
US010635316B2

(12) United States Patent
Singh et al .

(10) Patent No .: US 10,635,316 B2
(45) Date of Patent : Apr. 28 , 2020

(54) METHODS AND SYSTEMS FOR DATA
STORAGE USING SOLID STATE DRIVES

(58) Field of Classification Search
CPC GO6F 3/061 ; GO6F 3/0665 ; G06F 3/0689 ;

GO6F 13/4022 ; G06F 13/4265 ;
(Continued) (71) Applicant : Diamanti , Inc. , San Jose , CA (US)

(56) References Cited (72) Inventors : Abhay Kumar Singh , San Jose , CA
(US) ; Sambasiva Rao Bandarupalli ,
Sunnyvale , CA (US) ; Gopal Sharma ,
San Jose , CA (US) ; Jeffrey Chou , Palo
Alto , CA (US)

U.S. PATENT DOCUMENTS

6,347,087 B1
6,553,000 B1

2/2002 Cathey et al .
4/2003 Ganesh et al .

(Continued) (73) Assignee : Diamanti , Inc. , San Jose , CA (US)
FOREIGN PATENT DOCUMENTS (*) Notice : Subject to any disclaimer , the term of this

patent is extended or adjusted under 35
U.S.C. 154 (b) by 0 days .

EP
EP

993162 B1 12/2005
993156 B1 1/2007

(Continued)
(21) Appl . No .: 15 / 446,804

OTHER PUBLICATIONS (22) Filed : Mar. 1 , 2017

(65) Prior Publication Data

US 2017/0177222 A1 Jun . 22 , 2017

Building Fast , Dense , Low - Power Caches Using Erasure - Based
Inline Multi - Bit ECC (2013 IEEE 19th Pacific Rim International
Symposium on Dependable Computing) by Jangwoo Kim , Hyung
gyun Yang , Mark P. McCartney , Mudit Bhargava , Ken Mai , Babak
Falsafi (pp . 102 , 105) . *

(Continued)
Primary Examiner — Tan Doan
(74) Attorney , Agent , or Firm GTC Law Group PC &
Affiliates

Related U.S. Application Data
(63) Continuation - in - part of application No. 14 / 640,717 ,

filed on Mar. 6 , 2015 .
(Continued)

(51) Int . Ci .
G06F 3/06
GO6F 13/40

(2006.01)
(2006.01)

(Continued)

(57) ABSTRACT
Provided herein are methods and systems for improved
storage strategies for use of collections of storage resources ,
such as solid state drives , including in connection with a
converged networking and storage node that may be used for
virtualization of a collection of physically attached and / or
network - connected storage resources .

23 Claims , 69 Drawing Sheets

(52) U.S. CI .
CPC G06F 3/061 (2013.01) ; G06F 3/067

(2013.01) ; G06F 370664 (2013.01) ;
(Continued)

Conventional Computing System 102

PCle 110

NIC 118
500.

Converged DWS 10 Controller SAS ,
SATA O !
NVME

Network
Controller 118

300 Storage
Devices

Storage
Controller 112 iSCSI , FC or

FCOE 302

Storage Enabled Switch

US 10,635,316 B2
Page 2

Related U.S. Application Data
(60) Provisional application No. 62 / 301,743 , filed on Mar.

1 , 2016 , provisional application No. 62 / 017,257 , filed
on Jun . 26 , 2014 , provisional application No.
61 / 950,036 , filed on Mar. 8 , 2014 .

(51) Int . Ci .
GO6F 13/42 (2006.01)
G06F 9/455 (2018.01)
H04L 29/08 (2006.01)

(52) U.S. CI .
CPC G06F 370665 (2013.01) ; G06F 370685

(2013.01) ; G06F 9/45558 (2013.01) ; G06F
13/4022 (2013.01) ; G06F 13/4265 (2013.01) ;
H04L 67/1097 (2013.01) ; G06F 2009/45579

(2013.01) ; GO6F 2009/45595 (2013.01) ; H04L
67/1002 (2013.01)

(58) Field of Classification Search
CPC G06F 8/665 ; G06F 12/0253 ; G06F

2212/702 ; G06F 12/0269 ; Y10S
707/99957

USPC 709/212
See application file for complete search history .

2012/0317393 A1 * 12/2012 Driever G06F 13/124
711/200

2013/0019057 A1 * 1/2013 Stephens G06F 11/108
711/103

2013/0094356 Al 4/2013 Keith et al .
2013/0131869 A1 * 5/2013 Majewski GO5B 15/02

700/275
2013/0138912 Al 5/2013 Bux et al .
2013/0198312 A1 8/2013 Tamir et al .
2013/0204849 A1 * 8/2013 Chacko G06F 3/0604

707/692
2013/0232267 Al 9/2013 Shatzkamer et al .
2013/0254829 A1 9/2013 Jakubowski et al .
2013/0268496 A1 * 10/2013 Baldwin G06F 17/30156

707/692
2013/0290601 A1 * 10/2013 Sablok G06F 12/0246

711/103
2013/0340088 A1 * 12/2013 Thadikaran G06F 13/14

726/26
2014/0052706 A1 * 2/2014 Misra G06F 17/30194

707/698
2014/0095826 A1 4/2014 Rajagopal et al .
2014/0201541 Al 7/2014 Paul et al .
2014/0301395 Al 10/2014 Khanal et al .
2014/0372616 Al 12/2014 Ganesh et al .
2015/0006663 Al 1/2015 Huang
2015/0067086 Al 3/2015 Adriaens et al .
2015/0160962 A1 6/2015 Borntraeger et al .
2015/0199151 A1 * 7/2015 Klemm G06F 3/0689

711/114
2015/0254088 Al 9/2015 Chou et al .
2018/0039412 A1 2/2018 Singh et al .
2018/0095915 Al 4/2018 Prabhakar et al .

(56) References Cited

U.S. PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS

EP
JP
KR
WO
WO
WO
WO

2372521 A2
2012212192 A

1020080052846 A
2010048238 Al
2015138245 Al
2016196766 A2
2016196766 A3

10/2011
11/2012
6/2008
4/2010
9/2015
12/2016
1/2017

OTHER PUBLICATIONS

6,678,269 B1 1/2004 Michels et al .
6,956,854 B2 10/2005 Ganesh et al .
7,065,082 B2 6/2006 Cathey et al .
7,386,546 B1 6/2008 Santry et al .
7,711,789 B1 5/2010 Jnagal et al .
8,340,005 B1 12/2012 Belhadj et al .
8,850,130 B1 * 9/2014 Aron G06F 9/52

711/150
8,996,644 B2 3/2015 Pope et al .
9,137,165 B2 9/2015 Anand et al .
9,621,642 B2 4/2017 Ganesh et al .

2001/0042074 A1 * 11/2001 Kawamoto G06F 12/0253
2001/0053150 A1 12/2001 Clear et al .
2003/0004975 A1 * 1/2003 Nakano G06F 17/30595
2003/0110300 A1 6/2003 Chen et al .
2004/02 10584 A1 10/2004 Nir et al .
2004/0233910 A1 11/2004 Chen et al .
2007/0028138 A1 * 2/2007 Noya G06F 3/0605

714 / 6.12
2007/0088904 A1 * 4/2007 Sinclair G06F 12/0246

711/103
2008/0043732 A1 2/2008 Desai et al .
2008/0123638 Al 5/2008 Liao et al .
2009/0003361 A1 1/2009 Bakthavathsalam et al .
2009/0161684 A1 6/2009 Voruganti et al .
2009/0185551 A1 7/2009 Winter
2009/0248994 Al 10/2009 Zheng et al .
2009/0307292 A1 * 12/2009 Li GO6F 12/0269
2010/0005234 Al 1/2010 Ganga et al .
2010/0131881 A1 5/2010 Ganesh et al .
2011/0191522 A1 * 8/2011 Condict G06F 12/123

711/103
2012/0066430 A1 3/2012 Cooper et al .
2012/0072716 A1 * 3/2012 Hu GO6F 21/602

713/156
2012/0079096 A1 3/2012 Cowan et al .
2012/0284587 A1 * 11/2012 Yu GO6F 3/0608

714/773

iSCSI Management API Version 2.0 rev 15 (SNIA Technical Posi
tion Jun . 30 , 2008) . *
PCT / US2015 / 019206 , “ International Application Serial No. PCT /
US2015 / 011697 , International Search Report and Written Opinion
dated May 28 , 2015 ” , Data Wise Systems , Inc. , 15 pages .
PCT / US2015 / 019206 , “ International Application Serial No. PCT /
US2015 / 019206 , International Preliminary Report on Patentability
and Written Opinion dated Sep. 22 , 2016 ” , Diamanti , Inc. , 12 Pages .
PCT / US2016 / 035474 , “ Application Serial No. PCT / US2016 /
035474 , International Search Report dated Dec. 1 , 2016 " , 14 pages .
U.S. Appl . No. 15 / 821,467 , filed Nov. 22 , 2017 , Pending .
U.S. Appl . No. 15 / 783,155 , filed Oct. 13 , 2017 , Pending .
Lee , et al . , " System and Method of Vector - OMA cache - XOR for
MPCC Erasure Coding ” , U.S. Appl . No. 61 / 886,480 , 2013 , 10
pages .
15761423.1 , “ European Application Serial No. 15761423.1 , Extended
European Search Report Received dated Sep. 28 , 2017 ” , Diamanti ,
Inc. , 7 Pages .
PCT / US2016 / 035474 , “ International Application Serial No. PCT /
US2016 / 035474 , International Preliminary Report on Patentability
dated Dec. 14 , 2017 ” , Diamanti , Inc. , 10 Pages .

* cited by examiner

Conventional Computing System / Server Hypervisor / OS Stack

U.S. Patent

108

CPU

112

Apr. 28 , 2020

T Storage Controller Local Storage Devices

Sheet 1 of 69

122

Network
Fig . 1

US 10,635,316 B2

PRIOR ART

102

Computing System 1

102

Computing Systear 1 108 208

U.S. Patent

Hyperviser / OS Stack

Virtualization Boundary

Hyperviser / OS Stack

106

106

CPU

110

110

110

110

PCle

PCle

PCte

PCla

Apr. 28 , 2020

118

112

112

Storage Controller

NC

Storage Controller

118

104

104

Local Storage Devices

Local Storage Device's

Sheet 2 of 69

122 12 Network

124

FIG . 2

US 10,635,316 B2

PRIOR ART

102

300

U.S. Patent

Computer System

Converged 10 Controller

To Network Switch / router

Network Controller

Apr. 28 , 2020

118

308

OS 108

Memory

CPU

PCle 110

NVME

SAS , SATA or NVME

106

Storage Controller 112

Storage Devices 302

Sheet 3 of 69

iSCSI , FC or

FCOE

310

304
Fig . 3

US 10,635,316 B2

102

300

Computer System 1

Converged lo Controller

SAS , SATA or NVME

U.S. Patent

Storage Controller

Istorage

PCle

OS 108
Memory

CPU

NVME

P

| Devices
+

iSCSI , FC or FCOE

Network Controller

Apr. 28 , 2020

Point to Point 400

300

Ethernet Switch 402

102

Sheet 4 of 69

404

Computer System 2

Network Controller

CPU

PCle !

NVME

OS 108

Memory

SAS , SATA or NVME

Storage Controller

Storage Devices

Fig . 4

US 10,635,316 B2

! Converged lo Controller

iSCSI , FC or FCOE

Virtualization Boundary 408

Conventional Computing System 102

U.S. Patent

PCle 110

NIC 118

500

Apr. 28 , 2020

Converged DWS IO Controller

SAS , SATA or NVME

Network Controller 118

Sheet 5 of 69

300

Storage Devices

Storage Controller 112

SCSI , FC or

FCOE

302

Storage Enabled Switch

US 10,635,316 B2

Fig . 5

Computer System 1

Computer System2

U.S. Patent

PCle 110

PCle 110

DAS

NIC

102

Converged Controller 300

NIC 118

Apr. 28 , 2020

Target Storage 302
Ethernet

Sheet 6 of 69

102

Storage Enabled Switch 500
Target Storage 302

US 10,635,316 B2

Fig . 6

300

Conventional Computing System 102

Computer System 1

SAS , SATA or NVME

U.S. Patent

Converged 10 Controller

DAS 308

Storage Controller

PCle

PCle

OS

Memory

SAN

SCSI , FC or FCOE 310

CPU

108

NVME NVME

NIC

102

Network Controller

Apr. 28 , 2020

Converged 10 Controller

102

Network Controller

Point to Point 400

SAS , SATA or NVME

Ethernet Switch 402

102

NVME over Ethernet 700

DAS 308

Storage Controller

Sheet 7 of 69

300

Computer System 2

SAN 310

iSCSI , FC or FCOE

Network Controller NVME
PCle

OS 108

Memory

CPU

Storage Controller

SAS , SATA or NVME

DAS 308

Storage Devices 302

Converged 10 Controller

US 10,635,316 B2

iSCSI , FC or

FCOE

SAN 310

Fig . 7

PCle (s) 110

800

807

VNVMe 802

837

VNICS 830

U.S. Patent

PF 806

Í700

PF 836

100

Read / Write DMA Queues 804

CPU

CPU

Receive / Transmit DMA Queues 832

Cache Ciri 858

Device Mapping 808

Classifiers , Flow Mgmt 834

Apr. 28 , 2020

Data Transformation 812

ACLS , Rewrite Policy 838

DDR3 Ctrl 860

NVMe Virtualization 810 Ctrl Prot Translation

Compress

Storage - Netwrk Tunnel FCOE , NVMEDE , and / or Point - to Point 828

Forwarding 840

Protect

DRAM

Data Translation

Encrypt

NVRAM

Network Receive / transmit Queues 842

Storage Read / Write Queues 814

Network / Remote Storage Scheduler , Policer 844

Storage Metadata Management 822

Sheet 8 of 69

Local Storage Scheduler , Shaper 818

End - to - end Congestion / Credit
850

Local Network Switch 848

824

Data Placement 820

Rewrite , Tag , CRC 852

SAS ctrl

SATA ctrl

SCSI

NVME ctrl

PCle ctrl

FC ctri

FCOE ctrt

MAC

MAC

MAC

MAC

ctrl

854

VXLAN

US 10,635,316 B2

DAS 308
DAS 308

DAS 308

SAN 310

SAN 310

SAN 310

Fig . 8

110

PCIe Gen 3X16 Connector

902

U.S. Patent

1010

x8

X8

PCIe Switch PLX PEX8724

10G NIC Intel

118

PCIe Gen3x8

1018

PCIe Gen3x8

1012

10GigE / XFI

DDR3L - 1600

DDR3 DIMM

Apr. 28 , 2020

DDR3L - 1600 X72

Processor

10GigE / XFI PCIe Gen2x4

Network
Xilinx XCKU060-2

PCIe Gen2x4

DDR3 NVDIMM

QSPI Flash

Aurora / AXI - to - AXI

Sheet 9 of 69

Boot Flash

1020

Datapath
Xilinx XCKU060-2

QSPI Flash

904

908

4x12G SATA / SAS

4x12G SATA / SAS

SFP

SFP

Mini - SAS HD X4

Mini - SAS HD X4

10GigE

10GigE

US 10,635,316 B2

Fig . 9

LXC1

LXC2

LXC3

1018

App2

U.S. Patent

App3

App3 (apa)

1000

User

Virtual Devices 1012 dev1 , dev2 , dev3

Apr. 28 , 2020

Block Layer 1014

PCle Driver for Converged Solution 1002

Kernel

Sheet 10 of 69

Hardware

NVMe Controller 1004

Ethernet 120

Other Hosts 102

NVMe to SATA Bridge 1008

H

SATA connection 1010

US 10,635,316 B2

302

Fig . 10

102

102

Computer System 1 (C1)

Computer System 2 (C2)

1018

U.S. Patent

LXC2

LXC3

VM1 1104

LXC1 1110

1018

1114

App5

App1 1102

App2 1108

App3 1112

App4 1118

App6

Apr. 28 , 2020

Operating System / Hypervisor 108

Operating System / Hypervisor 108

Sheet 11 of 69

112

118

112

118

Ethernet

Ethernet

302

US 10,635,316 B2

Network 122

Fig . 11

102

102

Computer System 1 (C1)

Computer System 2 (C2)

U.S. Patent

1018

VM1

LXC2

LXC1

LXC3

.

1104

1114

1110

App5

App1 1102

App3 1112

App4 1118

App2 1108

App6

I

1

Apr. 28 , 2020

Operating System / Hypervisor 108

Operating System / Hypervisor 108

Sheet 12 of 69

112

118

112

118

doe
Ethernet

302

US 10,635,316 B2

Fig . 12

Network 122

Computer System 1 (C1)

Computer System 2 (C2)

VM1

LXC2

LXC3

LXC1 1110

U.S. Patent

App1

App3

e leo

App5

App4

App2 1108

App6

Apr. 28 , 2020

Operating System / Hypervisor 108

Operating System / Hypervisor 108

Sheet 13 of 69

112

118

112

118

Ethernet

302

US 10,635,316 B2

Fig . 13

Network 122

Computer System 1 (C1)

Computer System 2 (C2)

VM1

LXC2

LXC3

LXC1 1110

U.S. Patent

App1

App3

App5 09

App2 1108

App4

App6

Apr. 28 , 2020

Operating System / Hypervisor 108

Operating System / Hypervisor 108

Sheet 14 of 69

Converged 10 Controller (Storage + Network) 300

112

118

Ethernet

302

US 10,635,316 B2

Network 122

Fig . 14

Computer System 1 (C1)

Computer System 2 (C2)

VM1

LXC2

LXC1

LXC3

U.S. Patent

.

1110

App1

App3

App5

(ADA) App4

App2 1108

App6

Apr. 28 , 2020

Operating System / Hypervisor 108

Operating System / Hypervisor 108

Sheet 15 of 69

Converged 10 Controller (Storage + Network) 300

112

118

Ethernet

302

US 10,635,316 B2

Fig . 15

Network 122

Storage Devices 302

U.S. Patent

N

M

SATA Bus 1602

SATA Controller

SATA Device

Apr. 28 , 2020

N

M.

?

Fiber Channel 1604

FC Controller 1610

FC Device 1612

Sheet 16 of 69

M

SCSI / SAS 1608

SCSI / SAS Controller

SCSI / SAS Device

US 10,635,316 B2

Fig . 16

Converged 10 Controller 300

1704

U.S. Patent

N Q7

05

Storage Access 1704
Bus

Storage Device 302

Q6

1708

Apr. 28 , 2020

K

S

Q8

Storage Access Bus

Storage Device 302

d

Sheet 17 of 69

1702

Q1

Q2

Q3

Q4

Storage Access Over Ethernet Ethernet

US 10,635,316 B2

Fig . 17

Applications

Application - specific SLA Controllers

fd1 fd2

U.S. Patent

2 3

Global static SLA parameters

Dynamic Session - specific SLA parameters

Apr. 28 , 2020

Userland

Linux

Po $ ix

Virtual Functions fd1fd2
File Session SLA

Sheet 18 of 69

Cache Broker

SLA Broker 1804

BORO
B002ADUO

00000
00000000
00000000

File System client 1802

Memory
Network
SIA

US 10,635,316 B2

Network Driver (TCP - like reliable delivery layer)

Fig . 18

Cache Brokers

U.S. Patent

Platform 1904 Application Container (s) 1908

High - speed Memory

C1

C3 C2

C2) C3

C1

C2 C2

C2 C1

Tiering Engine 1910

10000
O 0000

00000

Apr. 28 , 2020

Flash

High Performance DFS 1902

Sheet 19 of 69

Disk

Disk

SSD

Disk

Disk

US 10,635,316 B2

Fig . 19

C2

C3

U.S. Patent

0000000
00000

00000000
00000000

0001
0000000

DODOD 000
DODD0000

0000
0000000

O DO
00000000

100 0000

FS Client

FS Client

FS Client

Single Unified RAM and SSD based Tier / Cache 2002

Apr. 28 , 2020

Platform 1904

DRAM

[2000

[000D

DODO
0.000

Application Container

00002

00000
00100

1800

Tiering Engine

Sheet 20 of 69

C2

Flash

High Performance DFS 1902

Disk

Disk

SSD

Disk

Disk

US 10,635,316 B2

Fig . 20

Host N

Host 1 (H1)

Host 2 (H2)

U.S. Patent Apr. 28 , 2020

File or Volume Server 2102

Sheet 21 of 69

File 1 or Volume 1

Fig . 21

File 2 or Volume 2

US 10,635,316 B2

Storage 2104

U.S. Patent Apr. 28 , 2020 Sheet 22 of 69 US 10,635,316 B2

2208

Application 2202 2206 2210

Operating System
2204 Host Fig . 22

2200

2200

U.S. Patent

Host

Application 2202
Memory

(1

2208

Operating System 2204

Portions of Files or blocks kept in memory buffers

Apr. 28 , 2020

File System Client 2206 3

6

Sheet 23 of 69

File or Volume Server 2210
5

2212

Fig . 23

Storage

US 10,635,316 B2

2200 Host

U.S. Patent

Application 2202
Memory

1

8

2208

Þperating System 2204

Portions of Files or blocks kept in memory buffers

Apr. 28 , 2020

File System Client 2206

02

3

6

Sheet 24 of 69

Portions of Files or blocks

File or Volume Server

5

2210

Memory

Application Container
@

3886

2402

2400
2212

Fig . 24

US 10,635,316 B2

Storage

U.S. Patent

Host 1

Host 2

2202

Application 2202
Memory 2208

Apr. 28 , 2020

2208

Operating System 2204

Operating System 2204

2206

CH

22062

Sheet 25 of 69

Fig . 25

US 10,635,316 B2

U.S. Patent Apr. 28 , 2020 Sheet 26 of 69 US 10,635,316 B2

Access a physical storage device that responds
to instructions in a first storage protocol .

2600

Translate instructions between the first
storage protocol and a second storage protocol . 2602

2604

Use the second protocol , presenting the physical
storage device to an operating system , such that

the storage of the physical storage
device can be dynamically provisioned , whether the

physical storage device is local or remote to
a host computing system that uses the operating system .

Fig . 26

U.S. Patent Apr. 28 , 2020 Sheet 27 of 69 US 10,635,316 B2

2700

Provide a converged storage and networking
controller , wherein a gateway provides a connection

for network and storage traffic between a storage
component and a networking component of the device
without intervention of the operating system of a host

computer .

2702

Map the at least one application or container to a
target physical storage device that is controlled by the
converged storage and networking controller , such that

the application or container can access the target
physical storage , without intervention of the operating
system of the host system to which the target physical
storage is attached , when the application or container

is moved to another computing system .

Fig . 27

U.S. Patent Apr. 28 , 2020 Sheet 28 of 69 US 10,635,316 B2

2800

Provide a converged storage and networking
controller , wherein a gateway provides a
connection for network and storage traffic

between a storage component and a networking
component of the device without intervention of

the operating system of a host computer .

2802

Without intervention of the operating system of a
host computer , manage at least one quality of

service (QoS) parameter related to a network in
the data path of which the storage and networking

controller is deployed , such managing being
based on at least one of the storage traffic and the
network traffic that is handled by the converged

storage and networking controller .

Fig . 28

U.S. Patent Apr. 28 , 2020 Sheet 29 of 69 US 10,635,316 B2

2904

NVMEO N
Fig . 29

NVMEO N
2902

2900

U.S. Patent Apr. 28 , 2020 Sheet 30 of 69 US 10,635,316 B2

3000 NVMEO N

NVMEO NVMEO Fig . 30
N

=

III

U.S. Patent Apr. 28 , 2020 Sheet 31 of 69 US 10,635,316 B2

3100

Fig . 31

MIT

U.S. Patent Apr. 28 , 2020 Sheet 32 of 69 US 10,635,316 B2

-
3200

Fig . 32

SWAN Axold

3202 3204

3300

3302

U.S. Patent

Received burs Expected burst

Request Credit (B , 11,2,3,4)

como

0

3304

Grant Credit (B , 0 : (1,2,3,4 })

Apr. 28 , 2020

Packet (B , 2)

Sheet 33 of 69

(Optional) Close (B , 0 (1,2,3,4]

certain

(B.O. (1,2,3,4))

US 10,635,316 B2

Fig . 33

3400

3302

?

U.S. Patent

Sender

Received Expected

Request Credit (B1 , 2,5,6,7)

0

3304

(5,6,7)

Grant Credit (B1 , 121 , 15,6,71)

Apr. 28 , 2020

Packet (B1 , 5) Packet (B1,6) Packet (B1,7)

Sheet 34 of 69

(5,6,7)

Montering

Ack (B1.0 , 15,6,71)

US 10,635,316 B2

Fig . 34

U.S. Patent Apr. 28 , 2020 Sheet 35 of 69 US 10,635,316 B2

3500
11.2.3.41
ve ben senibus Fig . 35

U.S. Patent Apr. 28 , 2020 Sheet 36 of 69 US 10,635,316 B2

3600

Fig . 36

3700

U.S. Patent

Request Credit (8,11,2,3,4] }
Grant Credit (B , 0 11,2,3,41)

Apr. 28 , 2020

&

Packet (B 1)

&

Packet (8,3) Packet (B , 4)

Sheet 37 of 69

ACK (B , 121,11,3,4) Request Credit (81,120

US 10,635,316 B2

Fig . 37

3800

U.S. Patent

Request Credit (B. (1.23.41

0

0

Grant Credit (B0.11,2,3,4 })

then packets

(1.23.4)

Apr. 28 , 2020

Packet (B , 1) Packet (B. 2)

Sheet 38 of 69

Ack (B , 0 11,2,3,4)

been " already

?

(1,2,3,4)

more than

Grant Credit (B1 , [1,2,3,410)

US 10,635,316 B2

Fig . 38

3900

U.S. Patent

Receiver

Expected

Request Credit (B. 11,2,3,4

more

0

Grant Credit (B.0.11 23:41)

Apr. 28 , 2020

Ackle

0

Request Credit (B1 , 11,2,3,4

Sheet 39 of 69

Grant Credit R1 (1,2,3,41,0)
a creche 1.2

Request Credit (82 , 11,23,41

(1,2 ,

0

unchanged until

Grant Credit (B211,23.41.D) Request Credit (B3 , 14,5,6.71

US 10,635,316 B2

Fig . 39

4000

U.S. Patent

Request Credit (B , 11,2,3,41)

0

controle

Grant Credit (B.] 11,2,3,4])

0

Apr. 28 , 2020

Packets (B. 1,2,4) received Packet (B , 3) dropped

(1.2.4)

ACKB311124 Request Credit (B1 , 13,5,6,71)

Sheet 40 of 69

Grant Credit (B1.0.13,5,6,71)

in every window until the packet is successfully

Packet (B1 , 3) dropped again B1,30 ACK (B1 . 15.6.71 ACK (B1.31.5.6.71 . Request Credit (B2 , (3,8,91

US 10,635,316 B2

Fig . 40

4100

U.S. Patent

window
window

Request Credit (B1 , 12,5,6,7])

0

(5,6,7)

Grant Credit (B1 , 12) , (5,6,7])

Apr. 28 , 2020

4102

Reset BTP Channel (B2)

Sheet 41 of 69

Ack (B2)

everything

Generation

US 10,635,316 B2

Fig . 41

4200

U.S. Patent

Initiator

Target

Exchange id

State

E8 : 66 : C4 : 00 : 00 : 01

E8 : 66 : C4 : 00 : 00 : 02

Ox0001 : 0x0002

OPEN

Apr. 28 , 2020 Sheet 42 of 69 US 10,635,316 B2

Fig . 42

4300

U.S. Patent

State

Trigger for Initiator

Trigger for Target

OPEN

Sending NVME command

Receiving NVME command

Apr. 28 , 2020

DATA XFER

Receiving Xfer Rdy for Write Sending Xfer Rdy for Read

Sending Xfer Rdy for Write Receiving Xfer Rdy for Read

CLEANUP

Abort , Controller Reset etc
from upper levels

Receiving NVMEON Cleanup Command (explained in later
subsection)

Sheet 43 of 69

CLOSED

Receiving NVME status

Sending NVME status

US 10,635,316 B2

Fig . 43

U.S. Patent Apr. 28 , 2020 Sheet 44 of 69 US 10,635,316 B2

4404

4400

4402 Fig . 44

U.S. Patent Apr. 28 , 2020 Sheet 45 of 69 US 10,635,316 B2

4404

4500

4402 Fig . 45

U.S. Patent Apr. 28 , 2020 Sheet 46 of 69 US 10,635,316 B2

4404

4600

Request Xfer Rdy
4402 Fig . 46

4700

U.S. Patent

4402

4404 Target
Admin Cmd (E)

Apr. 28 , 2020

No data transfer - > flow simplified

Status (6)

Sheet 47 of 69 US 10,635,316 B2

Fig . 47

4800

U.S. Patent

4402

4404

/

Target

Admin Cmd (E. Tot Len) * Xfer Rdy (E.Offset , Len)

Apr. 28 , 2020

Data (E , 01 , L1)

across multiple Xfer Rdy , it follows the

Sheet 48 of 69

Data (E. On Lol Status

US 10,635,316 B2

Fig . 48

4900

U.S. Patent

4402

4404
Target

Apr. 28 , 2020

Admin Cmd (E. Tot Len) Xfer Rdy (E , Offset Len)

If the target chooses to

Data (E , 01 , L1)

across multiple Xfer Rdy , it follows the

Sheet 49 of 69 US 10,635,316 B2

Fig . 49

U.S. Patent Apr. 28 , 2020 Sheet 50 of 69 US 10,635,316 B2

2904

5004 5000

Fig . 50

5002

77 2902

U.S. Patent Apr. 28 , 2020 Sheet 51 of 69 US 10,635,316 B2

4404 Target
5100 o Ø ?

Cleanup 4402
Fig . 51

AOI NON expires 5102

U.S. Patent Apr. 28 , 2020 Sheet 52 of 69 US 10,635,316 B2

4404 AOL HOXH
wa mont * mi Target

5200
o o

4402 Cleanup Fig . 52

5102

U.S. Patent Apr. 28 , 2020 Sheet 53 of 69 US 10,635,316 B2

4404

5300 Fig . 53

4402

U.S. Patent Apr. 28 , 2020 Sheet 54 of 69 US 10,635,316 B2

5400

4404

Fig . 54

4402

U.S. Patent Apr. 28 , 2020 Sheet 55 of 69 US 10,635,316 B2

5500

4404

Fig . 55

4402

data transfer

5600

U.S. Patent

Scenario

Total packets with NVMEON and BTP

Total packets with
Raw NVME

Single 4K 1/0 with no drops

19

Apr. 28 , 2020

16 parallel 4K I / Os with no drops

127

192

Single 32K 1 / O with no drops

47

88

Single 128K 1/0 with no drops

152

352

51

99

Single 32K 1/0 with one packet

drop

Sheet 56 of 69

52

110

Single 32K I / O with two packet

drops

US 10,635,316 B2

Fig . 56

5700

U.S. Patent

5702

5724

5728

5704

5708

www

/

5710

Apr. 28 , 2020

5732

5712
1

5734

W

5738

5714

Sheet 57 of 69

III

5718

5720 5722
5724

US 10,635,316 B2

Fig . 57

5800

DMAC

U.S. Patent

DMAC

SMAC
SMAC .10 Tag

Apr. 28 , 2020

EType NVMEON BTP Type

BTP Opcode

BTP Type is 0 (BTP command packet)

Burst Id (24 bits)

Sheet 58 of 69

BTP Opcode is 0

Sequence ld (30 bits)

NVMEON Opcode is 0
(NVME Command)

Rsyd

NVMEON Opcode
NVME Command (payload)

US 10,635,316 B2

Fig . 58

5900

DMAC

U.S. Patent

DMAC

SMAC
SMAC 10 Tag

EType NVMEON

Rsvd , Ver

Apr. 28 , 2020

BTP Type

BTP Opcode

BTP Type is 1 (BTP batched command packet)

Burst Id (24 bits)

Rsvd

Sheet 59 of 69

Sequence ld (30 bits)

BTP Opcode is 0

NVMEON Opcode

NVMEON Opcode is 1

(Batched NVME Command)

Num NVME Commands

Commands

US 10,635,316 B2

Fig . 59

6000

DMAC

U.S. Patent

DMAC

SMAC
SMAC , 10 Tag

Apr. 28 , 2020

EType - NVMEON

Rsvd , Ver

BTP Type is 0 (BTP command packet)

BTP Type

BTP Opcode Burst Id (24 bits)

BTP Opcode is 0

Sheet 60 of 69

Sequence ld (30 bits)

NVMEON Opcode :
2 » Xler Rdy

Request Xfer
Rdy

Rsvd

NVMEON Opcode

Offset and Length provides information

US 10,635,316 B2

Fig . 60

6100

DMAC

U.S. Patent

DMAC

SMAC
SMAC 10 Tag

Apr. 28 , 2020

EType - NVMEON

Rsvd , Ver BTP Opcode

BTP Type is 2 (BTP
data packet)

Burst Id (24 bits)

Rsvd

Sequence ld (30 bits)

Sheet 61 of 69

NVMEON Opcode is 4

NVMEON Opcode Length
NVME Data (payload)

US 10,635,316 B2

Fig . 61

6200

DMAC

U.S. Patent

DMAC

SMAC
SMAC 10 Tag

Apr. 28 , 2020

EType NVMEON

BTP Opcode

BTP Type
command packet) BTP Opcode is 0

Sheet 62 of 69

Sequence ld (30 bits) NVMEON Opcode

NVMEON Opcode is 4 > Cleanup Request 5 > Cleanup Response

Num Exchange ids

List of IXIDs & TXIDs

US 10,635,316 B2

Fig . 62

6300

U.S. Patent

DMAC
DMAC

SMAC
SMAC

Apr. 28 , 2020

Burst id (24 bits)

Sheet 63 of 69 US 10,635,316 B2

Fig . 63

6400

U.S. Patent

Control Packet

CTL bits (binary)

Meaning

Request Credit

Command packet

Request Credit

Batched Command packet

Apr. 28 , 2020

Request Credit

Data packet

Grant Credit

Already received in previous burst window

Grant Credit

Credit granted for current
burst window

Sheet 64 of 69

ACK

01

Not received in current
burst window

ACK

10

Received in current burst
window

US 10,635,316 B2

Fig . 64

6500

U.S. Patent

6502 6504

6508

6510

Network Processor

Hardware

2902 , 2904

Apr. 28 , 2020

6512

Proxy / Remote NVME

3202

NVMEON Exchange

Storage Controller

6514

Sheet 65 of 69

3204

O

US 10,635,316 B2

Fig . 65

6600

U.S. Patent

6502 6504

6508

6510

Network Processor

6512

Hardware

Apr. 28 , 2020

2902

2904
3202

Sheet 66 of 69

3204

D

US 10,635,316 B2

Fig . 66

6704

6708

6710

6706

6706

6706

A

B

?

E

F

G

C

K

U.S. Patent

D

Free
Free

H

Free
Free

Free
Free

Block Q

Block S

Block U

Free Free Free

Free
Free
Free

Free Free
Free Free

Free

Free Free

Free Free Free

Free
Free
Free

Apr. 28 , 2020

Free
Free
Free

Free Free

Free

Free

Free Free

Free Free

Free

Free
Free
Free

Free
Free
Free

Block P

Block R

Block T

Free Free
Free Free

Free Free Free

Free Free Free

Free
Free
Free

Free
Free
Free

Free
Free
Free

Sheet 67 of 69

SSD1
GC ???

SSD2
GC Apl

SSD3
GC API

6712

6702

6714

6702

6702

SSD4
GC API

6714

Map

6714

SSD5
GC APL

G : S3 H : S4 1:01

AP1 B : P2 C : P3 D : P4 E : S1 F : S2

US 10,635,316 B2

6714

SSD6
GC API

3:02 K : U3 L : 04

Fig . 67

6704

6804

6804

6706

U.S. Patent

A

B

?

?

B.

C

Free Free
Free Free
Free 6814

D

Free
Free

E

F

Free Free
Free Free

Block X

Block X

Block X

Free Free Free

G

Free Free Free

A '

I

Free Free

Free

B '

C '

D '

Free
Free
Free

Apr. 28 , 2020

Free Free Free

Free Free Free

Q

R

S

6812

Free Free

Free

Free Free
Free Free

T

E

F

Block Y

Block Y

Block Y

Free Free
Free | Free

Free Free Free

G

H

A '

Sheet 68 of 69

Free Free Free

Free Free

Free

B '

C '

D '

SSD1

SSD1

SSD1

6702 6702

6702

6810

6702

US 10,635,316 B2

Fig . 68

6706

6704

6706

6706

A

Free
Free

G

Free Free

Free Free

M

U.S. Patent

Free

B

Free

Free
Free

H

Free

Free Free

Block P

Block R

Block T

C

Free Free

Free
Free

N

Free
Free

Free
Free
Free

Free
Free
Free

Free
Free
Free

Free

Apr. 28 , 2020

D

Free

Free
Free
Free

Free
Free
Free

Free
Free

E

J

K

Free

Free Free

O

Block Q

Block S

Block U

Free
Free
Free

Free Free Free

Free

P

Free

Free

F

Free

L

Free
Free

Free

Q

R

6702

Sheet 69 of 69

SSD1

SSD2

SSD3

6702

6702

Map
G : R1 H : R6 I : R9

A : P1 B : P5 C : P7

6712

M : T3 N : T7 0:06 P : 08 Q : U11 R : U12

J : 54

D : 02 E : Q6 F : Q11

US 10,635,316 B2

K : S5 L : S10

Fig . 69

1
US 10,635,316 B2

2
METHODS AND SYSTEMS FOR DATA changes in resources difficult and resulting in inefficient use
STORAGE USING SOLID STATE DRIVES of the hardware) , challenges in planning capacity , inconsis

tent performance , and operational complexity . In both cases ,
CROSS REFERENCE TO RELATED inconsistent performance characterizes the existing solu

APPLICATIONS 5 tions . A need exists for solutions that provide high perfor
mance in multi - tenant deployments , that can handle

This application claims the benefit of U.S. provisional dynamic resource allocation , and that can use commodity
patent application Ser . No. 62 / 301,743 filed Mar. 1 , 2016 , hardware with a high degree of utilization .
titled : METHODS AND SYSTEMS FOR DATA STOR FIG . 1 depicts the general architecture of a computing
AGE USING SOLID STATE DRIVES . This application is 10 system 102 , such as a server , functions and modules of
a continuation in part of U.S. patent application Ser . No. which may be involved in certain embodiments disclosed
14 / 640,717 filed Mar. 6 , 2015 , titled : METHODS AND herein . Storage functions (such as access to local storage
SYSTEMS FOR CONVERGED NETWORKING AND devices on the server 102 , such as media 104 (e.g. , rotating
STORAGE , which claims the benefit of U.S. provisional media or flash) and network functions such as forwarding
patent application Ser . No. 62 / 017,257 , filed Jun . 26 , 214 , 15 have traditionally been performed separately in either soft
titled : AN APPARATUS FOR VIRTUALIZED CUSTER ware stacks or hardware devices (e.g. , involving a network
IO , and U.S. provisional patent application Ser . No. 61/950 , interface controller 118 or a storage controller 112 , for
036 , filed Mar. 8 , 2014 , titled : METHOD AND APPARA network functions or storage functions , respectively) .
TUS FOR APPLICATION DRIVEN STORAGE ACCESS . Within an operating system stack 108 (which may include an
Each of the patent applications mentioned above is incor- 20 operating system and a hypervisor in some embodiments
porated herein by reference in its entirety . including all the software stacks associated with storage and

networking functions for the computing system) , the soft
FIELD OF THE INVENTION ware storage stack typically includes modules enabling use

of various protocols that can be used in storage , such as the
This application relates to the fields of networking and 25 small computer system interface (SCSI) protocol , the serial

data storage , and more particularly to the field of converged ATA (SATA) protocol , the non - volatile memory express
networking and storage systems . (NVMe) protocol (a protocol for accessing disk - attached

storage (DAS) , like solid - state drives (SSDs) , through the
BACKGROUND OF THE INVENTION PCI Express (PCIe) bus 110 of a typical computing system

30 102) or the like . The PCIe bus 110 may provide an inter
Storage protocols have been designed in the past to connection between a CPU 106 (with processor (s) and

provide reliable delivery of data . Examples include Fibre memory) and various 10 cards . The storage stack also may
channel (FC) , Fibre Channel over Ethernet (FCOE) , and include volume managers , etc. Operations within the storage
iSCSI , including RDMA - capable transports (e.g. , Infini software stack may also include data protection , such as
bandTM , etc) . NVMe is a relatively recent storage protocol 35 mirroring or RAID , backup , snapshots , deduplication , com
that is designed for a new class of storage media , such as pression and encryption . Some of the storage functions may
NAND FlashTM , and the like . As the name NVMe (Non be offloaded into a storage controller 112. The software
volatile Mediaexpress) suggests , NVMe is a protocol network stack includes modules , functions and the like for
highly optimized for media that is close to the speeds of enabling use of various networking protocols , such as Trans
DRAM , as opposed that of to Hard Disk Drives (HDDs) . 40 mission Control Protocol / Internet Protocol (TCP / IP) , the
NVMe is typically accessed on a host system via a driver domain name system protocol (DNS) , the address resolution
over the PCIe interface of the host . However , as noted protocol (ARP) , forwarding protocols , and the like . Some of
above , methods and systems disclosed herein provide for the network functions may be offloaded into a network
accessing NVMe over a network . Since the latency of interface controller 118 (or NIC) or the network fabric
DRAM and similar media is orders of magnitude lower than 45 switch , such as via an ethernet connection 120 , in turn
that of HDDs , the approach for accessing NVMe over a leading to a network (with various switches , routers and the
network may preferably entail minimal overhead (in terms like) . In virtualized environments , a NIC 118 may be virtu
of latency) . As such , there is a need to design a protocol to alized into several virtual NICs as specified by SR - IOV
access NVMe devices over the network via a lightweight under the PCI Express standard . Although not specified by
protocol . 50 the PCI Express standard and not as common , storage

Also , NVMe is designed to operate over a PCIe interface , controllers can also be virtualized in a similar manner . This
where there are hardly any packet drops . So , the error approach allows virtual entities , such as virtual machines ,
recovery mechanisms built into conventional NVMe are access to their own private resource .
based primarily on large I / O timeouts implemented in the Referring to FIG . 2 , one major problem with hypervisors
host driver . To enable use of NVMe over a network , a need 55 is with the complexity of 10 operations . For example , in
exists to account for errors that result from packet drops . order to deal with an operation involving data across two

The proliferation of scale - out applications has led to very different computers (computer system 1 and computer sys
significant challenges for enterprises that use such applica tem 2 in FIG . 2) , data must be copied repeatedly , over and
tions . Enterprises typically choose between solutions like over , as it moves among the different software stacks
virtual machines (involving software components like 60 involved in local storage devices 104 , storage controllers
hypervisors and premium hardware components) and so 112 , the CPUs 106 , network interface controller 118 and the
called “ bare metal ” solutions (typically involving use of an hypervisor / operating systems 108 of the computers , result
operating system like LinuxTM and commodity hardware . At ing in large numbers of inefficient data copies for each IO
large scale , virtual machine solutions typically have poor operation whenever an activity is undertaken that involves
input - output (IO) performance , inadequate memory , incon- 65 moving data from one computer to another , changing the
sistent performance , and high infrastructure cost . Bare metal configuration of storage , or the like . The route 124 is one of
solutions typically have static resource allocation (making many examples of the complex routes that data may take

US 10,635,316 B2
3 4

from one computer to another , moving up and down the latencies) . Networks have mechanisms and algorithms to
software stacks of the two computers . Data that is sought by avoid spreading of congestion , such as pause functions ,
computing system 2 may be initially located in a local backward congestion notification (BCN) , explicit conges
storage device 104 , such as a disk , of computing system 1 , tion notification (ECN) , etc. However , these are reactive
then pulled by a storage controller card 112 (involving an IO 5 methods ; that is , they detect formation of congestion points
operation and copying) , send over the PCIe bus 110 (another and push back on the source to reduce congestion , poten
IO operation) to the CPU 108 where it is handled by a tially resulting in delays and performance impacts . Third ,
hypervisor or other software component of the OS stack 108 once the data arrives at its “ destination ” computing system of computing system 1. Next , the data may be delivered
(another 10 operation) through the network controller 118 10 from the network interface controller 118 , the network stack 102 , it needs to be processed , which involves intervention
and over the network 122 (another set of 10 operations) to in the OS 108 , the storage stack in the OS 108 , and the computing system 2. The route continues on computing
system 2 , where data may travel through the network storage controller 112. As with out of the box operations
controller 118 and to the CPU 106 of computing system 2 noted above , many traversals and copying across internal
(involve additional IO operations) , then sent over the PCIe 15 busses as well as CPU 106 processing cycles are spent .
bus 110 to the local storage controller 112 for storage , then Further , the final destination of the data may well reside in
back to the hypervisor / OS stack 108 for actual use . These still a different box . This can be the result of a need for more
operations may occur across a multiplicity of pairs of data protection (e.g. , mirroring or across - box RAID) or the
computing systems , with each exchange involving this kind need for de - duplication . If so , then the entire sequence of
of proliferation of IO operations (and many other routes are 20 out - of - the box , across the network , and into the box data
possible , each involving significant numbers of operations) . transfer needs to be repeated again . As described , limitations
Many such complex data replication and transport activities of this approach include degradation in raw performance ,
among computing systems are required in scaleout situa unpredictable performance , impact on other tenants or
tions , which are increasingly adopted by enterprises . For operations , availability and reliability , and inefficient use of
example , when implementing a scaleout application like 25 resources . A need exists for data transfer systems that avoid
MongoDBTM , customers must repeatedly run real time que the complexity and performance impacts of the current
ries during rebalancing operations , and perform large scale approaches .
data loading . Such activities involve very large numbers of As an alternative to hypervisors (which provide a separate
IO operations , which result in poor performance in hyper operating system for each virtual machine that they man
visor solutions . Users of those applications also frequently 30 age) , technologies such as LinuxTM containers have been
re - shard (change the shards on which data is deployed) , developed (which enable a single operating system to man
resulting in big problems for bare metal solutions that have age multiple application containers) . Also , tools such as
static storage resource allo ions , as migration of data from Dockers have been developed , which provide provisioning
one location to another also involves many copying and for packaging applications with libraries . Among many
transport operations , with large numbers of IO operations . 35 other innovations described throughout this disclosure , an
As the amount of data used in scaleout applications grows opportunity exists for leveraging the capabilities of these
rapidly , and the connectedness among disparate systems emerging technologies to provide improved methods and
increases (such as in cloud deployments involving many systems for scaleout applications .
machines) , these problems grow exponentially . A need exists Another area in which current approaches are problematic
for storage and networking solutions that reduce the number 40 is in the area of the strategies used to write data to individual
and complexity of Ill operations and otherwise improve the solid state drives (SSDs) and to groups of SSDs) over time ,
performance and scaleability of scaleout applications with where current " garbage collection ” processes typically
out requiring expensive , premium hardware . require moving significant amounts of data through a series

Referring still to FIG . 2 , for many applications and use of copying and pasting operations (entailing large numbers
cases , data (and in turn , storage) needs to be accessed across 45 of I / O operations in conventional systems) , such as to copy
the network between computing systems 102. Three high and paste all of the valid data from an old block that contains
level steps of this operation include the transfer of data from some invalid data into a new block , so that the old block can
the storage media of one computing system out of a box , be erased in its entirety to make it available for writing of
movement across the network 122 , and the transfer of data new data . For an application this “ garbage collection ” period
into a second box (second computing system 102) to the 50 results in an unpredictable response time . A need exists for
storage media 104 of that second computing system 102 . more efficient storage strategies that reduce the number of
First , out of the box transfer , may involve intervention from operations required to write data to collections of SSDs , and
the storage controller 112 , the storage stack in the OS 108 , also to minimize the response time variation for the appli
the network stack in the OS 108 , and the network interface cation .
controller 118. Many traversals and copying across internal 55
busses (PCIe 110 and memory) as well as CPU 106 pro SUMMARY
cessing cycles are spent . This not only degrades perfor
mance (creating latency and throughput issues) of the opera Methods and systems are provided herein for enabling
tion , but also adversely affects other applications that run on converged networking and storage , such methods and sys
the CPU . Second , once the data leaves the box , 102 and 60 tems including , without limitation , methods and systems for
moves onto the network 122 , it is treated like any other managing a collection of physically attached and network
network traffic and needs to be forwarded / routed to its distributed data storage resources as a virtualized cluster of
destination . Policies are executed and decisions are made . In storage resources . In embodiments , in the virtualized cluster
environments where a large amount of traffic is moving , behaves in response to an operating system as if the virtu
congestion can occur in the network 122 , causing degrada- 65 alized cluster of storage resources were entirely composed
tion in performance as well as problems with availability of physically attached storage resources without requiring
(e.g. , dropped packets , lost connections , and unpredictable modification of the operating system .

10

15

US 10,635,316 B2
5 6

Methods and systems involving converged networking tional storage resources to the cluster does not require the
and storage may employ various strategies for writing data user of the cluster to rebalance the allocation of data storage
to a collection of resources , such as in a virtualized cluster , across the cluster .
for garbage collection and the like . Such methods and Referring to FIG . 29 and subsequent figures , methods and
systems may include writing of data to a collection of solid 5 systems are provided herein to enable use of NVME over a
state drives in the virtualized cluster , wherein the solid state network , such as an Ethernet network . Such methods and
drives are defined as a single logical storage resource for an systems are referred to in some cases as NVMEON , of which
operating system . In embodiments , write operations of the an embodiment is NVME over Ethernet , or NVMEOE . In
operating system are managed by the converged networking order to run NVMe over a network (such as Ethernet) where
and storage system to occur in stripes across the blocks of there tend to be packet drops , a protocol is provided that (a)
the collection of solid state drives . In embodiments , the solid provides guaranteed delivery of NVMe commands and data
state drives are grouped into a plurality of sub - groups and over the network and (b) converges quickly from network
wherein an operator of the converged networking and stor drops without adversely affecting I / O performance . The
age system can designate different sub - groups at different embodiments described below provide specification of a
times for performing garbage collection . protocol to run NVMe reliably over a network , such as

Such methods and systems may further include a solid Ethernet , that can drop packets .
state drive within the virtualized cluster of resources and an The NVMEON protocol enabled herein is designed with
application programming interface of the solid state drive by no assumption made about the underlying network being
which the converged networking and storage system can 20 Layer 2 or Layer 3. The endpoints may be defined generi
instruct the solid state drive when to perform a garbage cally , with constraint as to the type of host . Various options
collection process of the solid state drive . In embodiments , for network encapsulation for implementation and standard

collection of solid state drives in the virtualized cluster ization are described below .
have varying drive writes per day (DWPD) capabilities and Among other characteristics , the NVMEON protocol may
the virtualized cluster is configured to operate as a unified 25 fit into the generic NVME architecture and be standardiz
logical storage resource to satisfy a DWPD requirement of able ; work independent of other lossless protocols in the
an application that uses the virtualized cluster . network , including with built - in error detection and recov
Such methods and systems may further include a system ery ; minimize overhead introduced in the network ; dynami

for providing dual - level encryption relating to data stored on cally carve receiver's resources (buffers) across multiple
a solid state drive (SSD) in the collection of storage 30 senders ; and be easily implementable through a combination

of hardware and software modules (e.g. , to achieve minimal resources , wherein encryption is provided on the SSD of the
data that is stored on the SSD and encryption is provided in latency overhead and to use hardware functions where

beneficial) . a converged networking and storage controller of the con Elements of the methods and systems disclosed herein verged networking and storage system . In embodiments , a 35 may include various components , processes , features and the different encryption key may be used at the converged like , which are described in more detail below . These may networking and storage controller for two different sets of include an NVMEON Exchange Layer , a layer in NVMEON
data that are stored on the same SSD . In embodiments , the that maintains exchanges for every NVME command . Also
system includes an interface for allocating the different keys provided below is a Burst Transmission Protocol (BTP)
to different tenants that can use the SSD in a multi - tenant 40 layer in NVMEON that provides guaranteed delivery . Also
configuration . provided is a proxy NVME controller , an NVME controller

Such methods and systems may further include writing that is used to terminate PCIe level transactions of NVME
data to a solid state drive (SSD) in the collection of storage commands and transport them over a network . Also , one or
resources , wherein the system writes data to the SSD more remote NVME controllers may include virtual NVME
sequentially to selected pages of at least one block of the 45 controllers that can handle NVME commands received over
SSD , provides gaps between the sequentially written pages a network .
of the block and maintains a map of the locations to which As noted elsewhere throughout this disclosure , a “ node ”
the pages are written . In embodiments , locations to which may refer to any host computer on a network , such as any
the pages are written are randomly allocated . In embodi server . An initiator may comprise a node that initiates a
ments , the pages are written using an elevator algorithm . 50 command (such as an NVME command) , while a target may

In embodiments , the system provides a job de - duplication comprise a node that is a destination of an NVME command .
capability for networking and storage jobs . In embodiments , A mode may include an NVME driver , which may be a
the system has a capability for global de - duplication and conventional NVME driver that runs on a Linux or Windows
erasure encoding across a plurality of storage resources in server . The host may include a host CPU , a processor on
the collection . In embodiments , the system uses a hash- 55 which applications run . A host may have an embedded CPU ,
based system for locating data on a storage resource within a processor on which NVMEON - specific control agents run .
the collection of storage resources . In embodiments , the As described below , NVMEON may involve exchanges .
system provides in - line hashing and routing of data in a Each NVME command may be translated by the NVMEON
network without requiring writing of data to memory in exchange layer , such as at an initiator , into a unique
order to perform a hash calculation . In embodiments , the 60 exchange for purposes of tracking the exchanges over a
system has in - line erasure encoding in a network without network . An Exchange Status Block (ESB) , may comprise a
requiring the writing of data to memory in order to perform table of open exchanges and their state information .
erasure encoding . In embodiments , the system has in - line The conventional NVME protocol on a host typically runs
de - duplication of redundant blocks . with an NVME Driver (e.g. , in the Linux kernel) accessing

In embodiments , the collection of storage resources 65 an NVME controller over PCIe . The NVME controller
includes disk attached solid state drives and network - at translates the NVME I / O commands into actual reads /
tached storage resources . In embodiments , addition of addi writes , such as to a NAND Flash drive . NVMEON , as

10

15

30

US 10,635,316 B2
7 8

disclosed herein , extends this NVME protocol over a net cluster . Among other advantages , this allows movement of
work with no assumptions as to the absence of losses in the containers among machines in a vastly simplified process
network . described below .

Provided herein are methods and systems that include a Provided herein are methods and systems for virtualizing
converged storage and network controller in hardware that 5 direct - attached storage (DAS) , so that the operating system
combines initiator , target storage functions and network stack 108 still sees a local , persistent device , even if the
functions into a single data and control path , which allows physical storage is moved and is remotely located ; that is ,
a " cut - through ” path between the network and storage , provided herein are methods and systems for virtualization
without requiring intervention by a host CPU . For ease of of DAS . In embodiments this may include virtualizing DAS
reference , this is referred to variously in this disclosure as a over a fabric , that is , taking a DAS storage system and
converged hardware solution , a converged device , a con moving it outside the box and putting it on the network . In
verged adaptor , a converged 10 controller , a “ datawise ” embodiments this may include carving DAS into arbitrary
controller , or the like throughout this disclosure , and such name spaces . In embodiments the virtualized DAS is made
terms should be understood to encompass , except where accessible as if it were actual DAS to the operating system ,
context indicates otherwise , a converged storage and net such as being accessible by the OS 108 over a PCIe bus via
work controller in hardware that combines target storage NVMe . Thus , provided herein is the ability to virtualize
functions and network functions into a single data and storage (including DAS) so that the OS 108 sees it as DAS ,
control path . even if the storage is actually accessed over a network
Among other benefits , the converged solution will 20 protocol such as Ethernet , and the OS 108 is not required to

increase raw performance of a cluster of computing and / or do anything different than would be required with local
storage resources ; enforce service level agreements (SLAs) physical storage .
across the cluster and help guarantee redictable perfor Provided herein are methods and systems for providing
mance ; provide a multi - tenant environment where a tenant DAS across a fabric , including exposing virtualized DAS to
will not affect its neighbor ; provide a denser cluster with 25 the OS 108 without requiring any modification of the OS
higher utilization of the hardware resulting in smaller data 108 .
center footprint , less power , fewer systems to manage ; Also provided herein are methods and systems for virtu
provide a more scalable cluster ; and pool storage resources alization of a storage adaptor (referring to a target storage
across the cluster without loss of performance . system)

The various methods and systems disclosed herein pro Provided herein are methods and systems for combining
vide high - density consolidation of resources required for storage initiation and storage targeting in a single hardware
scaleout applications and high performance multi - node system . In embodiments , these may be attached by a PCIe

bus 110. A single root virtualization function (SR - IOV) may pooling . These methods and systems provide a number of be applied to take any standard device and have it act as if customer benefits , including dynamic cluster - wide resource 35 it is hundreds of such devices . Embodiments disclosed provisioning , the ability to guarantee quality - of - service herein include using SR - IOV to give multiple virtual
(QoS) , Security , Isolation etc. on network and storage func instances of a physical storage adaptor . SR - IOV is a PCIe
tions , and the ability to use shared infrastructure for pro standard that virtualizes I / O functions , and while it has been
duction and testing / development . used for network interfaces , the methods and systems dis

Also provided herein are methods and systems to perform 40 closed herein extend it to use for storage devices . Thus ,
storage functions through the network and to virtualize provided herein is a virtual target storage system .
storage and network devices for high performance and Embodiments may include a switch form factor or net
deterministic performance in single or multi - tenant environ work interface controller , wherein the methods and systems
ments . disclosed herein may include a host agent (either in software

In embodiments , a networking and storage system is 45 or hardware) . Embodiments may include breaking up vir
provided having a capability for handling a collection of tualization between a front end and a back end .
physically attached or network - distributed storage resources Embodiments may include various points of deployment
as a virtualized cluster of storage resources and having the for a converged network and target storage controller . While
capability to handle multi - tenant operations . some embodiments locate the converged device on a host

Also provided herein , are methods and systems for vir- 50 computing system 102 , in other cases the disk can be moved
tualization of storage devices , such as those using NVMe to another box (e.g. , connected by Ethernet to a switch that
and similar protocols , and the translation of those virtual switches among various boxes below . While a layer may be
devices to different physical devices , such as ones using needed to virtualize , the storage can be separated , so that one
SATA . can scale storage and computing resources separately . Also ,

The methods and systems disclosed herein also include 55 one can then enable blade servers (i.e. , stateless servers) .
methods and systems for end - to - end congestion control Installations that would have formerly involved expensive
involving only the hardware on the host (as opposed to the blade servers and attached to storage area networks (SANS)
network fabric) that includes remote credit management and can instead attach to the switch . In embodiments this com
a distributed scheduling algorithm at the box level . prises a " rackscale ” architecture where resources are disag

Also provided herein are various methods and systems 60 gregated at the rack level .
that are enabled by the converged network / storage control Methods and systems disclosed herein include methods
ler , including methods and systems for virtualization of a and systems for virtualizing various types of non - DAS
storage cluster or of other elements that enable a cluster , storage as DAS in a converged networking / target storage
such as a storage adaptor , a network adaptor , a container appliance . In embodiments , one may virtualize whatever
(e.g. , a Linux container) , a Solaris zone or the like . Among 65 storage is desired as DAS , using various front end protocols
advantages , one aspect of virtualizing a cluster is that to the storage systems while exposing storage as DAS to the
containers can become location - independent in the physical OS stack 108 .

US 10,635,316 B2
9 10

Methods and systems disclosed herein include virtualiza tage . If components are cheaper / faster , one can connect any
tion of a converged network / storage adaptor . From a traffic one of them . The back end could be anything , including
perspective , one may combine systems into one . Combining NVMe .
the storage and network adaptors , and adding in virtualiza Provided herein are methods and systems that include a
tion , gives significant advantages . Say there is a single host 5 converged data path for network and storage functions in an
102 with two PCIe buses 110. To route from the PCIe 110 , appliance . Alternative embodiments may provide a con
you can use a system like RDMA to get to another machine / verged data path for network and storage functions in a
host 102. If one were to do this separately , one has to switch .
configure the storage and the network RDMA system sepa In embodiments , a networking and storage system is
rately . One has to join each one and configure them at two 10 provided having a capability for handling a collection of
different places . In the converged scenario , the whole step of physically attached or network - distributed storage resources
setting up Qos , seeing that this is RDMA and that there is as a virtualized cluster of storage resources and having a
another fabric elsewhere is a zero touch process , because converged data path for network functions and storage
with combined storage and networking the two can be functions in a networking and storage system .
configured in a single step . That is , once one knows the 15 In embodiments , a networking and storage system is
storage , one doesn't need to set up the QoS on the network provided having a capability for handling a collection of
separately . physically attached or network - distributed storage resources

In embodiments , a networking and storage system is as a virtualized cluster of storage resources and having a
provided having a capability for handling a collection of software system for unified handling of networking func
physically attached or network - distributed storage resources 20 tions and storage initiation and management .
as a virtualized cluster of storage resources . In embodiments , methods and systems disclosed herein

In embodiments , a networking and storage system is include storage / network tunneling , wherein the tunneling
provided having a capability for handling a collection of path between storage systems over a network does not
physically attached or network - distributed storage resources involve the operating system of a source or target computer .
as a virtualized cluster of storage resources and having 25 In conventional systems , one had separate storage and
virtualization of a converged network / storage adaptor . network paths , so accessing storage remotely , required

In embodiments , a networking and storage system is extensive copying to and from memory , I / O buses , etc.
provided having a capability for handling a collection of Merging the two paths means that storage traffic is going
physically attached or network - distributed storage resources straight onto the network . The OS 108 of each computer sees
as a virtualized cluster of storage resources and having a 30 only a local disk . Another advantage is simplicity of pro
combination of a network adaptor and a storage adaptor with gramming . A user does not need to separately program a
target storage in a converged network / storage appliance and SAN , meaning that the methods disclosed herein include a
storage system having a capability for handling a collection one - step programmable SAN . Rather than requiring discov
of physically attached or network - distributed storage ery and specification of zones , and the like , encryption ,
resources as a virtualized cluster of storage resources and 35 attachment , detachment and the like may be centrally , and
having virtualization of a storage adaptor that refers to target programmatically done .
storage resources . In embodiments , a networking and storage system is

In embodiments , a networking and storage system is provided having a capability for handling a collection of
provided having a capability for handling a collection of physically attached or network - distributed storage resources
physically attached or network - distributed storage resources 40 as a virtualized cluster of storage resources and having
as a virtualized cluster of storage resources and having a storage - network tunneling where the tunneling is indepen
software system for handling combined traffic streams in a dent of the operating system .
converged networking and target storage adaptor . Embodiments disclosed herein may include virtualizing

In embodiments , a networking and storage system is the storage to the OS 108 so that the OS 108 sees storage as
provided having a capability for handling a collection of 45 a local disk . The level of indirection involved in the methods
physically attached or network - distributed storage resources and systems disclosed herein allows the converged system to
as a virtualized cluster of storage resources and having the hide not only the location , but the media type , of storage
capability to allow a user to set a desired QoS independent media . All the OS sees is that there is a local disk , even if
of the need to configure QoS for a network or a fabric . the actual storage is located remotely and / or is or a different

In embodiments , a networking and storage system is 50 type , such as a SAN . Thus , virtualization of storage is
provided having a capability for handling a collection of provided , where the OS 108 and applications do not have to
physically attached or network - distributed storage resources change . One can hide all of the management , policies of
as a virtualized cluster of storage resources and having a tiering , polices of backup , policies of protection and the like
capability for single - step and single entity configuration of that are normally needed to configure complex storage types
QoS for storage and networking resources . 55 behind .
Method and systems disclosed herein include virtualiza Methods and systems are provided for selecting where

tion and / or indirection of networking and storage functions , indirection occurs in the virtualization of storage . Virtual
embodied in the hardware , optionally in a converged net ization of certain functions may occur in hardware (e.g. , in
work adaptor / storage adaptor appliance . While virtualiza an adaptor on a host , in a switch , and in varying form factors
tion is a level of indirection , protocol is another level of 60 (e.g. , FPGA or ASICs) and in software . Different topologies
indirection . The methods and systems disclosed herein may are available , such as where the methods and systems
convert a protocol suitable for use by most operating sys disclosed herein are deployed on a host machine , on a top of
tems to deal with local storage , such as NVMe , to another the rack switch , or in a combination thereof . Factors that go
protocol , such as SAS , SATA , or the like . One may expose into the selection include ease of use . Users who want to run
a consistent interface to the OS 108 , such as NVMe , and in 65 stateless servers may prefer a top of rack . Ones who don't
the back end one may convert to whatever storage media is care about that approach might prefer the controller on the
cost - effective . This gives a user a price / performance advan host .

US 10,635,316 B2
11 12

Methods and systems disclosed herein include providing physically attached or network - distributed storage resources
NVMe over Ethernet . These approaches can be the basis for as a virtualized cluster of storage resources and having a
the tunneling protocol that is used between devices . NVMe capability for providing visibility across a plurality of con
is a suitable DAS protocol that is intended conventionally to tainers , such that containers can access information with
go to a local PCIe . Embodiments disclosed herein may 5 respect to other containers and can be operated as a cluster .
tunnel the NVMe protocol traffic over Ethernet . NVMe In embodiments , a networking and storage system is
(non - volatile memory express) is a protocol that in Linux provided having a capability for handling a collection of
and Windows provides access to PCIe - based Flash Storage . physically attached or network - distributed storage resources
This provides high performance by by - passing the software as a virtualized cluster of storage resources and having a
stacks used in conventional systems . 10 container as a first class network end point .
Embodiments disclosed herein may include providing an Methods and systems are disclosed herein for implement

NVMe device that is virtualized and dynamically allocated . ing virtualization of NVMe . Regardless how many sources
In embodiments one may piggy back NVMe , but carve up to how many destinations , as long as the data from the
and virtualize and dynamically allocate an NVMe device . In sources is serialized first before going into the hub , then the
embodiments there is no footprint in the software . The 15 hub distributes to data to the designated destination sequen
operating system stays the same (just a small driver that sees tially . If so , then data transport resources such as DMA
the converged network / storage card) . This results in virtual engine can be reduced to only one copy . This may include
storage presented like a direct attached disk , but the differ various use scenarios . In one scenario , for NVMe virtual
ence is that now we can pool such devices across the functions (VFs) , if they are all connected to the same PCIe
network . 20 bus , then regardless how many VFs are configured , the data

Provided herein are methods and systems for providing would be coming into this pool of VFs serially , so there is
the simplicity of direct attached storage (DAS) with the only one DMA engine and only one storage block (for
advantages of sharing like in a storage area network (SAN) . control information) is needed . In another use scenario , for
Each converged appliance in various embodiments dis a disk storage system with a pool of discrete disks / control
closed herein may be a host , and any storage drives may be 25 lers , if the data is originated from the physical bus , i.e. PCIe ,
local to a particular host but seen by the other hosts (as in a since the data is serially coming into this pool of disks , then
SAN or other network - accessible storage) . The drives in regardless how many disks / controllers are in the pool , the
each box enabled by a network / storage controller of the transport resources such as the DMA engine can be reduced
present disclosure behave like a SAN (that is , are available to only one instead of one per controller .
on the network) , but the management methods are much 30 In accordance with various exemplary and non - limiting
simpler . When a storage administrator sets up a SAN , a embodiments , a device comprises a converged input / output
typical enterprise may have a whole department setting up controller that includes a physical target storage media
zones for a SAN (e.g. , a fiber channel switch) , such as cor er , a physical network interface controller ; and a
setting up " who sees what . ” That knowledge is pre - loaded gateway between the storage media controller and the net
and a user has to ask the SAN administrator to do the work 35 work interface controller , wherein gateway provides a direct
to set it up . There is no programmability in a typical legacy connection for storage traffic and network traffic between the
SAN architecture . The methods and systems disclosed storage media controller and the network interface control
herein provide local units that are on the network , but the ler .
local units can still access their storage without having to go In accordance with various exemplary and non - limiting
through complex management steps like zone definition , etc. 40 embodiments , a method of virtualization of a storage device
These devices can do what a SAN does just by having both comprises accessing a physical storage device that responds
network and storage awareness . As such , they represent the to instructions in a first storage protocol , translating instruc
first programmatic SAN . tions between the first storage protocol and a second storage
Methods and systems disclosed herein may include per protocol and using the second protocol , presenting the

sistent , stateful , disaggregated storage enabled by a hard- 45 physical storage device to an operating system , such that the
ware appliance that provides converged network and storage storage of the physical storage device can be dynamically
data management . provisioned , whether the physical storage device is local or

In embodiments , a networking and storage system is remote to a host computing system that uses the operating
provided having a capability for handling a collection of system .
physically attached or network - distributed storage resources 50 In accordance with various exemplary and non - limiting
as a virtualized cluster of storage resources and having embodiments , a method of facilitating migration of at least
persistent , stateful , disaggregated storage enabled by a sys one of an application and a container comprises providing a
tem that provides converged network and storage data converged storage and networking controller , wherein a
management . gateway provides a connection for network and storage
Methods and systems disclosed herein may also include 55 traffic between a storage component and a networking

convergence of network and storage data management in a component of the device without intervention of the oper
single appliance , adapted to support use of containers for ating system of a host computer and mapping the at least one
virtualization . Such methods and systems are compatible application or container to a target physical storage device
with the container ecosystem that is emerging , but offering that is controlled by the converged storage and networking
certain additional advantages . 60 controller , such that the application or container can access

In embodiments , a networking and storage system is the target physical storage , without intervention of the
provided having a capability for handling a collection of operating system of the host system to which the target
physically attached or network - distributed storage resources physical storage is attached , when the application or con
as a virtualized cluster of storage resources and having the tainer is moved to another computing system .
capability to use containers . In accordance with various exemplary and non - limiting

In embodiments , a networking and storage system is embodiments , a method of providing quality of service
provided having a capability for handling a collection of (QoS) for a network , comprises providing a converged

65

ment .

US 10,635,316 B2
13 14

storage and networking controller , wherein a gateway pro tion with the various other capabilities of the embodiments
vides a connection for network and storage traffic between of the converged storage and networking solution described
a storage component and a networking component of the throughout this disclosure .
device without intervention of the operating system , a hyper
visor , or other software running on the CPU of a host 5 BRIEF DESCRIPTION OF THE FIGURES
computer and , also without intervention of the operating
system , hypervisor , or other software running on the CPU of The accompanying figures where like reference numerals
a host computer , managing at least one quality of service refer to identical or functionally similar elements throughout
(QoS) parameter related to a network in the data path of the separate views and which together with the detailed
which the storage and networking controller is deployed , 10 description below are incorporated in and form part of the
such managing being based on at least one of the storage specification , serve to further illustrate various embodiments
traffic and the network traffic that is handled by the con and to explain various principles and advantages all in
verged storage and networking controller . accordance with the systems and methods disclosed herein .

QoS may be based on various parameters , such as one or FIG . 1 illustrates a general architecture in accordance with
more of a bandwidth parameter , a network latency param- 15 an exemplary and non - limiting embodiment .
eter , an IO performance parameter , a throughput parameter , FIG . 2 illustrates a computer system in accordance with
a storage type parameter and a storage latency parameter . an exemplary and non - limiting embodiment .
QoS may be maintained automatically when at least one of FIG . 3 illustrates a converged solution in accordance with
an application and a container that is serviced by storage an exemplary and non - limiting embodiment .
through the converged storage and network controller is 20 FIG . 4 illustrates two computing systems enabled by a
migrated from a host computer to another computer . Simi converged solution in accordance with an exemplary and
larly , QoS may be maintained automatically when at least non - limiting embodiment .
one target storage device that services at least one of an FIG . 5 illustrates a converged controller in accordance
application and a container through the converged storage with an exemplary and non - limiting embodiment .
and network controller is migrated from a first location to 25 FIG . 6 illustrates a deployment of a converged controller
another location or multiple locations . For example , storage in accordance with an exemplary and non - limiting embodi
may be scaled , or different storage media types may be
selected , to meet storage needs as requirements are FIG . 7 illustrates a plurality of systems in accordance with
increased . In embodiments , a security feature may be pro an exemplary and non - limiting embodiment .
vided , such as encryption of network traffic data , encryption 30 FIG . 8 illustrates a block diagram of a field - program
of data in storage , or both . Various storage features may be mable gate array (FPGA) in accordance with an exemplary
provided as well , such as compression , protection levels and non - limiting embodiment .
(e.g. , RAID levels) , use of different storage media types , FIG . 9 illustrates an architecture of a controller card in
global de - duplication , and snapshot intervals for achieving accordance with an exemplary and non - limiting embodi
at least one of a recovery point objective (RPO) and a 35 ment .
recovery time objective (RTO) . FIG . 10 illustrates a software stack in accordance with an

In embodiments , the methods and systems described exemplary and non - limiting embodiment .
herein include storage strategies that provide improved FIGS . 11-15 illustrate the movement of an application
efficiencies in the use of SSDs , including collections of container across multiple systems in accordance with an
SSDs , such as to reduce the number of operations required 40 exemplary and non - limiting embodiment .
to write and modify data on the SSDs . These methods and FIG . 16 illustrates packet transmission in accordance with
systems include system level write strategies , such as write an exemplary and non - limiting embodiment .
strategies where writes are striped across different sets of FIG . 17 illustrates a storage access scheme in accordance
solid state drives (“ SSDs) , with certain SSDs performing with an exemplary and non - limiting embodiment .
garbage collection at identified points in time , where group- 45 FIG . 18 illustrates the operation of a file system in
ings of the particular SSDs that used for writes and garbage accordance with an exemplary and non - limiting embodi
collection are varied from time period to time period . These ment .
methods and systems also include methods and systems for FIG . 19 illustrates the operation of a distributed file server
drive arrangement optimization . These methods and systems in accordance with an exemplary and non - limiting embodi
also provide additional capabilities , such as providing sys- 50 ment .
tem level encryption strategies . Also , these methods and FIG . 20 illustrates a high performance distributed file
systems include providing novel writing strategies for SSDs , server (DFS) in accordance with an exemplary and non
including write strategies that leave unwritten pages within limiting embodiment .
a block of data during a series of write operations , so that the FIG . 21 illustrates a system in accordance with an exem
new data can be written to the unwritten pages on subse- 55 plary and non - limiting embodiment .
quent passes through the SSD . The arrangement of written FIG . 22 illustrates a host in accordance with an exemplary
and unwritten pages may be random , or may be arranged and non - limiting embodiment .
according to a defined pattern . A series of write operations FIG . 23 illustrates an application accessing a block of data
may be ordered across multiple blocks of an SSD and / or in accordance with an exemplary and non - limiting embodi
across blocks distributed across multiple SSDs . A map may 60 ment .
be maintained at the system level to keep track of what data FIG . 24 illustrates an application accessing a block of data
has been written at what time to what pages , blocks , and in accordance with an exemplary and non - limiting embodi
SSDs . Such write strategies may be used to avoid many of ment .
the difficulties of garbage collection processes and to pro FIG . 25 illustrates a system in accordance with an exem
vide much more efficient usage of storage resources , requir- 65 plary and non - limiting embodiment .
ing far fewer operations than current garbage collection FIG . 26 illustrates a method according to an exemplary
processes . Such storage strategies may be used in combina and non - limiting embodiment .

20

30

US 10,635,316 B2
15 16

FIG . 27 illustrates a method according to an exemplary time periods different groups of SSDs are employed for
and non - limiting embodiment . writing data and for garbage collection , respectively .

FIG . 28 illustrates a method according to an exemplary FIG . 68 illustrates a sequence of operations involved in
and non - limiting embodiment . writing pages of data , followed by a garbage collection

FIG . 29 illustrates an exemplary two - node architecture for 5 process .
the methods and systems described herein . FIG . 69 illustrates a system level write strategy in which

FIG . 30 illustrates an exemplary three - node architecture new pages of data are serially written to random pages
for the methods and systems described herein . across a collection of SSDs in a storage system .

FIG . 31 illustrates an exemplary architecture with a proxy Skilled artisans will appreciate that elements in the figures
NVME controller and a remote NVME controller . 10 are illustrated for simplicity and clarity and have not nec

FIG . 32 illustrates a block diagram of exchange layer essarily been drawn to scale . For example , the dimensions of
NVME operation . some of the elements in the figures may be exaggerated

FIG . 33 illustrates a burst transmission protocol flow relative to other elements to help to improve understanding
diagram . of embodiments of the systems and methods disclosed

FIG . 34 illustrates a flow diagram for preventing duplicate 15 herein .
transmission of delivered packets .

FIG . 35 illustrates a request credit loss scenario flow DETAILED DESCRIPTION OF THE
diagram . INVENTION

FIG . 36 illustrates a grant credit loss scenario flow dia
gram . The present disclosure will now be described in detail by

FIG . 37 illustrates a command / data packet loss scenario describing various illustrative , non - limiting embodiments
flow diagram . thereof with reference to the accompanying drawings and

FIG . 38 illustrates an ACK loss scenario flow diagram . exhibits . The disclosure may , however , be embodied in
FIG . 39 illustrates a multiple loss scenario flow diagram . many different forms and should not be construed as being
FIG . 40 illustrates an alternate multiple loss scenario flow 25 limited to the illustrative embodiments set forth herein .

diagram . Rather , the embodiments are provided so that this disclosure
FIG . 41 illustrates a channel reset scenario flow diagram . will be thorough and will fully convey the concept of the
FIG . 42 illustrates a use of an Exchange Status Block . disclosure to those skilled in the art . The claims should be
FIG . 43 illustrates a table of exchange state triggers . consulted to ascertain the true scope of the disclosure .
FIG . 44 illustrates a write command flow diagram . Before describing in detail embodiments that are in accor
FIG . 45 illustrates a read command flow diagram . dance with the systems and methods disclosed herein , it
FIG . 46 illustrates a target ready indicator flow diagram . should be observed that the embodiments reside primarily in
FIG . 47 illustrates an administrative command exchange combinations of method steps and / or system components

flow diagram . related to converged networking and storage . Accordingly ,
FIG . 48 illustrates use of multiple Xfer Rdy packets . 35 the system components and method steps have been repre
FIG . 49 illustrates admin command data length contraint . sented where appropriate by conventional symbols in the
FIG . 50 illustrates a sequence of steps for error recovery . drawings , showing only those specific details that are per
FIG . 51 illustrates time out flow due to repeated NVME tinent to understanding the embodiments of the systems and

first packet drops . methods disclosed herein so as not to obscure the disclosure
FIG . 52 illustrates time out flow due to repeated NVME 40 with details that will be readily apparent to those of ordinary

subsequent packet drops . skill in the art .
FIG . 53 illustrates a complete write command flow . Referring to FIG . 3 , the converged solution 300 may
FIG . 54 illustrates a complete read command flow . include three important aspects and may be implemented in
FIG . 55 illustrates a PCIe transmission over a network . a hardware device that includes a combination of hardware
FIG . 56 illustrates a table of comparing different flow 45 and software modules and functions . First , a cut - through

scenarios . data path 304 may be provided between a network controller
FIG . 57 illustrates a flow control enabling architecture 118 and a storage controller 112 , so that access of the storage

diagram . to and from the network can be direct , without requiring any
FIG . 58 illustrates NVMEON encapsulation of an NVME intervention of the OS stack 108 , the PCIe bus 110 , or the

Command Packet 5800 in an embodiment . 50 CPU 106. Second , cut through storage stack access , such as
FIG . 59 illustrates NVMEON encapsulation of a batched to storage devices 302 , may be provided , such as access of

NVME Command Packet 5900 in an embodiment . the storage to and from entities on the local host , which
FIG . 60 illustrates an NVMEON Xfer Rdy command 6000 allows bypassing of complex legacy software stacks for

in an embodiment . storage access , such as SCSI / SAS / SATA stacks . Third , end
FIG . 61 illustrates NVMEON encapsulation of a NVME 55 to - end congestion management and flow control of the

Data Packet 6100 in an embodiment . network may be provided , such as by a mechanism to
FIG . 62 illustrates an NVMEON Exchange Cleanup reserve and schedule the transfer of data across the network ,

Request / Response 6200 in an embodiment . which guarantees the availability of the target's data to
FIG . 63 illustrates BTP control packets 6300 in an remote initiators and minimizes the congestion of the traffic

embodiment . 60 as it flows through intermediate network fabric switches .
FIG . 64 illustrates handling of undefined BTP opcodes . The first and second aspects remove software stacks (hence
FIG . 65 illustrates an architecture for software - based the CPU 106 and memory) from the path of the data ,

NVMEON deployment . eliminating redundant or unnecessary movement and pro
FIG . 66 illustrates an architecture for hardware - based cessing . End - to - end congestion management and flow con

NVMEON deployment . 65 trol delivers a deterministic and reliable transport of the data .
FIG . 67 illustrates a log - based storage system in which As noted above , one benefit of the converged solution 300

data are written across a collection of SSDs and at different is that the operating system stack 108 connects to the

US 10,635,316 B2
17 18

converged solution 300 over a conventional PCIe 110 or a targets are defined / controlled by the fabric switches , called
similar bus , so that the OS stack 108 sees the converged “ zones . ” Therefore , if an initiator moves or a target moves ,
solution 300 , and any storage that it controls through the zones need to be updated . The second control portion of a
cut - through to storage devices 302 , as one or more local , SAN typically lies with the “ targets . ” They can control
persistent devices , even if the physical storage is remotely 5 which initiator port can see what logical unit numbers
located . Among other things , this comprises the capability (LUNS) (storage units exposed by the target) . This is typi
for virtualization of DAS 308 , which may include virtual cally referred to as LUN masking and LUN mapping . Again ,
izing DAS 308 over a fabric , that is , taking a DAS 308 if an initiator moves locations , one has to re - program the
storage system and moving it outside the computing system “ Target ” . Consider now that in such an environment if an
102 and putting it on the network . The storage controller 112 10 application moves from one host to another (such as due to
of the converged solution 300 may connect to and control a failover , load re - balancing , or the like) the zoning and
DAS 308 on the network 122 via various known protocols , LUN masking / mapping needs to be updated . Alternatively ,
such as SAS , SATA , or NVMe . In embodiments virtualiza one could pre - program the SAN , so that every initiator sees
tion may include carving DAS 308 into arbitrary name every target . However , doing so results in an un - scalable and
spaces . In embodiments the virtualized DAS 308 is made 15 un - secure SAN . In the alternate solution described through
accessible as if it were actual , local , physical DAS to the out this disclosure , such a movement of an application , a
operating system , such as being accessible by the OS 108 container , or a storage device does NOT require any SAN
over a PCIe bus 110 to the storage controller 112 of the re - programming , resulting in a zero touch solution . The
converged solution 300 via a standard protocol such as mapping maintained and executed by the converged solution
NVMe . Again , the OS 108 sees the entire solution 300 as a 20 300 allows an application or a container , the target storage
local , physical device , such as DAS . Thus , provided herein media , or both , to be moved (including to multiple locations)
is the ability to virtualize storage (including DAS and other and scaled independently , without intervention by the OS , a
storage types , such as SAN 310) so that the OS 108 sees any hypervisor , or other software running on the host CPU .
storage type as DAS , even if the storage is actually accessed The fact that the OS 108 sees storage as a local disk allows
over a network 122 , and the OS 108 is not required to do 25 simplified virtualization of storage . The level of indirection
anything different than would be required with local physi involved in the methods and systems disclosed herein allows
cal storage . In the case where the storage devices 302 are the converged system 300 to hide not only the location , but
SAN 310 storage , the storage controller 112 of the con the media type , of storage media . All the OS 108 sees is that
verged solution may control the SAN 310 through an there is a local disk , even if the actual storage is located
appropriate protocol used for storage area networks , such as 30 remotely and / or is or a different type , such as a SAN 310 .
the Internet Small Computing System Interface (iSCSI) , Thus , virtualization of storage is provided through the
Fibre Channel (FC) , or Fibre Channel over Ethernet (FCOE) . converged solution 300 , where the OS 108 and applications
Thus , the converged solution 300 provides a translation for do not have to change . One can hide all of the management ,
the OS stack 108 from any of the other protocols used in policies of tiering , polices of backup , policies of protection
storage , such as Ethernet , SAS , SATA , NVMe , iSCSI , FC or 35 and the like that are normally needed to configure complex
FCoE , among others , to a simple protocol like NVMe that storage types behind .
makes the disparate storage types and protocols appear as In embodiments , a networking and storage system is
local storage accessible over PCIe 110. This translation in provided having a capability for handling a collection of
turns enables virtualization of a storage adaptor (referring to physically attached or network - distributed storage resources
any kind of target storage system) . Thus , methods and 40 as a virtualized cluster of storage resources and having
systems disclosed herein include methods and systems for virtualization of storage to an operating system , such that the
virtualizing various types of non - DAS storage as DAS in a operating system sees various types of storage as a local
converged networking / target storage appliance 300. In disk .
embodiments , one may virtualize whatever storage is In embodiments , a networking and storage system is
desired as DAS , using various protocols to the storage 45 provided having a capability for handling a collection of
systems while exposing storage as DAS to the OS stack 108 . physically attached or network - distributed storage resources
Thus , provided herein are methods and systems for virtual as a virtualized cluster of storage resources and having a
ization of storage devices , such as those using NVMe and facility for selectively managing where indirection occurs in
similar protocols , and the translation of those virtual devices a system for virtualization of storage .
to different physical devices , such as ones using SATA . The converged solution 300 enables the simplicity of

Storage / network tunneling 304 , where the tunneling path direct attached storage (DAS) with the advantages of a
between storage systems over the network 122 does not storage area network (SAN) . Each converged appliance 300
involve the operating system of a source or target computer in various embodiments disclosed herein may act as a host ,
enables a number of benefits . In conventional systems , one and any storage devices 302 may be local to a particular host
has separate storage and network paths , so accessing storage 55 but seen by the other hosts (as is the case in a SAN 310 or
remotely required extensive copying to and from memory , other network - accessible storage) . The drives in each box
I / O buses , etc. Merging the two paths means that storage enabled by a network / storage controller of the present
traffic is going straight onto the network . An advantage is disclosure behave like a SAN 310 (e.g. , are available on the
simplicity of programming . A user does not need to sepa network) , but the management methods are much simpler .
rately program a SAN 310 , meaning that the methods 60 When a storage administrator normally sets up a SAN 310 ,
disclosed herein enable a one - step programmable SAN 310 . a typical enterprise may have a whole department setting up
Rather than requiring discovery and specification of zones , zones for a SAN 310 (e.g. , a fiber channel switch) , such as
and the like , configuration , encryption , attachment , detach setting up “ who sees what . ” That knowledge must be
ment and the like may be centrally , and programmatically pre - loaded , and a user has to ask the SAN 310 administrator
done . As an example , a typical SAN is composed of “ ini- 65 to do the work to set it up . There is no programmability in
tiators , ” “ targets , ” and a switch fabric , which connects the a typical legacy SAN 310 architecture . The methods and
initiators and targets . Typically , which initiators see which systems disclosed herein provide local units that are on the

50

US 10,635,316 B2
19 20

network , but the local units can still access their storage (i.e. , stateless servers) . Installations that would have for
without having to go through complex management steps merly involved expensive blade servers and attached storage
like zone definition , etc. These devices can do what a SAN area networks (SANs) can instead attach to the storage
does just by having both network and storage awareness . As enabled switch 500. In embodiments this comprises a “ rack
such , they represent the first programmatic SAN . 5 scale ” architecture , where resources are disaggregated at the

The solution 300 can be described as a “ Converged IO rack level .
Controller ” that controls both the storage media 302 and the Methods and systems are provided for selecting where
network 122. This converged controller 300 is not just a indirection occurs in the virtualization of storage . Virtual
simple integration of the storage controller 112 and the ization of certain functions may occur in hardware (e.g. , in
network controller (NIC) 118. The actual functions of the 10 a converged adaptor 300 on a host 102 , in a storage enabled
storage and network are merged such that storage functions switch 500 , in varying hardware form factors (e.g. , FPGAs
are performed as the data traverses to and from the network or ASICs) and in software . Different topologies are avail
interface . The functions may be provided in a hardware able , such as where the methods and systems disclosed
solution , such as an FPGA (one or more) or ASIC (one or herein are deployed on a host machine 102 , on a top of the
more) as detailed below . 15 rack switch 500 , or in a combination thereof . Factors that go

In embodiments , a networking and storage system is into the selection of where virtualization should occur
provided having a capability for handling a collection of include ease of use . Users who want to run stateless servers
physically attached or network - distributed storage resources may prefer a top of rack storage enabled switch 500. Ones
as a virtualized cluster of storage resources and having a who don't care about that approach might prefer the con
field programmable hardware device that provides con- 20 verged controller 300 on the host 102 .
verged network and storage data path management . FIG . 7 shows a more detailed view of a set of systems that

Referring to FIG . 4 , two or more computing systems 102 are enabled with converged controllers 300 , including two
enabled by converged solutions 300 may serve as hosts for computer systems 102 (computer system 1 and computer
respective storage targets , where by merging storage and system 2) , as well as a storage enabled switch 500. Storage
network and controlling both interfaces , direct access to the 25 devices 302 , such as DAS 308 and SAN 310 may be
storage 302 can be achieved remotely over the network 122 controlled by the converged controller 300 or the storage
without traversing internal busses or CPU / software work , enabled switch 500. DAS 308 may be controlled in either
such as by a point - to - point path 400 or by an Ethernet switch case using SAS , SATA or NVMe protocols . SAN 310 may
402 to another computer system 102 that is enabled by a be controlled in either case using iSCSI , FC or FCOE .
converged solution 300. The highest performance (high 30 Connections among hosts 102 that have storage controllers
IOPs and low latency) can be achieved . Further , storage 300 may be over a point - to - point path 400 , over an Ethernet
resources 302 can now be pooled across the cluster . In FIG . switch 402 , or through a storage enabled switch 500 , which
4 , this is conceptually illustrated by the dotted oval 404 . also may provide a connection to a conventional computing

In embodiments , the converged solution 300 may be system . As noted above , the multiple systems with intelli
included on a host computing system 102 , with the various 35 gent converged controllers 300 can each serve as hosts and
components of a conventional computing system as depicted as storage target locations that the other hosts see , thereby
in FIG . 1 , together with the converged IO controller 300 as providing the option to be treated as a single cluster of
described in connection with FIG . 3. Referring to FIG . 5 , in storage for purposes of an operating system 108 of a
alternative embodiments , the converged controller 300 may computing system 102 .
be disposed in a switch , such as a top of the rack switch , thus 40 Method and systems disclosed herein include virtualiza
enabling a storage enabled switch 500. The switch may tion and / or indirection of networking and storage functions ,
reside on the network 122 and be accessed by a network embodied in the hardware converged controller 300 , option
controller 118 , such as of a conventional computing system ally in a converged network adaptor / storage adaptor appli
102 . ance 300. While virtualization is a level of indirection ,

Referring to FIG . 6 , systems may be deployed in which a 45 protocol is another level of indirection . The methods and
converged controller 300 is disposed both on one or more systems disclosed herein may convert a protocol suitable for
host computing systems 102 and on a storage enabled switch use by most operating systems to deal with local storage ,
500 , which may be connected to systems 102 that are such as NVMe , to another protocol , such as SAS , SATA , or
enabled by converged solutions 300 and to non - enabled the like . One may expose a consistent interface to the OS
systems 102. As noted above , target storage 302 for the 50 108 , such as NVMe , and on the other side of the converged
converged controller (s) 300 on the host computing system controller 300 one may convert to whatever storage media
102 and on the storage enabled switch 500 can be visible to 302 is cost - effective . This gives a user a price / performance
each other across the network , such as being treated as a advantage . If components are cheaper / faster , one can con
unified resource , such as to virtualization solutions . In sum , nect any one of them . The side of the converged controller
intelligence , including handling converged network and 55 300 could face any kind of storage , including NVMe .
storage traffic on the same device , can be located in a host Furthermore the storage media type may be any of the
system , in a switch , or both in various alternative embodi following including , but not limited , to HDD , SSD (based on
ments of the present disclosure . SLC , MLC , or TLC Flash) , RAM etc or a combination

Embodiments disclosed herein may thus include a switch thereof .
form factor or a network interface controller , or both which 60 In embodiments , a converged controller may be adapted
may include a host agent (either in software or hardware) . to virtualize NVMe virtual functions , and to provide access
These varying deployments allow breaking up virtualization to remote storage devices 302 , such as ones connected to a
capabilities , such as on a host and / or on a switch and / or storage - enabled switch 500 , via NVMe over an Ethernet
between a front end and a back end . While a layer may be switch 402. Thus , the converged solution 300 enables the
needed to virtualize certain functions , the storage can be 65 use of NVMe over Ethernet 700 , or NVMeoE . Thus , meth
separated , so that one can scale storage and computing ods and systems disclosed herein include providing NVMe
resources separately . Also , one can then enable blade servers over Ethernet . These approaches can be the basis for the

10

US 10,635,316 B2
21 22

tunneling protocol that is used between devices , such as the as a virtualized cluster of storage resources and having disk
host computing system 102 enabled by a converged con attached storage across a network fabric .
troller 300 and / or a storage enabled switch 500. NVMe is a In embodiments , a networking and storage system is
suitable DAS protocol that is intended conventionally to go provided having a capability for handling a collection of
to a local PCIe 110. Embodiments disclosed herein may 5 physically attached or network - distributed storage resources
tunnel the NVMe protocol traffic over Ethernet . NVMe as a virtualized cluster of storage resources and having an
(non - volatile memory express) is a protocol that in Linux integrated framework for network management and storage
and Windows provides access to PCIe - based Flash . This management , including controlling target storage functions
provides high performance via by - passing the software and handling network fabric capabilities .
stacks used in conventional systems , while avoiding the In embodiments , a networking and storage system is
need to translate from NVMe (as used by the OS stack 108) provided having a capability for handling a collection of
and the traffic tunneled over Ethernet to other devices . physically attached or network - distributed storage resources

as a virtualized cluster of storage resources and having In embodiments , a networking and storage system is network policies for containers exposed with network man provided having a capability for handling a collection of 15 agement function in a unified network and storage manage physically attached or network - distributed storage resources ment interface .
as a virtualized cluster of storage resources and having a In embodiments , a networking and storage system is
capability for using a Non - Volatile Memory Express proto provided having a capability for handling a collection of
col over an Ethernet . physically attached or network - distributed storage resources

FIG . 8 is a block diagram of an FPGA 800 , which may 20 as a virtualized cluster of storage resources and having a
reside on an IO controller card and enable an embodiment of network and storage management interface that allow sepa
a converged solution 300. Note that while a single FPGA rated handling storage functions and network functions for
800 is depicted , the various functional blocks could be a unified networking and storage system .
organized into multiple FPGAs , into one or more customer The internal functions of the FPGA 800 may include a
Application Specific Integrated Circuits (ASICs) , or the like . 25 number of enabling features for the converged solution 300
For example , various networking blocks and various storage and other aspects of the present disclosure noted throughout .
blocks could be handled in separate (but interconnected) A set of virtual endpoints (VNVMe) 802 may be provided for
FPGAs or ASICs . References throughout this disclosure to the host . Analogous to the SR - IOV protocol that is used for
an FPGA 800 should be understood , except where context the network interface , this presents virtual storage targets to
indicates otherwise , to encompass these other forms of 30 the host . In this embodiment of the FPGA 800 , NVMe has
hardware that can enable the functional capabilities reflected benefits of low software overhead , which in turn provides
in FIG . 8 and similar functions . Also , certain functional high performance . A virtual NVMe device 802 can be
groups , such as for networking functions and / or storage dynamically allocated / de - allocated / moved and resized . As
functions , could be embodied in merchant silicon . with SR - IOV , there is one physical function (PF) 806 that

The embodiment of the FPGA 800 of FIG . 8 has four main 35 interfaces with a PCIe driver 110 (see below) , and multiple
interfaces . First , there is PCIe interface , such as to the PCIe virtual functions 807 (VF) in which each appears as an
bus 110 of a host computer 102. Thus , the card is a PCIe end NVMe device .
point . Second , there is a DRAM / NVRAM interface . For Also provided in the FPGA 800 functions are one or more
example , a DDR interface may be provided to external read and write direct memory access (DMA) queues 804 ,
DRAM or NVRAM , used by the embedded CPUs , meta- 40 referred to in some cases herein as a DMA engine 804. These
data and data structures , and packet / data buffering . Third , may include interrupt queues , doorbells , and other standard
there is a storage interface to media , such as DAS 308 and functions to perform DMA to and from the host computing
SAN 310. Storage interfaces can include ones for SAS , system 102 .
SATA , NVMe , iSCSI , FC and / or FC0E , and could in A device mapping facility 808 on the FPGA 800 may
embodiments be any interface to rotating media , flash , or 45 determine the location of the virtual NVMe devices 802. The
other persistent form of storage , either local or over a location options would be local (i.e. attached to one of the
cut - through to a network - enabled storage like SAN 310 . storage media interfaces 824 shown) , or remote on another
Fourth , a network interface is provided , such as Ethernet to host 102 of a storage controller 300. Access to a remote
a network fabric . The storage interfaces and the network VNVMe device requires going through a tunnel 828 to the
interfaces can be used , in part , to enable NVMe over 50 network 122 .
Ethernet . A NVMe virtualization facility 810 may translate NVMe

In embodiments , a networking and storage system is protocol instructions and operations to the corresponding
provided having a capability for handling a collection of protocol and operations of the backend storage media 302 ,
physically attached or network - distributed storage resources such as SAS or SATA (in the case of use of NVMe on the
as a virtualized cluster of storage resources and having an 55 backend storage medium 302 , no translation may be needed)
interface that allows an operator to handle storage area where DAS 308 is used , or such as iSCSI , FC or FCoE in the
network resources with an interface that is used for disk case where SAN 310 storage is used in the backend .
attached storage . References to the backend here refer to the other side of the

In embodiments , a networking and storage system is converged controller 300 from the host 102 .
provided having a capability for handling a collection of 60 A data transformation function 812 may format the data as
physically attached or network - distributed storage resources it is stored onto the storage media 302. These operations
as a virtualized cluster of storage resources and having a could include re - writes , transformation , compression , pro
pool of virtualized , converged networking / storage devices tection (such as RAID) , encryption and other functions that
that appear to an operating system as disk attached storage . involve changing the format of the data in any way as

In embodiments , a networking and storage system is 65 necessary to allow it to be handled by the applicable type of
provided having a capability for handling a collection of target storage medium 308. In some embodiments , storage
physically attached or network - distributed storage resources medium 308 may be remote .

5

10

15

US 10,635,316 B2
23 24

In embodiments , storage read and write queues 814 may A set of network receive and transmit queues 842 may
include data structures or buffering for staging data during a handle data structures or buffering to the network interface .
transfer . In embodiments , temporary memory , such as Off - FPGA 800 DRAM may be used for packet data .
DRAM of NVRAM (which may be located off the FPGA A network / remote storage scheduler and policer 844 may
800) may be used for temporary storage of data . provide priorities and control access to the network inter

A local storage scheduler and shaper 818 may prioritize face . SLA policies for remote storage and network traffic
and control access to the storage media 302. Any applicable may be enforced here , which may include strict priorities ,
SLA policies for local storage may be enforced in the weighted round robin , IOP and bandwidth shapers , and
scheduler and shaper 818 , which may include strict priori policers on a per queue , per initiator , per target , per c - group ,
ties , weighted round robin scheduling , IOP shapers , and or per network flow basis , and the like .
policers , which may apply on a per queue , per initiator , per A local network switch 848 may forward packets between
target , or per c - group basis , and the like . queues in the FPGA , so that traffic does not need to exit the

A data placement facility 820 may implement an algo FPGA 800 to the network fabric 122 if the destination is
rithm that determines how the data is laid out on the storage local to the FPGA 800 or the host 102 .
media 302. That may involve various placement schemes In embodiments , a networking and storage system is
known to those of skill in the art , such as striping across the provided having a capability for handling a collection of
media , localizing to a single device 302 , using a subset of the physically attached or network - distributed storage resources
devices 302 , or localizing to particular blocks on a device as a virtualized cluster of storage resources and having a
302 . 20 storage initialization and target functions in a network

A storage metadata management facility 822 may include switch with attached disks .
data structures for data placement , block and object i - nodes , An end - to - end congestion control / credit facility 850 may
compression , deduplication , and protection . Metadata may prevent network congestion . This is accomplished with two
be stored either in off - FPGA 800 NVRAM / DRAM or in the algorithms . First there may be an end - to - end reservation /
storage media 302 . 25 credit mechanism with a remote FPGA 800. This may be

A plurality of control blocks 824 may provide the inter analogous to a SCSI transfer ready function , where the
face to the storage media . These may include SAS , SATA , remote FPGA 800 permits the storage transfer if it can
NVMe , PCIe , iSCSI , FC and / or FC0E , among other possible immediately accept the data . Similarly , the local FPGA 800
control blocks , in each case as needed for the appropriate allocates credits to remote FPGAs 800 as they request a

30 transfer . SLA policies for remote storage may also be type of target storage media 302 .
A storage network tunnel 828 of the FPGA 800 may enforced here . Second there may be a distributed scheduling

provide the tunneling / cut - through capabilities described algorithm , such as an iterative round - robin algorithm , such
as the iSLIP algorithm for input - queues proposed in the throughout this disclosure in connection with the converged publication “ The iSLIP Scheduling Algorithm for Input solution 300. Among other things , the tunnel 828 provides 35 Queues Switches ” , by Nick McKeown , IEEE / ACM the gateway between storage traffic and network traffic . It TRANSACTIONS ON NETWORKING , VOL . 7 , NO . 2 , includes encapsulation / de - encapsulation or the storage traf APRIL 1999. The algorithm may be performed cluster wide

fic , rewrite and formatting of the data , and end - to - end using the intermediate network fabric as the crossbar .
coordination of the transfer of data . The coordination may be A rewrite , tag , and CRC facility 852 may encapsulate / de
between FPGAs 800 across nodes within a host computing 40 encapsulate the packet with the appropriate tags and CRC
system 102 or in more than one computing system 102 , such protection
as for the point - to - point path 400 described in connection A set of interfaces 854 , such as MAC interfaces , may
with FIG . 4. Various functions , such as sequence numbers , provide an interface to Ethernet .
packet loss , time - outs , and retransmissions may be per A set of embedded CPU and cache complexes 858 may
formed . Tunneling may occur over Ethernet , including by 45 implement a process control plan , exception handling , and
FCoE or NVMeoE . other communication to and from the local host and network

A virtual network interface card facility 830 may include remote FPGAS 800 .
a plurality of SR - IOV endpoints to the host 102 , presented A memory controller 860 , such as a DDR controller , may
as virtual network interface cards . One physical function act as a controller for the external DRAM / NVRAM .
(PF) 836 may interfaces with a PCIe driver 110 (see software 50 As a result of the integration of functions provided by the
description below) , and multiple virtual functions (VF) 837 , converged solution 300 , as embodied in one example by the
in which each appear as a network interface card (NIC) 118 . FPGA 800 , provided herein are methods and systems for

A set of receive / transmit DMA queues 832 may include combining storage initiation and storage targeting in a single
interrupt queues , doorbells , and other standard functions to hardware system . In embodiments , these may be attached by
perform DMA to and from the host 102 . 55 a PCIe bus 110. A single root virtualization function (SR

A classifier and flow management facility 834 may per IOV) or the like may be applied to take any standard device
form standard network traffic classification , typically to (e.g. , any storage media 302 device) and have it act as if it
IEEE standard 802.1Q class of service (COS) mappings or is hundreds of such devices . Embodiments disclosed herein
other priority levels . include using a protocol like SR - IOV to give multiple virtual

An access control and rewrite facility 838 may handle 60 instances of a physical storage adaptor . SR - IOV is a PCIe
access control lists (ACLs) and rewrite policies , including standard that virtualizes I / O functions , and while it has been
access control lists typically operating on Ethernet tuples used for network interfaces , the methods and systems dis
(MAC SA / DA , IP SA / DA , TCP ports , etc.) to reclassify or closed herein extend it to use for storage devices . Thus ,
rewrite packets . provided herein is a virtualized target storage system . In

A forwarding function 840 may determines destination of 65 embodiments the virtual target storage system may handle
the packet , such as through layer 2 (L2) or layer 3 (L3) disparate media as if the media are a disk or disks , such as
mechanisms . DAS 310 .

US 10,635,316 B2
25 26

In embodiments , a networking and storage system is From a traffic perspective , one may combine systems into
provided having a capability for handling a collection of one . Combining the storage and network adaptors , and
physically attached or network - distributed storage resources adding in virtualization , gives significant advantages . Say
as a virtualized cluster of storage resources and having the there is a single host 102 with two PCIe buses 110. To route
capability for virtualization in the input / output data path of 5 from the PCIe 110 , you can use a system like remote direct
a storage resources . memory access (RDMA) to get to another machine / host

In embodiments , a networking and storage system is 102. If one were to do this separately , one has to configure
provided having a capability for handling a collection of the storage and the network RDMA systems separately . One
physically attached or network - distributed storage resources has to join each one and configure them at two different
as a virtualized cluster of storage resources and having a 10 places . In the converged solution 300 , the whole step of
network device with storage initiation and a storage target on setting up Qos , seeing that this is RDMA and that there is
the device . another fabric elsewhere is a zero touch process , because

In embodiments , a networking and storage system is with combined storage and networking the two can be
provided having a capability for handling a collection of configured in a single step . That is , once one knows the
physically attached or network - distributed storage resources 15 storage , one doesn't need to set up the QoS on the network
as a virtualized cluster of storage resources and having a separately . Thus , single - step configuration of network and
software system for managing a converged networking and storage for RDMA solutions is enabled by the converged
target storage initiation and handling system . solution 300 .

In embodiments , a networking and storage system is Referring again to FIG . 4 , remote access is enabled by the
provided having a capability for handling a collection of 20 FPGA 800 or similar hardware as described in connection
physically attached or network - distributed storage resources with FIG . 8. The virtualization boundary is indicated in FIG .
as a virtualized cluster of storage resources and having 4 by the dotted line 408. To the left of this line , virtual
virtualization embodied in hardware in a converged network storage devices (e.g. , NVMe 802) and virtual network
and storage system . interfaces 830 are presented to the operating system 108 .

Enabled by embodiments like the FPGA 800 , embodi- 25 The operating system cannot tell these are virtual devices .
ments of the methods and systems disclosed herein may also To the right of the virtualization boundary 408 are physical
include providing an NVMe device that is virtualized and storage devices 302 (e.g. , using SATA or other protocols
dynamically allocated . In embodiments one may piggyback noted above) and physical network interfaces . Storage vir
the normal NVMe protocol , but carve up , virtualize and tualization functions are implemented by the VNVMe 802
dynamically allocate the NVMe device . In embodiments 30 and the NVMe virtualization facility 810 of FIG . 8. Network
there is no footprint in the software . The operating system virtualization functions are implemented by the VNIC facil
108 stays the same or nearly the same (possibly having a ity 830. Location of the physical storage media is also
small driver that sees the converged network / storage card hidden from the operating system 108. Effectively , the
300) . This results in virtual storage that looks like a direct physical disks 302 across servers can be pooled and
attached disk , but the difference is that now we can pool such 35 accessed remotely . The operating system 108 issues a read
storage devices 302 across the network 122 . or write transaction to the storage media 302 (it is a virtual

In embodiments , a networking and storage system is device , but the operation system 108 sees it as a physical
provided having a capability for handling a collection of device) . If the physical storage media 302 happens to be
physically attached or network - distributed storage resources remote , the read / write transaction is mapped to the proper
as a virtualized cluster of storage resources and having 40 physical location , encapsulated , and tunneled through Eth
pooled hardware storage resources that are virtualized to an ernet . This process may be implemented by the device
operating system , such that what appears to be a physical mapping facility 808 , the NVMe virtualization facility 810 ,
disk expands in capacity without requiring a copying or the data transformation facility 812 and the storage - network
rebalancing operation by the operating system that accesses tunnel 828 of FIG . 8. The target server (second computing
the storage . 45 system) un - tunnels the storage read / write and directly
Methods and systems are disclosed herein for implement accesses its local storage media 302. If the transaction is a

ing virtualization of NVMe . Regardless how many sources write , the data is written to the media 302. If the transaction
are related to how many destinations , as long as the data is a read , the data is prepared , mapped to the origin server ,
from the sources is serialized first before going into the hub , encapsulated , and tunneled through Ethernet . The transac
then the hub distributes to data to the designated destination 50 tion completion arrives at the origin operating system 102 .
sequentially . If so , then data transport resources such as the In a conventional system , these steps would require software
DMA queues 804 , 832 can be reduced to only one copy . This intervention in order to process the storage request , data
may include various use scenarios . In one scenario , for formatting , and network access . As shown , all of these
NVMe virtual functions (VFs) , if they are all connected to complex software steps are avoided .
the same PCIe bus 110 , then regardless how many VFs 807 55 Referring to FIG . 9 , a simplified block diagram is pro
are configured , the data would be coming into this pool of vided of an architecture of a controller card 902 , as one
VFs 807 serially , so there is only one DMA engine 804 , and embodiment of a converged solution 300 as described
only one storage block (for control information) is needed . throughout this disclosure . The controller card 902 may be ,

In another use scenario , for a disk storage system with a for example , a standard , full - height , half - length PCIe card ,
pool of discrete disks / controllers , if the data is originated 60 such as a Gen3 x16 card . However , a non - standard card size
from the physical bus , i.e. PCIe 110 , since the data is serially is acceptable , preferably sized so that it can fit into various
coming into this pool of disks , then regardless how many types of targeted chassis . The PCIe form factor limits the
disks / controllers are in the pool , the transport resources such stack up and layers used on the PCB .
as the DMA engine 804 can be reduced to only one instead The controller card 902 may be used as an add - on card on
of one per controller . 65 a commodity chassis , such as a 2 RU , 4 node chassis . Each
Methods and systems disclosed herein may also include node of the chassis (called a sled) is typically 1 RU and 6.76 "

virtualization of a converged network / storage adaptor 300 . wide . The motherboard typically may provide a PCIe Gen3

resources .

US 10,635,316 B2
27 28

x16 connector near the back . A riser card may be used to 1020 is used for chip - to - chip connection . The Xilinx
allow the Controller card 902 to be installed on top of the AuroraTM protocol , a serial interface , may be used as the
motherboard ; thus , the clearance between the card and the physical layer .
motherboard may be limited to roughly on slot width . The key requirements for FPGA configuration are that (1)

In embodiments , a networking and storage system is 5 The datapath chip 904 must be ready before PCIe configu
provided having a capability for handling a collection of ration started (QSPI Flash memory (serial flash memory
physically attached or network - distributed storage resources with quad SPI bus interface) may be fast enough) and (2) the
as a virtualized cluster of storage resources and having the chips are preferably field upgradeable . The Flash memory
capability to provide dynamic resource allocation and guar for configuration is preferably large enough to store at least
anteed performance in deployments using commodity net 10 3 copies of the configuration bitstream . The bitstream refers
working and storage hardware . to the configuration memory pattern used by XilinxTM

FPGAs . The bitstream is typically stored in non - volatile In embodiments , the maximum power supplied by the
PCIe connector is 75 W. The controller card 902 may memory and is used to configure the FPGA during initial

power - on . The eCPU 1018 may be provided with a facility
consume about 60 W or less . 15 to read and write the configuration Flash memories . New The chassis may provide good airflow , but the card should bitstreams may reside with the processor of the host 102 . expect a 10 C rise in ambient temperature , because in this Security and authentication may be handled by the eCPU
example the air will be warmed by dual Xeon processors and 1018 before attempting to upgrade the Flash memories .
16 DIMMs . The maximum ambient temperature for most In embodiments , a networking and storage system is
servers is 35 C , so the air temperature at the controller card 20 provided having a capability for handling a collection of
902 will likely be 45 C or higher in some situations . Custom physically attached or network - distributed storage resources
heat sinks and baffles may be considered as part of the as a virtualized cluster of storage resources and having
thermal solution . hardware - level storage security in a cluster of storage

There are two FPGAs in the embodiment of the controller
card 902 depicted in FIG . 9 , a datapath FPGA , or datapath 25 In a networking subsystem , the Controller card 902 may
chip 904 , and a networking FPGA , or networking chip 908 . handle all network traffic between the host processor and the

The datapath chip 904 provides connectivity to the host outside world . The Networking chip 908 may intercept all
computer 102 over the PCIe connector 110. From the host network traffics from the NIC 118 and externally .
processor's point of view , the controller card 902 looks like The Intel NIC 118 in this embodiment connects
multiple NVMe devices . The datapath chip 904 bridges 30 two10GigE , XFI interfaces 1022 to the Networking chip
NVMe to standard SATA / SAS protocol and in this embodi 908. The embedded processor will do the same . The Net
ment controls up to six external disk drives over SATA / SAS working chip 908 will perform an L2 switching function and
links . Note that SATA supports up to 6.0 Gbps , while SAS route Ethernet traffic out to the two external 10GigE ports .
supports up to 12.0 Gbps . Similarly , incoming 10GigE traffic will be directly to either

The networking chip 908 switches the two 10G Ethernet 35 the NIC 118 , the eCPU 1018 , or internal logic of the
ports of the NIC device 118 and the eCPU 1018 to two Networking chip 908 .
external 10G Ethernet ports . It also contains a large number The controller card 902 may use SFP + optical connectors
of data structures for used in virtualization . for the two external 10G Ethernet ports . In other embodi

The motherboard of the host 102 typically provides a ments , the card may support 10GBASE - T using an external
PCIe Gen3 x16 interface that can be divided into two 40 PHY and RJ45 connectors ; but a separate card may be
separate PCIe Gen3 x8 busses in the Intel chipset . One of the needed , or a custom paddle card arrangement may be needed
PCIe Gen3 x8 bus 110 is connected to the Intel NIC device to allow switching between SFP + and RJ45 .
118. The second PCIe Gen3 x8 bus 110 is connected to a All the management of the external port and optics ,
PLX PCIe switch chip 1010. The downstream ports of the including the operation of the LEDs , may be controlled by
switch chip 1010 are configured as two PCIe Gen3 x8 busses 45 the Networking chip 908. Thus , signals such as PRST ,
110. One of the busses 110 is connected to the eCPU while 12C / MDIO , etc may be connected to the Networking chip
the second is connected to the datapath chip 904 . 908 instead of the NIC 118 .

The datapath chip 904 uses external memory for data In a storage subsystem , the Datapath chip 904 may drive
storage . A single x72 DDR3 channel 1012 should provide the mini - SAS HD connectors directly . In embodiments such
sufficient bandwidth for most situations . The networking 50 as depicted in FIG . 10 , the signals may be designed to
chip 908 also uses external memory for data storage , and a operate at 12 Gbps to support the latest SAS standard .
single x72 DDR3 channel is likely to be sufficient for most To provide efficient use of board space , two x4 mini - SAS
situations . In addition , the data structures require the use of HD connectors may be used . All eight sets of signals may be
non - volatile memory , such as one that provides high per connected to the Datapath chip 904 , even though only six
formance and sufficient density , such as Non - volatile DIMM 55 sets of signals might be used at any one time .
(NVDIMM , which typically has a built - in power switching On the chassis , high - speed copper cables may be used to
circuit and super - capacitors as energy storage elements for connect the mini - SAS HD connectors to the motherboard .
data retention . The placement of the mini - SAS HD connectors may take

The eCPU 1018 communicates with the networking 908 into account the various chassis ' physical space and routing
using two sets of interfaces . It has a PCIe Gen2x4 interface 60 of the cables .
for NVMe - like communication . The eCPU 1018 also has The power to the controller card 902 may be supplied by
two 10G Ethernet interfaces that connect to the networking the PCIe x16 connector . No external power connection
chip 908 , such as through its L2 switch . needs to be used . Per PCIe specification , the PCIe x16

An AXI bus 1020 (a bus specification of the ARM chipset) connector may supply only up to 25 W of power after power
will be used throughout the internal design of the two chips 65 up . The controller card 902 may be designed such that it
904 , 908. To allow seamless communication between the draws less than 25 W until after PCIe configuration . Thus , a
datapath chip 904 and the networking chip 908 , the AXI bus number of interfaces and components may need to be held

5

US 10,635,316 B2
29 30

in reset after initial power up . The connector may supply up passes through the storage controller 112 and the operating
to 75 W of power after configuration , which may be system / hypervisor stack 108 before it reaches the applica
arranged such that the 75 W is split between the 3.3V and tion , entailing the challenges described in connection with
12V rails . FIG . 1 .

FIG . 10 shows a software stack 1000 , which includes a Referring to FIG . 12 , when an application or a container
driver 1002 to interface to the converged solution 300 , such is moved from C1 to C2 , its corresponding storage device
as one enabled by the FPGA 800. The NVMe controller needs to be moved too . The movement could be needed due
1004 is the set of functions of the hardware (e.g. , FPGA 800) to the fact that C1 might be running out of resources (such
that serves the function of an NVMe controller and allocates as CPU , memory , etc.) to support the existing applications
virtual devices 1012 to the host . In FIG . 10 , dev1 , dev2 , dev3 10 (App1 - App) over a period of time , such as because of
are examples of virtual devices 1012 which are dynamically behavioral changes within these applications .
allocated to containers 1018 LXC1 , LXC2 , and LXC3 , Typically , it is easier to accomplish the movement within
respectively . The NVMe to SATA bridge 1008 is the part of a reasonable amount of time as long as the application states
the hardware sub - system (e.g. , FPGA 800) that converts and and the storage are reasonable in terms of size . Typically
maps virtual devices 1012 (dev1 , dev2 , dev3) to storage 15 storage - intense applications may use large amounts (e.g. ,
devices 302 (e.g. , SSDs in the figure) . The connection 1010 multiple terabytes) of storage , in which case , it may not be
is the part of the hardware system that provides a SATA practical to move the storage 302 within an acceptable
connection (among other possible connection options noted amount of time . In that case , storage may continue to stay
above) . The Ethernet link 120 , which can expose virtual where it was and software - level shunting / tunneling would
devices 1012 (i.e dev1 , dev2 , dev3) to other host (s) 102 20 be undertaken to access the storage remotely , as shown in
connected via the Ethernet link 120 using a storage tunnel FIG . 13 .
ing protocol . The PCI - E (NVMe driver) 1002 may program As shown in FIG . 13 , App2 1108 , after its movement to
and drive the hardware subsystem for the storage side . This computer system C2 , continues to access its original storage
driver 1002 may run on the host as part of the operating S2 located on computer system C1 by traversing through
system (e.g. , Linux OS in this example) . The block layer 25 Operating Systems or Hypervisors 108 of both the systems
1014 may be a conventional SCSI sub - system of the Linux C1 and C2 . This is because the mapping of storage access
operating system , which may interface with the converged through the network controllers 118 to that storage controller
solution PCIe driver 1002 to expose virtual storage devices 112 and its attached storage devices 302 is done by the
1012. The containers 1018 (LXC1 , LXC2 , LXC3) may Operating System or Hypervisor software stack 108 running
request and dynamically be allocated virtual storage devices 30 within the main CPU .
1012 (dev1 , dev2 and dev3 , respectively) . As shown in FIG . 13 after its movement to C2 , App2 1108
FIGS . 11 through 15 show an example of the movement continues to access its original storage S2 located in C1 by

of an application container 1018 (e.g. , a Linux container) traversing through Operating Systems or Hypervisors 108 of
across multiple systems 102 , first in the absence of a both the systems C1 and C2 . This is because , the mapping
converged solution 300 and then in the presence of such a 35 of storage access through the network controllers 118 from
converged solution 300. FIG . 11 shows an example of two C2 to C1 and over to that storage controller 112 of C1 is
conventional computer systems 102 with conventional stor done by the Operating System or Hypervisor software 108
age controllers 112 and network controllers 118 hosting running within the main CPU of each computer system .
virtualized software in an OS / Hypervisor stack 108. Com Consider a similar scenario when a converged controller
puter System 1 (C1) has a configuration similar to the one 40 300 is applied as shown in the FIG . 14. As one can see , the
shown in FIG . 1 with CPU , memory and conventional scenario is almost identical to FIG . 11 , except the Converged
storage controller 112 and network controller 118. The IO Controller 300 replaces the separate storage controller
system runs an operating system 108 , such as LinuxTM , 112 and network controller 118. In this case , when App2
Microsoft WindowsTM , etc , and / or hypervisor software , such 1108 along with its container LXC1 is moved to C2 (as
as Xen , VMware , etc. to provide support for multiple 45 shown in FIG . 15) , the storage S2 is not moved , and the
applications natively or over virtualized environments , such access is optimized by avoiding the traversal through any
as via virtual machines or containers . In this computer software (Operating System , Hypervisor 108 or any other)
system 102 , application Appl 1102 is running inside a running in main CPU present in computing system C1 .
virtual machine VM1 1104. Applications App2 1108 and Thus , provided herein is a novel way of bypassing the
App3 1112 are running within virtualized containers LXC1 50 main CPU where a storage device is located , which in turn
1110 and LXC2 1114 respectively . In addition to these , (a) allows one to reduce latency and bandwidth significantly
application App4 1118 is running natively over the Operat in accessing a storage across multiple computer systems and
ing System 108. Although typically , a practical scenario (b) vastly simplifies and improves situations in which an
might have only virtual machines or containers or native application needs to be moved away from a machine on
applications (not all three) , here it is depicted in a combined 55 which its storage is located .
fashion deliberately to cover all cases of virtualized envi Ethernet networks behave on a best effort basis and hence
ronments . Computer System 2 (C2) 102 has similar con lossy in nature as well as bursty . Any packet could be lost
figuration supporting App5 and App6 in a container and forever or buffered and delivered in bursty and delayed
natively , respectively . Each of these applications access their manner along with other packets . Whereas , typical storage
storage devices 302 independent of each other , namely App1 60 centric applications are sensitive to losses and bursts , it is
uses Si , App2 uses S2 , etc. These storage devices 302 important that when storage traffic is sent over Ethernet
(designated S1 - S6) are not limited to being independent networks .
physical entities . They could be logically carved out of one Conventional storage accesses over their buses / networks
or more physical storage elements as deemed necessary . As involve reliable and predictable methods . For example ,
one can see , (represented by the arrow from each storage 65 Fibre Channel networks employ credit based flow control to
device 302 to an application) , the data flow between the limit number of accesses made by end systems . And the
storage 302 and the application 1102 , 1108 , 1112 , 1118 number of credits given to an end system is based on

US 10,635,316 B2
31 32

whether the storage device has enough command buffers to (6) 1704 across the multiplexor (S) 1708. By employing
receive and fulfill storage requests in predictable amount of this type of source - oriented , credit - based scheme , one may
time fulfilling required latency and bandwidth needs . The guarantee access bandwidth and predictable access latency ,
figure below shows some credit schemes adopted by differ independent of the number of target storage devices 302. As
ent types of buses such as SATA , Fibre Channel (FC) , SCSI , 5 an example , one type of multiplexing is to make sure queue
SAS , etc. size “ P ' of Q1 does not exceed ‘ L + M’of Q5 and Q6 , so that

Referring to FIG . 16 , Ethernet networks behave on a best Q1 is not overwhelmed by its source .
effort basis and hence tend to be lossy in nature , as well as In embodiments , methods and systems to provide access
bursty . Any packet could be lost forever or buffered and to blocks of data from a storage device 302 is described . In
delivered in a delayed manner , in a congestion - inducing 10 particular , a novel approach to allowing an application to
burst , along with many other packets . Typical storage access its data , fulfilling a specific set of access requirements
centric applications are sensitive to losses and bursts , so it is is described .
important when storage traffic is sent over buses and Eth As used herein , the term “ application - driven data storage ”
ernet networks , that those involve reliable and predictable (ADS) encompasses storage that provides transparency to
methods for maintaining integrity . For example , Fibre Chan- 15 any application in terms of how the application’s data is
nel networks conventionally employ credit - based flow con stored , accessed , transferred , cached and delivered to the
trol to limit the number of accesses made by end systems at application . ADS may allow applications to control these
any one time . The number of credits given to an end system individual phases to address the specific needs of the par
can be based on whether the storage device 302 has enough ticular application . As an example , an application might be
command buffers to receive and fulfill storage requests in a 20 comprised of multiple instances of itself , as well as multiple
predictable amount of time that satisfies required latency and processes spread across multiple Linux nodes across the
bandwidth requirements . FIG . 16 shows some of the credit network . These processes might access multiple files in
schemes adopted by different types of buses such as a SATA shared or exclusive manners among them . Based on how the
bus 1602 , Fibre Channel (FC) 1604 , and SCSI / SAS con application wants to handle these files , these processes may
nection 1608 , among other types of such schemes . 25 want to access different portions of the files more frequently ,
As one can see , for example , an FC controller 1610 may may need quick accesses or use once and throw away . Based

have its own buffering up to a limit of ‘ N ’ storage commands on these criteria , it might want to prefetch and / or retain
before sending them to an FC - based storage device 1612 , specific portions of a file in different tiers of cache and / or
but the FC device 1612 might have a different buffer limit , storage for immediate access on per session or per file basis
say ‘ M’in this example , which could be greater than , equal 30 as it wishes . These application specific requirements cannot
to , or less than ‘ N ’ . A typical credit - based scheme uses target be fulfilled in a generic manner such as disk striping of entire
level (in this example , one of the storage devices 302 , such file system , prefetching of read - ahead sequential blocks ,
as the FC Device 1602 , is the target) aggregate credits , reserving physical memory in the server or LRU or FIFO
information about which is propagated to various sources (in based caching of file contents .
this example , the controller , such as the FC Controller 1610 , 35 Application - driven data storage I / O is not simply appli
is the source) which are trying to access the target 302. For cable to the storage entities alone . It impacts the entire
example , if two sources are accessing a target that has a storage stack in several ways . First , it impacts the storage
queue depth of ‘ N , ' then sum of the credits given to the I / O stack in the computing node where the application is
sources would not exceed ‘ N , ' so that at any given time the running comprising the Linux paging system , buffering ,
target will not receive more than ‘ N ’ commands . The dis- 40 underlying File system client , TCP / IP stack , classification ,
tribution of credits among the sources may be arbitrary , or QoS treatment and packet queuing provided by the network
it may be based on various types of policies (e.g. , priorities ing hardware and software . Second , it impacts the network
based on cost / pricing , SLAs , or the like) . When the queue is ing infrastructure that interconnects the application node and
serviced , by fulfilling the command requests , credits may be its storage , comprising Ethernet segments , optimal path
replenished at the sources as appropriate . By adhering to this 45 selections , buffering in switches , classification and QoS
kind of credit - based storage access , losses that would result treatment of latency - sensitive storage traffic as well as
from queues at the target being overwhelmed can be implosion issues related to storage I / O . Also , it impacts the
avoided . storage infrastructure which stores and maintains the data in

Typical storage accesses over Ethernet , such as FCOE , terms of files comprising the underlying file layout , redun
iSCSI , and the like , may extend the target - oriented , credit- 50 dancy , access time , tiering between various types of storage
based command fulfillment to transfers over Ethernet links . as well as remote repositories .
In such cases , they may be target device - oriented , rather than In embodiments , a networking and storage system is
being source - oriented . Provided herein are new credit based provided having a capability for handling a collection of
schemes that can instead be based on which or what kind of physically attached or network - distributed storage resources
source should get how many credits . For example , the 55 as a virtualized cluster of storage resources and having a
converged solution 300 described above , which directly capability for coordination of management of storage infra
interfaces the network to the storage , may employ a multi structure .
plexer to map a source - oriented , credit - based scheduling Methods and systems disclosed herein include ones relat
scheme to a target device oriented credit based scheme , as ing to the elements affecting a typical application within an
shown in FIG . 17 . 60 application node and how a converged solution 300 may
As shown in FIG . 17 , four sources are located over change the status quo to address certain critical requirements

Ethernet and there are two target storage devices 302 . of applications .
Typical target - oriented , credit - based schemes would expose In embodiments , a networking and storage system is
two queues (one per target) , or two connections per source provided having a capability for handling a collection of
to each of the targets . Instead , as shown in FIG . 17 , the 65 physically attached or network - distributed storage resources
queues (Q1 , Q2 , Q3 , Q4) 1702 are on a per - source basis , and as a virtualized cluster of storage resources and having
they mapped / multiplexed to two target - oriented queues (Q5 , application - driven storage access .

US 10,635,316 B2
33 34

Conventional Linux stacks may consist of simple building candidate pages thrashed in and out of host memory in a
blocks , such generic memory allocation , process scheduling , given period of time would enable an application to fine tune
file access , memory mapping , page caching , etc. Although itself dynamically adjusting the parameters noted above .
these are essential for an application to run on Linux , this is A requirement may also exist for caching and tiering
not optimal for certain categories of applications that are 5 preferences . A Linux file system may need to have a
input / output (TO) intensive , such as NoSQL . NOSQL appli dynamically configurable caching policy while applications
cations are very IO intensive , and it harder to predict their are accessing their files . Currently , Linux file systems typi
data access in a generic manner . If applications have to be cally pre - fetch contiguous blocks of a file , hoping that
deployed in a utility - computing environment , it is not ideal applications are reading the file in a sequential manner like
for Linux to provide generic minimal implementations of 10 a stream . Although it is true for many legacy applications
these building blocks . It is preferred for these building like web servers and video streamers , emerging NoSQL
blocks to be highly flexible and have application - relevant applications do not follow sequential reads strictly . These
features that can be controllable from the application (s) . applications read blocks randomly . As an example , Mon

Although every application has its own specific require goDB stores the document keys in index tables in b - tree , laid
ments , in an exemplary embodiment , the NoSQL class of 15 out flat on a portion of a file , which , when a key is searched ,
applications has the following requirements which , when accesses the blocks randomly until it locates the key . More
addressed by the Linux stack , could greatly improve the over , these files are not dedicated to such b - tree based index
performance of NoSQL applications and other IO intensive tables alone . These files are shared among various types of
applications . The requirements are first , the use of file level tables (collections) such as user documents and system
priority . The Linux file system should provide access level 20 index files . Because of this , a Linux file system cannot
priority between different files at a minimum . For example , predict what portions of the file need to be cached , read
an application process (consisting of multiple threads) ahead , swapped out for efficient memory usage , etc.
accessing two different files with one file given higher In embodiments of the methods and systems described
priority over the other (such as one database / table / index herein , there is a common thread across various applications
over the other) . This would enable the precious storage I / O 25 in their requirements for storage . In particular , latency and
resources be preferentially utilized based on the data being IOPs for specific types of data at specific times and places
accessed . One would argue that this could be indirectly of need are very impactful on performance of these appli
addressed by running one thread / process be run at a higher cations .
or lower priority , but those process level priorities are not For example , to address the host level requirements listed
communicated over to file system or storage components . 30 above , disclosed herein are methods and systems for a well
Process or thread level priorities are meant only for utilizing fine - tuned file - system client that enables applications to
CPU resources . Moreover , it is possible that same thread completely influence and control the storing , retrieving ,
might be accessing these files and hence will be utilizing retaining and tiering of data according to preference within
the storage resources at two different levels based on what the host and elsewhere .
data (file) being accessed . Second , there may be a require- 35 As shown in FIG . 18 , a File System (FS) client 1802
ment for access level preferences . A Linux file system may keeps separate buffer pools for separate sessions of a file
provide various preferences (primarily SLA) during a ses (fd1 and fd2) . It also pre - allocates and maintains aggregate
sion of a file (opened file) , such as priority between file memory pools for each application or set of processes . The
sessions , the amount of buffering of blocks , the retention / life SLA - Broker 1804 may be exercised by the application either
time preferences for various blocks , alerts for resource 40 internally within the process / thread where the file I / O is
thresholds and contentions , and performance statistics . As an carried out or externally from another set of processes ,
example , when a NoSQL application such as MongoDB or influence the FS Client 1802 to provide appropriate storage
Cassandra would have two or more threads for writes and I / O SLAs dynamically . Controlling the SLA from an exter
reads , where if writes may have to be given preference over nal process enables a legacy application with no knowledge
reads , a file session for write may have to be given prefer- 45 of these newer storage control features immediately without
ence over a file session for read for the same file . This modifying the application itself .
capability enables two sessions of the same file to have two Methods and systems disclosed herein may provide exten
different priorities . sive tiering services for data retrieval across network and
Many of the NoSQL applications store different types of hosts . As one can see in FIG . 19 below , a High Performance

data into the same file ; for example , MongoDB stores user 50 Distributed File Server (DFS) 1902 enables application to
collections as well as (b - tree) index collections in the same run in the Platform 1904 in a containerized form to deter
set of database files . MongoDB may want to keep the index mine and execute what portions of files should reside in
pages (btree and collections) in memory in preference over which media (DRAM , NVRAM , SSD or HDDs) in cached
user collection pages . When these files are opened , Mon form storage form dynamically . These application contain
goDB may want to influence the Linux , File and storage 55 ers 1908 can determine other storage policies such as
systems to treat the pages according to MongoDB policies as whether a file has to be striped , mirrored , raided and disaster
opposed to treating these pages in a generic FIFO or LRU recovered (DR’ed) as well .
basis agnostic of the application's requirements . The methods and systems disclosed herein also provide

Resource alerts and performance statistics enable an extensive caching service , wherein an application container
NoSQL database to understand the behavior of the under- 60 in the High Performance DFS 1902 can proactively retrieve
lying File and storage system and could service its database specific pages of a file from local storage and / or remote
queries accordingly or trigger actions to be carried out such locations and push these pages to specific places for fast
as sharding of the database or reducing / increasing of File retrieval later when needed . For instance , the methods and
I / O preference for other jobs running in the same host (such systems may local memory and SSD usages of the hosts
as backup , sharding , number read / write queries serviced , 65 running the application and proactively push pages of an
etc.) . For example , performance stats about min , max and application's interest into any of these hosts ' local memory /
average number of IOPs and latencies as well as top ten SSD . The methods and systems may use the local tiers of

to

US 10,635,316 B2
35 36

memory , SSD and HDD provisioned for this purpose in the It would provide the data elements needed by application
DFS platform 1904 for very low latency retrieval by the 2202 , which are present in a single or multiple files or
application at a later time of its need . volumes , by retrieving them from file or volume server 2210

The use of extending the cache across hosts of the and keeping them in the host's memory 2208 until the
applications is immense . For example , in MongoDB when 5 application completes its processing of the elements of data .
the working set temporarily grows beyond its local host's In a typical application scenario , a specific piece of data
memory , thrashing happens , and it significantly reduces the would be read and / or modified multiple number of times as
query handling performance . This is because when a needed required . It is also typical that an entire file or volume ,
file data page is discarded in order to bring in a new page to consisting of multiple data elements , is potentially much
satisfy a query and subsequently , if the original page has to 10 larger than the size of local memory 2208 in certain types of
be brought back , the system has to reread the page afresh applications . This makes operating system 2204 and file
from the disk subsystem , thereby incurring huge latency in system client 2206 more complicated in its implementation
completing a query . Application - driven storage access helps in order to decide what blocks of data to be retained in or
these kinds of scenarios by keeping a cache of the discarded evicted from memory 2208 based on the prediction that the
page elsewhere in the network (in another application host's 15 application 2202 may or may not access them in future . So
memory / SSD or in local tiers of storage of the High Per far , the existing implementations execute some generic and
formance DFS system 1902) temporarily until MongoDB application - independent methods , such as first - in - first - out
requires the page again and thereby significantly reducing (FIFO) or least - recently - used (LRU) , to retain or evict the
the latency in completing the query . blocks of data in memory in order to bring in new blocks of
Referring to FIG . 20 , High Performance DFS 1902 takes 20 data from file or volume server 2210. Moreover , when a

advantage of DRAM and SSD resources across the appli memory occupied by a block of data is to be reclaimed for
cation hosts in a single , unified RAM and SSD - based storing another block of data , the original data is simply
tier / cache 2002 , in order to cache and serve the application erased without the consideration for its future use . Normally ,
data as necessary and as influenced and controlled by the the disk subsystem in is very slow and incurs high latency
application . 25 when a block of data is read from it and transferred by file

A system comprising of a set of hosts (H1 through HN) , or volume server 2210 to file system client 2206 to memory
a file or block server 2102 and a storage subsystem 2104 is 2208. So , when the original block of data is erased , the
disclosed herein as shown in the FIG . 21. A host H1 - HN is application might have to wait longer if it tries to access the
typically a computer running an application that needs original data in near future . The main problem with this kind
access to data permanently or temporarily stored in storage . 30 of implementation is that none of the modules in the path of
The file or volume server 2102 may be a data organizer and data access , namely operating system 2204 , file system
a data server , typically running a hardware comprising a client 2206 , memory 2208 , block server 2210 and storage
central processing unit (CPU) , memory and special hard have any knowledge of what , when and how often a block
ware to connect to external devices such as networking and of data is going be accessed by application 2202 .
storage devices . The file or volume server 2102 organizes 35 An example scenario depicting an application 2202
user data in terms of multiple fixed or variable number of accessing a block of data from storage 2212 is shown in FIG .
bytes called blocks . It stores these blocks of data in an 23. The numbered circles are to show the steps involved in
internal or external storage . A random , but logically related , the process of accessing a block of data . These steps are
sequence of blocks is organized into a file or a volume . One explained below . First , application 2202 uses API of file or
or more Hosts H1 - HN can access these files or volumes 40 Operating System 2204 to access a block of data . operating
through an application programming interface (API) or any system 2204 invokes an equivalent API for file system client
other protocol . A file or volume server can serve one or more 2206 to access the same . Second , file system client 2206
files and volumes to one or more hosts . It is to be noted that tries to find if the data exists in its local memory buffers
a host and a file or volume server can be in two different dedicated for this purpose . If found , steps (3) through (7)
physical entities connected directly or through a network or 45 below are skipped . Third , sends a command to retrieve the
they could be logically located together in a single physical data from block server 2210. Fourth , block server 2210
computer . sends a read command to storage 2212 to read the block of

Storage 2104 may be a collection of entities capable of data from the storage . Fifth , storage 2212 returns the block
retaining a piece of data temporarily or permanently . This is of data to block server 2210 after reading it from the storage .
typically comprised of static or dynamic random access 50 Sixth , block server 2210 returns the block of data to file
memory (RAM) , solid state storage (SSD) , hard disk drive system client 2206. Seventh , file system client 2206 saves
(HDD) or a combination of all of these . Storage could be an the data in a memory buffer in memory 2208 for any future
independent physical entity connected to a File or volume access . Eighth , file system client 2206 returns the requested
server 2102 through a link or a network . It could also be data to the application 2202 .
integrated with file or volume server 2102 in a single 55 In the methods and systems disclosed herein , in order to
physical entity . Hence , hosts H1 - HN , file or volume server address performance requirements related to data access by
2102 and storage 2104 could be physically collocated in a most newer class of applications in the area of NoSQL and
single hardware entity . BigData , it is proposed that the components in the data block

A host is typically comprised of multiple logical entities access comprising operating system 2204 , file system client
as shown in FIG . 22. An application 2202 typically runs in 60 2206 , memory 2208 , block server 2210 and storage 2212 be
a host and would access its data elements through an API controlled by any application 2202. Namely , we propose the
provided by its local operating system 2204 or any other following . First , enable operating system 2204 to provide
entity in place of it . The operating system 2204 typically has additional API to allow applications to control file system
a standard API interface to interface to a file system through client 2206. Second , enhance file system client 2206 to
their file system client 2206. A file system client 2206 is a 65 support the following : (a) allow application 2202 to create a
software entity running within the host to interface with a dedicated pool of memory in memory 2208 for a particular
file or volume server 2210 either located remotely or locally . file or volume , in the sense , a file or volume will have a

access .

US 10,635,316 B2
37 38

dedicated pool of memory buffers to hold data specific to it will not undergo a time period before the cache (in RAM) is
which are not shared or removed for the purposes of other warmed and thereby incur a period of lower application
files or volumes ; (b) allow application 2202 to create a performance .
dedicated pool of memory in memory 2208 for a particular Provided herein is a system and method with a processor
session with a file or volume such that two independent 5 and a file server with an application specific module to
sessions with a file or volume will have independent control the storage access according to the application's

needs . memory buffers to hold their data . As an example , a criti
cally important file session may have large number of Also provided herein is a system and method with a
memory buffers in memory 2208 , so that the session can processor and a data (constituting blocks of fixed size bytes ,
take advantage of more data being present for quicker and 10 similar or different objects with variable number of bytes)
frequent access , whereas a second session with the same file storage enabling an application specific module to control

the storage access according to the application's needs . may be assigned with very few buffers and hence it might Also provided herein is a system and method which have to incur more delay and reuse of its buffers to access retrieves a stale file or storage data block , previously main various parts of the file ; (c) allow application 2202 to create 15 tained for the purposes of an application's use , from a host's an extended pool of buffers beyond memory 2208 across memory and / or its temporary or permanent storage element
other hosts or block server 2210 for quicker access . This and stores it in another host's memory or and / or its tempo
enables blocks of data be kept in memory 2208 of other rary or permanent storage element , for the purposes of use
hosts as well as any memory 2402 present in the file or block by the application at a later time .
server 2210 ; (d) allow application 2202 to make any block 20 Also provided herein is a system and method which
of data to be more persistent in memory 2208 relative to retrieves any file or storage data block , previously main
other blocks of data for a file , volume or a session . This tained for the purposes of an application’s use , from a host's
allows an application to pick and choose a block of data to memory and / or its temporary or permanent storage element
be always available for immediate access and not let oper and stores it in another host's memory or and / or its tempo
ating system 2204 or file system client 2206 to evict it based 25 rary or permanent storage element , for the purposes of use
on their own eviction policies ; and (e) allow application by the application at a later time .
2202 to make any block of data to be less persistent in Also provided herein is a system and method which
memory memory 2208 relative to other blocks of data for a utilizes memory and / or its temporary or permanent storage
file , volume or a session . This allows an application to let element of a host to store any file or storage data block which
know operating system 2204 and file system client 2206 to 30 would be subsequently accessed by an application running
evict and reuse the buffer of the data block as and when they in another host for the purposes of reducing latency of data
choose to . This helps in retaining other normal blocks of data File or storage data blocks , previously maintained for the for longer period of time . Third , enable block server 2210 to purposes of an application's use , from a host's memory host application specific modules terms of application 35 and / or its temporary or permanent storage element , may be container 2400 as shown in the FIG . 24 with the following stored in another host's memory or and / or its temporary or capabilities : (a) enable application container 2400 to fetch permanent storage element , for the purposes of use by the
blocks of data of interest to application 2202 ahead of time application at a later time .
and store them in local memory 2402 for later quick access The mechanism of transferring a file or storage data block ,
and avoid the latency penalty associated with storage 2212 40 previously maintained for the purposes of an application's
and (b) enable storing of evicted pages from memory 2208 use , from a host's memory and / or its temporary or perma
of hosts in local memory 2402 for any later access by nent storage element to another host over a network .
application 2202 . In accordance with various exemplary and non - limiting

The application driven feature of (2) c) above needs embodiments , there is disclosed a device comprising a
further explanation . There are two scenarios . The first one 45 converged input / output controller that includes a physical
involves block of data being retrieved from the memory of target storage media controller , a physical network interface
block server 2210. The other scenario involves retrieving the controller and a gateway between the storage media con
same from another host . Assuming the exact same block data troller and the network interface controller , wherein gateway
has been read from storage 2212 by two hosts (H1) and (H2) , provides a direct connection for storage traffic and network
the methods and systems disclosed herein provide a system 50 traffic between the storage media controller and the network
such as depicted in FIG . 25. When a block of data is noticed interface controller .
to be present in another host (H2) , it is directly retrieved In accordance with some embodiments , the device may
from it by file system client 2206 instead asking block server further comprise a virtual storage interface that presents
2210 to retrieve it from storage 2212 , which will be slower storage media controlled by the storage media controller as
and incurs high latency . 55 locally attached storage , regardless of the location of the

In embodiments , if file system client 2206 decides to evict storage media . In accordance with yet other embodiments ,
a block of data from (D1) because of storing a more the device may further comprise a virtual storage interface
important block of data in its place , file system client 2206 that presents storage media controlled by the storage media
could send the evicted block of data to file system client controller as locally attached storage , regardless of the type
2206 ' to be stored in memory 2208 ' on its behalf . 60 of the storage media . In accordance with yet other embodi

It should be noted that the abovementioned techniques ments , the device may further comprise a virtual storage
can be applied to achieving fast failover in case of failure (s) interface that facilitates dynamic provisioning of the storage
of Hosts . Furthermore the caching techniques described media , wherein the physical storage may be either local or
above ; especially pertaining to RAM can use used to achieve remote .
failover with a warm cache . FIG . 25 shows an example of a 65 In accordance with yet other embodiments , the device
fast failover system with a warm cache . The end result is that may further comprise a virtual network interface that facili
during a failure of a node , the end application on a new node tates dynamic provisioning of the storage media , wherein

US 10,635,316 B2
39 40

the physical storage may be either local or remote . In physically attached or network - distributed storage resources
accordance with yet other embodiments , the device may be as a virtualized cluster of storage resources and having
adapted to be installed as a controller card on a host virtualization of at least one type of non - disk - attached
computing system , in particular , wherein the gateway oper storage such that it is handled as if it is disk attached storage
ates without intervention by the operating system of the host 5 in a converged networking / storage .
computing system . With reference to FIG . 28 , there is illustrated an exem

In accordance with yet other embodiments , the device plary and non - limiting method of providing quality of
may include at least one field programmable gate array service (QoS) for a network . First , at step 2800 , there is
providing at least one of the storage functions and the provided a converged storage and networking controller ,
network functions of the device . In accordance with yet 10 wherein a gateway provides a connection for network and
other embodiments , the device may be configured as a storage traffic between a storage component and a network
network - deployed switch . In accordance with yet other ing component of the device without intervention of the
embodiments , the device may further comprise a functional operating system of a host computer . Next , at step 2802 ,
component of the device for translating storage media without intervention of the operating system of a host
instructions between a first protocol and at least one other 15 computer , there is managed at least one quality of service
protocol . (QoS) parameter related to a network in the data path of

With reference to FIG . 26 , there is illustrated an exem which the storage and networking controller is deployed ,
plary and non - limiting method of virtualization of a storage such managing being based on at least one of the storage
device . First , at step 2600 there is accessed a physical traffic and the network traffic that is handled by the con
storage device that responds to instructions in a first storage 20 verged storage and networking controller .
protocol . Next , at step 2602 , there are translated instructions Referring to the architecture 2900 depicted in FIG . 29 , the
between the first storage protocol and a second storage general philosophy followed in this proposal is not to send
protocol . Lastly , at step 2604 , using the second protocol , the every PCIe access over the network as that would result in
physical storage device is presented to an operating system , an inefficient implementation of I / Os with a heavy overhead
such that the storage of the physical storage device can be 25 (see Performance section) . The idea is to terminate PCIe
dynamically provisioned , whether the physical storage transactions and encapsulate NVME I / O commands (Read ,
device is local or remote to a host computing system that Write , etc) and the Admin command sets (the relevant ones)
uses the operating system . with their data into network packets . To this end , there are

In accordance with various embodiments , the first proto two key components that can be used to enable NVMEON ,
col is at least one of a SATA protocol , an NVMe protocol , 30 a proxy NVME controller 2902 and a remote (virtual)
a SAS protocol , an iSCSI protocol , a fiber channel protocol NVME controller 2904. The proxy NVME controller 2902
and a fiber channel over Ethernet protocol . In other embodi handles all PCIe transactions from the NVME driver . Func
ments , the second protocol is an NVMe protocol . tions such as doorbell management , queue management ,

In some embodiments , the method may further comprise PRP list processing and DMAs are performed by this
providing an interface between an operating system and a 35 controller locally on the node on which the NVME driver
device that performs the translation of instructions between resides . The proxy NVME controller 2902 also encapsulates
the first and second storage protocols and / or providing an all NVME commands and data into network packets and
NVMe over Ethernet connection between the device that sends them to the (virtual) remote controller 2904. The
performs the translation of instructions and a remote , net remote (virtual) NVME controller 2904 is a virtual control
work - deployed storage device . 40 ler in that there is no PCIe interface on the network facing

With reference to FIG . 27 , there is illustrated an exem side of this NVME controller 2904. NVME commands
plary and non - limiting method of facilitating migration of at addressed to this controller are received over the network . At
least one of an application and a container . First , at step the target node , there may be a remote , virtual NVME
2700 , there is provided a converged storage and networking controller 2904 instantiated for each < Initiator , Proxy
controller , wherein a gateway provides a connection for 45 NVME Controller > pair that can send NVME commands to
network and storage traffic between a storage component that node . With this level of abstraction , the NVME driver
and a networking component of the device without inter (such as , in this example , of node 1) is agnostic as to whether
vention of the operating system of a host computer . Next , at a certain controller is located locally on node 1 or remotely
step 2702 , the at least one application or container is mapped or node 2 (or any other location connected to the network .
to a target physical storage device that is controlled by the 50 Referring to the architecture 3000 of FIG . 30 , in embodi
converged storage and networking controller , such that the ments certain rules or guidelines may be provided for
application or container can access the target physical stor implementing proxy and remote NVME controllers . For
age , without intervention of the operating system of the host example , on a target , NVME namespaces that are to be
system to which the target physical storage is attached , when exposed over a network may be required to be exposed
the application or container is moved to another computing 55 through remote NVME controllers 2904. In embodiments , a
system . single NVME namespace can be exposed via more than one

In accordance with various embodiments , the migration is remote NVME Controller . On an initiator , when an NVME
of a Linux container or a scaleout application . namespace that needs to be accessed is located over the

In accordance with yet other embodiments , the target network , it can be exposed to the host operating system
physical storage is a network - deployed storage device that 60 through a Proxy NVME controller 2902. There can be
uses at least one of an iSCSI protocol , a fiber channel multiple Proxy NVME controllers 2902 instantiated on a
protocol and a fiber channel over Ethernet protocol . In yet given node for purposes of accessing remote NVME
other embodiments , the target physical storage is a disk namespaces . The discovery association of namespaces to
attached storage device that uses at least one of a SAS Proxy / Remote NVME controllers 2902 is an implementa
protocol , a SATA protocol and an NVMe protocol . 65 tion choice . On a Target , each remote NVME controller

In embodiments , a networking and storage system is 2904 may be associated with a single < Initiator , Proxy
provided having a capability for handling a collection of NVME Controller > pair . A given node can have any number

US 10,635,316 B2
41 42

of local NVME controllers and proxy NVME controllers In embodiments , four types of packets are supported by
2902. Each of them should preferably have a controller ID the BTP . First , BTP Command packets are small (e.g. ,
that is locally unique to that node . Remote controllers 2904 , default max 256 bytes) packets that are used for sending
being virtual , don't need to have any controller IDs assigned NVME command , status and NVMEON control packets
to them . 5 (like Xfer Rdy and Exchange Cleanup) . Second , BTP

In embodiments , consideration may be given to DMA Batched Command packets allow for multiple NVME com
versus data transmission on a network . Any NVME I / O mands to be packed into one packet (default max , e.g. , 1500
typically involves DMA to / from the host memory , such as bytes) . Third , BTP Data packets may be large and may
using PRP / SGL lists . In embodiments , one way of archi depend on the typical MTU configuration in the network
tecting the protocol could be to pass the PRP / SGL lists over 10 (e.g. , default max of 1500 bytes) . Such packets may be used
the network . The drawbacks associated with this approach for sending actual NVME data packets . Fourth , BTP Control
are the need to reconcile various host OS page sizes and packets may exchange BTP control information . BTP Com
destination device page sizes , resulting in inefficiency and mand and Data Packets may be stored in buffers in some
needless complexity . Also , passing host memory address implementations .
pointers over a network is potentially insecure and may 15 In embodiments , a burst window may be understood to
require protection , such as with digital signatures , against comprise a window where a BTP sender can request for
incorrect accesses . credits and send a number of packets . Expected and received

In embodiments , these problems may be mitigated or burst windows may be used by a BTP receiver to track
avoided by using an architecture 3100 as depicted in FIG . packets received , such as in a sliding window of sorts . A
31. A proxy NVME controller 2902 can be responsible for 20 Request Credit may signify the start of a burst . An ACK may
DMA to / from the host memory (to / from its local staging signify the end of a burst . See below for a further explana
areas) at the host OS page size . A remote NVME controller tion of these .
2904 can be responsible for data transfer to / from the disks In embodiments , a burst ID may comprise a number , such
based on the destination device page size . Within the context as a 24 (or not 32) bit number , identifying each burst
of a given I / O , offset and length are used to identify the 25 window uniquely . A BTP sender may start with a random
unique point where each NVME data packet would fit . A number and increment this for every new burst window .
SCSI / FC - 4 mechanism like Xfer Ready may be used by the In embodiments , a sequence ID may comprise a number ,
recipient of the data to control the transfer of data . By such as a 30 - bit number , uniquely identifying every BTP
decoupling PRP list manipulation and DMA from actual packet (e.g. , command , data , control) across burst windows .
read / write operations to disks , the methods and systems 30 The only requirement is that the sequence id is preferably
disclosed herein can parallelize the operations as much as unique across burst windows and should only be reused by
possible and achieve lower latencies while keeping the the sender after an ACK from the receiver indicating that it
architecture simple . has been successfully delivered . It need not be monotoni

Referring to FIG . 32 , in embodiments such as depicted in cally increasing , but if it is implemented that way , the
the architecture 3200 , in order to aggregate flows to best 35 starting sequence id is preferably randomized .
utilize network bandwidth and minimize latency , NVMEON Between a pair of nodes , there can be multiple BTP
may be split into two layers . An NVMEON exchange layer channels . All BTP state information may be maintained per
3202 translates every NVME command sequence into an BTP channel . The BTP protocol (described below) may runs
exchange and maintains state information to complete this within the scope of a BTP channel . The BTP channel may be
exchange successfully . A burst transmission protocol (BTP) 40 identified , such as by using an 8 bit Channel id in the header
layer 3204 aggregates NVMEON exchanges across multiple (along with the 24 bit burst id) . By default , at least 1 channel
Proxy NVME controllers and its queues and provides guar (with channel id 1) should preferably be supported between
anteed delivery for each of the NVME command and data a pair of nodes . Setting up the BTP channels between a pair
packets associated with that exchange . In the description of nodes may be implemented as a design choice . In
below , the NVMEON protocol is described from ground up , 45 embodiments , multiple BTP channels may be used in order
including first the BTP layer and then the NVMEON to achieve high throughput and link utilization or to provide
exchange layer . multiple classes of service .

The Burst Transmission Protocol (BTP) layer 3204 pro In embodiments , multiple burst windows may overlap ,
vides guaranteed delivery semantics for the NVMEON pro taking care of pipelining requirements . A burst of transfers
tocol to run between a pair of nodes . The BTP layer 3204 50 may secure credits , use the credits , and close . In the case of
may : provide guaranteed delivery of NVME command and errors , granularity at the per packet and the per window basis
data packets ; reserve buffers at the receiver for the NVME allows for efficient recovery . Overlapping windows , among
command and data packets ; avoid delivery of duplicate other benefits , take advantage of available bandwidth at a
packets to upper layers ; minimize control packet overhead receiver during the time that acknowledgements are being
by aggregating NVME flows across proxy controllers and 55 exchanged with a source . Thus , a burst protocol may use
queues (by transmitting multiple packets in one burst) ; and multiple , parallel burst windows to maximize use of the
leave the order of delivery of packets to upper layer (such as network bandwidth and the bandwidth / capability of the
in - order choice) as implementation choice for the designer . receiver .

In the context of the description of BTP , a BTP sender In embodiments , priorities can be handled , such as having
should be understood from the point of view of a node that 60 a higher priority packet initiate closing of a window so that
sends packets to another node (the BTP receiver) . This is the packet can be sent with priority . Handling priorities may
distinct from NVME command initiators and targets . For also allow high priority commands to be scheduled to a BTP
instance , the NVME target , when processing a write com window than low priority commands . A burst window may
mand , becomes a BTP sender when it sends transfer ready be configured based on the type of data , the type of network ,
(referred to herein in some cases as “ Xfer Rdy ”) packets and 65 network conditions and the like . Thus , a configurable burst
data packets . A given node can be both a BTP sender and a window may be provided for error recovery and reliable
receiver at any point of time . transmission in an NVMEON approach .

US 10,635,316 B2
43 44

Referring to FIG . 33 , the flow diagram 3300 and the An ACK message may be sent by the BTP receiver when
description below provide the basics of the BTP protocol . all packets expected within a burst window are received by
For purposes of this example , these flow diagrams illustrate the BTP receiver or if the ERROR_TOV timer expires after
the protocol in an embodiment that uses four credits . This the Grant Credit 3304 was sent by the receiver . The ACK
can be extended to any number of credits without any loss 5 may specify which packets have been received and which
of generality , as would be understood by one of ordinary ones have not been received in two separate lists . A sender
skill in the art . When a BTP sender has command and / or data may use the ACK to determine which packets were deliv
packets to send , it can request credits via a Request Credit ered to the receiver . It may queue the packets that were not

delivered to the receiver for retransmission . A receiver may message 3302. The two types of packets for credit can be
requested are “ BTP Command ” and “ BTP Data ” packets as 10 drop any command / data packet with a burst id that is not in

the current burst window . described earlier . In this example , credit for sending 32 In embodiments the size of the burst window may be packets (the sum total across command and data packet provided with a maximum value of 32 packets , which is categories) can be requested in one burst . In the request chosen to provide a balance between two objectives : mini credit message 3302 , the sender may explicitly set the 15 mizing control packets overhead (3 packets for every burst sequence id and type (e.g. , command vs. data) of each of 32) while , in the event of a complete burst failure (which
packet . The BTP receiver can grant up to the number of requires retransmission of the entire set) , providing an
credits requested by the sender (or can provide a lower acceptable (not too high) retransmission overhead .
value , which can even be zero) through a Grant Credit Certain choices of algorithms may be implementation
message 3304. The receiver may explicitly specify the 20 specific , with embodiments provided below . For example ,
sequence ids for which it grants credits . The receiver may methods of distributing credit , which relates to the ability to
pick the sequence ids in the same order as specified in the assure quality of service (QoS) , may be addressed by a credit
Request Credit message 3302 to buffer availability . Once distribution algorithm , which may be used by a BTP receiver
credits are granted , the receiver may reserve the buffer to distribute its buffers among various senders for fairness .
allocated for each packet until it is received (or) until an 25 In embodiments , one may implement a default minimum of
error timer (ERROR_TOV) expires , as described more one command and one data buffer per BTP sender . Also , one
particularly below . Regardless of the number of credits may implement some form for maximum value for each of
granted , the receiver may send the Grant Credit message the command and data buffers that each BTP sender can use .
3304 immediately to prevent timeout of the Request Credit A backoff algorithm may be used by a BTP sender to
3302 at the sender . Each BTP sender preferably uses only 30 factor in congestion at the BTP receiver using Grant Credit
one burst window at any point in time with a BTP receiver . responses 3304 .
If a Grant Credit 3304 is not received within the specified An algorithm may be used to prevent duplicate retrans
ERROR_TOV time after sending the Request Credit 3302 , mission of delivered packets . Referring FIG . 34 , the flow
all packets queued for transmission in the current burst diagram 3400 illustrates a case where a sender thinks that a
window may be queued for re - transmission in the next burst 35 certain packet (e.g. , sequence id 2 in this case) has not
window . If the Grant Credit 3304 has been received for the reached the receiver , but that packet has actually been
current burst window , the sender can wait for ACK from the delivered to the receiver . So , the receiver places sequence id
receiver or for the ERROR_TOV timer to expire after the 2 in a separate list in the Grant Credit message indicating
Grant Credit 3304 is received before starting a new burst that it has already been received , thus preventing retrans
window . Each BTP receiver may maintain two windows per 40 mission of an already delivered packet . The BTP sender
BTP sender : an expected window comprising a list of implicitly derives the information about the delivery of
sequence ids of packets expected in this burst window , sequence id 2 from the Grant Credit message 3304 and sends
which may be set when the Grant Credit 3304 is sent and a only items { 5,6,7 } in the current burst window . The BTP
received window comprising a list of sequence ids of receiver sets the received window to { 5,6,7 } when the ACK
packets received in the previous burst windows , which may 45 is sent for this burst window , thereby advancing the sliding
be set when an ACK is sent . In embodiments , both of these window .
burst windows may be initialized to 0 . Packet loss detection and recovery may be addressed by
When a BTP receiver gets a Request Credit 3302 with a introducing BTP control packets to request / grant credits and

new burst id , it may compare the sequence ids for which provide ACKs for packets sent in a burst window . There are
credits are requested with those received in the received 50 several possible different packet drop scenarios that need to
window . In the Grant Credit message 3304 , the receiver may be accounted for and recovered from . Such scenarios are
specify two lists of sequence ids : a list of sequence ids presented as flows in FIGS . 35 through 40 .
“ already received ” for those packets in the received window FIG . 35 shows a request credit loss scenario 3500 in
and a list of sequence ids for which “ credits are granted ” (for which the receiver never receives the request for a credit .
packets not in the received window) . 55 The BTP sender receives no grant credit message 3304 , so
When the BTP sender receives a Grant Credit message it retransmits after the ERROR_TOV timeout .

3304 it may first remove the packets whose sequence ids FIG . 365 shows a grant credit loss scenario 3600 in which
have been marked as already received ” from re - transmis the grant credit message 3304 from the BTP receiver is lost
sion queues . Next , it may send packets for which “ credits are on the way to the sender . The sender , not having received the
granted ” in this burst window . Then , in the case that the 60 grant credit message 3304 , retransmits after the ERROR_
sender has fewer packets to send than for which credits were TOV timeout period expires , retransmits the request credit
granted (e.g. if the upper layers performed some cleanup message 3302 , after which the receiver either frees , or
between the request and grant operations of the window) , the reallocates resources after the expiration of the ERROR_
sender can send a “ Close , " specifying the list of sequence ids TOV or receipt of the retransmission of the request credit
that were sent in the burst window . The Close message is 65 message 3302 (whichever is earlier) .
optional in case where the sender can send all packets for FIG . 37 shows an NVME command / data packet loss
which credits are granted . scenario 3700 in which a command or data packet is lost . In

US 10,635,316 B2
45 46

this case , the receiver sends an ACK after ERROR_TOV the exchange ID (IXID) , which may be allocated by the
timeout expiration , separately specifying received versus not initiator when the first packet of the exchange (the NVME
received packets . Based on the content of the ACK , the command) is sent to the target and a target's component of
sender queues missing packets for retransmission under a the exchange ID (TXID) , which may be allocated by the
new burst ID . 5 target when it receives the first packet of the exchange (i.e. ,

FIG . 38 shows an ACK loss scenario 3800 in which the the NVME command) .
ACK message is lost . If the ACK is lost , then packets The following guidelines may govern the usage of
associated with the burst have to be queued for retransmis exchange ids . First , the NVME command packet may sig
sion under a different burst ID . In the grant credit message nify the start of the exchange . The NVME status packet may
3304 , the receiver may indicate that packets have already 10 also signify the end of an exchange . When the Initiator sends
been received , preventing the retransmission . the first packet of the exchange , it may set the TXID , such

FIG . 39 shows a scenario 3900 involving multiple fail as to OxFFFF . The target may allocate a TXID upon receipt
ures , in this case loss of the ACK and a grant credit message of this first packet . In the next packet that the target sends to
loss . The receiver keeps its previous and current burst the initiator , it may set the TXID for that packet to the
windows unchanged until the sender synchronizes , such as 15 allocated TXID . IXIDs and TXIDs are only required to be
based on eventually receiving information from the receiver unique between an initiator and target pair . There is no
that confirms that the packets have in fact been received . necessity for this to be monotonically increasing , but that is

FIG . 40 shows a scenario 4000 involving multiple fail an option .
ures , such as in this case where the same packet has been lost As to the total number of concurrent exchanges , the
more than once . The receiver and sender detect the packet 20 initiator and target should support the same total number of
loss in every window until the packet is successfully deliv concurrent exchanges in a given direction . In one example ,
ered . the minimum value may be one , while the maximum value

Referring to FIG . 41 , in a flow 4100 , at any point of time may be , for example , much larger , such as sixteen thousand .
the BTP sender can send a channel reset message 4102 , The actual value can be determined by an upper level entity ,
which may reset the received and expected burst windows at 25 but should preferably be configured to be the same at the
the receiver to an empty set . This may be used in cases NVMEON exchange layer 3202 at the initiator and at the
where the BTP sender determines that it may be out of sync target . If the target receives more than the number of
with the receiver and wishes to reset the BTP windows to a concurrent exchanges that it supports with an initiator , it can
well - known state . The BTP Receiver in this case may drop drop an exchange , allowing the initiator to timeout .
all state information (receiver , expected windows and all 30 A state machine may be implemented . Both initiator and
packets) associated with that BTP Channel and respond with target may follow a simple lock step mechanism in order to
an ACK . The BTP sender may receive the ACK to the complete an I / O . There may be four states an exchange can
channel reset before it can send any newer request credit be in : OPEN , DATA XFE CLI NUP , or CLOSED . The
messages on that channel . triggers for the initiator and the target to place the exchange

The NVMEON exchange layer 3202 works on top of the 35 into the appropriate state is described in the table 4300 of
BTP layer 3204 to provide framing and exchange level FIG . 43. See the error recovery description below for an
semantics for executing an NVME command (both admin explanation on the state machine .
and 1/0) between an initiator and target . The fundamental The NVMEON exchange layer 3202 may be responsible
building block for encapsulating NVME commands over the for breaking down NVME command and data packets to
network is the introduction of the notion of an exchange for 40 adhere to the network MTU expected by the BTP layer 3204 .
each NVME command . The NVMEON exchange layer at the In the depicted embodiment , the minimum workable size of
initiator may allocate a unique exchange for every NVME MTU is 512 (as NVMEON control packets are preferably not
command that it sends to a given target . A NVME command fragmented) . However , in other examples , other minimum
may result in multiple exchanges . For example if a NVME workable size may be set . The maximum size may uncapped
command is divided into multiple sub - commands , there may 45 to allow operating in networks with very large MTU
be multiple exchanges associated with to NVME command . enabled . An actual path for MTU discovery implemented in
The initiator may maintain state information about this various ways as would be understood by those of ordinary
exchange in an exchange status block (ESB) until the skill in the art . It may be statically configured or discovered
exchange is completed . In embodiments , the initiator may using agents running a standard discovery protocol on every
ensure that the exchange is unique to cover NVME com- 50 node . The path MTU may remain or may not remain uniform
mands across the proxy controller ID (the ID of the proxy in the network . For example , the path MTU may be different
controller 2902 at the initiator) , the queue ID (the ID of the in each direction between a given pair of nodes . In accor
queue within the proxy controller 2902 , and the command dance with the illustrated example of the protocol , per
ID (the ID of the NVME command within the given queue) . initiator , per target , or per pair , the MTU may be configured
Translating these parameters to a unique exchange at the 55 by some entity .
initiator means that the network and the target can be In an example , per the Remote NVME controller 2904 at
agnostic to these parameters . The NVMEON exchange layer the Target , exactly one < Initiator , Proxy NVME Controller
at the target may allocate an ESB entry upon receipt of the 2902 > pair may be associated by an entity . The nodes may
first network packet in the exchange , which will be the discover remote namespaces exposed and the remote control
NVME command that initiated the exchange . 60 pairing may be done in various ways without limitation . The

Referring to FIG . 42 , the NVMEON exchange layers at control plane may be architected and proposed for standard
both the initiator and target may use the Exchange Status ization if the Network Path MTU and the Remote Controller
Block , such as reflected in the table 4200 of FIG . 42 , to Discovery may be specified as part of this protocol . In
establish synchronized , lockstep execution of the NVME embodiments , various techniques used to discover hardware
commands . 65 in a network fabric may be used , such as approaches used in

The exchange id may be , for example , a 32 - bit value connection with iSCSI (such as IQM - based discovery) or
divided into two components : an initiator's component of fiber channel approaches .

10

US 10,635,316 B2
47 48

In embodiments , a handshake may be established between having capabilities described elsewhere in this disclosure)
hardware and software elements of the burst transmission may provide guaranteed delivery of NVME command and
protocol layer and the NVMEON exchange layer . In hard data packets without duplicates using packet level retrans
ware , the handshaking may enable very precise handling of missions . In an example , the NVMEON exchange layer at
the timing of overlapping burst windows to make optimum 5 the initiator 5002 may not timeout exchanges because the
use of bandwidth on the network and at the receiver . NVME layer (above it) may use command timeouts to detect The flow diagrams as to how the NVMEON exchange I / O level errors . The error recovery (except in network layer 3202 handles each NVME command are provided outage scenarios) may be initiated by the upper NVME herein in conjunction with the building blocks described layers , such as using NVME abort commands and / or NVME above . In these flows , “ E ” represents an exchange as controller resets . The Proxy NVME controller 2902 may described in the above subsection . handle these scenarios , and the NVMEON exchange layer at Referring to FIG . 44 , in a flow 4400 of a write command ,
an entire write I / O command may be sent in one shot by the the initiator 5002 may then work with the target 5004 in
initiator 4402. The target 4402 may control data transfer size lockstep to clean up resources (such as using a NVMEON
using , for example , a Xfer Rdy message , based on its criteria 15 cleanup request) . Various exemplary cases are discussed
(e.g. destination device page size , etc.) . For instance , if it so here without limitation . However , to protect against sce
chooses , the Target 4404 may ask for all of the data in the narios where a network outage may cause data packets like
I / O in one shot . This may entirely depend on an implement an NVMEON cleanup request or its response to be dropped
er's choice . Each Xfer Rdy message may result in multiple for long periods , the various timeouts may be implemented .
data packets being generated by the exchange layer to 20 For example , the NVMEON exchange layer at the initiator
adhere to the network path MTU . Each data packet may 5002 may implement a timeout , e.g. , called EXCH_
carry an offset and length uniquely identifying its place CLEANUP_TOV , upon sending a NVMEON cleanup
within the exchange . request . If the response does not arrive within defined time

Referring to FIG . 45 , in a flow 4500 of a read command , period , the initiator 5002 may complete the trigger that
the initiator 4402 may send a Xfer Rdy message right away . 25 instantiated the cleanup . Also , the NVMEON exchange layer
An entire Read I / O command may be sent in one shot by the at the target 5004 may implement a very large exchange
initiator 4402. The first Xfer Rdy message may also be timeout , e.g. , called EXCH_TOV , from the time the
provided along with the Read Command indicating the size exchange is started to the time that it can complete or be
of initial transfer . The initiator 4402 may control data completely cleaned up . If the timer expires , the target 5004
transfer size using a Xfer Rdy packet based on its criteria , 30 may clean up all the resources allocated for the exchange .
which may be entirely based on the implementer's choice . The error recovery may provide for handling an NVME
Each Xfer Rdy packet may result in multiple data packets abort Command . When an NVME driver detects an NVME
being generated by the exchange layer to adhere to the command timeout , its recovery action may involve sending
network MTU . Each data packet may carry the offset and an NVME abort command . This command may be handled
length thereby uniquely identifying its place within the 35 at various layers . For example , the proxy NVME Controller
exchange . 2902 at the initiator 5002 may terminate the NVME abort

Referring to FIG . 46 , in a flow 4600 , in a version of an command and use the NVME exchange layer APIs to clean
exchange related to a read command , the target 4404 may up resources like the ESB and BTP queues . Also , the
provide an indicator of being ready for data before the initiator 5002 may generate an NVMEON cleanup request to
initiator 4402 requests the Xfer Rdy packets . 40 the target 5004 identifying the exchange to clean up . Also ,

Referring to FIG . 47 , in a flow 4700 , administrative the remote NVME controller 2904 may clean up resources
commands , such as a request for status and a reply , may be allocated for this exchange (e.g. commands queued to disk
exchanged without any data transfer drives) . Once all cleanup is done , a NVMEON cleanup

Referring to FIG . 48 , in a flow 4800 , a flow is provided response may be passed all the way back to the Proxy
for a case where an initiator breaks down data transfer across 45 NVME controller 2902 which may terminate the original
multiple Xfer Rdy packets . In this example , admin com I / O request and complete the Abort command .
mand data may be constrained to a particular length , such The error recovery approach may provide for a reset of the
not going beyond 4K in this exemplary case . Therefore , proxy NVME controller 2902. The Proxy NVME controller
while a single Xfer Rdy may work for many situations , in reset may be handled using exactly the same or a similar
some examples the protocol may not preclude using multiple 50 flow as for an NVME abort command , but extending the
Xfer Rdys , which may use exchanges similar to those used NVMEON cleanup request to specify multiple exchanges to
for the read command discussed above . In some examples , clean up . The NVMEON exchange layer at the initiator 5002
the admin command data may be different and may go may keep track of which exchange IDs correspond to the
beyond 4K . The total length of transfer may be calculated by proxy NVME controller 2902 and hence can do this trans
the initiator 4402 . 55 lation . There may not need to be any resetting of the remote

Referring to FIG . 49 , in a flow 4900 , the admin command NVME controller 2904 , as it is a logical , rather than physi
data may be constrained to a given length (e.g. , in this case cal , entity . Various possible failure scenarios during error
being constrained not to go beyond 4K) . Thus , one Xfer Rdy handling (such as due to prolonged network drops) and
message may work for the most part . However , the protocol recovery mechanisms that clean up resources at both the
may not preclude using multiple Xfer Rdys like Write 60 initiator 5002 and target 5004 are described here without
Command . In some examples , the admin command data limitation in accordance with various examples .
may be different and may go beyond 4K . The total length of Referring to FIG . 51 , repeated drops of a first NVME
transfer may be calculated by the initiator 4402 . packet in an exchange are addressed discussed in a flow

Referring to FIG . 50 , a sequence of steps for error 5100. The NVME driver 5102 detects an 1/0 timeout after
recovery is described in a flow 5000. In an example , 65 repeated drops and sends an abort command . An NVME
NVMEON exchange layer at the initiator 5002 may not abort response is sent after a timer , EXCH_CLEANUP_
timeout exchanges because the BTP layer 3204 (below it , TOV , expires .

US 10,635,316 B2
49 50

Referring to FIG . 52 , another example of an exchange Doorbell , Fetch Status , and Status , plus four data packets)
involving repeated drops of subsequent NVME packets is times 16 I / Os results in 176 total packets .
discussed in a flow 5200. An abort command is sent after the In an example for a 32K Write 1/0 with no drops ,
NVME driver 5102 detects an 1/0 timeout . An abort NVMEON requires 47 packets (four request , grand and ACK
response is sent after a timer , EXCH_TOV , expires . 5 cycles = 12 packets , three NVME command packets and 32

In order to determine the efficiency of the NVMEON NVME data packets) , while the Raw NVME requires 88
protocol , a comparison may be made relative to a protocol total packet (11 for each 4K write I / O as noted above times
that sends every NVME PCIe transaction over the network 8 cycles) .
with error detection boundaries at the NVME command In an example involving a 128K Write I / O with no drops
level . Referring to FIG . 53 , a flow diagram 5300 illustrates 10 NVMEON would require 152 total packets (7 Request ,
a complete flow of a 32K write com mmand , but other length Grant , ACK cycles = 21 packets , plus 3 NVME command
write commands may be implemented . The NVME com packets and 128 NVME data packets) , while Raw NVME
mand initiator 4402 and the target 4404 may each act as a would require 352 (the same 11 packets for each 4K write
BTP sender and a BTP receiver interchangeably depending 1/0 as noted above , sent in 32 cycles for a total of 352
on which one has data to send at a given step in the flow . 15 packets .

Referring to FIG . 54 , a flow diagram 5400 illustrates a An example for a 32K Write I / O with a single data packet
complete flow of a 32K read command , but other length read drop involves 51 packets for NVMEON (5 Request , Grant ,
commands may be implemented . The NVME command ACK cycles = 15 packets , plus 3 NVME command packets ,
initiator 4402 and the target 4404 may each act as a BTP 32 NVME data packets and 1 NVME data packet retrans
sender and a BTP receiver interchangeably depending on 20 mission , while Raw NVME requires 99 total packets (8
which has data to send . cycles of the same 11 packets needed for a 4K Write I / O as

In contrast to the efficient flows of FIG . 53 and FIG . 54 , noted above , plus one retransmission of 11 packets , for a
in FIG . 55 a flow diagram 5500 illustrates a complete flow total of 99) .
of a conventional 4K NVME write command that is imple An example for a 32K Write I / O with two data packet
mented by sending every PCIe transaction over the network . 25 drops is provided below without limitations . In accordance
Since the protocol has no inherent error recovery mechanism with this example , the two dropped packets may span 4K
built into it , an entire I / O needs to be retried in the case segments , but in other examples , the two dropped packets
where only a single packet is lost . The sending of an 1/0 at might span differently . Here NVMEON requires 52 total
greater than a modest length boundary may likely result in packets (5 Request , Grant , ACK cycles = 15 packets , plus 3
inordinate number of retransmissions , warranting a split at 30 NVME command packets , 32 NVME data packets and 2
some meaningful boundary like 4K . In order to achieve a NVME data packets retransmission) , while Raw NVME
32K NVME write command , as compared in the previous requires 110 total packets , including 8 cycles and 2 retrans
example , the numbers for each cycle would be multiplied by mission cycles (a total of 10) , for the same 11 packets
eight , resulting in a far more steps to achieve the same required for each 4K write I / O .
command . Thus , as seen in these examples , as complexity increases ,

In order to compare overhead between the protocols , drops occur , or parallel flows are involved , NVMEON ,
different sized I / Os , normal cases and drop scenarios may be which is comparable in performance to raw NVME for the
considered . For example , “ NVMEON ” may refer to the simplest case , becomes significantly more efficient than raw
exemplary approach discussed above , while “ Raw NVME ” NVME when sending data over a network .
may refer to an approach of sending each NVME command 40 FIG . 56 illustrates a comparison table 5600 for different
without retransmissions being built into the protocol . The scenarios in an embodiment . In accordance with the
NVME data packets may be assumed to be fragmented at 1K depicted embodiment , at any I / O greater than 4K (or any
boundaries (network MTU) in both cases for the sake of other value in other embodiments) , the overhead of
simple comparison , but may be fragmented differently in NVMEON protocol may be less compared to Raw NVME
other examples . 45 even without any aggregation of flows . With an aggregation
Without limitation , an example comparison between of the flows , at any sized I / O the overhead associated with

NVMEON and raw NVME for a single 4K write I / O NVMEON may be less than Raw NVME . As the size of the
command involves 19 total packets for NVMEON (four I / O increases , the overhead associated with the NVMEON
request packets , four grant packets , and four ACK cycles = 12 may become more and more minimal whereas that of Raw
packets , plus three NVME command packets and four 50 NVME may keep increasing .
NVME data packets) and 11 total packets for raw NVME Various timer values as used herein in various layers of
(command doorbell , fetch command , write command , Xfer the protocol may be set according to considerations relating
ready , status doorbell , fetch status , status and four data to particular implementations . For example , a timer referred
packets) . This example provides a theoretical scenario to as ERROR_TOV may be used by the BTP layer 3204 to
where only one NVME 4K I / O is outstanding between a pair 55 detect packet losses in the network . An exemplary value may
of nodes , with no aggregation of flows . However , more be 100 milliseconds , though other values may be defined in
typically there may be many flows between an initiator 4402 other examples . A timer referred to as EXCH_CLEANUP_
and a target 4402 allowing for a more efficient usage of TOV may be used by the initiator 4402 to determine a
every burst window in various examples . As there are persistent network outage , causing the exchange cleanup to
additional flows , NVMEON performs much better than raw 60 be dropped . An exemplary value may be 60 seconds , though
NVME . An example comparison for 16 parallel 4K Write other values may be defined in other examples . A timer
I / Os with no drops involves 127 total packets for NVMEON referred to as EXCH_TOV may be used by the target 4404
(five request , grant , and ACK cycles = 15 packets ; 48 NVME to detect exchange timeouts due to repeated drops in the
command packets ; and 64 NVME data packets) and at least network and may clean up local resources . An exemplary
176 and up to 192 total packets for Raw NVME (11 packets 65 value may be 90 seconds , but other values may be used .
for sending each 4K Write I / O (including Command Door FIG . 57 illustrates an architecture diagram enabling flow
bell , Fetch Command , Write Command , Xfer Ready , Status control 5700 in an embodiment . End - to - End flow control

35

US 10,635,316 B2
51 52

knobs may be available at various levels in the protocol . particular hardwareFPGA or other hardware assistance for
These knobs may be best utilized with algorithms that are NVME . In embodiments it may use board layout aspects ,
suitable for deployment scenarios based on an implement such as a PLX switch of some sort to support a PCIe slave
er's choice . At the lowest level , BTP receivers and senders end point at the network processorECPU 6508 , where the
may use a credit mechanism . This may happen at a packet 5 host CPU may be the master (just like an hardwareFPGA
level across I / O flows and may provide a basic building embodiment as described elsewhere in this disclosure and / or
block to implement tunable parameters to throttle different involving an SRIOV NIC) . In embodiments the network
senders to different rates . The NVMEON Exchange Layer ECPU processor may have a PCIe interface that may func
3202 may perform flow control at the exchange level . While tion in a slave / target mode , with network interfaces going
the target 4404 may support 256 concurrent exchanges with 10 out of the network processor ECPU (which may or may not
an initiator 4402 in accordance with the depicted embodi be connected to a switch of an hardware FPGA , such as an
ment , it may control the rate at which each of these L2 switch , that embodies the methods described herein) .
exchanges are serviced , implicitly having an impact on the FIG . 66 illustrates a mode of the NVMEON entirely in
IOPs it exposes to a given Initiator . In other examples , the hardware 6600 in an embodiment . In accordance with the
target 4404 may a support different number of concurrent 15 depicted model 6600 of FIG . 66 , all components of the
exchanges . Since there may be one virtual remote controller NVMEON may be implemented in hardware 6510 , such as
per proxy controller , an actual rate of processing of the I / Os an FPGA (Field Programmable Gate Array) referred to in
by a disk drive underneath the remote controller directly some cases herein as Stevedore) . The Proxy NVME con
controls flows associated with queues in the NVME driver troller 2902 may reside below a physical PCIe interface and
5102 above the proxy controller . 20 may terminate all PCIe transactions , just like the host

There may be two possible options for implementing the NVME controller 6512. A state machine for the NVMEON
NVMEON to span network boundaries . In accordance with exchange layer 3202 and the BTP 3204 may be implemented
a first method , the initiator 4402 and the target 4404 end in hardware . The remote controller 2904 in a hardware
points may be identified using Ethernet MAC addresses . embodiment may translate all NVME commands received
Any exemplary implementation may encapsulate the L2 25 over the network to I / Os to / from the local disks .
packet in an overlay mechanism like VXLAN to span L3 Referring to FIG . 67 , in many of the embodiments dis
segments . A special ethertype may be needed to standardize closed herein , a log - based file system may be used , with
this . In accordance with a second method , the initiator 4402 storage for the file system being handled across a pool of
and the target 4404 end points may be identified using a resources , such as a pool of SSDs 6702. SSDs typically
special UDP port over a node's IP address . Standardizing on 30 operate with data written to them sequentially , block - by
the UDP port number may facilitate the method . block , one after the other . By way of example , embodiments

In accordance with different embodiments , various net of a converged networking and storage solution , as
work packet formats used for transporting NVME com described throughout this disclosure , may employ a set of
mand / data packets and NVMEON and BTP control packets SSDs (e.g. , the six SSDs 6702 , labeled SSD1 through SSD6
may be employed . The packet formats may be defined with 35 in FIG . 67) associated with each converged node , with a
the initiator 4402 and the target 4404 as L2 endpoints . This number of volumes , N , and various applications writing to
may be seamlessly extended to L3 endpoints since it may not individual blocks 6706 on the SSDs . If those volumes are
be dependent on the encapsulation in the protocol . assigned statically to particular places on the pool of SSDs ,

FIG . 58 illustrates NVMEON encapsulation of an NVME then each of the SSDs will receive writes on a somewhat
Command Packet 5800 in an embodiment . 40 random basis , according to the periodic needs of a volume

FIG . 59 illustrates NVMEON encapsulation of a batched or application in question . This is sub - optimal , as it results
NVME Command Packet 5900 in an embodiment . in non - sequential writing of the SSD , complicating various

FIG . 60 illustrates an NVMEON Xfer Rdy command 6000 processes , such as garbage collection . In embodiments , the
in an embodiment . drive space on a pool of SSDs 6704 can be used as a log (i.e. ,

FIG . 61 illustrates NVMEON encapsulation of a NVME 45 as a sequence of blocks) . Whenever a write comes , among
Data Packet 6100 in an embodiment . any of a set of volumes or applications that will use a storage

FIG . 62 illustrates an NVMEON Exchange Cleanup node having a pool of SSDs 6704 , the system may write the
Request / Response 6200 in an embodiment . data sequentially across the SSDs and retain a map 6712 in

FIG . 63 illustrates BTP control packets 6300 in an the software that indicates the block , page , and SSD to
embodiment . 50 which each write occurs . For example , the map 6712 may

Referring to FIG . 64 , for BTP opcodes that are not defined track that pages A through D 6704 are written to the initial
in the table 6400 , CTL bits may be set to 0. In other locations of Block Q of SSD1 , that pages E through H are
examples , the CTL bits may be set to other values . written to the initial locations of Block S of SSD2 , etc. In

In various examples , various choices for implementation another example , the map 6712 may retain the fact that the
of the protocol may be employed . For example , FIG . 65 55 first write is at a given offset (e.g. , 100) , from the start of the
illustrates NVMEON entirely in software 6500 in an embodi first data block across the pool of SSDs , or the like .
ment . For example , all components of the NVMEON may be In alternative embodiments , the map 6712 that tracks
implemented in the embedded CPU in software . The Proxy locations of writes may be (a) statically allocated or (b)
NVME controller 2902 may reside below a physical PCIe dynamically allocated . A statically allocated map has the
interface and may terminate all PCIe transactions . State 60 advantage that it does not require a lot of memory to hold the
Machines for the NVMEON exchange layer 3202 and the map ; for example it can be a formula by which one can
BTP 3204 may be implemented in software , and packets compute the SSD and offset where the logical access lies .
may be sent over the network interface of the ECPnetwork Consider the example of a volume layout across four SSDs ,
processorU . The remote controller may use the network where the logical blocks of a volume are simply striped
processorECPU NVME controller 6514 to translate all 65 across the four SSDs . In that example , for a volume layout
NVME commands received over the network to Ms to / from of size 100 GB , the first 25 GB of data for the volume could
the local disks . The depicted model may not depend on any be placed on first 25 GB of storage locations on the first

US 10,635,316 B2
53 54

SSD , the next 25 GB of data for the volume could be placed they cannot be over written without erasing the whole block .
on the first 25 GB of storage locations on the second SSD , In order to write to the pages of Block X that now have stale
and so on . More complex layouts can be generated , such as data , the valid data has to be copied to the available pages
using non - sequential storage blocks within particular SSDs , 6812 of another Block (Block Y) . Then all of the pages 6814
using non - sequential patterns for writing to the various 5 of block X are free again to be re - written .
SSDs , and the like , as described in more detail below . As As an example of the challenges created by garbage
long as the map is retained , the location of the actual data collection processes , there may be a new write block for the
can be determined by reference to it . A disadvantage of this new data , and there may be an erase block (e.g. , 1 MB to 2
static type of mapping is the fact that when a block gets MB) corresponding to the old , now invalid data . Each block
over - written the write will be directed to the same block on 10 is typically made up of a plurality of smaller pages . The
the particular SSD where the block being written to is entire SSD may comprise a much larger storage resource ,
mapped , making it increasingly difficult to deal with over such as comprising a 100 GB drive , or larger . Also , backup
writes as they accumulate over time . space (e.g. , 20 GB) may be retained on the drive . As noted

In the case of dynamic allocation of the map , a disadvan above , on an SSD one cannot write on the same page again
tage is that an indirection map has to be kept ; however , the 15 unless the block containing that page has been erased , but
advantage the dynamic allocation approach provides is that the “ erase ” operation is costly operation . If one has to
one can then issue backend writes to the SSD in a linear overwrite a block , the SSD would mark the block invalid ,
fashion . This indirection map needs to be kept updated and and the new block that one is seeking to write is written to
stored persistently . As an example perhaps the allocation is the backup location ; that is , the SSD cannot overwrite data
done in the same manner as in the example of static 20 until it erases a whole block . The erase operation takes time ,
mapping . i.e. a dynamic volume layout of size 100 GB , in so the system typically has an internal log file system that
which the first 25 GB is on SSD one , and 25 GB is on the writes serially until the end . Overwrites are written to the
second SSD , and so on . When a write comes , say for offset backup portion of the drive , and the system keeps marking
1 (for a write that is 4 k in size , for example) , it shall be some of the pages invalid , as new data is written to the
written on offset 0 on the first SSD , with this mapping 25 backup area . Eventually , garbage collection finds out a block
(logical block 1 - SSD1 , offset 0) stored in the dynamic that has invalid pages , copies the valid pages of data from
map . The second write may come for logical block 10 , that block to backup , erases the block , and makes it available
which will then be written to the first SSD , at offset 1 , for re - writes . Flash memory has this property . It is not a
yielding the mapping (logical block 104 SSD1 , offset 1) . The " write in place ” medium . In the first round , Flash memory
advantage of this approach is the fact that the backend SSD 30 performs very well for write operations , but as the drive
is written in a sequential manner , which results in a gain in nears being full , the garbage collection process requires
garbage collection efficiency . many cycles of copying and erasing , so the drive perfor
Managing storage across a collection of drives 6702 can mance diminishes significantly . For example , drive perfor

provide significant advantages in connection with certain mance may diminish from 100K TOPS to 20K TOPS as the
challenges and inefficiencies involved in cleaning up invalid 35 drive gets deep into garbage collection in order to make
data , known as garbage collection . By way of background , blocks available for new write operations . Internally the
garbage collection is a fundamental process in solid state drive is moving large amounts of data in large numbers of
drives (SSDs) . FIG . 68 illustrates a sequence of operations operations . Eventually , user requests get blocked , because
involved in writing pages of data , followed by a garbage the disk is locked as it moves around data ; that is , the disk
collection process on a single SSD 6702. Unlike hard disk 40 can't write to the new place while the disk is copying and
drives , NAND flash memory typically used in SSDs cannot moving the data to make room for a subsequent erase
overwrite existing data ; instead , old data needs to be erased operation . The garbage collection process for a drive could
before writing new data to the same location . Flash memory last , for example , from a millisecond to a second , during
is typically divided into blocks 6706 , which are further which the drive is locked for the user .
divided into pages 6704. Internally SSDs typically write all 45 Some SSD vendors provide a garbage collection API by
data sequentially . As one makes changes to data stored in the which third parties may manage garbage collection on the
blocks of an SSD , such as by changing a file , the data SSDs . In embodiments , such an API may be adapted to
previously stored in the blocks is rendered invalid . The new , accommodate a converged storage solution as described
valid data is written on a new set of blocks that appear later throughout this disclosure in a manner that improves the
in the sequence . Data can be written directly to an empty 50 performance of a pool of SSDs as compared to the dimin
page , but only whole blocks can be erased . To reuse space ishing performance normally seen as SSDs become full , due
taken up by data that is no longer valid , any valid data from to the burdens of garbage collection . As noted elsewhere in
a block that needs to be preserved must be copied and this disclosure , embodiments of a converged solution may
written to empty pages of a new block , after which the old employ a set of SAS controllers , which may control a
block can be erased and made available for new data . A 55 plurality of SSDs as a pool (e.g. , six SSDs) , such as the
garbage collection process can be undertaken various ways . collection depicted in FIG . 67. As noted , this pool of storage
Because flash memory typically has a limited number of is virtualized to the user , so that it is seen simply as a file
erase - and - write cycles , it is desirable to adopt garbage system , just as if it were a physical disk on the same
collection strategies that reduce the number of times such computer used by the user . In embodiments , during a given
cycles are required . In the garbage collection process illus- 60 period (e.g. , a millisecond to one second) all incoming write
trated in FIG . 68 , four pages A - D 6704 are written sequen commands from the system of a user may be striped across
tially to the initial storage locations on Block X of SSD1 ; a subset (e.g. , four of six) SSDs , while the other SSDs in the
that is , individual pages are written sequentially to free pool (e.g. , two of six) perform garbage collection . For any
blocks . Subsequently , four new pages 6802 (E - H) and four given period during which garbage collection is taking place
replacement pages 6810 (A ' - D ') are written sequentially to 65 on some of the SSDs , all writes can be re - directed to the
the next available free pages of Block X. The original pages remaining SSDs . For a subsequent time period (e.g. , another
A - D are now invalid (e.g. , stale) data , but in a typical SSD millisecond to one second slot) , the system can write all data

10

15

30

US 10,635,316 B2
55 56

from the user's computer to a different subset of the SSDs close a garbage collection activity according to a schedule
(e.g. , a different four of the six) , while the remaining (e.g. , determined by a system external to the SSD that uses the
a different combination of two) SSDs perform garbage SSD .
collection . To the end user , the system always provides a In embodiments , a networking and storage system is
more predictable latency , because one of the major causes of 5 provided having a capability for handling a collection of
inconsistency in latency is the underlying unpredictability as physically attached or network - distributed storage resources
to when an SSD needs to do its garbage collection work . In as a virtualized cluster of storage resources and having an
embodiments , a garbage collection API 6714 for an SSD application programming interface for configuring an SSD
may include a programmatic way to instruct the SSD to to initiate and close a garbage collection activity .
commence garbage collection , so that the timing and loca In certain embodiments , provided herein is a storage
tion of garbage collection can be managed , in a rotation , system with log - based , file storage , that is striped sequen
across subsets of SSDs in a pool of SSDs . This allows the tially across a plurality of SSDs , in which the system uses
manager of the pool of SSDs to refrain from issuing any time - varied garbage collection among SSD nodes in the
writes to an SSD while it is in garbage collection mode . The plurality of SSDs .
system can still send read commands , but it won't send any In embodiments , a networking and storage system is
writes for the garbage collection time periods assigned to an provided having a capability for handling a collection of
SSD . In such a system , the number of SSDs in a pool that physically attached or network - distributed storage resources
are in garbage collection may be dynamically configurable , as a virtualized cluster of storage resources and having a
so that the system may configure the garbage collection with 20 storage system with log - based , striped storage , with time
the correct number of SSDs doing garbage collection , for the varied garbage collection among SSD nodes .
correct time periods , given various information , such as In certain embodiments , provided herein are methods and
information about the use of the SSDs (typically number of systems for arranging the garbage collection cycle for a
overwrites for the type of application in question) , the state plurality of SSDs based on sizes , dirtiness , performance
of the SSDs (how full are the SSDs in the pool) , the 25 parameters , or other characteristics of the SSDs in a pool of
performance of the SSDs (how long is garbage collection SSDs .
taking) and the like . In embodiments , a networking and storage system is

The aforementioned APIs may be provided for various provided having a capability for handling a collection of
storage protocols , such as SAS , SATA , and NVMe . Such physically attached or network - distributed storage resources
APIs may enable standardization as to how to call a drive as a virtualized cluster of storage resources and having
and instruct it when to go into garbage collection and for arrangement of a garbage collection cycle based on at least
how long garbage collection should take place . In embodi one of the size and cleanliness of the SSDs in a collection of
ments , a given amount of space (e.g. , seven percent , may be SSDs .
left reserved for garbage collection) , to avoid problems that In certain embodiments , provided herein are methods and
may occur with running completely out of space . systems for coordinating the timing of garbage collection in

With the ability to manage garbage collection across a an SSD with a discontinuous write strategy for a plurality of
pool of SSDs , the manager of a pool can monitor the SSDs , related SSDs with which the SSD is pooled .
such as knowing if the SSDs are of different sizes , manu In embodiments , a networking and storage system is
facturers , or performance characteristics , so that garbage 40 provided having a capability for handling a collection of
collection can be based on such awareness . As a system , the physically attached or network - distributed storage resources
user has control over when to ask given SSDs to do garbage as a virtualized cluster of storage resources and having
collection . coordination and synchronization of garbage collection in an
Some SSD vendors also have APIs to indicate how many SSD with a discontinuous write strategy for the SSDs in a

free blocks are available . Awareness of this information may 45 collection of SSDs .
allow a user of the converged solution described throughout In embodiments , methods and systems are provided for
this disclosure to perform garbage collection selectively , arranging sets of optimally sized drives in a collection of
such as on the drives that are more dirty . SSDs , including to satisfy drive writes per day (DWPD)

Also , as SSDs can be of different sizes , one can arrange requirements on a per application basis . A given drive in a
the garbage collection cycle based on sizes , dirtiness or other 50 collection , such as a 100 GB drive , may be warranted over
characteristics of the varying SSDs in a pool . a given duration (e.g. , 3 , 5 or 8 years) to provide a minimum

In embodiments , the system may direct all the SSDs in a number of DWPD , and the DWPD for a drive relates to its
pool to undertake garbage collection , if the situation called ability to handle the write requirements of one or more
for it (e.g. , during a time period when new writes are very applications . In SSDs that use media , such as NAND Flash ,
unlikely) . 55 that requires erasure before re - writing to a block , there can

In certain embodiments , provided herein is a storage be limits to the number of times the media can be erased
system with time - varying assignment of sub - sets of SSDs in (e.g. , 10,000 to 30,000 times) . This is due to the limited life
a pool of SSDs to perform garbage collection , while other of the physical substrate used in the media . The number of
SSDs in the pool remain available for writing new data . drive writes per day allows determination of the duration of

In embodiments , a networking and storage system is 60 a warranty , and higher intensity (higher DWPD) drives are
provided having a capability for handling a collection of more expensive . In the field , it can be very difficult to
physically attached or network - distributed storage resources determine the appropriate drive for a given application ,
as a virtualized cluster of storage resources and having a because the number of writes may be somewhat unpredict
storage system with time - varying assignment of subsets of able .
SSDs to garbage collection . In embodiments , a networking and storage system is

In certain embodiments , provided herein is an application provided having a capability for handling a collection of
programming interface for configuring SSD to initiate and physically attached or network - distributed storage resources

35

65

US 10,635,316 B2
57 58

as a virtualized cluster of storage resources and having a drive in the collection to balance the writes with the war
facility for arranging sets of optimally sized drives in a ranted DWPD . If the system is initially misconfigured , one
collection of SSDs . can request more writes per day to accommodate . This is

In embodiments , a networking and storage system is possible because the converged solution controls multiple
provided having a capability for handling a collection of 5 SSDs in a set , even though the set may be seen by the
physically attached or network - distributed storage resources operating system / file system as a single drive .
as a virtualized cluster of storage resources and having a In one example , if all six drives are 100 GB drives ,
hardware device providing erasure encoding for an array of warranted at one DWPD , the storage node has a total of 600
redundant disks that are treated as one logical unit across GB at one DWPD . This much can be written across these six
multiple storage boxes . 10 drives . One may define an allocation policy for writing 100

As noted above in the example of FIG . 67 , in the methods GB per day across each of the six .
and systems disclosed herein , instead of one drive , a con Thus , in embodiments , methods and systems are provided
verged solution storage node may have a set of drives , such for arranging sets of optimally sized drives in a collection of
as six drives , all of which are logically managed as one drive SSDs , which may include arrangements that are based on
by the operating system . Each drive may be warranted at a 15 DWPD requirements for one or more given applications .
given level of DWPD ; for example , one drive of a set of six Also , in embodiments , given a variety of combinations of
might be warranted at one DWPD . Each of a set of appli DWPD parameters and life of one or more drives , methods
cations that will use the collection of drives may have certain and systems are provided for mixing and matching , virtu
requirements for writing data . For example , a first applica alizing and providing the equivalent of what each applica
tion may use a large number of writes , so it may want two 20 tion needs in a group of drives that are managed as a group .
DWPD , while a second application may only require one In embodiments , a networking and storage system is
half of a DWPD . Knowing the mix of applications , and their provided having a capability for handling a collection of
sum total requirements for DWPD , one may select the physically attached or network - distributed storage resources
desired total number of DWPD by distributing the writes as a virtualized cluster of storage resources and having a
across a number of drives that have a given number of 25 facility for selective mixing and virtualization of SSDs of
DWPD (e.g. , three drives of one DWPD) . The overall varying DWPD parameters and life expectancy to satisfy
number of drives in inventory can be reduced by distributing needs of at least one application by a group of heterogeneous
the writes even across the drives , because a given applica SSDs .
tion , such as one requiring one - half a DWPD , does not In embodiments , a networking and storage system is
require its own one DWPD drive , which leaves excess 30 provided having a capability for handling a collection of
DWPD capacity . Further , one can have one or more (e.g. , physically attached or network - distributed storage resources
six) drives of higher DWPD , such as five DWPD . With two as a virtualized cluster of storage resources and having
types of drives (e.g. , one DWPD and five DWPD) , one can hardware encryption at a second level of virtualization of a
tune a combination of drives , such as a set of six , to meet the SSD .
anticipated requirements of a set of applications . For 35 In embodiments , the methods and systems disclosed
example , if a collection of applications cumulatively require herein may further employ compression (e.g. , LZIP) , de
14 DWPD , then two drives of five DWPD and four drives duplication (e.g. , MBHash) , thin provisioning , load balanc
of DWPD can be arranged in the collection to meet the ing , and other techniques to further optimize the use of a
requirements of the application . A system view of the collection of drives .
components allows assembly of various units of one DWPD 40 Consider de - duplication as an example . An SSD capable
and various units of five DWPD . In embodiments , drives of doing de - duplication can be optimized at the system level
may be formatted to provide a given DWPD . In embodi in the following way . Taking an example of a system with
ments , sub - system software of a converged data storage six SSDs , and using a dynamic volume layout , the six SSDs
node can format a drive , and even do so dynamically for a can be divided into six ranges . For example , if the SSD uses
set of drives , similar to managing the drives collectively for 45 a Secure Hash Algorithm 1 (SHA - 1) technique to fingerprint
garbage collection as noted elsewhere in this disclosure . In a block of 4 k in size , the output of the SHA - 1 algorithm is
embodiments , a user may be provided with a flexible policy 20 bytes , or 160 bits . That means the range is { 2 ̂^ 0 , 2 ̂^ 160 } .
where the user can select a given level of DWPD and a given This range can be divided into six sub - ranges say { r1 , r2 , r3 ,
level of over - capacity , to make sure the utilization fits within r4 , r5 , r6 } and each SSD may be assigned to a sub - range .
the warranted and purchased level of DWPD . 50 The dynamic volume map on each write operation may

With this capability to tune the DWPD over a set of compute the SHA - 1 for the data and re - direct the write to an
drives , one can club / group applications intelligently to make SSD that falls under the assigned sub - range . The writing of
good use of the purchased and warranted level of DWPD . the dynamic volume map may be implemented as explained
This operation is a major advancement in practical situa elsewhere in this disclosure . With this approach one is able
tions . Today , applications may use a drive as a cache (often 55 to achieve system - level , global de - duplication . An added
without the user being aware of that fact) , and the drive , if advantage of this technique is the fact that no lookup or a
not sized with the correct DWPD , may largely be a wasted database of SHA - 1 blocks needs to be maintained at the
resource . Also , today , if one buys three DWPD , but an system level .
application is doing five DWPD , then the system must In embodiments , a networking and storage system is
throttle the application back or risk violating the warranty 60 provided having a capability for handling a collection of
terms . On the other hand , if the user buys five DWPD and physically attached or network - distributed storage resources
uses three , then the money for the additional DWPD is as a virtualized cluster of storage resources and having a job
entirely wasted . Either situation is sub - optimal as compared de - duplication capability for networking and storage jobs .
to tuning to the correct DWPD needs of the application . In embodiments , a networking and storage system is

Internally , the system may enable a write or a set of 65 provided having a capability for handling a collection of
writes . As the system sees drives taking more writes than physically attached or network - distributed storage resources
warrantied , the system may allocate the write load to another as a virtualized cluster of storage resources and having a

