assigned
to them.

In embodiments, consideration may be given to DMA
versus data transmission on a network. Any NVME /O
typically involves DMA to/from the host memory, such as
using PRP/SGL lists. In embodiments, one way of archi-
tecting the protocol could be to pass the PRP/SGL lists over
the network. The drawbacks associated with this approach
are the need to reconcile various host OS page sizes and
destination device page sizes, resulting in inefficiency and
needless complexity. Also, passing host memory address
pointers over a network is potentially insecure and may
require protection, such as with digital signatures, against
incorrect accesses.

In embodiments, these problems may be mitigated or
avoided by using an architecture 3100 as depicted in FIG.
31. A proxy NVME controller 2902 can be responsible for
DMA to/from the host memory (to/from its local staging
areas) at the host OS page size. A remote NVME controller
2904 can be responsible for data transfer to/from the disks
based on the destination device page size. Within the context
of a given I/O, offset and length are used to identify the
unique point where each NVME data packet would fit. A
SCSI/FC-4 mechanism like Xfer Ready may be used by the
recipient of the data to control the transfer of data. By
decoupling PRP list manipulation and DMA from actual
read/write operations to disks, the methods and systems
disclosed herein can parallelize the operations as much as
possible and achieve lower latencies while keeping the
architecture simple.

Referring to FIG. 32, in embodiments such as depicted in
the architecture 3200, in order to aggregate flows to best
utilize network bandwidth and minimize latency, NVMEoN
may be split into two layers. An NVMEoN exchange layer
3202 translates every NVME command sequence into an
exchange and maintains state information to complete this
exchange successfully. A burst transmission protocol (BTP)
layer 3204 aggregates NVMEoN exchanges across multiple
Proxy NVME controllers and its queues and provides guar-
anteed delivery for each of the NVME command and data
packets associated with that exchange. In the description
below, the NVMEOoN protocol is described from ground up,
including first the BTP layer and then the NVMEoN
exchange layer.

The Burst Transmission Protocol (BTP) layer 3204 pro-
vides guaranteed delivery semantics for the NVMEoN pro-
tocol to run between a pair of nodes. The BTP layer 3204
may: provide guaranteed delivery of NVME command and
data packets; reserve buffers at the receiver for the NVME
command and data packets; avoid delivery of duplicate
packets to upper layers; minimize control packet overhead
by aggregating NVME flows across proxy controllers and
queues (by transmitting multiple packets in one burst); and
leave the order of delivery of packets to upper layer (such as
in-order choice) as implementation choice for the designer.

In the context of the description of BTP, a BTP sender
should be understood from the point of view of a node that
sends packets to another node (the BTP receiver). This is
distinct from NVME command initiators and targets. For
instance, the NVME target, when processing a write com-
mand, becomes a BTP sender when it sends transfer ready
(referred to herein in some cases as “Xfer Rdy”) packets and
data packets. A given node can be both a BTP sender and a
receiver at any point of time.
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In embodiments, four types of packets are supported by
the BTP. First, BTP Command packets are small (e.g.,
default max 256 bytes) packets that are used for sending
NVME command, status and NVMEoN control packets
(like Xfer Rdy and Exchange Cleanup). Second, BTP
Batched Command packets allow for multiple NVME com-
mands to be packed into one packet (default max, e.g., 1500
bytes). Third, BTP Data packets may be large and may
depend on the typical MTU configuration in the network
(e.g., default max of 1500 bytes). Such packets may be used
for sending actual NVME data packets. Fourth, BTP Control
packets may exchange BTP control information. BTP Com-
mand and Data Packets may be stored in buffers in some
implementations.

In embodiments, a burst window may be understood to
comprise a window where a BTP sender can request for
credits and send a number of packets. Expected and received
burst windows may be used by a BTP receiver to track
packets received, such as in a sliding window of sorts. A
Request Credit may signify the start of a burst. An ACK may
signify the end of a burst. See below for a further explana-
tion of these.

In embodiments, a burst ID may comprise a number, such
as a 24 (or not 32) bit number, identifying each burst
window uniquely. A BTP sender may start with a random
number and increment this for every new burst window.

In embodiments, a sequence ID may comprise a number,
such as a 30-bit number, uniquely identifying every BTP
packet (e.g., command, data, control) across burst windows.
The only requirement is that the sequence id is preferably
unique across burst windows and should only be reused by
the sender after an ACK from the receiver indicating that it
has been successfully delivered. It need not be monotoni-
cally increasing, but if it is implemented that way, the
starting sequence id is preferably randomized.

Between a pair of nodes, there can be multiple BTP
channels. All BTP state information may be maintained per
BTP channel. The BTP protocol (described below) may runs
within the scope of'a BTP channel. The BTP channel may be
identified, such as by using an 8 bit Channel id in the header
(along with the 24 bit burst id). By default, at least 1 channel
(with channel id 1) should preferably be supported between
a pair of nodes. Setting up the BTP channels between a pair
of nodes may be implemented as a design choice. In
embodiments, multiple BTP channels may be used in order
to achieve high throughput and link utilization or to provide
multiple classes of service.

In embodiments, multiple burst windows may overlap,
taking care of pipelining requirements. A burst of transfers
may secure credits, use the credits, and close. In the case of
errors, granularity at the per packet and the per window basis
allows for efficient recovery. Overlapping windows, among
other benefits, take advantage of available bandwidth at a
receiver during the time that acknowledgements are being
exchanged with a source. Thus, a burst protocol may use
multiple, parallel burst windows to maximize use of the
network bandwidth and the bandwidth/capability of the
receiver.

In embodiments, priorities can be handled, such as having
a higher priority packet initiate closing of a window so that
the packet can be sent with priority. Handling priorities may
also allow high priority commands to be scheduled to a BTP
window than low priority commands. A burst window may
be configured based on the type of data, the type of network,
network conditions and the like. Thus, a configurable burst
window may be provided for error recovery and reliable
transmission in an NVMEoN approach.
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Referring to FIG. 33, the flow diagram 3300 and the
description below provide the basics of the BTP protocol.
For purposes of this example, these flow diagrams illustrate
the protocol in an embodiment that uses four credits. This
can be extended to any number of credits without any loss
of generality, as would be understood by one of ordinary
skill in the art. When a BTP sender has command and/or data
packets to send, it can request credits via a Request Credit
message 3302. The two types of packets for credit can be
requested are “BTP Command” and “BTP Data” packets as
described earlier. In this example, credit for sending 32
packets (the sum total across command and data packet
categories) can be requested in one burst. In the request
credit message 3302, the sender may explicitly set the
sequence id and type (e.g., command vs. data) of each
packet. The BTP receiver can grant up to the number of
credits requested by the sender (or can provide a lower
value, which can even be zero) through a Grant Credit
message 3304. The receiver may explicitly specify the
sequence ids for which it grants credits. The receiver may
pick the sequence ids in the same order as specified in the
Request Credit message 3302 to buffer availability. Once
credits are granted, the receiver may reserve the buffer
allocated for each packet until it is received (or) until an
error timer (ERROR_TOV) expires, as described more
particularly below. Regardless of the number of credits
granted, the receiver may send the Grant Credit message
3304 immediately to prevent timeout of the Request Credit
3302 at the sender. Each BTP sender preferably uses only
one burst window at any point in time with a BTP receiver.
If a Grant Credit 3304 is not received within the specified
ERROR_TOV time after sending the Request Credit 3302,
all packets queued for transmission in the current burst
window may be queued for re-transmission in the next burst
window. If the Grant Credit 3304 has been received for the
current burst window, the sender can wait for ACK from the
receiver or for the ERROR_TOV timer to expire after the
Grant Credit 3304 is received before starting a new burst
window. Each BTP receiver may maintain two windows per
BTP sender: an expected window comprising a list of
sequence ids of packets expected in this burst window,
which may be set when the Grant Credit 3304 is sent and a
received window comprising a list of sequence ids of
packets received in the previous burst windows, which may
be set when an ACK is sent. In embodiments, both of these
burst windows may be initialized to O.

When a BTP receiver gets a Request Credit 3302 with a
new burst id, it may compare the sequence ids for which
credits are requested with those received in the received
window. In the Grant Credit message 3304, the receiver may
specify two lists of sequence ids: a list of sequence ids
“already received” for those packets in the received window
and a list of sequence ids for which “credits are granted” (for
packets not in the received window).

When the BTP sender receives a Grant Credit message
3304 it may first remove the packets whose sequence ids
have been marked as “already received” from re-transmis-
sion queues. Next, it may send packets for which “credits are
granted” in this burst window. Then, in the case that the
sender has fewer packets to send than for which credits were
granted (e.g. if the upper layers performed some cleanup
between the request and grant operations of the window), the
sender can send a “Close,” specifying the list of sequence ids
that were sent in the burst window. The Close message is
optional in case where the sender can send all packets for
which credits are granted.

10

15

20

25

30

35

40

45

50

55

60

65

44

An ACK message may be sent by the BTP receiver when
all packets expected within a burst window are received by
the BTP receiver or if the ERROR_TOV timer expires after
the Grant Credit 3304 was sent by the receiver. The ACK
may specify which packets have been received and which
ones have not been received in two separate lists. A sender
may use the ACK to determine which packets were deliv-
ered to the receiver. It may queue the packets that were not
delivered to the receiver for retransmission. A receiver may
drop any command/data packet with a burst id that is not in
the current burst window.

In embodiments the size of the burst window may be
provided with a maximum value of 32 packets, which is
chosen to provide a balance between two objectives: mini-
mizing control packets overhead (3 packets for every burst
of'32) while, in the event of a complete burst failure (which
requires retransmission of the entire set), providing an
acceptable (not too high) retransmission overhead.

Certain choices of algorithms may be implementation
specific, with embodiments provided below. For example,
methods of distributing credit, which relates to the ability to
assure quality of service (QoS), may be addressed by a credit
distribution algorithm, which may be used by a BTP receiver
to distribute its buffers among various senders for fairness.
In embodiments, one may implement a default minimum of
one command and one data buffer per BTP sender. Also, one
may implement some form for maximum value for each of
the command and data buffers that each BTP sender can use.

A backoff algorithm may be used by a BTP sender to
factor in congestion at the BTP receiver using Grant Credit
responses 3304.

An algorithm may be used to prevent duplicate retrans-
mission of delivered packets. Referring to FIG. 34, the flow
diagram 3400 illustrates a case where a sender thinks that a
certain packet (e.g., sequence id 2 in this case) has not
reached the receiver, but that packet has actually been
delivered to the receiver. So, the receiver places sequence id
2 in a separate list in the Grant Credit message indicating
that it has already been received, thus preventing retrans-
mission of an already delivered packet. The BTP sender
implicitly derives the information about the delivery of
sequence id 2 from the Grant Credit message 3304 and sends
only items {5,6,7} in the current burst window. The BTP
receiver sets the received window to {5,6,7} when the ACK
is sent for this burst window, thereby advancing the sliding
window.

Packet loss detection and recovery may be addressed by
introducing BTP control packets to request/grant credits and
provide ACKs for packets sent in a burst window. There are
several possible different packet drop scenarios that need to
be accounted for and recovered from. Such scenarios are
presented as flows in FIGS. 35 through 40.

FIG. 35 shows a request credit loss scenario 3500 in
which the receiver never receives the request for a credit.
The BTP sender receives no grant credit message 3304, so
it retransmits after the ERROR_TOV timeout.

FIG. 365 shows a grant credit loss scenario 3600 in which
the grant credit message 3304 from the BTP receiver is lost
on the way to the sender. The sender, not having received the
grant credit message 3304, retransmits after the ERROR_
TOV timeout period expires, retransmits the request credit
message 3302, after which the receiver either frees, or
reallocates resources after the expiration of the ERROR_
TOV or receipt of the retransmission of the request credit
message 3302 (whichever is earlier).

FIG. 37 shows an NVME command/data packet loss
scenario 3700 in which a command or data packet is lost. In
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this case, the receiver sends an ACK after ERROR_TOV
timeout expiration, separately specifying received versus not
received packets. Based on the content of the ACK, the
sender queues missing packets for retransmission under a
new burst ID.

FIG. 38 shows an ACK loss scenario 3800 in which the
ACK message is lost. If the ACK is lost, then packets
associated with the burst have to be queued for retransmis-
sion under a different burst ID. In the grant credit message
3304, the receiver may indicate that packets have already
been received, preventing the retransmission.

FIG. 39 shows a scenario 3900 involving multiple fail-
ures, in this case loss of the ACK and a grant credit message
loss. The receiver keeps its previous and current burst
windows unchanged until the sender synchronizes, such as
based on eventually receiving information from the receiver
that confirms that the packets have in fact been received.

FIG. 40 shows a scenario 4000 involving multiple fail-
ures, such as in this case where the same packet has been lost
more than once. The receiver and sender detect the packet
loss in every window until the packet is successfully deliv-
ered.

Referring to FIG. 41, in a flow 4100, at any point of time
the BTP sender can send a channel reset message 4102,
which may reset the received and expected burst windows at
the receiver to an empty set. This may be used in cases
where the BTP sender determines that it may be out of sync
with the receiver and wishes to reset the BTP windows to a
well-known state. The BTP Receiver in this case may drop
all state information (receiver, expected windows and all
packets) associated with that BTP Channel and respond with
an ACK. The BTP sender may receive the ACK to the
channel reset before it can send any newer request credit
messages on that channel.

The NVMEoN exchange layer 3202 works on top of the
BTP layer 3204 to provide framing and exchange level
semantics for executing an NVME command (both admin
and I/O) between an initiator and target. The fundamental
building block for encapsulating NVME commands over the
network is the introduction of the notion of an exchange for
each NVME command. The NVMEoN exchange layer at the
initiator may allocate a unique exchange for every NVME
command that it sends to a given target. A NVME command
may result in multiple exchanges. For example if a NVME
command is divided into multiple sub-commands, there may
be multiple exchanges associated with to NVME command.
The initiator may maintain state information about this
exchange in an exchange status block (ESB) until the
exchange is completed. In embodiments, the initiator may
ensure that the exchange is unique to cover NVME com-
mands across the proxy controller ID (the ID of the proxy
controller 2902 at the initiator), the queue ID (the ID of the
queue within the proxy controller 2902, and the command
1D (the ID of the NVME command within the given queue).
Translating these parameters to a unique exchange at the
initiator means that the network and the target can be
agnostic to these parameters. The NVMEoN exchange layer
at the target may allocate an ESB entry upon receipt of the
first network packet in the exchange, which will be the
NVME command that initiated the exchange.

Referring to FIG. 42, the NVMEoN exchange layers at
both the initiator and target may use the Exchange Status
Block, such as reflected in the table 4200 of FIG. 42, to
establish synchronized, lockstep execution of the NVME
commands.

The exchange id may be, for example, a 32-bit value
divided into two components: an initiator’s component of
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the exchange ID (IXID), which may be allocated by the
initiator when the first packet of the exchange (the NVME
command) is sent to the target and a target’s component of
the exchange ID (TXID), which may be allocated by the
target when it receives the first packet of the exchange (i.e.,
the NVME command).

The following guidelines may govern the usage of
exchange ids. First, the NVME command packet may sig-
nify the start of the exchange. The NVME status packet may
also signify the end of an exchange. When the Initiator sends
the first packet of the exchange, it may set the TXID, such
as to OxFFFF. The target may allocate a TXID upon receipt
of'this first packet. In the next packet that the target sends to
the initiator, it may set the TXID for that packet to the
allocated TXID. IXIDs and TXIDs are only required to be
unique between an initiator and target pair. There is no
necessity for this to be monotonically increasing, but that is
an option.

As to the total number of concurrent exchanges, the
initiator and target should support the same total number of
concurrent exchanges in a given direction. In one example,
the minimum value may be one, while the maximum value
may be, for example, much larger, such as sixteen thousand.
The actual value can be determined by an upper level entity,
but should preferably be configured to be the same at the
NVMEoN exchange layer 3202 at the initiator and at the
target. If the target receives more than the number of
concurrent exchanges that it supports with an initiator, it can
drop an exchange, allowing the initiator to timeout.

A state machine may be implemented. Both initiator and
target may follow a simple lock step mechanism in order to
complete an I/O. There may be four states an exchange can
be in: OPEN, DATA XFER, CLEANUP, or CLOSED. The
triggers for the initiator and the target to place the exchange
into the appropriate state is described in the table 4300 of
FIG. 43. See the error recovery description below for an
explanation on the state machine.

The NVMEoN exchange layer 3202 may be responsible
for breaking down NVME command and data packets to
adhere to the network MTU expected by the BTP layer 3204.
In the depicted embodiment, the minimum workable size of
MTU is 512 (as NVMEOoN control packets are preferably not
fragmented). However, in other examples, other minimum
workable size may be set. The maximum size may uncapped
to allow operating in networks with very large MTU
enabled. An actual path for MTU discovery implemented in
various ways as would be understood by those of ordinary
skill in the art. It may be statically configured or discovered
using agents running a standard discovery protocol on every
node. The path MTU may remain or may not remain uniform
in the network. For example, the path MTU may be different
in each direction between a given pair of nodes. In accor-
dance with the illustrated example of the protocol, per
initiator, per target, or per pair, the MTU may be configured
by some entity.

In an example, per the Remote NVME controller 2904 at
the Target, exactly one <Initiator, Proxy NVME Controller
2902> pair may be associated by an entity. The nodes may
discover remote namespaces exposed and the remote control
pairing may be done in various ways without limitation. The
control plane may be architected and proposed for standard-
ization if the Network Path MTU and the Remote Controller
Discovery may be specified as part of this protocol. In
embodiments, various techniques used to discover hardware
in a network fabric may be used, such as approaches used in
connection with iSCSI (such as IQM-based discovery) or
fiber channel approaches.
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In embodiments, a handshake may be established between
hardware and software elements of the burst transmission
protocol layer and the NVMEoN exchange layer. In hard-
ware, the handshaking may enable very precise handling of
the timing of overlapping burst windows to make optimum
use of bandwidth on the network and at the receiver.

The flow diagrams as to how the NVMEoN exchange
layer 3202 handles each NVME command are provided
herein in conjunction with the building blocks described
above. In these flows, “E” represents an exchange as
described in the above subsection.

Referring to FIG. 44, in a flow 4400 of a write command,
an entire write I/O command may be sent in one shot by the
initiator 4402. The target 4402 may control data transfer size
using, for example, a Xfer Rdy message, based on its criteria
(e.g. destination device page size, etc.). For instance, if it so
chooses, the Target 4404 may ask for all of the data in the
1/0 in one shot. This may entirely depend on an implement-
er’s choice. Each Xfer Rdy message may result in multiple
data packets being generated by the exchange layer to
adhere to the network path MTU. Each data packet may
carry an offset and length uniquely identifying its place
within the exchange.

Referring to FIG. 45, in a flow 4500 of a read command,
the initiator 4402 may send a Xfer Rdy message right away.
An entire Read /O command may be sent in one shot by the
initiator 4402. The first Xfer Rdy message may also be
provided along with the Read Command indicating the size
of initial transfer. The initiator 4402 may control data
transfer size using a Xfer Rdy packet based on its criteria,
which may be entirely based on the implementer’s choice.
Each Xfer Rdy packet may result in multiple data packets
being generated by the exchange layer to adhere to the
network MTU. Each data packet may carry the offset and
length thereby uniquely identifying its place within the
exchange.

Referring to FIG. 46, in a flow 4600, in a version of an
exchange related to a read command, the target 4404 may
provide an indicator of being ready for data before the
initiator 4402 requests the Xfer Rdy packets.

Referring to FIG. 47, in a flow 4700, administrative
commands, such as a request for status and a reply, may be
exchanged without any data transfer

Referring to FIG. 48, in a flow 4800, a flow is provided
for a case where an initiator breaks down data transfer across
multiple Xfer Rdy packets. In this example, admin com-
mand data may be constrained to a particular length, such
not going beyond 4K in this exemplary case. Therefore,
while a single Xfer Rdy may work for many situations, in
some examples the protocol may not preclude using multiple
Xfer Rdys, which may use exchanges similar to those used
for the read command discussed above. In some examples,
the admin command data may be different and may go
beyond 4K. The total length of transfer may be calculated by
the initiator 4402.

Referring to FIG. 49, in a flow 4900, the admin command
data may be constrained to a given length (e.g., in this case
being constrained not to go beyond 4K). Thus, one Xfer Rdy
message may work for the most part. However, the protocol
may not preclude using multiple Xfer Rdys like Write
Command. In some examples, the admin command data
may be different and may go beyond 4K. The total length of
transfer may be calculated by the initiator 4402.

Referring to FIG. 50, a sequence of steps for error
recovery is described in a flow 5000. In an example,
NVMEoN exchange layer at the initiator 5002 may not
timeout exchanges because the BTP layer 3204 (below it,
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having capabilities described elsewhere in this disclosure)
may provide guaranteed delivery of NVME command and
data packets without duplicates using packet level retrans-
missions. In an example, the NVMEoON exchange layer at
the initiator 5002 may not timeout exchanges because the
NVME layer (above it) may use command timeouts to detect
1/O level errors. The error recovery (except in network
outage scenarios) may be initiated by the upper NVME
layers, such as using NVME abort commands and/or NVME
controller resets. The Proxy NVME controller 2902 may
handle these scenarios, and the NVMEoN exchange layer at
the initiator 5002 may then work with the target 5004 in
lockstep to clean up resources (such as using a NVMEoN
cleanup request). Various exemplary cases are discussed
here without limitation. However, to protect against sce-
narios where a network outage may cause data packets like
an NVMEOoN cleanup request or its response to be dropped
for long periods, the various timeouts may be implemented.
For example, the NVMEoN exchange layer at the initiator
5002 may implement a timeout, e.g., called EXCH_
CLEANUP_TOV, upon sending a NVMEoN cleanup
request. If the response does not arrive within defined time
period, the initiator 5002 may complete the trigger that
instantiated the cleanup. Also, the NVMFEoN exchange layer
at the target 5004 may implement a very large exchange
timeout, e.g., called EXCH_TOV, from the time the
exchange is started to the time that it can complete or be
completely cleaned up. If the timer expires, the target 5004
may clean up all the resources allocated for the exchange.

The error recovery may provide for handling an NVME
abort Command. When an NVME driver detects an NVME
command timeout, its recovery action may involve sending
an NVME abort command. This command may be handled
at various layers. For example, the proxy NVME Controller
2902 at the initiator 5002 may terminate the NVME abort
command and use the NVME exchange layer APIs to clean
up resources like the ESB and BTP queues. Also, the
initiator 5002 may generate an NVMEoN cleanup request to
the target 5004 identifying the exchange to clean up. Also,
the remote NVME controller 2904 may clean up resources
allocated for this exchange (e.g. commands queued to disk
drives). Once all cleanup is done, a NVMEoN cleanup
response may be passed all the way back to the Proxy
NVME controller 2902 which may terminate the original
1/O request and complete the Abort command.

The error recovery approach may provide for a reset of the
proxy NVME controller 2902. The Proxy NVME controller
reset may be handled using exactly the same or a similar
flow as for an NVME abort command, but extending the
NVMEDoN cleanup request to specify multiple exchanges to
clean up. The NVMEoN exchange layer at the initiator 5002
may keep track of which exchange IDs correspond to the
proxy NVME controller 2902 and hence can do this trans-
lation. There may not need to be any resetting of the remote
NVME controller 2904, as it is a logical, rather than physi-
cal, entity. Various possible failure scenarios during error
handling (such as due to prolonged network drops) and
recovery mechanisms that clean up resources at both the
initiator 5002 and target 5004 are described here without
limitation in accordance with various examples.

Referring to FIG. 51, repeated drops of a first NVME
packet in an exchange are addressed discussed in a flow
5100. The NVME driver 5102 detects an 1/O timeout after
repeated drops and sends an abort command. An NVME
abort response is sent after a timer, EXCH_CLEANUP_
TOV, expires.
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Referring to FIG. 52, another example of an exchange
involving repeated drops of subsequent NVME packets is
discussed in a flow 5200. An abort command is sent after the
NVME driver 5102 detects an I/O timeout. An abort
response is sent after a timer, EXCH_TOV, expires.

In order to determine the efficiency of the NVMEoN
protocol, a comparison may be made relative to a protocol
that sends every NVME PCle transaction over the network
with error detection boundaries at the NVME command
level. Referring to FIG. 53, a flow diagram 5300 illustrates
a complete flow of a 32K write command, but other length
write commands may be implemented. The NVME com-
mand initiator 4402 and the target 4404 may each act as a
BTP sender and a BTP receiver interchangeably depending
on which one has data to send at a given step in the flow.

Referring to FIG. 54, a flow diagram 5400 illustrates a
complete flow of a 32K read command, but other length read
commands may be implemented. The NVME command
initiator 4402 and the target 4404 may each act as a BTP
sender and a BTP receiver interchangeably depending on
which has data to send.

In contrast to the efficient flows of FIG. 53 and FIG. 54,
in FIG. 55 a flow diagram 5500 illustrates a complete flow
of a conventional 4K NVME write command that is imple-
mented by sending every PCle transaction over the network.
Since the protocol has no inherent error recovery mechanism
built into it, an entire I/O needs to be retried in the case
where only a single packet is lost. The sending of an /O at
greater than a modest length boundary may likely result in
inordinate number of retransmissions, warranting a split at
some meaningful boundary like 4K. In order to achieve a
32K NVME write command, as compared in the previous
example, the numbers for each cycle would be multiplied by
eight, resulting in a far more steps to achieve the same
command.

In order to compare overhead between the protocols,
different sized 1/Os, normal cases and drop scenarios may be
considered. For example, “NVMEoN” may refer to the
exemplary approach discussed above, while “Raw NVME”
may refer to an approach of sending each NVME command
without retransmissions being built into the protocol. The
NVME data packets may be assumed to be fragmented at 1K
boundaries (network MTU) in both cases for the sake of
simple comparison, but may be fragmented differently in
other examples.

Without limitation, an example comparison between
NVMEoN and raw NVME for a single 4K write 1/O
command involves 19 total packets for NVMEoN (four
request packets, four grant packets, and four ACK cycles=12
packets, plus three NVME command packets and four
NVME data packets) and 11 total packets for raw NVME
(command doorbell, fetch command, write command, Xfer
ready, status doorbell, fetch status, status and four data
packets). This example provides a theoretical scenario
where only one NVME 4K 1/O is outstanding between a pair
of nodes, with no aggregation of flows. However, more
typically there may be many flows between an initiator 4402
and a target 4402 allowing for a more efficient usage of
every burst window in various examples. As there are
additional flows, NVMEoN performs much better than raw
NVME. An example comparison for 16 parallel 4K Write
1/0s with no drops involves 127 total packets for NVMEoN
(five request, grant, and ACK cycles=15 packets; 48 NVME
command packets; and 64 NVME data packets) and at least
176 and up to 192 total packets for Raw NVME (11 packets
for sending each 4K Write I/O (including Command Door-
bell, Fetch Command, Write Command, Xfer Ready, Status
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Doorbell, Fetch Status, and Status, plus four data packets)
times 16 1/Os results in 176 total packets.

In an example for a 32K Write /O with no drops,
NVMEDoN requires 47 packets (four request, grand and ACK
cycles=12 packets, three NVME command packets and 32
NVME data packets), while the Raw NVME requires 88
total packet (11 for each 4K write /O as noted above times
8 cycles).

In an example involving a 128K Write /O with no drops
NVMEoN would require 152 total packets (7 Request,
Grant, ACK cycles=21 packets, plus 3 NVME command
packets and 128 NVME data packets), while Raw NVME
would require 352 (the same 11 packets for each 4K write
1/O as noted above, sent in 32 cycles for a total of 352
packets.

An example for a 32K Write [/O with a single data packet
drop involves 51 packets for NVMEoN (5 Request, Grant,
ACK cycles=15 packets, plus 3 NVME command packets,
32 NVME data packets and 1 NVME data packet retrans-
mission, while Raw NVME requires 99 total packets (8
cycles of the same 11 packets needed for a 4K Write I/O as
noted above, plus one retransmission of 11 packets, for a
total of 99).

An example for a 32K Write [/O with two data packet
drops is provided below without limitations. In accordance
with this example, the two dropped packets may span 4K
segments, but in other examples, the two dropped packets
might span differently. Here NVMEoN requires 52 total
packets (5 Request, Grant, ACK cycles=15 packets, plus 3
NVME command packets, 32 NVME data packets and 2
NVME data packets retransmission), while Raw NVME
requires 110 total packets, including 8 cycles and 2 retrans-
mission cycles (a total of 10), for the same 11 packets
required for each 4K write /O.

Thus, as seen in these examples, as complexity increases,
drops occur, or parallel flows are involved, NVMEoN,
which is comparable in performance to raw NVME for the
simplest case, becomes significantly more efficient than raw
NVME when sending data over a network.

FIG. 56 illustrates a comparison table 5600 for different
scenarios in an embodiment. In accordance with the
depicted embodiment, at any [/O greater than 4K (or any
other value in other embodiments), the overhead of
NVMEoN protocol may be less compared to Raw NVME
even without any aggregation of flows. With an aggregation
of the flows, at any sized I/O the overhead associated with
NVMEoN may be less than Raw NVME. As the size of the
I/O increases, the overhead associated with the NVMEoN
may become more and more minimal whereas that of Raw
NVME may keep increasing.

Various timer values as used herein in various layers of
the protocol may be set according to considerations relating
to particular implementations. For example, a timer referred
to as ERROR_TOV may be used by the BTP layer 3204 to
detect packet losses in the network. An exemplary value may
be 100 milliseconds, though other values may be defined in
other examples. A timer referred to as EXCH_CLEANUP_
TOV may be used by the initiator 4402 to determine a
persistent network outage, causing the exchange cleanup to
be dropped. An exemplary value may be 60 seconds, though
other values may be defined in other examples. A timer
referred to as EXCH_TOV may be used by the target 4404
to detect exchange timeouts due to repeated drops in the
network and may clean up local resources. An exemplary
value may be 90 seconds, but other values may be used.

FIG. 57 illustrates an architecture diagram enabling flow
control 5700 in an embodiment. End-to-End flow control
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knobs may be available at various levels in the protocol.
These knobs may be best utilized with algorithms that are
suitable for deployment scenarios based on an implement-
er’s choice. At the lowest level, BTP receivers and senders
may use a credit mechanism. This may happen at a packet
level across /O flows and may provide a basic building
block to implement tunable parameters to throttle different
senders to different rates. The NVMEoN Exchange Layer
3202 may perform flow control at the exchange level. While
the target 4404 may support 256 concurrent exchanges with
an initiator 4402 in accordance with the depicted embodi-
ment, it may control the rate at which each of these
exchanges are serviced, implicitly having an impact on the
1OPs it exposes to a given Initiator. In other examples, the
target 4404 may a support different number of concurrent
exchanges. Since there may be one virtual remote controller
per proxy controller, an actual rate of processing of the I/Os
by a disk drive underneath the remote controller directly
controls flows associated with queues in the NVME driver
5102 above the proxy controller.

There may be two possible options for implementing the
NVMEDoN to span network boundaries. In accordance with
a first method, the initiator 4402 and the target 4404 end
points may be identified using Ethernet MAC addresses.
Any exemplary implementation may encapsulate the 1.2
packet in an overlay mechanism like VXLAN to span L3
segments. A special ethertype may be needed to standardize
this. In accordance with a second method, the initiator 4402
and the target 4404 end points may be identified using a
special UDP port over a node’s IP address. Standardizing on
the UDP port number may facilitate the method.

In accordance with different embodiments, various net-
work packet formats used for transporting NVME com-
mand/data packets and NVMEoN and BTP control packets
may be employed. The packet formats may be defined with
the initiator 4402 and the target 4404 as 1.2 endpoints. This
may be seamlessly extended to .3 endpoints since it may not
be dependent on the encapsulation in the protocol.

FIG. 58 illustrates NVMEoN encapsulation of an NVME
Command Packet 5800 in an embodiment.

FIG. 59 illustrates NVMEoN encapsulation of a batched
NVME Command Packet 5900 in an embodiment.

FIG. 60 illustrates an NVMEoN Xfer Rdy command 6000
in an embodiment.

FIG. 61 illustrates NVMEoN encapsulation of a NVME
Data Packet 6100 in an embodiment.

FIG. 62 illustrates an NVMEoN Exchange Cleanup
Request/Response 6200 in an embodiment.

FIG. 63 illustrates BTP control packets 6300 in an
embodiment.

Referring to FIG. 64, for BTP opcodes that are not defined
in the table 6400, CTL bits may be set to 0. In other
examples, the CTL bits may be set to other values.

In various examples, various choices for implementation
of the protocol may be employed. For example, FIG. 65
illustrates NVMEoN entirely in software 6500 in an embodi-
ment. For example, all components of the NVMEoN may be
implemented in the embedded CPU in software. The Proxy
NVME controller 2902 may reside below a physical PCle
interface and may terminate all PCle transactions. State
Machines for the NVMEoN exchange layer 3202 and the
BTP 3204 may be implemented in software, and packets
may be sent over the network interface of the ECPnetwork
processorU. The remote controller may use the network
processorECPU NVME controller 6514 to translate all
NVME commands received over the network to Ms to/from
the local disks. The depicted model may not depend on any
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particular hardwareFPGA or other hardware assistance for
NVME. In embodiments it may use board layout aspects,
such as a PLX switch of some sort to support a PCle slave
end point at the network processorECPU 6508, where the
host CPU may be the master (just like an hardwareFPGA
embodiment as described elsewhere in this disclosure and/or
involving an SRIOV NIC). In embodiments the network
ECPU processor may have a PCle interface that may func-
tion in a slave/target mode, with network interfaces going
out of the network processor ECPU (which may or may not
be connected to a switch of an hardware FPGA, such as an
L2 switch, that embodies the methods described herein).

FIG. 66 illustrates a mode of the NVMEoN entirely in
hardware 6600 in an embodiment. In accordance with the
depicted model 6600 of FIG. 66, all components of the
NVMEoN may be implemented in hardware 6510, such as
an FPGA (Field Programmable Gate Array) referred to in
some cases herein as Stevedore). The Proxy NVME con-
troller 2902 may reside below a physical PCle interface and
may terminate all PCle transactions, just like the host
NVME controller 6512. A state machine for the NVMEoN
exchange layer 3202 and the BTP 3204 may be implemented
in hardware. The remote controller 2904 in a hardware
embodiment may translate all NVME commands received
over the network to I/Os to/from the local disks.

Referring to FIG. 67, in many of the embodiments dis-
closed herein, a log-based file system may be used, with
storage for the file system being handled across a pool of
resources, such as a pool of SSDs 6702. SSDs typically
operate with data written to them sequentially, block-by-
block, one after the other. By way of example, embodiments
of a converged networking and storage solution, as
described throughout this disclosure, may employ a set of
SSDs (e.g., the six SSDs 6702, labeled SSD1 through SSD6
in FIG. 67) associated with each converged node, with a
number of volumes, N, and various applications writing to
individual blocks 6706 on the SSDs. If those volumes are
assigned statically to particular places on the pool of SSDs,
then each of the SSDs will receive writes on a somewhat
random basis, according to the periodic needs of a volume
or application in question. This is sub-optimal, as it results
in non-sequential writing of the SSD, complicating various
processes, such as garbage collection. In embodiments, the
drive space on a pool of SSDs 6704 can be used as a log (i.e.,
as a sequence of blocks). Whenever a write comes, among
any of a set of volumes or applications that will use a storage
node having a pool of SSDs 6704, the system may write the
data sequentially across the SSDs and retain a map 6712 in
the software that indicates the block, page, and SSD to
which each write occurs. For example, the map 6712 may
track that pages A through D 6704 are written to the initial
locations of Block Q of SSD1, that pages E through H are
written to the initial locations of Block S of SSD2, etc. In
another example, the map 6712 may retain the fact that the
first write is at a given offset (e.g., 100), from the start of the
first data block across the pool of SSDs, or the like.

In alternative embodiments, the map 6712 that tracks
locations of writes may be (a) statically allocated or (b)
dynamically allocated. A statically allocated map has the
advantage that it does not require a lot of memory to hold the
map; for example it can be a formula by which one can
compute the SSD and offset where the logical access lies.
Consider the example of a volume layout across four SSDs,
where the logical blocks of a volume are simply striped
across the four SSDs. In that example, for a volume layout
of size 100 GB, the first 25 GB of data for the volume could
be placed on first 25 GB of storage locations on the first
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SSD, the next 25 GB of data for the volume could be placed
on the first 25 GB of storage locations on the second SSD,
and so on. More complex layouts can be generated, such as
using non-sequential storage blocks within particular SSDs,
using non-sequential patterns for writing to the various
SSDs, and the like, as described in more detail below. As
long as the map is retained, the location of the actual data
can be determined by reference to it. A disadvantage of this
static type of mapping is the fact that when a block gets
over-written the write will be directed to the same block on
the particular SSD where the block being written to is
mapped, making it increasingly difficult to deal with over-
writes as they accumulate over time.

In the case of dynamic allocation of the map, a disadvan-
tage is that an indirection map has to be kept; however, the
advantage the dynamic allocation approach provides is that
one can then issue backend writes to the SSD in a linear
fashion. This indirection map needs to be kept updated and
stored persistently. As an example perhaps the allocation is
done in the same manner as in the example of static
mapping. i.e. a dynamic volume layout of size 100 GB, in
which the first 25 GB is on SSD one, and 25 GB is on the
second SSD, and so on. When a write comes, say for offset
1 (for a write that is 4 k in size, for example), it shall be
written on offset 0 on the first SSD, with this mapping
(logical block 1—-=SSD1, offset 0) stored in the dynamic
map. The second write may come for logical block 10,
which will then be written to the first SSD, at offset 1,
yielding the mapping (logical block 104 SSD1, offset 1). The
advantage of this approach is the fact that the backend SSD
is written in a sequential manner, which results in a gain in
garbage collection efficiency.

Managing storage across a collection of drives 6702 can
provide significant advantages in connection with certain
challenges and inefficiencies involved in cleaning up invalid
data, known as garbage collection. By way of background,
garbage collection is a fundamental process in solid state
drives (SSDs). FIG. 68 illustrates a sequence of operations
involved in writing pages of data, followed by a garbage
collection process on a single SSD 6702. Unlike hard disk
drives, NAND flash memory typically used in SSDs cannot
overwrite existing data; instead, old data needs to be erased
before writing new data to the same location. Flash memory
is typically divided into blocks 6706, which are further
divided into pages 6704. Internally SSDs typically write all
data sequentially. As one makes changes to data stored in the
blocks of an SSD, such as by changing a file, the data
previously stored in the blocks is rendered invalid. The new,
valid data is written on a new set of blocks that appear later
in the sequence. Data can be written directly to an empty
page, but only whole blocks can be erased. To reuse space
taken up by data that is no longer valid, any valid data from
a block that needs to be preserved must be copied and
written to empty pages of a new block, after which the old
block can be erased and made available for new data. A
garbage collection process can be undertaken various ways.
Because flash memory typically has a limited number of
erase-and-write cycles, it is desirable to adopt garbage
collection strategies that reduce the number of times such
cycles are required. In the garbage collection process illus-
trated in FIG. 68, four pages A-D 6704 are written sequen-
tially to the initial storage locations on Block X of SSD1;
that is, individual pages are written sequentially to free
blocks. Subsequently, four new pages 6802 (E-H) and four
replacement pages 6810 (A'-D') are written sequentially to
the next available free pages of Block X. The original pages
A-D are now invalid (e.g., stale) data, but in a typical SSD
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they cannot be over written without erasing the whole block.
In order to write to the pages of Block X that now have stale
data, the valid data has to be copied to the available pages
6812 of another Block (Block Y). Then all of the pages 6814
of block X are free again to be re-written.

As an example of the challenges created by garbage
collection processes, there may be a new write block for the
new data, and there may be an erase block (e.g., 1 MB to 2
MB) corresponding to the old, now invalid data. Each block
is typically made up of a plurality of smaller pages. The
entire SSD may comprise a much larger storage resource,
such as comprising a 100 GB drive, or larger. Also, backup
space (e.g., 20 GB) may be retained on the drive. As noted
above, on an SSD one cannot write on the same page again
unless the block containing that page has been erased, but
the “erase” operation is costly operation. If one has to
overwrite a block, the SSD would mark the block invalid,
and the new block that one is seeking to write is written to
the backup location; that is, the SSD cannot overwrite data
until it erases a whole block. The erase operation takes time,
so the system typically has an internal log file system that
writes serially until the end. Overwrites are written to the
backup portion of the drive, and the system keeps marking
some of the pages invalid, as new data is written to the
backup area. Eventually, garbage collection finds out a block
that has invalid pages, copies the valid pages of data from
that block to backup, erases the block, and makes it available
for re-writes. Flash memory has this property. It is not a
“write in place” medium. In the first round, Flash memory
performs very well for write operations, but as the drive
nears being full, the garbage collection process requires
many cycles of copying and erasing, so the drive perfor-
mance diminishes significantly. For example, drive perfor-
mance may diminish from 100K TOPS to 20K TOPS as the
drive gets deep into garbage collection in order to make
blocks available for new write operations. Internally the
drive is moving large amounts of data in large numbers of
operations. Eventually, user requests get blocked, because
the disk is locked as it moves around data; that is, the disk
can’t write to the new place while the disk is copying and
moving the data to make room for a subsequent erase
operation. The garbage collection process for a drive could
last, for example, from a millisecond to a second, during
which the drive is locked for the user.

Some SSD vendors provide a garbage collection API by
which third parties may manage garbage collection on the
SSDs. In embodiments, such an APl may be adapted to
accommodate a converged storage solution as described
throughout this disclosure in a manner that improves the
performance of a pool of SSDs as compared to the dimin-
ishing performance normally seen as SSDs become full, due
to the burdens of garbage collection. As noted elsewhere in
this disclosure, embodiments of a converged solution may
employ a set of SAS controllers, which may control a
plurality of SSDs as a pool (e.g., six SSDs), such as the
collection depicted in FIG. 67. As noted, this pool of storage
is virtualized to the user, so that it is seen simply as a file
system, just as if it were a physical disk on the same
computer used by the user. In embodiments, during a given
period (e.g., a millisecond to one second) all incoming write
commands from the system of a user may be striped across
a subset (e.g., four of six) SSDs, while the other SSDs in the
pool (e.g., two of six) perform garbage collection. For any
given period during which garbage collection is taking place
on some of the SSDs, all writes can be re-directed to the
remaining SSDs. For a subsequent time period (e.g., another
millisecond to one second slot), the system can write all data
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from the user’s computer to a different subset of the SSDs
(e.g., a different four of the six), while the remaining (e.g.,
a different combination of two) SSDs perform garbage
collection. To the end user, the system always provides a
more predictable latency, because one of the major causes of
inconsistency in latency is the underlying unpredictability as
to when an SSD needs to do its garbage collection work. In
embodiments, a garbage collection API 6714 for an SSD
may include a programmatic way to instruct the SSD to
commence garbage collection, so that the timing and loca-
tion of garbage collection can be managed, in a rotation,
across subsets of SSDs in a pool of SSDs. This allows the
manager of the pool of SSDs to refrain from issuing any
writes to an SSD while it is in garbage collection mode. The
system can still send read commands, but it won’t send any
writes for the garbage collection time periods assigned to an
SSD. In such a system, the number of SSDs in a pool that
are in garbage collection may be dynamically configurable,
so that the system may configure the garbage collection with
the correct number of SSDs doing garbage collection, for the
correct time periods, given various information, such as
information about the use of the SSDs (typically number of
overwrites for the type of application in question), the state
of the SSDs (how full are the SSDs in the pool), the
performance of the SSDs (how long is garbage collection
taking) and the like.

The aforementioned APIs may be provided for various
storage protocols, such as SAS, SATA, and NVMe. Such
APIs may enable standardization as to how to call a drive
and instruct it when to go into garbage collection and for
how long garbage collection should take place. In embodi-
ments, a given amount of space (e.g., seven percent, may be
left reserved for garbage collection), to avoid problems that
may occur with running completely out of space.

With the ability to manage garbage collection across a
pool of SSDs, the manager of a pool can monitor the SSDs,
such as knowing if the SSDs are of different sizes, manu-
facturers, or performance characteristics, so that garbage
collection can be based on such awareness. As a system, the
user has control over when to ask given SSDs to do garbage
collection.

Some SSD vendors also have APIs to indicate how many
free blocks are available. Awareness of this information may
allow a user of the converged solution described throughout
this disclosure to perform garbage collection selectively,
such as on the drives that are more dirty.

Also, as SSDs can be of different sizes, one can arrange
the garbage collection cycle based on sizes, dirtiness or other
characteristics of the varying SSDs in a pool.

In embodiments, the system may direct all the SSDs in a
pool to undertake garbage collection, if the situation called
for it (e.g., during a time period when new writes are very
unlikely).

In certain embodiments, provided herein is a storage
system with time-varying assignment of sub-sets of SSDs in
a pool of SSDs to perform garbage collection, while other
SSDs in the pool remain available for writing new data.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a
storage system with time-varying assignment of subsets of
SSDs to garbage collection.

In certain embodiments, provided herein is an application
programming interface for configuring SSD to initiate and
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close a garbage collection activity according to a schedule
determined by a system external to the SSD that uses the
SSD.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having an
application programming interface for configuring an SSD
to initiate and close a garbage collection activity.

In certain embodiments, provided herein is a storage
system with log-based, file storage, that is striped sequen-
tially across a plurality of SSDs, in which the system uses
time-varied garbage collection among SSD nodes in the
plurality of SSDs.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a
storage system with log-based, striped storage, with time-
varied garbage collection among SSD nodes.

In certain embodiments, provided herein are methods and
systems for arranging the garbage collection cycle for a
plurality of SSDs based on sizes, dirtiness, performance
parameters, or other characteristics of the SSDs in a pool of
SSDs.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having
arrangement of a garbage collection cycle based on at least
one of the size and cleanliness of the SSDs in a collection of
SSDs.

In certain embodiments, provided herein are methods and
systems for coordinating the timing of garbage collection in
an SSD with a discontinuous write strategy for a plurality of
related SSDs with which the SSD is pooled.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having
coordination and synchronization of garbage collection in an
SSD with a discontinuous write strategy for the SSDs in a
collection of SSDs.

In embodiments, methods and systems are provided for
arranging sets of optimally sized drives in a collection of
SSDs, including to satisfy drive writes per day (DWPD)
requirements on a per application basis. A given drive in a
collection, such as a 100 GB drive, may be warranted over
a given duration (e.g., 3, 5 or 8 years) to provide a minimum
number of DWPD, and the DWPD for a drive relates to its
ability to handle the write requirements of one or more
applications. In SSDs that use media, such as NAND Flash,
that requires erasure before re-writing to a block, there can
be limits to the number of times the media can be erased
(e.g., 10,000 to 30,000 times). This is due to the limited life
of the physical substrate used in the media. The number of
drive writes per day allows determination of the duration of
a warranty, and higher intensity (higher DWPD) drives are
more expensive. In the field, it can be very difficult to
determine the appropriate drive for a given application,
because the number of writes may be somewhat unpredict-
able.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
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as a virtualized cluster of storage resources and having a
facility for arranging sets of optimally sized drives in a
collection of SSDs.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a
hardware device providing erasure encoding for an array of
redundant disks that are treated as one logical unit across
multiple storage boxes.

As noted above in the example of FIG. 67, in the methods
and systems disclosed herein, instead of one drive, a con-
verged solution storage node may have a set of drives, such
as six drives, all of which are logically managed as one drive
by the operating system. Each drive may be warranted at a
given level of DWPD; for example, one drive of a set of six
might be warranted at one DWPD. Each of a set of appli-
cations that will use the collection of drives may have certain
requirements for writing data. For example, a first applica-
tion may use a large number of writes, so it may want two
DWPD, while a second application may only require one-
half of a DWPD. Knowing the mix of applications, and their
sum total requirements for DWPD, one may select the
desired total number of DWPD by distributing the writes
across a number of drives that have a given number of
DWPD (e.g., three drives of one DWPD). The overall
number of drives in inventory can be reduced by distributing
the writes even across the drives, because a given applica-
tion, such as one requiring one-half a DWPD, does not
require its own one DWPD drive, which leaves excess
DWPD capacity. Further, one can have one or more (e.g.,
six) drives of higher DWPD, such as five DWPD. With two
types of drives (e.g., one DWPD and five DWPD), one can
tune a combination of drives, such as a set of six, to meet the
anticipated requirements of a set of applications. For
example, if a collection of applications cumulatively require
14 DWPD, then two drives of five DWPD and four drives
of DWPD can be arranged in the collection to meet the
requirements of the application. A system view of the
components allows assembly of various units of one DWPD
and various units of five DWPD. In embodiments, drives
may be formatted to provide a given DWPD. In embodi-
ments, sub-system software of a converged data storage
node can format a drive, and even do so dynamically for a
set of drives, similar to managing the drives collectively for
garbage collection as noted elsewhere in this disclosure. In
embodiments, a user may be provided with a flexible policy
where the user can select a given level of DWPD and a given
level of over-capacity, to make sure the utilization fits within
the warranted and purchased level of DWPD.

With this capability to tune the DWPD over a set of
drives, one can club/group applications intelligently to make
good use of the purchased and warranted level of DWPD.
This operation is a major advancement in practical situa-
tions. Today, applications may use a drive as a cache (often
without the user being aware of that fact), and the drive, if
not sized with the correct DWPD, may largely be a wasted
resource. Also, today, if one buys three DWPD, but an
application is doing five DWPD, then the system must
throttle the application back or risk violating the warranty
terms. On the other hand, if the user buys five DWPD and
uses three, then the money for the additional DWPD is
entirely wasted. Fither situation is sub-optimal as compared
to tuning to the correct DWPD needs of the application.

Internally, the system may enable a write or a set of
writes. As the system sees drives taking more writes than
warrantied, the system may allocate the write load to another
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drive in the collection to balance the writes with the war-
ranted DWPD. If the system is initially misconfigured, one
can request more writes per day to accommodate. This is
possible because the converged solution controls multiple
SSDs in a set, even though the set may be seen by the
operating system/file system as a single drive.

In one example, if all six drives are 100 GB drives,
warranted at one DWPD, the storage node has a total of 600
GB at one DWPD. This much can be written across these six
drives. One may define an allocation policy for writing 100
GB per day across each of the six.

Thus, in embodiments, methods and systems are provided
for arranging sets of optimally sized drives in a collection of
SSDs, which may include arrangements that are based on
DWPD requirements for one or more given applications.

Also, in embodiments, given a variety of combinations of
DWPD parameters and life of one or more drives, methods
and systems are provided for mixing and matching, virtu-
alizing and providing the equivalent of what each applica-
tion needs in a group of drives that are managed as a group.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a
facility for selective mixing and virtualization of SSDs of
varying DWPD parameters and life expectancy to satisfy
needs of at least one application by a group of heterogeneous
SSDs.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having
hardware encryption at a second level of virtualization of a
SSD.

In embodiments, the methods and systems disclosed
herein may further employ compression (e.g., LZIP), de-
duplication (e.g., MBHash), thin provisioning, load balanc-
ing, and other techniques to further optimize the use of a
collection of drives.

Consider de-duplication as an example. An SSD capable
of doing de-duplication can be optimized at the system level
in the following way. Taking an example of a system with
six SSDs, and using a dynamic volume layout, the six SSDs
can be divided into six ranges. For example, if the SSD uses
a Secure Hash Algorithm 1 (SHA-1) technique to fingerprint
a block of 4 k in size, the output of the SHA-1 algorithm is
20 bytes, or 160 bits. That means the range is {2770, 27160}
This range can be divided into six sub-ranges say {rl, r2, r3,
r4, 5, r6} and each SSD may be assigned to a sub-range.
The dynamic volume map on each write operation may
compute the SHA-1 for the data and re-direct the write to an
SSD that falls under the assigned sub-range. The writing of
the dynamic volume map may be implemented as explained
elsewhere in this disclosure. With this approach one is able
to achieve system-level, global de-duplication. An added
advantage of this technique is the fact that no lookup or a
database of SHA-1 blocks needs to be maintained at the
system level.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a job
de-duplication capability for networking and storage jobs.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a
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capability for global de-duplication and erasure encoding
across a plurality of redundant storage resources.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a
capability for adding nodes in a system having a capability
for global de-duplication and erasure encoding across a
plurality of redundant storage resources.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a
hash-based system for locating data on a target storage box.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having
in-line hashing and routing of the data in a network without
requiring the writing of data to memory in order to perform
a hash calculation.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having
in-line erasure encoding in a network, without requiring the
writing of data to memory in order to perform erasure
encoding.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having
in-line de-duplication of redundant blocks in a networking
and target storage system.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having
in-line de-duplication and erasure encoding in a networking
and storage system without requiring writing of data to
temporary memory in order to perform calculations.

To support data security, for certain storage resources,
including hard drives and SSDs, there is a class of drives
referred to as “self-encrypting drives” (SED). Performing
data encryption in software is very expensive. One problem
is that if there are multiple users of the drive, a system would
preferably have more than one key (e.g., one for each user),
but in conventional SEDs, there is only a single key. As a
result, sharing a drive, such as in cases of multi-tenancy,
causes a problem. At a system level, embodiments of a
converged solution may employ certain techniques to pro-
vide encryption capability across a set of drives. First, the
system can help manage the keys centrally, and do so in
software in a way that takes advantage of self-encrypting
nature of the drives. Second, one can produce a key in the
hardware of the converged solution for each one of the
virtual volumes that is carved out of a set of drives. In this
case, instead of (or in addition to) performing encryption in
the drive or SSD, because the converged solution is the
controller over each of a set of drives, one can generate a key
per user, a key per application, or both, and still carve out
suitable storage across a set of drives (e.g., six or eight
drives). This can be done with hardware-assisted encryption,
such as with generation of keys, as well as management of
keys, being performed by hardware in the converged solu-
tion.
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Such a solution offers benefits to users; for example, if
data is encrypted, then users may not be obligated to report
situations where third parties have obtained access to it.
Similarly, parties who wish to share data with others (such
as customers with service providers, or vice versa) can allow
parties access into an account, because data associated with
the account is encrypted, except for specific data that is
shared, such as by providing a key.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having
encryption with different keys applicable to data on the same
disk drive.

Thus, embodiments of this disclosure including providing
hardware level encryption at a level of virtualization of a
data storage resource, such as an SSD.

Also, provided herein is a solution that allows encryption
of data on a drive with different keys that are applicable to
data on the same drive.

Also, provided herein is a solution that allows double
level hardware encryption of data on a drive, including
hardware-level encryption on the drive itself (SED) and
hardware level encryption at a virtualization layer above the
drive (such as in an FPGA-enabled converged solution as
described herein).

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having
storage encryption both at the level of an SSD and at the
level of an Field Programmable Gate Array.

In embodiments, a strategy is provided for writing to
SSDs, wherein the writes to the SSD are sequential, but with
gaps between the written blocks of data. FIG. 69 illustrates
a system level write strategy in which new pages of data
6704 are serially written to random page locations across a
collection of SSDs 6702 in a storage system. With a sequen-
tial write, a drive may have a given performance, such as
100 KB performance. Random writes typically reduce the
performance, such as to 20 KB performance. As a result, it
is conventional for systems to use sequential write strate-
gies; however, a problem occurs when one wants to perform
garbage collection. In the internal data structure of the drive,
one is marking things invalid as changes are made in files,
deletions occur, and the like, but, as noted above, the system
cannot write to the area that has been marked invalid until
garbage collection is completed; that is, the file system has
to copy and move any remaining valid pages 6704 clse-
where, erase the invalid blocks 6706, and then re-write the
valid data sequentially as a log, as depicted in connection
with FIG. 68.

As an alternative, as seen in FIG. 69, one may write by
skipping some blocks (creating some gaps or holes in the
page locations to which writes are occurring), but still
maintain a sequential write strategy within an SSD 6702 or
across a collection of SSDs 6702. That is, one may use a
discontinuous, sequential write strategy. In such a case,
overall performance has improved in experimental cases
with several different types of drives. For example, discon-
tinuous, sequential write strategies obtained 60 KB perfor-
mance out of some vendors, and up to 80 KB performance
out of others over time, so that the need for garbage
collection was greatly reduced, or even eliminated. For these
experiments, an 1/O size of 4K bytes was used, with a queue
depth of 4. Working with a SATA SSD from a leading
vendor, a conventional sequential write implementation
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resulted in input-output operations per second (IOPs) of
63.6K and latency of 59.24 microseconds. The random write
approach for the same SATA SSD resulted in significant
improvements in IOPs and latency, with [OPs of 12.8K and
latency of 302 microseconds. An elevator write algorithm
approach, with 4K gaps between writes, for the same SATA
SSD, resulted in IOPs of 50.7K and latency of 75.2 micro-
seconds. An elevator write algorithm approach with 8K gaps
between writes resulted in IOPs of 32.7K and latency of 119
microseconds. Working with an SSD from another leading
vendor, again using I/O size of 4K bytes and a queue depth
of 4, a conventional sequential write implementation
resulted in input-output operations per second (IOPs) of
41.3K and latency of 93.3 microseconds. The random write
approach for the same SSD resulted IOPs of 9.8K and
latency of 403 microseconds. An elevator write algorithm
approach, with 4K gaps between writes, for the same SSD,
resulted in IOPs of 21.7K and latency of 181 microseconds.
An elevator write algorithm approach with 8K gaps between
writes resulted in IOPs of 15.9K and latency of 249 micro-
seconds.

In the case of a discontinuous, sequential write strategy,
when the system goes back to a block as it continues its
sequential path through the drive, it knows, by virtue of
keeping a map 6712, what blocks were invalidated (even if
the blocks were not erased). The system knows, for example,
that some other block was over-written by new data that
superseded a block that was written at this location. By
knowing what blocks were invalidated, one can write
directly into free pages in the invalid regions. The system
operates not strictly as a log, but like an elevator. The system
continues to find invalid blocks and keeps writing serially,
keeping track of which blocks are valid or invalid. In such
embodiments, garbage collection occurs somewhat differ-
ently from a conventional process. In the first write cycle,
the SSD will see that all writes are valid. In the second round
it will see some invalid blocks, and the writes will go
somewhere else in the gaps to perform writes. At any given
time, the SSD doesn’t have very many blocks to copy and
re-write elsewhere. The result is that this approach makes
the SSD’s garbage collection process more efficient. The
system can tell the SSD what the next blocks are that the
system will be using, so that garbage collection can focus on
cleaning up blocks that are not going to be in use in the next
cycle. In embodiments, a converged solution can signal a
write strategy to an SSD, so that an SSD provider can choose
an order that allows the write strategy to work in sync with
the garbage collection of the SSD.

The elevator write algorithm approach is different from a
log-write implementation in which the drive is written like
a sequential log. In the case of log-write implementations,
valid pages from a block are moved to a different block in
order to create an empty block for new writes. However, the
elevator write algorithm picks up only invalid pages for new
writes continuing in the same direction (as it passes from the
start to end of the drive) like an elevator that stops only at
certain floors. For first round of writes, when entire drive is
free, all the pages are picked up for writes in order, just like
in a log-write implementation. The elevator write algorithm
keeps track of all invalidated pages, but it may refrain from
using the invalidated page information until the whole drive
is written once. Thereafter, for the next round of writes, the
elevator write algorithm starts picking invalid pages for new
writes. This algorithm can leave the garbage collection
mechanism to be performed by the drive, but the sequential
write pattern (with holes) as described in this disclosure
enhances the drive’s garbage collection efficiency, as seen in
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experimental results. Among other things, the elevator write
algorithm avoids the overhead of reading/writing pages to
create large contiguous free space, as is required for log-
write implementations.

In embodiments, if higher-level software keeps track of
where the last writes were done, then write strategies can be
optimized, including based on the performance characteris-
tics, garbage collection approaches, or other capabilities of
particular SSDs.

Thus, provided herein are methods and systems for coor-
dinating and/or synchronizing garbage collection in an SSD
with a sequential, discontinuous write strategy for an SSD.

In embodiments, a networking and storage system is
provided having a capability for handling a collection of
physically attached or network-distributed storage resources
as a virtualized cluster of storage resources and having a
sequential, gapped write strategy to an SSD.

Thus, an embodiment of a write algorithm with coordi-
nated garbage collection is provided. Among other objec-
tives, the write algorithm provides a consistent number of
IOPs and consistent level latency of 10 operations, resulting
in a predictable overall system performance. Also, an objec-
tive is to avoid adverse effects of garbage collection by
keeping track of garbage collection statistics and making
appropriate adjustments based on them. The write algorithm
may work in coordination with garbage collection on drives,
such as SSDs, such as to help the garbage collection process
on the drives. Another objective is to avoid the need for data
movement to create contiguous space on drives, since data
movement is expensive and can be avoided when the system
helps the garbage collection process on the drives.

In this example, a segment process may be undertaken,
including creating a list of free drive regions, which may or
may not be physically contiguous. One may create a seg-
ment of required size by selecting free regions from a
specific offset in circular fashion, such as tracked in a table,
referred to as the FreeRegionTable. The FreeRegionTable
may be initialized with all free regions of a drive, when it is
formatted. In embodiments, regions may be given to seg-
ments in a circular fashion from the FreeRegionTable.
Region entries may be inserted into this table whenever
there is an over-write to an existing region. The FreeRe-
gionTable entries are ordered based on offset of regions.
When a delete of a region of happens, the deleted region will
be inserted to the FreeRegionTable.

Basically this gives the garbage collection process on the
drives enough time to clean up or run the garbage collection
process on regions in the FreeRegionTable by the time those
regions are allocated to segments.

The exemplary write algorithm may treat an SSD as a
circular log. The system may have a number of SSDs, and
each SSD may have its own circular logging file system.
This logging file system may use the characteristics of the
SSD to improve the overall performance of file system. The
logging file system differs from a conventional log-struc-
tured logging file system (referred to here as LFS), as the
present system does not require any data movement, as
required by LFS, for segment cleaning in order to create
contiguous free space. The segment regions of the present
approach can be scattered instead of being contiguous. The
segments may be of various types, such as MetaData Seg-
ments, Data Segments, FreeSegments, and the like. In
embodiments, a segment can consist of dis-contiguous
blocks or dis-contiguous pages of the SSD.

The actual garbage collection process may be the con-
ventional process used by a given SSD, but the system
provided herein may help the SSD execute a better garbage
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collection process. For the sake of speed and other benefits,
the system may, for example, keep certain types of seg-
ments, such as a MetaData Segment, in non-volatile memory
(NVM) or in RAM, such as battery-backed RAM. However,
if NVM or battery-backed RAM is not available, the system
may host Metadata Segments on another fast medium, or on
same SSD itself.

In the algorithm, SSD writes may all go to new locations
on the drive, and corresponding old locations are maintained
explicitly by the FreeRegionTable. The data on old pages is
invalid. During the execution of the write path, the system
issues writes into a Data Segment after writing a Metadata
entry in a Metadata Segment. Once the write is completed,
the system moves old blocks corresponding to the write into
a FreeSegment.

Performance improvements occur for a number of rea-
sons. First, whenever a region is overwritten, the flash
translation layer (FTL) of the drive may write that data into
a new location, and the old entry will be marked for garbage
collection. The old entries are maintained in the FreeRe-
gionTable. The blocks should have completed garbage col-
lection by the time they are allocated to a new Segment. The
system may see some improvement by explicitly maintain-
ing these old regions in a temporary Table and moving them
to FreeRegionTable after they are done, such as with han-
dling by erase commands, such as TRIM or UNMAP
commands. The system may issue garbage collection on old,
invalid regions by asking the drive to garbage collection
these regions before moving them to FreeSegmentTable.
Issuing and waiting for this cleanup takes time, so in
embodiments the system may maintain these regions in an
InvalidRegionSegmentTable. An asynchronous thread may
keep on issuing TRIM commands on these regions, and once
these regions are done (completing the “TRIMming”), the
system may move them to FreeRegionTable.

In embodiments, the DataSegment is allocated from Free
Segment Table.

The volume layout for the system may include volumes
that contain one or more plexes. In embodiments, more than
one plex may be used to maintain data redundancy. Each
plex can consist of one or more subvolumes. Each subvol-
ume may be spread across multiple logical disks (LDs). A
subvolume may completely reside on a host; however,
different subvolumes of a host can come from different hosts
to facilitate growth of a volume across hosts or for dynamic
data distribution.

In embodiments, each LD may be from a single drive.
Each file may form an LD for the subvolume. In embodi-
ments, the system may use a facility like compressed
B+-Tree/leveldb to maintain an Address Translation Table
for logical-to-physical mappings for the files. The Address
Translation Table can be noted in NVM or MD Segments or
can be stored in DataSegments. The file system header may
include a pointer to various file inode blocks, which point to
these translation tables.

When volumes are created, various metadata of the vol-
ume or metadata related to write or other operations, and the
like, may be maintained in one or more Metadata Segments.
The metadata may be useful during write operations on
volumes, during recovery from crash, for handling mirrored
volumes, and for compression, snapshot, de-duplication and
various other storage features.

An example of a write algorithm may include the follow-
ing steps:
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//Incoming write operation
int write(ld, offset, length, buf)
{
-> Get the existing entry from LD for offset, length
-> Make a MD entry to indicate write operation
(The entry contains existing entry info and new)
-> Issue the write to next-available entry in
DataSegment
->When the write completes, insert the existing entry
to the FreeRegionTable and update the existing entry with the new entry

in
the file address translation table (which may be optimized further by
maintaining these regions in an InvalidRegionTable before moving them to
the FreeRegionTable)

-> Ack the Write

* The MD entry is used a journal to help in recovering
incase of crash at

any of the steps above
* Metadata entries goto NVM
* Data write happens to Data Segment

An example of data segment allocation algorithm may
include the following:

Segment* AllocateSegment(Size)

allocatedSize = 0

Segment := { }

while (allocateSize < Size) {
region := FreeRegionTable[freeIndex]
Segment += region
allocateSize = allocateSize + region.Size
freeIndex = freeIndex + 1

return Segment

}

While only a few embodiments of the present disclosure
have been shown and described, it will be obvious to those
skilled in the art that many changes and modifications may
be made thereunto without departing from the spirit and
scope of the present disclosure as described in the following
claims. All patent applications and patents, both foreign and
domestic, and all other publications referenced herein are
incorporated herein in their entireties to the full extent
permitted by law.

The methods and systems described herein may be
deployed in part or in whole through a machine that executes
computer software, program codes, and/or instructions on a
processor. The present disclosure may be implemented as a
method on the machine, as a system or apparatus as part of
or in relation to the machine, or as a computer program
product embodied in a computer readable medium executing
on one or more of the machines. In embodiments, the
processor may be part of a server, cloud server, client,
network infrastructure, mobile computing platform, station-
ary computing platform, or other computing platform. A
processor may be any kind of computational or processing
device capable of executing program instructions, codes,
binary instructions and the like. The processor may be or
may include a signal processor, digital processor, embedded
processor, microprocessor or any variant such as a co-
processor (math co-processor, graphic co-processor, com-
munication co-processor and the like) and the like that may
directly or indirectly facilitate execution of program code or
program instructions stored thereon. In addition, the proces-
sor may enable execution of multiple programs, threads, and
codes. The threads may be executed simultaneously to
enhance the performance of the processor and to facilitate
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simultaneous operations of the application. By way of
implementation, methods, program codes, program instruc-
tions and the like described herein may be implemented in
one or more thread. The thread may spawn other threads that
may have assigned priorities associated with them; the
processor may execute these threads based on priority or any
other order based on instructions provided in the program
code. The processor, or any machine utilizing one, may
include non-transitory memory that stores methods, codes,
instructions and programs as described herein and else-
where. The processor may access a non-transitory storage
medium through an interface that may store methods, codes,
and instructions as described herein and elsewhere. The
storage medium associated with the processor for storing
methods, programs, codes, program instructions or other
type of instructions capable of being executed by the com-
puting or processing device may include but may not be
limited to one or more of a CD-ROM, DVD, memory, hard
disk, flash drive, RAM, ROM, cache and the like.

A processor may include one or more cores that may
enhance speed and performance of a multiprocessor. In
embodiments, the process may be a dual core processor,
quad core processors, other chip-level multiprocessor and
the like that combine two or more independent cores (called
a die).

The methods and systems described herein may be
deployed in part or in whole through a machine that executes
computer software on a server, client, firewall, gateway, hub,
router, or other such computer and/or networking hardware.
The software program may be associated with a server that
may include a file server, print server, domain server,
internet server, intranet server, cloud server, and other vari-
ants such as secondary server, host server, distributed server
and the like. The server may include one or more of
memories, processors, computer readable media, storage
media, ports (physical and virtual), communication devices,
and interfaces capable of accessing other servers, clients,
machines, and devices through a wired or a wireless
medium, and the like. The methods, programs, or codes as
described herein and elsewhere may be executed by the
server. In addition, other devices required for execution of
methods as described in this application may be considered
as a part of the infrastructure associated with the server.

The server may provide an interface to other devices
including, without limitation, clients, other servers, printers,
database servers, print servers, file servers, communication
servers, distributed servers, social networks, and the like.
Additionally, this coupling and/or connection may facilitate
remote execution of program across the network. The net-
working of some or all of these devices may facilitate
parallel processing of a program or method at one or more
location without deviating from the scope of the disclosure.
In addition, any of the devices attached to the server through
an interface may include at least one storage medium
capable of storing methods, programs, code and/or instruc-
tions. A central repository may provide program instructions
to be executed on different devices. In this implementation,
the remote repository may act as a storage medium for
program code, instructions, and programs.

The software program may be associated with a client that
may include a file client, print client, domain client, internet
client, intranet client and other variants such as secondary
client, host client, distributed client and the like. The client
may include one or more of memories, processors, computer
readable media, storage media, ports (physical and virtual),
communication devices, and interfaces capable of accessing
other clients, servers, machines, and devices through a wired
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or a wireless medium, and the like. The methods, programs,
or codes as described herein and elsewhere may be executed
by the client. In addition, other devices required for execu-
tion of methods as described in this application may be
considered as a part of the infrastructure associated with the
client.

The client may provide an interface to other devices
including, without limitation, servers, other clients, printers,
database servers, print servers, file servers, communication
servers, distributed servers and the like. Additionally, this
coupling and/or connection may facilitate remote execution
of program across the network. The networking of some or
all of these devices may facilitate parallel processing of a
program or method at one or more location without deviat-
ing from the scope of the disclosure. In addition, any of the
devices attached to the client through an interface may
include at least one storage medium capable of storing
methods, programs, applications, code and/or instructions. A
central repository may provide program instructions to be
executed on different devices. In this implementation, the
remote repository may act as a storage medium for program
code, instructions, and programs.

The methods and systems described herein may be
deployed in part or in whole through network infrastruc-
tures. The network infrastructure may include elements such
as computing devices, servers, routers, hubs, firewalls, cli-
ents, personal computers, communication devices, routing
devices and other active and passive devices, modules
and/or components as known in the art. The computing
and/or non-computing device(s) associated with the network
infrastructure may include, apart from other components, a
storage medium such as flash memory, buffer, stack, RAM,
ROM and the like. The processes, methods, program codes,
instructions described herein and elsewhere may be
executed by one or more of the network infrastructural
elements. The methods and systems described herein may be
adapted for use with any kind of private, community, or
hybrid cloud computing network or cloud computing envi-
ronment, including those which involve features of software
as a service (SaaS), platform as a service (PaaS), and/or
infrastructure as a service (laaS).

The methods, program codes, and instructions described
herein and elsewhere may be implemented on a cellular
network has sender-controlled contact media content item
multiple cells. The cellular network may either be frequency
division multiple access (FDMA) network or code division
multiple access (CDMA) network. The cellular network
may include mobile devices, cell sites, base stations, repeat-
ers, antennas, towers, and the like. The cell network may be
a GSM, GPRS, 3G, EVDO, mesh, or other networks types.

The methods, program codes, and instructions described
herein and elsewhere may be implemented on or through
mobile devices. The mobile devices may include navigation
devices, cell phones, mobile phones, mobile personal digital
assistants, laptops, palmtops, netbooks, pagers, electronic
books readers, music players and the like. These devices
may include, apart from other components, a storage
medium such as a flash memory, buffer, RAM, ROM and
one or more computing devices. The computing devices
associated with mobile devices may be enabled to execute
program codes, methods, and instructions stored thereon.
Alternatively, the mobile devices may be configured to
execute instructions in collaboration with other devices. The
mobile devices may communicate with base stations inter-
faced with servers and configured to execute program codes.
The mobile devices may communicate on a peer-to-peer
network, mesh network, or other communications network.
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The program code may be stored on the storage medium
associated with the server and executed by a computing
device embedded within the server. The base station may
include a computing device and a storage medium. The
storage device may store program codes and instructions
executed by the computing devices associated with the base
station.

The computer software, program codes, and/or instruc-
tions may be stored and/or accessed on machine readable
media that may include: computer components, devices, and
recording media that retain digital data used for computing
for some interval of time; semiconductor storage known as
random access memory (RAM); mass storage typically for
more permanent storage, such as optical discs, forms of
magnetic storage like hard disks, tapes, drums, cards and
other types; processor registers, cache memory, volatile
memory, non-volatile memory; optical storage such as CD,
DVD; removable media such as flash memory (e.g. USB
sticks or keys), floppy disks, magnetic tape, paper tape,
punch cards, standalone RAM disks, Zip drives, removable
mass storage, off-line, and the like; other computer memory
such as dynamic memory, static memory, read/write storage,
mutable storage, read only, random access, sequential
access, location addressable, file addressable, content
addressable, network attached storage, storage area network,
bar codes, magnetic ink, and the like.

The methods and systems described herein may transform
physical and/or or intangible items from one state to another.
The methods and systems described herein may also trans-
form data representing physical and/or intangible items from
one state to another.

The elements described and depicted herein, including in
flow charts and block diagrams throughout the figures,
imply logical boundaries between the elements. However,
according to software or hardware engineering practices, the
depicted elements and the functions thereof may be imple-
mented on machines through computer executable media
has sender-controlled contact media content item a proces-
sor capable of executing program instructions stored thereon
as a monolithic software structure, as standalone software
modules, or as modules that employ external routines, code,
services, and so forth, or any combination of these, and all
such implementations may be within the scope of the present
disclosure. Examples of such machines may include, but
may not be limited to, personal digital assistants, laptops,
personal computers, mobile phones, other handheld com-
puting devices, medical equipment, wired or wireless com-
munication devices, transducers, chips, calculators, satel-
lites, tablet PCs, electronic books, gadgets, electronic
devices, devices has sender-controlled contact media con-
tent item artificial intelligence, computing devices, network-
ing equipment, servers, routers and the like. Furthermore,
the elements depicted in the flow chart and block diagrams
or any other logical component may be implemented on a
machine capable of executing program instructions. Thus,
while the foregoing drawings and descriptions set forth
functional aspects of the disclosed systems, no particular
arrangement of software for implementing these functional
aspects should be inferred from these descriptions unless
explicitly stated or otherwise clear from the context. Simi-
larly, it will be appreciated that the various steps identified
and described above may be varied, and that the order of
steps may be adapted to particular applications of the
techniques disclosed herein. All such variations and modi-
fications are intended to fall within the scope of this disclo-
sure. As such, the depiction and/or description of an order
for various steps should not be understood to require a
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particular order of execution for those steps, unless required
by a particular application, or explicitly stated or otherwise
clear from the context.

The methods and/or processes described above, and steps
associated therewith, may be realized in hardware, software
or any combination of hardware and software suitable for a
particular application. The hardware may include a general-
purpose computer and/or dedicated computing device or
specific computing device or particular aspect or component
of a specific computing device. The processes may be
realized in one or more microprocessors, microcontrollers,
embedded microcontrollers, programmable digital signal
processors or other programmable device, along with inter-
nal and/or external memory. The processes may also, or
instead, be embodied in an application specific integrated
circuit, a programmable gate array, programmable array
logic, or any other device or combination of devices that
may be configured to process electronic signals. It will
further be appreciated that one or more of the processes may
be realized as a computer executable code capable of being
executed on a machine-readable medium.

The computer executable code may be created using a
structured programming language such as C, an object
oriented programming language such as C++, or any other
high-level or low-level programming language (including
assembly languages, hardware description languages, and
database programming languages and technologies) that
may be stored, compiled or interpreted to run on one of the
above devices, as well as heterogeneous combinations of
processors, processor architectures, or combinations of dif-
ferent hardware and software, or any other machine capable
of executing program instructions.

Thus, in one aspect, methods described above and com-
binations thereof may be embodied in computer executable
code that, when executing on one or more computing
devices, performs the steps thereof. In another aspect, the
methods may be embodied in systems that perform the steps
thereof, and may be distributed across devices in a number
of ways, or all of the functionality may be integrated into a
dedicated, standalone device or other hardware. In another
aspect, the means for performing the steps associated with
the processes described above may include any of the
hardware and/or software described above. All such permu-
tations and combinations are intended to fall within the
scope of the present disclosure.

While the disclosure has been disclosed in connection
with the preferred embodiments shown and described in
detail, various modifications and improvements thereon will
become readily apparent to those skilled in the art. Accord-
ingly, the spirit and scope of the present disclosure is not to
be limited by the foregoing examples, but is to be under-
stood in the broadest sense allowable by law.

The use of the terms “a” and “an” and “the” and similar
referents in the context of describing the disclosure (espe-
cially in the context of the following claims) is to be
construed to cover both the singular and the plural, unless
otherwise indicated herein or clearly contradicted by con-
text. The terms “comprising,” “haa sender-controlled con-
tact media content item,” “including,” and “containing” are
to be construed as open-ended terms (i.e., meaning “includ-
ing, but not limited to,”) unless otherwise noted. Recitation
of ranges of values herein are merely intended to serve as a
shorthand method of referring individually to each separate
value falling within the range, unless otherwise indicated
herein, and each separate value is incorporated into the
specification as if it were individually recited herein. All
methods described herein can be performed in any suitable
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order unless otherwise indicated herein or otherwise clearly
contradicted by context. The use of any and all examples, or
exemplary language (e.g., “such as”) provided herein, is
intended merely to better illuminate the disclosure and does
not pose a limitation on the scope of the disclosure unless
otherwise claimed. No language in the specification should
be construed as indicating any non-claimed element as
essential to the practice of the disclosure.

While the foregoing written description enables one of
ordinary skill to make and use what is considered presently
to be the best mode thereof, those of ordinary skill will
understand and appreciate the existence of variations, com-
binations, and equivalents of the specific embodiment,
method, and examples herein. The disclosure should there-
fore not be limited by the above described embodiment,
method, and examples, but by all embodiments and methods
within the scope and spirit of the disclosure.

All documents referenced herein are hereby incorporated
by reference.

We claim:

1. A converged networking and storage system, compris-
ing:

a data access management controller that interfaces to an
operating system, a collection of storage resources
comprising local data storage resources and at least one
network-distributed data storage resource, wherein the
controller responds to a data access request by the
operating system for data managed by the data access
management controller as if the operating system were
accessing the local data storage resources independent
of the requested data being located in the local data
storage resources or in the at least one network-distrib-
uted data storage resource without requiring modifica-
tion of the operating system;

a plurality of solid-state drives that are grouped into a
plurality of sub-groups, the collection of storage
resources comprising the plurality of solid-state drives;
and

an interface via which an operator of the system desig-
nates different sub-groups for performing garbage col-
lection at different times, the data access management
controller further tracking sub-groups performing gar-
bage collection and controlling writing data to the
collection by directing write operations to sub-groups
not performing garbage collection based at least in part
on the tracking.

2. A system of claim 1, further comprising a system for
writing data to a collection of the plurality of solid state
drives, wherein the collection of solid state drives are
defined as a single logical storage resource for the operating
system, the system for writing data performing write opera-
tions, the throughput of which is unchanged independent of
which sub-groups are performing garbage collection.

3. A system of claim 2, wherein write operations of the
operating system are managed by the controller to occur in
discontinuous stripes across the blocks of the collection of
solid state drives.

4. A system of claim 1, further comprising:

an application programming interface of a solid state
drive of the plurality of solid state drives by which the
controller instructs the solid state drive when to per-
form a garbage collection process of the solid state
drive in response to at least two of the operator’s
garbage collection designations, dirtiness of blocks of
the solid state drive, and an indication of at least one
portion of the collection designated to be written next.
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5. A system of claim 1, wherein the collection of solid
state drives have varying drive writes per day (DWPD)
capabilities and wherein the controller operates the collec-
tion of storage resources as a unified logical storage resource
that satisfies a DWPD requirement of an application that
uses the collection of storage resources.

6. A system of claim 1, further comprising a system for
providing dual-level encryption relating to data stored on a
solid state drive (SSD) in the collection of storage resources,
wherein encryption is provided on the SSD of the data that
is stored on the SSD and encryption is provided in the
controller of the converged networking and storage system.

7. A system of claim 6, wherein a different encryption key
may be used at the converged networking and storage
controller for two different sets of data that are stored on the
same SSD.

8. A system of claim 7, wherein the system includes an
interface for allocating the different keys to different tenants
that can use the SSD in a multi-tenant configuration.

9. A system of claim 1, further comprising a system for
writing data to a solid state drive (SSD) in the collection of
storage resources, wherein the system for writing data to an
SSD writes data to the SSD sequentially to selected pages of
at least one block of the SSD, provides gaps between the
sequentially written pages of the block and maintains a map
of the locations to which the pages are written.

10. A system of claim 9, wherein the locations to which
the pages are written are randomly allocated.

11. A system of claim 9, wherein the pages are written
using an elevator algorithm.

12. A system of claim 1, wherein the system provides a
job de-duplication capability for networking and storage
jobs.

13. A system of claim 1, wherein the system is configured
to perform global de-duplication and erasure encoding
across a plurality of storage resources in the collection.

14. A system of claim 1, wherein the system uses a
hash-based system for locating data on a storage resource
within the collection of storage resources.

15. A system of claim 1, wherein the system provides
in-line hashing and routing of data in a network without
requiring writing of data to memory in order to perform a
hash calculation.

16. A system of claim 1, wherein the system has in-line
erasure encoding in a network without requiring the writing
of data to memory in order to perform erasure encoding.

17. A system of claim 1, wherein the system has in-line
de-duplication of redundant blocks.

18. A system of claim 1, wherein the collection of storage
resources includes disk attached solid state drives and net-
work-attached storage resources.

19. A system of claim 1, wherein addition of additional
storage resources to be managed by the data access man-
agement controller does not comprise a rebalancing of the
allocation of data storage across the data storage resources
managed by the data access management controller.

20. A system comprising:

a data access management system that interfaces to an
operating system, a collection of storage resources
comprising at least one local data storage resource and
at least one network-distributed data storage resource,
wherein the system responds to a data access request by
the operating system for data managed by the data
access management system as if the operating system
were accessing the at least one local data storage
resource independent of requested data being located in
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the at least one local data storage resource or in the at
least one network-distributed data storage resource;

a system for writing data to a collection of solid state
drives in the collection of storage resources, wherein
the solid state drives are defined as a single logical
storage resource for the operating system;

an operator interface; and

wherein the data access request includes write operations
of the operating system, the write operations are man-
aged by the system to occur in stripes across the blocks
of the collection of solid state drives and wherein the
solid state drives are grouped into a plurality of sub-
groups and wherein an operator of the system can
designate via the operator interface different sub-
groups at different times for performing garbage col-
lection, wherein throughput of the write operations to
the collection is independent of which sub-groups are
performing garbage collection.

21. The system of claim 20, wherein the write operations
are performed on a second sub-group of the collection not
performing garbage collection while a first sub-group per-
forms garbage collection.

22. The system of claim 1, wherein the interface enables
the user to designate garbage collection based on relative
storage size of devices, performance characteristics of sub-
groups, dirtiness of sub-groups, an indication of a manufac-
turer of at least one device in a sub-group.

23. The system of claim 1, wherein a sub-group desig-
nated for garbage collection is unavailable for write opera-
tions by the data access management controller until an
indication that garbage collection for the sub-group is com-
plete.
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