WO 01/73557 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 October 2001 (04.10.2001)

PCT

(10) International Publication Number

WO 01/73557 Al

(51) International Patent Classification”: GO6F 12/14

(21) International Application Number: PCT/AU01/00350

(22) International Filing Date: 28 March 2001 (28.03.2001)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

PQ 6544 28 March 2000 (28.03.2000) AU

(71) Applicant (for all designated States except US): OPTI-
MISER PTY. LTD. [AU/AU]; 355 Scarborough Beach
Road, Osborne Park, W.A. 6017 (AU).

(72) Inventor; and

(75) Inventor/Applicant (for US only): MULLINS, Leo,
Joseph [AU/AUJ; 2 Pinegrove Mews, Currambine, W.A.
6028 (AU).

(74) Agent: GRIFFITH HACK; Level 6, 256 Adelaide Ter-
race, Perth, W.A. 6000 (AU).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CIL, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

[Continued on next page]

(54) Title: AUTHORISING USE OF A COMPUTER PROGRAM

(57) Abstract: A method of authorising use of

I User PC [Server | a computer program only able to be used when
an authorised message is received from an au-
thorising system. The method includes provid-

202~ Start] ing an authorisation system, making a request to
‘L use a computer program, signalling the request to
204 Run the authorisation system, the authorisation sys-
Application - 2J0 tem recording the use of the computer program
1 20% 212 24 and providing the authorisation message to the
validate | 7 (. { computer program upon receipt of the authorisa-
206 User Validate tion message the computer program may be used.
Username,
IF Password
et Validation and Status
Ho ™\ Successful | {
226 N 216
220 YES T
Gontinue with E
222~ Avplication N
v E
Pay for T
224 — Use
7% Z
Validate Account) l@
| Credibility i Vaidate
Account |~ 232
and Debit
validation Account
EXT Successful \
) z
240
ontinue with L
Application

233

w0 01/73557 A1 I HIID 000000

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 01/73557 PCT/AU01/00350

10

15

20

25

30

1

Title
AUTHORISING USE OF A COMPUTER PROGRAM

Field of the Invention

The present invention relates to authorising use of a computer program, in particular the
present invention relates to a method of authorising use of a computer program, a
computer configured to authorise the use of a computer program and a computer readable

media on which is stored computer software for authorising use of a computer program.

Background of the Invention

There is an increasing need for securing and protection of computer programs and other
digital products. This is reflected in an increasing demand for a “pay as yo; use” payment
arrangement for licensed use of computer software. It is known for a server to provide
application software to a plurality of client’s machines. Under this model it is possible to
provide a “pay as you use” method of software licensing. Current pricing models used for
the payment of software applications are based on per user and seat licensing agreements
that are complex, restrictive and inefficient, especially for client server and application
service provider software delivery. “Pay as you use” pricing is demanded by software

users for its simplicity, cost effectiveness and flexibility.

There is therefore a need for an alternative method of providing a software licensing
system that allows for each user of the software to correspond a payment for that use. The
licensed software needs to be able to be prevented from use unless authorised, to allow for

inter alia payment for using the software.

Summary of the Present Invention

An object of the present invention is to provide a method of authorising use of a computer
program in a manner suitable for implementing infer alia a "pay as you use" licensing

system.

According to the present invention there is provided a method of authorising use of a

computer program, said method including the steps of:

WO 01/73557 PCT/AU01/00350

10

15

20

25

30

2

providing an authorisation system;

recording an identifier of a computer program to be authorised for use with
the authorisation system;

a user registering with the authorisation system and receiving a user
identification from the authorisation system;

the user making a request to use the computer program;

the computer program identifier and user identification being sent to the
authorisation system in a login request message;

the authorisation system verifying the identity of the user from the user
login identification and checking that the user is authorised to use the computer program
identified by the computer program identifier;

the authorisation system recording the information sent with the request
message;

if the user is verified and authorised to use the computer program, then a
login authorisation message is sent to the computer program, otherwise an authorisation
denied message is sent to the computer program;

whereby upon receipt of the authorisation message the computer program

may be used by the user.

Préferably the method includes the steps of:

the computer program sending a request to the authorisation system to
incur a charge for the use of the computer program;

the authorisation system recording a charge against the identified user for

use of the computer program.

Preferably the authorisation system records whether the user is verified, whether the user

is authorised to use the computer program and a time stamp.

Preferably the computer program may be a software application or a sub-component of a

software application.

Preferably the charge for use of the computer program is recorded in usage units.

WO 01/73557 PCT/AU01/00350

10

15

20

25

30

3

Preferably a rate of charging usage units for the use of the computer program is recorded
in the authorisation system. A different rate of charge may be applied to different

computer programs.

Preferably the usage units are charged by the authorisation system upon receipt of the

request to charge for the use of the computer program.

Preferably the request to the authorisation system for charge of usage units is sent once per
use of the computer program. Alternatively the request to the authorisation system to
charge usage units is sent once per specified period during the use of the computer

program.

Preferably the user purchases usage units in advance of use of the computer prograin, the
usage unit total being reduced by each charge, use being authorised only while there are a

positive number of usage units left.

Preferably the authorisation message is encrypted. Preferably, the communication between
the interface program and the authorisation system is encrypted. Preferably messages to
and from the authorisation system includes a unique component that is only valid for a

single use, so that the message can’t be duplicated and used again.

Preferably the user identification is obtained from the user by providing the user with a
login prompt, the user entering the login identification provided by the authorisation

system, the entered user identification being included in the login request.

Preferably an interface program signals the login request to the authorisation system.
Preferably the interface program is a separate program called by the computer program
being authorised as part of the initialisation of the authorised computer program. In one
embodiment the interface program forms part of the computer program and is started
when a user attempts to use the computer program. In another alternative embodiment,
the interface program is part of an operating system and is started when a user attempts to

use the computer program.

WO 01/73557 PCT/AU01/00350

10

i5

20

25

30

Preferably the authorisation system is at a location remote from a computer running the
activated computer program. More preferably, the computer running the activated
computer program also runs the interface program, the interface program communicates

with the authorisation system over a computer network.

Preferably the authorisation system is configured to record and authorise a plurality of
computer programs. Typically, the authorisation system is configured to record and

authorise a plurality of uses of the same computer program.

In one embodiment the authorisation is provided for each activation of the computer
program. Typically, a charge is generated for each use of the computer program. In
another embodiment, the authorisation is required periodically, wherein at the end of a
period of time specified in the computer program from the last authorisation, a request to
charge the usage units is sent to the authorising system for a further authorisation, the
authorisation system sends each further authorisation and records the use for each period,

whereby a charge is generated for each authorisation message sent.

In yet another embodiment, when the computer program is finished, a terminate message

is sent to the authorisation system, the authorisation system records the duration of the use
of the computer program between when the authorisation message is sent to the computer
program until the terminate message is received, whereby a charge in PUs is generated for

use of the computer program corresponding to the recorded duration.

According to another aspect of the present invention there is provided a distributed system
for authorising use of a computer program, said system comprising at least:

an authorisation system, with a storage means for recording an identifier of
a computer program to be authorised for use with the authorisation system and recording
a user identification;

a computer for running the computer program;

the computer being configured to send the identifier of the computer

program and user identification to the authorisation system in a login request message

WO 01/73557 PCT/AU01/00350

10

15

20

25

30

5

when the user makes a request to use the computer program;

the authorisation system being configured to verify the identity of the user
from the recorded user login identification and check that the user is authorised to use the
computer program identified by the recorded computer program identifier;

the authorisation system configured to record the information sent with the
request message;

the authorisation system being configured to send a login authorised
message to the computer if the user is verified and authorised to use the computer program
and otherwise send an authorisation denied message to the computer;

whereby the computer is configured to continue use of the computer
program upon receipt of the authorisation message but otherwise terminate the use of the

computer program.

Preferably the computer is configured to sending a request to the authorisation system to
record a charge or the use of the computer program against the identified user for use of

the computer program.

Preferably the computer storage means records the rate of charge for the use of the

computer program

Preferably the authorisation system records a charge against the user upon receipt of the

request to charge for use of the computer program.

Preferably the computer is configured to send a request to the authorisation system to

charge the user once per use of the computer program.

Preferably the computer is configured to send a request to the authorisation system to

charge the user is sent once per specified period during the use of the computer program.

Preferably the computer is the communication between the computer program and the

authorisation system is encrypted.

WO 01/73557 PCT/AU01/00350

10

15

20

25

30

6

Preferably the computer and authorisation system are configured to include a unique

component in the encrypted messages communicated therebetween.

Preferably the authorisation system is at a location remote from a computer running the

activated computer program.
Preferably the computer running the activated computer program also runs the interface
program, an interface program that communicates with the authorisation system over a

computer network,

Preferably the authorisation system is configured to record and authorise a plurality of

computer program.

Brief Description of the Drawings

In order to provide a better understanding, preferred embodiments of the present invention

will now be described in detail, by way of example only, with reference to the

accompanying drawings, in which:

Figure 1 is a schematic representation of a system that enables the authorisation of
use of a computer program in accordance with the present invention;

Figure 2a is a state diagram showing the states of a server waiting for a login;

Figure 2b is a state diagram showing the states of a run time licence consumption
session;

Figure 3 is a flow chart showing the method of the present invention;

Figure 4 is a schematic timing diagram of message passing between components of
the system of Figure 1;

Figure 5 is a schematic timing diagram of an alternative method of message passing

between components of the system of Figure 1; and
Figure 6 is a flow chart showing the registration of a user and a software application

for use with the present invention.

Detailed Description of Preferred Embodiments

Referring to Figure 1, a system 10 is shown for authorising use of a computer program,

WO 01/73557 PCT/AU01/00350

10

15

20

25

30

o
such as a software application 12 on a computer 14. The computer program may be a suB-
component of a larger software application. A user 5 activates the software application 12
for execution on the computer 14. The software application 12 calls an interface program
16, known as a Software Application Interface Library program (SAIL). The SAIL 16
communicates with an on-line server 18 via a network, such as the Internet 20. An
authorisation system 22 is running on the server 18. The authorisation system 22 is called
a Software Application Licence Manager Over Networks (SALMON) system. It is noted
that the computer platform need not be the same as the server, likewise operating systems
of the computer and the server need not be the same. The SALMON system 22 is able to
handle many software applications on a plurality of computers, each having a SAIL
interfacing with the SALMON system 22 via a communication network, such as the
Internet 20. The SALMON system 22 communicates with the SAIL 16 to determine
whether the user is authorised to use the software application 12, There is a one to one
relationship between the user and the instance of the software application. This allows for

each user to be charged for each use of the software application.

The SAIL 16 is provided to a software vendor that wishes to use the system 10 of the
present invention. The software vendor incorporates calls to the SAIL 16 in the vendor’s

computer program.

The computer program or software application 12 is written to be disabled from use until
the user 5 is identified to the SALMON éystem 22 using a login routine of the SAIL 16
and receives an authorisation message from the SALMON system 22. The authorisation
message operates as a once off run time licence. The SAIL 16 sends another
authorisation message to the software application 12 when it receives the authorised

message from the SALMON system 22.

Specifically, when the software application is started, it calls a login sub-routine of the
SAIL 16. The application waits for the SAIL login sub-routine to return a message
indicating that the user is logged in. A software vendor wanting to charge for use of the
software can decide the price of use. It may be free, parts of the software may be charged
for, or all of the software may be charged for. The cost may be charged on each start-up of

WO 01/73557 PCT/AU01/00350

10

15

20

25

30

8

the application, on a time basis or on a per function basis. Different users may be charged
different rates. A user is charged for using a program use run-time licence unit (RTL).
The SAIL 16, once logged in, can send a message to the SALMON system 22 to record
usage of the computer program/software application according the payment scheme

desired.

Referring to Figure 3, which shows the operation of the present invention in the form of a
flow chart. The flow chart starts at 202 where a user wishes to run a software application.
The user activates the software application in the normal manner at 204, The software
application interfaces with the SAIL 16 to validate the user at 206 via a login request
message which is encrypted with a public key at 208 by the SAIL 16. The encrypted login
request message is communicated over a network 210, suéh as the internet, and is then
decrypted with a private key at 212 in a server running the SALMON system 22. The
SALMON system 22 validates the user name, password and the status of the application at
214. If the user is valid and authorised to use the software application, a logged-in
confirmation message is encrypted with a public key at 216 and sent across the network
210. It is decrypted at 218 with a private key by the SAIL 16.

If the validation is successful, as indicated by 220, the application continues at 222. If the
software vendor wishes the user to pay for the use of the software application, the steps
from 224 take place. The account creditability is validatéd at 226. The SAIL 16 sends a
public key encrypted “allocate a charge” message at 228 over the network 210. The
message is then decrypted with a private key at 230. The account is checked to determine
whether sufficient RTLs are available. If so, the required number of RTLs are debited at
232. A charged confirmation message is encrypted with a public key and sent at 234
across the network 210 and decrypted at 236 with a private key. If the validation is

successful the application continues at 238, otherwise it terminates at 240.

The method of encryption of transmitted messages involves the inclusion of a unique
component so that a message is valid only once. Each message is in the form of a binary
number to be sent between the SAIL 16 and the SALMON system 22. A random number

is added to the message. A digestion routine takes the data from the message and the

WO 01/73557 PCT/AU01/00350

10

15

20

25

30

9

random number to produce a digestion value. The digestion value is computed in such a
way that finding an input that will exactly generate a given digest is computationally
infeasible. The message data, the random number and the digestion value are then
encrypted using a public key. The message is then transmitted. The received message is
then decrypted using a private key. The decrypted message is then separated in to
individual components. The message can be validated by using the same digestion
formula on the message and random number components to check the digestion result
calculated against the digestion value received. If the values are the same the message is
considered valid, otherwise it is considered invalid. This process provides a different data
sequence for each message even if the same acknowledgment message is sent each time.
In this way each message includes a unique value which can only be used once. Thus if

the message is duplicated it will no longer by valid and will be rejected.

The SALMON system 22 may be configured to allow many users to be authorised at the
same time for one or more software application. The software vendor may allow up to a
predetermined number of users to login for a particular software application. For each

authorised user allowed a login a login resource is allocated in the SALMON system 22.

Each available login resource, a login daemon process will be waiting for a user to login.

Referring to Figure 2a, until a login is received each of the login daemon processes
remains in a not logged in state 30. Once a login 32 is received the SALMON system 22
enters a logged in state 34, A routine “Can consume RTL” 35 checks to see whether
RTLs may be consumed, until the user 5 logs out at 38, whereupon the login resource of
the SALMON system 22 re-enters the not logged in state 30. Thus checking that

sufficient funds (in the form of RTLs) are available can be a criterion for authorisation.

Figure 2b shows the consumption of RTLs in the logged in state 34. A routine
“ConsumeRTL” 42 consumes RTLs on the successful verification by SALMON system
22. If there are sufficient RTLs and it is a valid transaction. At the completion of the use
of software application pending logout, or once all available RTLs are consumed, the user

logs out 38.

WO 01/73557 PCT/AU01/00350

10

15

20

25

30

10

A user of the software application using the on-line pay as you use model must first be
registered with the on-line SALMON system 22. They will be provided with a user name
and password so that the SALMON system 22 can identify them and the login details

verified.

The login of the user is to verify that the user is logged with the on-line SALMON system
22 before being able to proceed with use of the software. The software application logs
out from the SALMON system 22 in order to provide a clean exit. Generally, only one
login session per user should be active, a previous session must be logged out before

another login session can begin.

Referring to Figure 4, the passing of messages is now described. A user 5 activates a
software application 12 thereby creating 50 an instance of the sofiware application 12.
The software application 12 then creafes 52 an instance of the SAIL 16. The software
application 12 requests details from the user 5 at 54. The user 5 enters a user name and
password at 56. The sofiware application calls a “SAIL-login” routine of the SAIL 16 at
58. The SAIL 16 then establishes a connection, via the Internet 20, to the SALMON
system 22. The SAIL-login routine then passes the user name, password and an
identification of the software to the SALMON system 22. Once confirming that the login
details are correct, the SALMON system 22 sends a login “OK” message at 62 to the
SAIL 16 which then at 64 sends an “OK” message to the software application 12.

Depending on the model that the software vendor wishes to use the charge for use of the
software an appropriate scheme of using RTLs will be used. The scheme described in
relation to Figure 4 is for a one-off charge for use of the software application. Other

schemes will be described below.

The software application 12 then sends a one-off request to consume an RTL at 66. This
request is a SAIL-consume RTL call. The SAIL-consume RTL sends a consume RTL
message to the SALMON system 22 at 68. The SALMON system 22 records the request
to consume RTL and sends an authorisation message at 70 to the SAIL 16. The SAIL 16
then passes the OK message at 72 to the software application 12. The software application

WO 01/73557 PCT/AU01/00350

10

15

20

25

30

i1

12 then begins to log out of the SAIL 16 at 74. The logout message is then passed from
the SAIL 16 to the SALMON system 22 at 76. A Logout confirmation message is then
passed from the SALMON system 22 to the SAIL 16 at 78. The logout confirmation
message is then sent from the SAIL 16 to software application 12 at 80. The software
application 12 may then terminate the SAIL program 16 at 82. The user 5 may proceed
with use of the software application 12 at 84. Once the user has finished with the software
application 12 it may then be terminated at 86. '

The recording of the consumption of a one-off consumption of an RTL creates a charge
for the one-off use of the software application 12. This charge may be deducted from an

amount of RTLs held in credit for the user 5 or may be billed to the user 5.

Different software applications may request the consumption of different numbers of

‘RTLs. For example a word processing application may consume five RTLs whereas a

spreadsheet may consume 10. As mentioned above, the software being authorised need
only be a sub-component of a large software application. For example, a print function
may be regarded as the computer program being authorised. For each use of the print
function a charge is accrued. A user 5 may also be entitled to a discount such as, for
example, if they are a high volume user. The number of RTLs may then be multiplied by

a user discount to produce a final number of RTLs deducted from the user’s account.

Referring to Figure 5, the periodic consumption of RTLs is described. Periodic
consumption of RTLs may be consumed at a different rate to one-off consumption of
RTLs. Like numerals depict like actions from Figure 4. Again the user S starts the
software application SO which creates the instance of the SAIL 16 at 52. Login is
requested at 54 and login details are provided to the SAIL 16 at 56. The login details are
then passed from the software application to SAIL 16 at 58 and then onto the SALMON
system 22 at 60. The confirmation of login is passed from the SALMON system 22 to the
SAIL 16 at 62, and from the SAIL 16 to the sofiware application at 64. The user may
proceed with the normal use of the application at 84. In the meantime, the software
application 12 makes periodic requests to the SAIL 16 for the consumption of an RTL at
98. The SAIL 16 passes the request to the SALMON system 22 at 100. The confirmation

WO 01/73557 PCT/AU01/00350

10

15 .

20

25

30

12

of the recording of the consumption of the RTL occurs in the SALMON system 22 and the
confirmation of this is then passed from the SALMON system 22 to the SAIL 16 at 102
and then from the SAIL 16 to software application 12 at 104.

At the end of each period a further RTL is consumed as indicated by 106, 108, 110 and
112. When the user has finished with the application, a command is sent to exit from the
application 12 at 86. The software application then sends the logout message to the SAIL
16 at 74 which is the sent on at 76 to the SALMON system 22. Confirmation of the
logout is sent from the SALMON system 22 to the SAIL 16 at 78 and then from the SAIL
16 to the software application 12 at 80, whereupon the software application may end the
instance of the SAIL 16 at 82 and then shut itself down.

As an alternative the software application 12 may specify the period to the SAIL 16 and
the SAIL 16 handles the operation of sending consume RTL messages to the SALMON

system 22 for deduction RTLs from the users account.

The number of periodic RTLs consumed is recorded and a corresponding charge
generated. The total charge for the session is deducted from an account or billed out.
RTLs may use currency units, the consumption of RTLs is in itself payment. The charge
for the consumption of each RTL can be arranged by agreement between the software

vendor and the system operator.

The SALMON system 22 may be configured to allow many users to be authorised at the
same time for one or more software applications. Figure 6 shows a flow chart setting out
the establishment of a pay-as-you-use registration according to the present invention. The
flow chart begins at 302 where a user wishes to use a software application utilising the
system of the present invention. If the user is registered with the administrators of the
authorisation SALMON system 22 they proceed down path 304 otherwise they need to
register with the administrator, in this case “OPTIMISER” at 306. An on-line registration
site is made available over the Internet at 308, where the user can register to use a single
software application 310 or a range of software applications 312. A subscription fee is

paid at 314 or 316 depending on whether the user selects a single software application or

WO 01/73557 PCT/AU01/00350

10

15

20

25

30

13

general use. A rate of, for example US$10 per annum is paid if a single application is to
be used. An annual subscription of, for example US$120 per annum is charged for
general use of software. Once this payment is made to the administrator the process

continues at 318 as if the person was previously registered.

If the user wishes to use an application that is not pay-as-you-use enabled as indicated at
320, the software vendor will need to register the system with the administrators. If the
software is registered it will proceed as indicated by 322. The software vendor may
download website software as indicated by 324. If the software vendor is not registered
with the administrator as indicated by 326 the vendor must register at 328. Once the
vendor is registered the SAIL interface program can be downloaded at 330 and integrated

into the vendor’s software at 332.

Once the user is registered, the user must have credit available with the administrator.
This is checked at 334. If they don't, as indicated by 336, they must purchase RTLs. If
they have paid the vendor for usage as indicated by 338 the vendor must pass on the usage
payment at 340 to the administrator, which will be credited as RTLs. Once the user has
RTLs credited as indicated by 342 the user may use the software according to the present
invention. When the software application is started the SAIL is activated at 344, as
described above, with 344 being equivalent to 50 in Figures 4 and 5. The authorisation of
the user is indicated by 346 being the equivalent of the OK message 64 in Figures 4 and 5.
On-line usage reporting, indicated by 348, is equivalent to the recording of the logging in
and consumption of RTLs. The user may then view their access usage and RTL
consumption at a later stage. Even if the software is not charged for use, the software can

be recorded and tracked.

The SAIL interface 16 may provide a “heart beat” function that periodically sends the '
SALMON system 22 a message to check that a connection between the two still exists. If
the connection has dropped out, it may be re-established or the application terminated,

depending on the security desired by the software vendor.

A list of SAIL Application Program Interface (API) system calls is listed in appendix 1. A

WO 01/73557 PCT/AU01/00350

10

15

20

25

14

more preferred list of SAIL API system calls is listed in appendix 2. A set of example

scenarios showing the use of the SAIL 16 is included in appendix 3.

The SAIL interface as implemented as an Application Programmable Interface (API)
library able to interface with the programming language of the software application.
Programming methodologies like ActiveX or CORBA can be used to provide class

wrappers around the system API library.

Now that the preferred embodiments have been described it will be clear to the skilled
addressee that it has at least the following advantages. A locked software application may
be provided to each user that is only able to be unlocked and used where the user
purchases run time licences which are consumed on a per use or time basis. This means
that software does not need to be downloaded and may be provided on, for example, a
floppy disk, CD-ROM or DVD ROM. The user only reéeives use of the software that
they pay for and the user only has to pay for the actual use of the software.

It will be clear that modifications and variations can be made to the present invention,
such as the implementation need not be exactly as described in the above mentioned
example, the computer language that the underlying software is programmed in may be
any suitable language, such as Java, C++ or Visual BASIC. The method of charging
and/or billing for use of the run time licences for the software may vary from those
described above. It is also envisages that the present invention may be applicable to
authorise specified users to access a program, rather than for payment of RTLs. Sucha
security measure to only allow certain personnel to access sensitive software applications

and is able to track their use.

Such modifications and variations are intended to be within the scope of the present

invention, the nature of which is to be determined from the foregoing description.

WO 01/73557

15

SAIL - API system calls

Login

int Login (

Description

const char * userName,
const char * userPassword,
const int majorVersion,
const int minorVersion,
const int revisionVersion);

PCT/AU01/00350
APPENDIX |

Establishes a login and connection to the Optimiser Online Server. It verifies the user and application
for a login with the Optimiser Online Server.
This will be the first function call to establish a connection with the Optimiser Online Server.

Parameters
Name Description Input/Output
UserName Input, a character string specifying the User Name. The Input
User name has to be ’
registered with Optimiser Online Server
UserPassword Input, a character string specifying the User Password. . Input
The User name has to be ‘
registered with Optimiser Online server
MajorVersion The application Major Version number Input
MinorVersion The application Minor Version number Input
RevisionVersion | The application Revision Version number Input
Return Code

int Return an error code or SAIL_SUCCESSFUL for a successful Login. Use GetErrorMessage
to return 2 message string from the error code.

The developer should test for the following error codes and perform corrective actions.

Error Code

Description

SAIL_ WRONGNAMEPASSWORD

The user entered the wrong user name and/or password

SAIL WRONGUSERNAME

The user entered the wrong user name

| SAIL_ WRONGUSERPASSWORD

The user entered the wrong password

Remarks:

The application should exit or prevent the user to continue if the return code 15 not

SAIL _SUCCESSIUT

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350

16
lixample
C+4
int errCode;
char userName (] = “xxxxx”; *This has to be registered with
‘the Optimiser Online Server
char userPassword([] = “yyyyy”; 'This has to be registered

‘with Optimiser Online Server
int majorVersion = 1;
int minorVersion = 2;
int revisionvVersion = 3;

errCode = Login(userName, userPassword,
majorVersion, minorVersion, revisionVersion);

if (errCode == 0)
// Logged In Successful
else
//logout - Exit Program
Visual Basic

"Include into the General declarations section or Module file
Option Explicit
Private Declare Function OptimiserLogin Lib "Sail.dll" _
Alias "Login" _
(Byval userName As String, ByVal userPassword As String,
ByVal majorVersion As Long,
ByVal minorVersion As Long,
ByVal revisionvVersion As Long _
) As Long

'Include into the Form Load section.
Dim retval As Long

Dim userName As String

Dim userPassword As String

userName = "xxxx" ‘This has to be registered with the
' Optimiser Online Server
userPassword = “yyyyyy" ‘This has to be registered with the

' Optimiser Online Server
retVal = OptimiserLogin{userName, userPassword, 1, 1, 1)

if (retval <> SAIL_SUCCESSFUL) Then 'Exit program

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
17

IsLoggedIn
int IsLoggedin(const int * clpbLoggedIn);
Description
Determines whether a login session is currently established.

Parameters

Name Description Input/Output

ClpbLoggedIn A flag indicates TRUE when a Loggin is established and Output
FALS if not.

Return Code

int Return an errof code or SAIL_SUCCESSFUL for a successful OptimiserIsLoggedIn. Use
GetErrorMessage to return a message string from the error code.

Example

CH++
#idefine ERR_MESSAGE_LENGTH 255
int errCode, retval;
BOOL *pbLoggedIn = new BOOL;

errCode = IsLoggedIn(pbLoggedln) ;
if (errCode !'= SAIL_SUCCESSFUL) {

retVal = GetErrMessage(errCode,
ERR_MESSAGE_LENGTH,
errMsg) ;
} else {
if (*pbLoggedIn) {
// Optimiser Is Logged In.
} else {
// Optimiser Is not Logged In.
J

Visual Basic

'Include into the General declarations section or Module file
Option Explicit

Private Declare Function OptimiserIsLoggedIn _

Lib "Sail.dll" Alias "IsLoggedIn" (clpbLoggedIn As Long) _ aAs Long

*Include into the Form Load section.
Sim clpbLoggedIn As Long

retVal = OptimiserIsLoggedIn{clpbLoggedIn)
I{clpbLogeedln - FALSE) Then ' Exit program

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
18

Logout
int Logout(void);
Description
This terminates the Internet connection to the Optimiser Online Server.

This function should be called before the application exit or when all Run Time Licence (RTL)
consumptions are completed.

Parameters
None
Return Code

int Return an eYror code or SAIL_SUCCESSFUL if the Logout was successful. Use
GetErrorMessage to return a message string from the error code.

Example
C++
. Int errCode; -
errCode = Logout{);
if (errCode == 0))
printf/ "Logout : Successful\n");
Visual Basic
'Include into the General declarétions section or Module file
Option Explicit
Private Declare Function OptimiserLogout _
Lib "Sail.dll" Alias "Logout" () As Long

*Include into the Form Load section.

iMax = OptimiserLogout ()

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557

GetErrMessage

19

int GetErrtMessage(int nErrorNum, int iBufferSize, char * const IpszErrorBuf);

Description

PCT/AU01/00350

This function allows the programmer to retrieve a text string representing the error code.

Parameters
Name Description Input/Qutput
nErrorNum The error number returned by the Optimiser Online Server | Input
from a previous function call
[BufferSize The size allocated for the error message. To retrieve the Input
error message length for memory allocation this argument
may be set to NULL.
LpszErmrorBuf A pointer to a character string representing the error code. | Output

Return Code

int Return the length of the error message.

Remarks

This function can be used without a Login connection.

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557
20

Example
C++
int errCode;

char errMsg[ERR_MESSAGE_LENGTH] ;
int msgLength;

retVal = GetErrMessage(errCode,

ERR_MESSAGE_LENGTH, errMsg);

printf (errMsg);

Visual Basic

PCT/AU01/00350

'ITnclude into the General declarations section or Module file

Option Explicjit
Private Declare Function GetErrorMessage _
Lib "Sail.dll" Alias "GetErrMessage" _
(ByVal errNumber As Long, _
Byval iBufferSize As Long,
errMessage As String) As Long

*Include into the Form Load section.
Dim retVal As Long

Dim iMax As Long

Dim strBuffer As String

'Return the maximum length of the error message
iMax = GetErrorMessage (retval, 0, ByvVal 0&)

" Allocate space for the buffer and clear it
‘with Chr$(0) characters

strBuffer = String$(iMax + 1, Chr$(0))

* Call the function again so it can fill strBuffer
iMax = GetErrorMessage (retVal, iMax, ByVal strBuffer)

' Print out the error message
MsgBox "Error Message is : " & strBuffer

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
21

CanConsumeRTL
int CanConsumeRTL(int * const clpCanConsume};
Description

Determines whether the current login session has sufficient number of RTLs in the user’s Optimiser
Online Server account to warrant further consumption by the calling software application.

Parameters
Name Description Input/Qutput
ClpCanConsume | A return value indicates TRUE if the user may consume Output

some RTL’s and FALSE if not.

Return Code

int Return an error code or SAIL_SUCCESSFUL if the CanConsumeRTL was successful. Use
GetErrorMessage to return a message string from the error code.

Example
C++

int errCode, retval;
char errMsg[ERR_MESSAGE LENGTH] ;
BOOL *clpCanConsumeRTL = new BOOL;

errCode = CanConsumeRTL (clpCanConsumeRTL) ;
if (errCode != SAIL_SUCCESSFUL)
retVal = GetErrMessage(errCode,
ERR_MESSAGE LENGTH,
errMsqg) ;
} else {
if (*clpCanConsumeRTL) {
// Can Cansume RTLs.

} else {
// Can NOT cunsume RTLs.
}

Visual Basic

,-
[¢7

'Include into the General declarations section or *odule i
Option Explicit
Private Declare Function CanConsumeRTL _

Lib "Sail.dll" (clpYesNo As Long) As Long

"Include into the Form Load section.

Dim clpYesNo As Long

iMax = CanConsumeRTL (clpYesNo)

M olpYesto = FALSE) Then ' Exit proaram

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
22

CoasumeRTL
int ConsumeRTL (const int nNumberRTLtoConsume, char * const pszComment,);
Description

This operation will debit the currently logged in user’s Optimiser Online Server account with the
appropriate amount of RTLs based on the name of the calling software application.

Parameters

Name Description - Input/OQutput

nNumberRTLtoConsume | Specify the amount of RTL’s to be deducted from | Input
the users Optimiser Online Server account

pszComment A character string supplied by the applicationas a | Input
. comment to identify usage. This can be any
character string

Return Code

int Return an error code or SAIL_SUCCESSFUL if the ConsumeRTIL, was successful. Use
GetErmrorMessage to retum a message string from the error code.

Remarks:

If return value not SAIL_SUCCESSFUL then further execution should terminated.

Example

C++
fdefine CONSUME_ONE_RTL 1
char szComment {] = "Any Comment";

errCode = ConsumeRTL(CONSUME_ONE_RTL , szComment) ;

Visual Basic

'*Include into the General declarations section or Module file
Option Explicit

Private Declare Function ConsumeRTL Lib "Sail.dll"“ _

(Byval nConsumeAmount As Long, ByVal pszComment As String) As Long

‘Include into the Form Load section.
Dim retval As Long

retVal = ConsumeRTL(2, "comment")

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
23

LoginConsumeoneLogout

int LoginConsumeoneLogout(const char * userName,
const char * userPassword,

char * const pszComment,

const int majorVersion,

const int minorVersion,

const int revisionVersion);

Description
A single RTL charge is debited from the user’s account for the execution lifetime of the software

application being used by the user. This function login, connect, consume one RTL and close the
connection to the Optimiser Online Server.

Parameters
Name Description Input/OQutput
UserName Input, a character string specifying the User Name . The Input

User name has to be
registered with Optimiser Online Server

UserPassword Input, a character string specifying the User Password. . [nput
The User name has to be
registered with Optimiser Online server

PszComment A character string supplied by the application as a Input
comument to identify usage. This can be any character i
string
MajorVersion The application Major Version number Input
MinorVersion The application Minor Version number Input]
RevisionVersion | The application Revision Version number Input
Return Code
-int Return an error code or SAIL_SUCCESSFUL if the LoginConsumeoneLogout was

successful. Use GetErrorMessage to return a message string from the error code.

The developer should test for the following error codes and perform corrective actions.

Error Code Description ;
SAIL WRONGNAMEPASSWORD The user entered the wrong user name and‘or password

SAIL WRONGUSERNAME The user entered the wrong user name R
SAIL_WRONGUSERPASSWORD The user entered the wrong password _

Remarks:

The applicaton should exit or prevent the user to continue if the return code is not
SAIL SUCCESSFUL

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350

24
Example
CH+
int errcCode;
char userName[] = “xxxxx“;
char userPassword([] = “yyyyy”:
char pszComment [] = “Any Comment”;
int majorVersion = 1;
int minorVersion = 2;
int revisionVersion = 3;
errCode = LoginConsumeoneLogout { userName,
userPassword,
pszComment,
majorVersion,
minorVersion,
revisionVersion);
if (errCode != SAIL SUCCESSFUL)
//Exit program. - Prevent user to continue with

//application
else .
// Continue with program

Visual Basic

"Include into the General declarations section or Module file
Private Declare Function LoginConsumeoneLogout Lib "Sail.dll" _
(ByVal userName As String,
ByvVal userPassword As String, _
ByVal pszComment As String,
ByVal majorVersion As Long,
ByVal minorVersion As Long,
Byval revisionVersion As Long _
) As Long

Option Explicit
Private Declare Function LoginConsumeonelogout Lib *Sail.dll" _
{ ByVal userName As String,
ByVal userPassword As String, _
ByVal pszComment As String,
ByVal majorVersion As Long,
ByVal minorVersion As Long,
ByVal revisionVersion As Long _
) As Long

‘Include into the Form Load section.
Dim retvVal As Long

Dim userName As String

Dim userPassword As String

iMax = LoginConsumeoneLogout { userName,

userPassword,
“comment", 1, 2, 3)

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
25

2 GetDLLVersion

int GetDLL Version(int iBufferSize, char * const clpszVersionString, int * const clpiVersionMajor, int
* const clpiVersionMinor, int * const clpiVersionRevision);

Description
Returns the version number of this SAIL to the calling software application. The software application

can use this number to keep track and act accordingly of any interface changes to this system if this
system is being used in a dynamic environment.

Parameters

iBufferSize The clpszVersionString buffer size supplied by the Input
calling Application

clpszVersionString | A character string pointer indicating the version number | Input
of the SAIL.

majorVersion SAIL’s Major Version number Input

minorVersion *SAIL’s Minor Version number Input

revisionVersion SAIL’s Revision Version number Input

Return Code

int Return the length of the return message clpszVersionString.

Example

CH+

char *clpszVersionString = new char {225];
int *clpiVersionMajor = new int;

int *clpiVersionMinor = new int;

int *clpiVersionRevision = new int;

int iVersBufferSize = 225;

int msgLenght;

msglenght = GetDLLVersion|{ iVersBufferSize,
clpszVersionString,

clpiVersionMajor,

clpiVersionMinor,

clpivVersionRevision) ;

Visual Basic

'"Include into the General declarations section or Module file
Option Explicit
Private Declare Function GetDLLVersion Lib "Sail.dll"

(Byval bufLength as Long,

clpszVersionString Bs String.

clpiVersionMajor As Long,

clpiVersionMinor As Long,

clpiVersionRevision Es Long _

) As Long

'"Include into the Form Load section.

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
26

GetTimeOutPeriod
void GetTimeOutPeriod(int * const milliSeconds);
Description

Returns the maximum number of milliseconds to wait for a reply from the Optimiser Online Server
before a timeout condition is to be flagged.

Parameters

Name Description Input/Qutput
MilliSeconds The current set time in milliseconds to wait for a reply Output

i from the Online Server before a timeout condition is to be

. flagged.

Return Code

None

Example

C+-
int milliSeconds;
int *piMilliSeconds = new int;
GetTimeOutPeriod (piMilliSeconds) ;

printf (*piMilliSeconds) ;

Visual Basic
*Include into the General declarations section or Module file
Option Explicit

Private Declare Sub GetTimeOutPeriod Lib "Sail.dll"
(milliSeconds As Long)

'Include into the Form Load section.
Dim milliSeconds As Long

GetTimeOutPeriod milliSeconds

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
27

SetTimeoutPeriod
int SetTimeoutPeriod(const unsigned int milliSeconds),
Description

Sets the maximum number of milliseconds to wait for a reply from the Optimiser Online Server before
a timeout condition is to be flagged.

Parameters
Name Description Input/Qutput
milliSeconds Input by the calling Aplication. Set the maximum number | Input
of milliseconds to wait for a reply from the Optimiser
Online Server before a timeout condition is to be flagged.
Return Code

int Return an error code or SAIL_SUCCESSFUL if the SetTimeoutPeriod was successful. Use
GetErrorMessage to return a message string from the error code.

Example
C++

int errCode;
unsigned int milliSeconds;

milliSeconds = 15000;

errCode = SetTimeoutPeriod(milliSeconds);

if (errCode != SAIL_SUCCESSFUL)

retVal = GetErrMessage (errCode, ERR_MESSAGE LENGTH, errMsg);

Visual Basic

*Include into the General declarations section or Module file
Option Explicit
Private Declare Sub SetTimeoutPeriod Lib "Sail.dll" _

(Byval milliSeconds As Long)

*Include into the Form Load section.
Dim milliSeconds As Long

milliSeconds = 10000
SetTimeoutPeriod milliSeconds

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557

28

PCT/AU01/00350

APPENDIX 2

S.A.LL. APPLICATION PROGRAMMING INTERFACE

DEFINITIONS
1 SAIL_Login

Prototype

SAILRETCODE SAILL_Login

(
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST

)i

Description

CHAR *
CHAR *
CHAR * CONST
CHAR * CONST
UNSIGNED INT
UNSIGNED INT
UNSIGNED INT
CHAR * CONST
UNSIGNED INT
CHAR * CONST

CONST
CONST

szUserName,

szPassword,

szProxyUserName,
szProxyPassword,
uiMajorVersion,
uiMinorVersion,
uiRevisionVersion,
clpcszApplicationlD,
uiConsumeRTLFrequency,
szConsumeRTLFrequencyComment

This operation establishes a connection to the Optimiser Online Server and attempts to authenticate the
user of the software application and the version number of the Software Application. |

Two worker threads could also be created with this operation. The first thread periodically consumes a
single RTL (see parameter uiConsumeRTLFrequency for details). The other thread maintains a
heartbeat to keep the connection alive (see the Remarks section below for details).

Parameters

Name . . "~

- |\ Direction..:|:Description

szUserName

In

Application.

A poiunter to a null-terminated character string
specifying the user name of the user of the Software
Application. The user must be registered with
Optimiser Online Server in order to use the Software

This pointer must not be NULL pointer.

szPassword

In

Application.

A pointer to a null-terminated character string
specifying the password of the user of the Software

This pointer must not be NULL pointer.

szProxyUserName

In

A pointer to a null-terminated character string

specifying the proxy user name required by a proxy
server if applicable. This proxy username is
company specific and the developer should first set
this parameter to a NULL pointer and test the return
code. If the return code is

SATIL PROXY AUTH_ REQUIRED the developer should
prompt the user for their proxy user name which is
then used for this parameter in another

SAIL Login() operation.

szProxyPassword

In

A pointer to a null-terminated character string
specifying the proxy password required by a proxy
server if applicable. This proxy password is
company specific and the developer should first set
this parameter to a NULL pointer and test the return

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
29

code. If the return code is

SATL_PROXY_ AUTH_ REQUIRED the developer should

prompt the user for their proxy password which is

then used for this parameter in another

SATL Login() operation.

uiMajorVersion In The major version release number of the Software

Application.

uiMinorVersion In The minor version release number of the Software

Application.

uiRevisionVersion In The revision version release number of the Software

Application.

szApplicationID In A pointer to a null-terminated character string
specifying an Application Identifier supplied by

Optimiser. -

This pointer must not be NULL pointer.
uiConsumeRTLFrequency In This parameter defines the period in minutes for
automated consumption of a single RTL. This
automated consumption is implemented in a worker
. thread.

The thread starts when the user has successfully
logged into the Optimiser Online Server whereby it
enters a loop of consuming a single RTL and then
sleeping for the specified period. If consuming a
RTL fails, the thread will issue a call to exit (1)
and terminate the calling Software Application.

The thread will not be created if the value is set to

ZEro.
szConsumeRTLFrequencyC | In A pointer to a null-terminated string containing a
omment comment about the RTL transaction being performed

by the automated consumption of RTLs.

Return Value

Returns an error code or SATL_SUCCESSFUL if the operation was successful. Use
SAIL GetErrorMessage () to return a textual representation of the error code.

The developer should test for the following return values and perform the appropriate action:

“Brror.Code’ -. Sl Description vt Action
SAIL_SUCCESS The operation was The user has been authorised
successful. to continue to use the
Software Application. The
Software Application may
now proceed with further
execution.
SAIL_PROXY_ AUTH_REQUIRED The user is required to The developer should
enter their proxy user prompt the user for their
name and proxy proxy username and proxy
password details so that | password. Another
SAIL may instruct the SAIL Login() should be
proxy to establish a called with the parameters
connection to the szProxyUserName and
Optimiser Online Server. | szproxyPassword set to
the data entered by the user.
SAIL_WRONGNAMEPASSWORD The user entered the The user should re-enter the
wrong user name and/or | authentication details.
password.

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557

30

PCT/AU01/00350

SAIL_APPACCESSDENIED

The user does not have
access to this application

The épplication should exit

SATL INSUFFICIENT RTLs_LEFT | There are insufficient The Software Application
RTLs in the user’s should report the error to the
account to allow the user and then exit cleanly.
Software Application to
continue running.

The Software Developer should consider any other errors returned by this operation as serious failures.
The Software Application should report the error to the user and then exit cleanly.

Remarks

The Software Application should not proceed further in its execution until one of the following

conditions has been satisfied:

¢ The Optimiser Online Server via the SAIL system has verified a valid username and password

pair.

o The user wishes to cancel the entering of authentication details into the Software Application to be
used by SAIL for verification, in which case the Software Application should then exit cleanly.

Once a successful connection to the Optimiser Online Server has been established and the user
authorised, then this operation will create up to two worker threads. One thread maintains a heartbeat
to keep alive a connection to the server and the other to periodically consumes RTLs from the logged

_in user’s account,

The frequency of the heartbeat can be set with the operation SAIL_SetHeart:Beathequency (0.
. The operation SAIL_GetHeartBeatFrequency () canbe used to determine the current heartbeat
frequency. If this frequency is set to zero, then the worker thread that performs the heartbeat will not

be created.

The period of the RTL consumption is set through the uiConsumeRTLFrequency parameter. At
every period, a single RTL is consumed and the transaction is recorded with the comment specified in
the szConsumeRTLFrequencyComment parameter.

Examples

C++ Pseudo Code

#include “SAIL.h"

SAILRETCODE RetCode;

// NOTE: The following user name and password should be replaced
// with a registered user name and password supplied from
!/ Optimiser and should never be hardcoded. The user must
/7 be provided with a mechanism for entering these details.
CHAR userName[] = "xxxxx";

CHAR userPassword{] = "yyyyy":

// NOTE: The following proxy user name and proxy password should
// be replaced with the proxy user name and proxy password
// supplied by the related company administrator and should
/7 never be hardcoded. The user must be provided with a

/7 mechanism for entering these details.

CHAR userProxyName([] = "aaaa";

CHAR userProxyPassword{] =

"bbbbbb" ;

// NOTE: The following indicates the version release of this

l/ Application.

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
31 :

UINT majorVersion = 1
UINT minorVersion = 2
- UINT revisionVersion

IR

3;

// NOTE: The following Application ID is an unique identifier
// provided by Optimiser.

CHAR applicationID[]} = "“zzzzzz";

RetCode = SAIL_Login(
userName,
userPassword,
NULL,
NULL,
majorVersion,
minorVersion,
revisionVersion,
applicationID,
o, //Don't start the thread that
. //consumes RTLs periodically
NULL) ;

while (RetCode == SAIL_PROXYﬂAUTH“REQUIRED) {

// The SAIL connects to a proxy server which requires a
// proxy user name and proxy password.

//

// NOTE: Prompt user for proxy user name and proxy password
!/ here and assign their entered proxy details to the
/7 variables userProxyName and userProxyPassword

/7 respectively!!t!

RetCode = SAIL Login(
userName,
userPassword,
userProxyName,
userProxyPassword,
majorVersion,
minorVersion,
revisionVersion,
applicationID,
0, //Don't start the thread that
//consumes RTLs periodically
NULL} ;

}

if (RetCode == SAIL SUCCESSFUL) {

// The user has now logged into the Optimiser Online Server and
// may now proceed with using the application.

} else {

// The login was not successful - handle error condition here.

Visual Basic Pseudo Code

Option Explicit

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
- 32

Private Declare Function SAIL Login _
Lib "SAIL.d1l" _

(ByVal szUserName As String, _
ByVal szPassword As String, _
ByVal szProxyUserName As String, _
ByVal szProxyPassword As String, _
ByVal uiMajorVersion As Long, _
ByVal uiMinorVersion As Long, _
ByVal uiRevisionVersion As Long, _
ByVal szApplicationID As String, _
ByVal consumeRTLFrequency As Long, _
ByVal consumeRTLFrequencyComment As String) As Long

Dim RetCode As Long

Dim strUserName As String

Dim strPassword As String

Dim strProxyUserName As String

Dim strProxyPassword As String

Dim strApplicationID As String

Dim ConsumeRTLFrequency As Long

Dim strConsumeRTLFrequencyComment As String

' NOTE: The following user name and password should be replaced
' with a registered user name and password supplied from

' Optimiser and should never be hardcoded. The user must
' be provided with a mechanism for entering these details.

strUserName = "Xxxxx"
strPassword = "yyyyyy"

' NOTE: The following proxy user name and proxy password should
' be replaced with the proxy user name and proxy password
! supplied by the related company administrator and should
! never be hardcoded. The user must be provided with a

' mechanism for entering these details.

strProxyUserName = "aaaa";
strProxyPassword "bbbbbb" ;

I

' NOTE: The following Application ID is an unique identifier
' provided by Optimiser

strApplicationID = "zzzzzzz"

RetCode = SAIL Login(

strUserName,

strPassword,

Byval 0&,

Byval 0k,

App.Major,

App.Minor,

App.Revision,

strApplicationlD,

0, ' Don't start the thread that
' consumes RTLs periodically

Byval 0&)

While (RetCode = SAIL_PROXY_ AUTH_REQUIRED)}

' The SAIL connects to a proxy server which requires a
' proxy user name and proxy password.

' NOTE: Prompt user for proxy user name and proxy password
! here and assign their entered proxy details to the
! variables userProxyName and userProxyPassword

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350

33

! respectively!!!

RetCode = SAIL_Login(
strUserName,
strPassword,
strProxyUserName,
strProxyPassword,
App.Major,
App.Minor,
App.Revision,

strApplicationlD,
0, * Don't start the thread that

' consumes RTLs periodically
ByVal 0¢&)
Wend

If (RetCode = SAIL SUCCESSFUL) Then

' The user has now logged into the Optimiser Online Server and
' may now proceed with using the application.

Else

' The login was not successful - handle error condition here.

End If

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557
34

2 SAIL_IsLoggedin

Prototype

SAILRETCODE SAIL IsLoggedIn
(
BOOL * CONST clpbLoggedIn
)i

Description
Determines whether a login session is currently established.

PCT/AU01/00350

Parameters
Name - nrdDirection’s | iDéseriptiont T Y o g
clpbLoggedIn In A pointer to a boolean flag. The contents of the flag

will be modified by the operation to indicate whether
a current login session is currently established.

This pointer must not be a NULL pointer.

Return Value

Returns an error code or SAIL_SUCCESSFUL if the operation was successful. Use
SAIL GetErrorMessage () to return a textual representation of the error code.

Remarks
None

Examples

C++ Pseudo Code

SAILRETCODE RetCode;
BOOL bLoggedIn:

RetCode = SAIL_IsLoggedIn(&bLoggedIn);
if (RetCode == SAIL SUCCESSFUL) {
if (bLoggedIn) {

// The user is logged in to the Optimiser Online Server.

} else {

// The user is not logged in to the Optimiser Online Server.

}
} else {

// Handle error condition here.

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
35

Visual Basic Pseudo Code

Option Explicit

Private Declare Function SAIL IsLoggedIn _
Lib "SAIL.dll" (clpbLoggedIn As Long) As Long

Dim RetCode As Long
Dim blnLoggediIn As Long

RetCode = SAIL IsLoggedIn(blnLoggedIn}
If (RetCode = SAIL SUCCESSFUL) Then
If (CBool(blnLoggedIn) = True) Then
' The user is logged in to the Optimiser Online Server.
Else

' The user is not logged in to the Optimiser Online Server.

End If
Else

' Handle error condition here.

End If

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
36

3 SAIL_Logout

Prototype

SAILRETCODE SAIL_ Logout();

Description

This logs the user out from the Optimiser Online Server. The invocation of this operation should be
called to exit cleanly from the Optimiser Online Server and free any resources SAIL has been allocated
with by the underlying operating system.

Parameters
None

Return Value

Returns an error code or SAIL_SUCCESSFUL if the operation was successful. Use
SAIL GetErrorMessage () to return a textual representation of the error code.

The developer should test for the following return values and perform the appropriate action:

ErrorCode-* » <.l % " | Description. .-~ vl Acfion . '
SAIL_SUCCESS The operation was The Software Application
successful. may now proceed with
further execution.
SAIL_NOTLOGGEDIN The user was not logged | No action required.
in for this operation to be
successful.

The Software Developer should consider any other errors returned by this operation as serious failures.
The Software Application should report the error to the user and then exit cleanly.

Remarks
None

Examples

C++ Pseudo Code

SAILRETCODE errCode;
RetCode = SAIL_Logout();
if (RetCode == SAIL_ SUCCESSFUL) {
// The logout from the Optimiser Online Server was successful.
} else {

// The logout from the Optimiser Online Server was not
// successful - handle error condition here.

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
37

Visual Basic Pseudo Code

Option Explicit

Private Declare Function SAIL Logout _
Lib "SAIL.d1ll" () As Long

Dim RetCode As Long

RetCode = SAIL_ Logout ()
If (RetCode = SAIL SUCCESSFUL) Then
' The logout from the Optimiser Online Server was successful.

Else

' The logout from the Optimiser Online Server was not
' successful ~ handle error condition here.

End If

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557

4 SAIL_GetErrorMessage

Prototype

UNSIGNED INT SAIL_GetErrorMessage

(

PCT/AU01/00350

38

CONST SAILRETCODE ErrorNum,
CONST UNSIGNED INT uiBufferSize,
CHAR * CONST clpszMessageBuffer

)i

Description
This operation allows the software developer to retrieve a textual representation of the specified error
number.
Parameters
Name - 7 CDivéetionsi [Description) f i L RN
ErrorNum . In The error number as returned from a SAIL operation.
uiBufferSize In The size of the message buffer to contain the
corresponding textual representation of the specified
SAJL error number.
clpszMessageBuffer In A pointer to a buffer to contain a null-terminated

string describing the specified SAIL error number.

The pointer can be a NULL pointer.

Return Value

Returns the maximum size required to be able to store the corresponding textual representation of the
specified SAIL error in its entirety.

Remarks
None

Examples

C++ Pseudo Code

SAILRETCODE RetCode;

CHAR * szMsg;
INT iMsgLength;

szMsg = NULL;
iMsgLength = 0;

// Retrieve the maximum length of the error message.
iMsgLength = SAIL GetErrorMessage (

RetCode,
iMsgLength,
szMsg) ;

// BAllocate enough space for the error message and a
// terminating null character.
szMsg = new CHAR[iMsgLength + 1];

// Retrieve the error message.
iMsgLength = SAIL GetErrorMessage (

RetCode,
iMsgLength,

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
39 :

szMsq) ;

// Display the error message to the user.
cout << "The SAIL Error Message is: " << szMsg << endl;

// Free resource.
delete [] szMsg:
szMsg = NULL;

Visual Basic Pseudo Code

Option Explicit

Private Declare Function SAIL_GetErrorMessage _
Lib "SAIL.d11" (ByVal ErrorNum As Long, _
ByVal iBufferSize As Long, _
MessageBuffer As String) As Long

Dim RetCode As Long
Dim lngMax As Long
Dim strBuffer As String

' Return the maximum length of the error message.
IngMax = SAIL_GetErrorMessage (RetCode, 0, ByVal 0&)

' Allocate space for the error message and space for a
' terminating null character. Clear the space with Chr$(0)

' characters.
strBuffer = String$(lngMax + 1, Chr$(0))

' Call the function again so it can fill strBuffer with the
' error message.
IngMax = SAIL GetErrorMessage (RetCode, lngMax, ByVal strBuffer)

' Print out the obtained error message.
MsgBox "The SAIL Error Message is: " & strBuffer

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
40

5 SAIL_CanConsumeRTL

Prototype

SAILRETCODE SAIL CanConsumeRTL

(
BOOL * CONST clpbCanConsume

y:

Description

Determines whether the current login session has sufficient number of RTLs in the user’s Optimiser
Online Server account to warrant further consumption by the calling Software Application.

Parameters
Name - - |'Direction. '|'Déscription: .. IR
clpbCanConsume In A pointer to a boolean flag. The contents of the flag
) will be modified by the operation to indicate whether
. there are sufficient RTLs in the user’s account to
consume.

This pointer must not be a NULL pointer.

Return Value

Returns an error code or SATL_SUCCESSFUL if the operation was successful. Use
SAIL GetErrorMessage () to return a textual representation of the error code.

The Software Developer should consider any errors returned by this operation, other than
SAIL_SUCCESSFUL, as serious failures. The Software Application should report the error to the user
and then exit cleanly.

Remarks
None

Examples

C++ Pseudo Code

SAILRETCODE RetCode;
BOOL bCanConsumeRTL;

RetCode = SAIL_CanConsumeRTL (&bCanConsumeRTL) ;
if (RetCode == SAIL_SUCCESSFUL) {
if (bCanConsumeRTL) {
// The user is allowed to consume more RTLs.
} else {

// The user can not consume more RTLs.

}
} else {

// Handle error condition here.

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
41

Visual Basic Pseudo Code

Option Explicit

Private Declare Function éAIL_CanConsumeRTL _
Lib "SAIL.d1l" (clpbYesNo As Long) As Long

Dim RetCode As Long
Dim blnYesNo As Long

RetCode = SAIL CanConsumeRTL (blnYesNo)
If (RetCode = SAIL_SUCCESSFUL) Then
If (CBool (blnYesNo) = True) Then
' The user is allowed to consume more RTLs.
Else

' The user can not consume more RTLs.

End If
Else

' Handle error condition here.

End If

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
42

.6 SAIL_ConsumeRTL

Prototype

SAILRETCODE SAIL ConsumeRTL

(
CONST UNSIGNED INT uiNumberRTLtoConsume,
CONST CHAR * CONST szComment

)z

Description

This operation will debit the currently logged in user’s Optimiser Online Server account with the
appropriate amount of RTLs based on the name of the calling software application.

Parameters
Name e a0 v s Direction . |-IDéscription: & 5
uiNumberRTLtoConsume | In Spemfy the amount of RTLs o be deducted from the
. user’s Optimiser Online Server account.
. This has an upper limit of 1000.

szComment In A pointer to a null-terminated string containing a
comment about the RTL transaction being performed
by this operation.
This pointer must not be the NULL pointer.

Return Value

Returns an error code or SAIL_SUCCESSFUL if the operation was successful. Use
SAIL GetErrorMessage () to return a textual representation of the error code.

The developer should test for the following return values and perform the appropriate action:

Error Code”" » Description: ' :
SAIL_SUCCESS The operation was The Software Application
successful. may now proceed with
: further execution.
SAIL_INSUFFICIENT RTLs_LEFT There are insufficient The Software Application
RTLs in the user’s should report the error to the
account to allow the user and then exit cleanly.
Software Application to
continue running.

"The Software Developer should consider any other errors returned by this operation as serious failures.
The Software Application should report the error to the user and then exit cleanly.

Remarks

The szComment parameter should contain a brief comment about the RTL transaction being
performed. The size of the network packets generated by this operation to the Optimiser Online Server
is dependent upon the length of this parameter. These network packets should be kept to a minimum
size and it is the responsibility of the Software Developer to adopt and maintain this philosophy when
invoking this operation.

For this operation to complete successfully, the Software Application should be registered with
Optimiser Online. The user should also have sufficient RTLs in their Optimiser Online account.
Registration and crediting a user’s account is beyond the scope of this document. Please contact
Optimiser for further information regarding these-matters

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557

43
Examples
C++ Pseudo Code
#define CONSUME_ONE RTL 1
char szComment[] = "Some Comment";

SAILRETCODE RetCode;

RetCode = SAIL ConsumeRTL(CONSUME_ONE_RTL,
szComment) ;

switch (RetCode) {
case SAIL SUCCESSFUL:

// The operation was successful

break;*
‘case SAIL_INSUFFICIENT RTLs_LEFT

// The operation was not successful ~ handle
// condition here.

break:
default:

// The operation was not successful - handle
// error condition here.

Visual Basic Pseudo Code

Option Explicit

Private Declare Function SAIL ConsumeRTL _
Lib "SAIL.d1l" (ByVal uiConsumeAmount As Long,
: ByVal szComment As String) As Long

Dim RetCode As Long

RetCode = SAIL_ConsumeRTL(2, "I've consumed two RTLs here")
Select Case RetCode
Case SAIL_SUCCESSFUL
' The operation was successful.

Case SAIL_INSUFFICIENT RTLs_LEFT

' The operation was not successful - handle
' condition here.

Case Else

' The operation was not successful - handle
' error condition here.

SUBSTITUTE SHEET (RULE 26) RO/AU

PCT/AU01/00350

WO 01/73557 PCT/AU01/00350
44

End Select

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557

PCT/AU01/00350
45

. 7 SAIL_LoginConsumeonelLogout

Prototype

SAILRETCODE SAIL LoginConsumeoneLogout

Description

(

CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST

CHAR * CONST
CHAR * CONST
CHAR * CONST
CHAR * CONST
CHAR * CONST
UNSIGNED INT
UNSIGNED INT
UNSIGNED INT
CHAR * CONST
UNSIGNED INT

szUserName,
szPassword,
szProxyUserName,
szProxyPassword,
szComment,
uiMajorVersion,
uiMinorvVersion,
uiRevisionVersion,
clpcszApplicationID,
uiConsumeRTLFrequency

A single RTL charge, is debited from the user’s account for the execution lifetime of the software
application being used by the user. This operation attempts the following SAIL operations in order:

SAIL Login(
szUserName,
szPassword,
szProxyUserName,
szProxyPassword,
uiMajorVersion,
uiMinorVersion,
uiRevisionVersion,
szApplicationID,
uiConsumeRTLFrequency,
szComment) ;

SAIL_ConsumeRTL (1, szComment);

SAIL Logout();

If either of the above operations fails then this operation fails overall.

In addition, a worker thread could also be created with this operation. The worker thread periodically
consumes a single RTL (see parameter uiConsumeRTLFrequency for details).

Parameters

Naine

2 Direction

_Description

szUserName

In

A pointer to a null-terminated character string
specifying the user name of the user of the Software
Application. The user must be registered with
Optimiser Online Server in order to use the Software
Application.

This pointer must not be NULL pointer.

szPassword

In

A pointer to a null-terminated character string
specifying the password of the user of the Software
Application.

This pointer must not be NULL pointer.

szProxyUserName

In

A pointer to a null-terminated character string
specifying the proxy user name required by a proxy
server if applicable. This proxy username is
company specific and the developer should first set

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557

PCT/AU01/00350

46

this parameter to a NULL pointer and test the return
code. If the return code is

SATL_PROXY AUTH_REQUIRED the developer should
prompt the user for their proxy user name which is
then used for this parameter in another

SAIL Login() operation.

szProxyPassword

In

A pointer to a null-terminated character string
specifying the proxy password required by a proxy
server if applicable. This proxy password is
company specific and the developer should first set
this parameter to a NULL pointer and test the return,
code. If the return code is
SAIL_PROXY AUTH REQUIRED the developer should
prompt the user for their proxy password which is
then used for this parameter in another

SAIL Login () operation.

szComment

In

A pointer to a null-terminated string containing a
comment about the RTL transaction being performed
by this operation.

This pointer must not be the NULL pointer.

uiMajorVersion

In

The major version release number of the Software
Application.

uiMinorVersion

In

The minor version release number of the Software
Application.

uiRevisionVersion

In

The revision version release number of the Software
Application.

szApplicationID

In

A pointer to a null-terminated character string
specifying an Application Identifier supplied by
Optimiser.

This pointer must not be NULL pointer.

uiConsumeRTLFrequency

In

This parameter defines the period in minutes for
automated consumption of a single RTL. This
automated consumption is implemented in a worker
thread.

The thread starts when the user has successfully
logged into the Optimiser Online Server whereby it
enters a loop of consuming a single RTL and then
sleeping for the specified period. If consuming a
RTL fails, the thread will issue a call to exit (-1)
and terminate the calling Software Application.

The thread will not be created if the value is set to
Zero.

If this value is set the function should be called only
once during the lifetime of the Software Application.

Return Value

Returns an error code or SAIL_SUCCESSFUL if the operation was successful. Use
SAIL_ GetErrorMessage (), to retumn a textual representation of the error code.

The developer should test for the following return values and perform the appropriate action:

Error Code Description Action
SAIL_SUCCESS The operation was The Software Application
successful. may now proceed with

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350

47
further execution.
SAIL_PROXY AUTH REQUIRED The user is required to The developer should
enter their proxy user prompt the user for their
name and proxy proxy username and proxy

password details so that | password. Another
SAIL may instruct the SAIL Login() should be

proxy to establish a called with the parameters

connection to the szProxyUserName and

Optimiser Online Server. | szProxyPassword set to
the data entered by the user.

SATL_WRONGNAMEPASSWORD The user entered the The user should re-enter the
wrong user name and/or | authentication details.
password.

SAIL_SERVERDENIESREQUEST The Optimiser Online The Software Application
Server denied the request | should report the error to the
for consuming more user and then exit cleanly.
RTLs from the user’s
account. Possible causes
could be:

¢ There are
insufficient RTLs in
the user’s Optimiser
Online account to
consume the
required amount.

o The Software
Application is not
registered with

) Optimiser Online.

SAIL APPACCESSDENIED The user does not have The application should exit.

access to this application

SAIL_INSUFFICIENT RTLs_LEFT There are insufficient The Software Application

RTLs in the user’s should report the error to the

account to allow the user and then exit cleanly.

Software Application to

continue running.

The Software Developer should consider any other errors returned by this operation as serious failures.
The Software Application should report the error to the user and then exit cleanly.

Remarks

The szComment parameter should contain a brief comment about the RTL transaction being
performed. The size of the network packets generated by this operation to the Optimiser Online Server
is dependent upon the length of this parameter. These network packets should be kept to a minimum
size and it is the responsibility of the Software Developer to adopt and maintain this philosophy when
invoking this operation.

The Software Application should not proceed further in its execution until one of the following

conditions has been satisfied:

¢ The Optimiser Online Server via the SAIL system has verified a valid username and password
pair.

» The user wishes to cancel the entering of authentication details into the Software Application to be
used by SAIL for verification, in which case the Software Application should then exit cleanly.

This operation can create a worker thread. The working thread periodically consumes RTLs from the
logged in user’s account. ’

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
) 48

The period of the RTL consumption is set through the uiConsumeRTLFrequency parameter. At
every period, a single RTL is consumed and the transaction is recorded with the comment specified in
the szConsumeRTLFrequencyComment parameter.

Examples

C++ Pseudo Code

#include "SAIL.h"

// NOTE: The following user name and password should be replaced

/7 with a registered user name and password supplied from
/7 Optimiser and should never be hardcoded. The user must
// be provided with a mechanism for entering these details.
CHAR szUserName[] = "xxxxx";

CHAR szPassword[] = "yyyyy":

// NOTE: The following proxy user name and proxy password should
// be replaced with the proxy user name and proxy password
// supplied by the related company administrator and should
/7 never be hardcoded. The user must be provided with a

/7 mechanisn for entering these details.

CHAR szProxyUserName[] = "aaaa";

CHAR szProxyPassword[] = "bbbbbb";
SAILRETCODE RetCode;

CHAR szComment[] = "Any Comment";
UINT uiMajorVersion = 1;

UINT uiMinorVersion = 2;

UINT uiRevisionVersion = 3;

// NOTE: The following Application ID is an unique identifier
// which is provide by Optimiser

CHAR szApplicationID = "zzzzzzz"

// NOTE: The following is used to indicate that SAIL should
// automatically consume an RTL every 12 hours from login.

UINT uiConsumeRTLFrequency = 12 * 60;

RetCode = SAIL_ LoginConsumeoneLogout (
szUserName,
szPassword,
NULL,
NULL,
szComment,
uiMajorVersion,
uiMinorVersion,
viRevisionVersion,
szApplicationID,
uiConsumeRTLFrequency) ;

while (RetCode == SAIL PROXY_ AUTH REQUIRED) ({

// The SAIL connects to a proxy server which requires a
// proxy user name and proxy password.

/7

// NOTE: Prompt user for proxy user name and proxy password
/7 here and assign their entered proxy details to the
// variables userProxyName and userProxyPassword

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
49

// respectively!!!

RetCode = SAIL LoginConsumeoneLogout (
szUserName, -
szPassword,
szProxyUserName,
szProxyPassword,
szComment,
uiMajorVersion,
uiMinorVersion,
uiRevisionVersion,
szApplicationlD,
uiConsumeRTLFrequency) :

}

if (RetCode == SAIL SUCCESSFUL) ({

// The user has now logged into the Optimiser Online Server and
// may now proceed with using the application.

} else {

[y

// The login was not successful - handle error condition here.

Visual Basic Pseudo Code

Option Explicit

Private Declare Function SAIL LoginConsumeoneLogout _

Lib "SAIL.d11l" (ByVal szUserName As String, _
ByVal szPassword As String, _
ByVal szProxyUserName As String, _
ByVal szProxyPassword As String, _
ByVal szComment As String, _
ByVal uiMajorVersion As Long,
ByVal uiMinorVersion As Long, _
ByVal uiRevisionVersion As Long, _
Byval szApplicationID As String), _
ByVal consumeRTLFrequency As Long) As Long

Dim RetCode As Long

Dim strUserName As String

Dim strPassword As String

Dim strProxyUserName As String
Dim strProxyPassword As String
Dim strApplicationID As String

DIM lngConsumeRTLFrequency As Long

' NOTE: The following user name and password should be replaced
' with a registered user name and password supplied from

' Optimiser and should never be hardcoded. The user must
' be provided with a mechanism for entering these details.

Il

strUserName xXXXX";
strPassword = "yyyyy":

1

' NOTE: The following proxy user name and proxy password should
! be replaced with the proxy user name and proxy password

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
50

' supplied by the related company administrator and should
! never be hardcoded. The user must be provided with a

! mechanism for entering these details.
strProxyUserName = "aaaa";
strProxyPassword = "bbbbbb";

' NOTE: The following Application ID is an unique identifier
' which is provide by Optimiser

strApplicationID = "“zzzzzzz"

' NOTE: The following is used to indicate that SAIL should
' automatically consume an RTL every 12 hours from login.

lngConsumeRTLFrequency = 60 * 12 ' Consume RTLs every 12 Hours

RetCode = SAIL LoginConsumeoneLogout (
strUserName, _
strPassword, _

ByVal 0&, _

Byval 0&, _

"a comment", _
App.Major, _
App.Minor, _
App.Revision, _
strApplicationlD, _
1ngConsumeRTLFrequency)

While (RetCode = SAIL_ PROXY AUTH_REQUIRED)

The SAIL connects to a proxy server which requires a
proxy user name and proxy password.

1
1
T
' NOTE: Prompt user for proxy user name and proxy password
' here and assign their entered proxy details to the
' variables userProxyName and userProxyPassword
' respectively!!!
RetCode = SAIL_LoginConsumeoneLogout (
strUserName, _
strPassword, _
strProxyUserName, _
strProxyPassword,
"a comment", _
App.Majox, _
App.Minor, _
Bpp.Revision, _
strApplicationID, _
IngConsumeRTLFreqguency)
Wend

If (RetCode = SAIL SUCCESSFUL) Then

' The user has now logged into the Optimiser Online Server and
' may now proceed with using the application.

Else

' The login was not successful - handle error condition here.

End If

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350

51

8 SAIL_GetDLLVersion

Prototype

UNSIGNED INT SAIL_GetDLLVersion

(
CONST UNSIGNED INT uiBufferSize,
CHAR * CONST clpszVersionString,
UNSIGNED INT * CONST clpuiVersionMajor,
UNSIGNED INT * CONST clpuivVersionMinor,
UNSIGNED INT * CONST clpuiVersionRevision

)i

Description

Returns the version number of the SAIL library to the calling Software Application. The Software
Application can use this number to keep track and act accordingly of any interface changes to this
system if this system is being used in a dynamic environment.

Parameters .

‘Name: -~ 0, g | Description +# . : A

uiBufferSize In The size of the string buffer to contain the SAIL
version string.

clpszVersionString In A pointer to a buffer to contain a null-terminated

SAIL version string on return from a successful call
of this operation.

The pointer can be a NULL pointer.

clpuiVersionMajor In A pointer to an unsigned integer, the contents of
which, on return from a successful call of this
operation, would indicate the Major Version number
of the SAIL library.

This pointer can be a NULL pointer.

clpuiVersionMinor In A pointer to an unsigned integer, the contents of
which, on return from a successful call of this
operation, would indicate the Minor Version number
of the SAIL library.

This pointer can be a NULL pointer.

clpuiVersionRevision In A pointer to an unsigned integer, the contents of
which, on return from a successful call of this
operation, would indicate the Revision Version
number of the SAIL library.

This pointer can be a NULL pointer.

Return Value

Returns the maximum size required to be able to store the SAIL version string into the buffer in its
entirety.

Remarks
None

Examples

C++ Pseudo Code

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
52

fdefine BUFFERSIZE 225

// Bllocate a static space for the version string and a null
// terminating character.

CHAR szVersionString{BUFFERSIZE + 1];

UINT uiVersionMajor;

UINT uivVersionMinor;

UINT uiVersionRevision;

UINT msgLength;

// Retrieve BUFFERSIZE number of characters of the

// SAIL version string and the version release of

// the SAIL system.

msglLength = SAIL GetDLLVersion(BUFFERSIZE,
szVersionString,
&uiVersionMajor,
&uiVersionMinor,
&uiVersionRevision);

Visual Basic Pseudo Code

Option Explicit

Private Declare Function SAIL GetDLLVersion _

Lib "SAIL.d11" (ByVal uiBufferSize As Long, _
clpszVersionString As String, _
clpuivVersionMajor As Long, _
clpuivVersionMinor As Long, _
clpuivVersionRevision As Long) As Long

Dim RetCode As Long
Dim lngMax As Long

Dim strBuffer As String
Dim lngMajor As Long
Dim lngMinor As Long
Dim lngRevision As Long

! Return the maximum length of the SAIL version string and the
' version release of the SAIL system.
lngMax = SAIL GetDLLVersion(O,

ByvVal 0s&,

lngMajor,

lngMinor,

lngRevision)

' Allocate space for the buffer and a null-terminating
' character. Clear the buffer with Chr$(0) characters.
strBuffer = String$(lngMax + 1, Chr$(0))

' Call the function again so it can fill strBuffer.
IngMax = SAIL GetDLLVersion (lngMax,
ByVal strBuffer,

ByVal 0&,
Byval 0¢&,
ByVal 0&)
' Print out the SAIL version string.
MsgBox “The SAIL version string is: '" & strBuffer & "'" & _
vbCrLf & _
"The SAIL version is: (" & lngMajor & "," &

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
53

lngMinor & "," &
IngRevision & ")"

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
54

9 SAIL_GetTimeOutPeriod

Prototype

UNSIGNED INT SAIL_GetTimeOutPeriod():

Description

Returns the maximum number of milliseconds to wait for a reply from the Optimiser Online Server
before a timeout condition occurs.

Parameters
None

Return Value
Returns the timeout in milliseconds.

Remarks

The default timeout period of 15000 milliseconds is returned if the timeout period has not been
previously set by the SATL SetTimeOutPeriod() operation.

Examples

C++ Pseudo Code

UINT uiMilliSeconds;
uiMilliSeconds = SAIL GetTimeOutPeriod();
cout << "The current time out is " << uiMilliSeconds

<< " milliseconds."
<< endl; :

Visual Basic Pseudo Code

Option Explicit

Private Declare Function SAIL GetTimeOutPeriod _
Lib "SAIL.d1l1" () As Long

Dim lngMilliSeconds As Long

lngMilliSeconds = SAIL_GetTimeOutPeriod()

MsgBox "The current time out period is " &
uiMilliSeconds & " milliseconds."

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
55

10 SAIL_SetTimeOutPeriod

Prototype

VOID SAIL_SetTimeOutPeriod

(
CONST UNSIGNED INT uiMilliSeconds

)i

Description

Sets the maximum number of milliseconds to wait for a reply from the Optimiser Online Server before
a timeout condition is to be flagged.

Paramete rs
Namg: B Direction”” | :Description S R
uiMilliSeconds In The number of mllhseconds to wait for a reply from
the Optimiser Online Server before a timeout
' condition occurs.

This value must be greater than zero milliseconds.
The default is 60 seconds.

Return Value
None

Remarks

The default timeout period is 15000 milliseconds if this operation is not invoked to set another timeout
period.

Examples

C++ Pseudo Code

UINT uiMilliSeconds:;

uiMilliSeconds = 10000; // 10 second timeout period
SAIL_SetTimeOutPeriod(uiMilliSeconds);

Visual Basic Pseudo Code

Option Explicit

Private Declare Sub SAIL_SetTimeOutPeriod
Lib "SAIL.dll" (ByVal uiMilliSeconds As Long)

Dim 1lngTimeout As Long

lngTimeout = 15000 ' 15 second timeout period
SAIL SetTimeOutPeriod lngTimeout

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
56

11 SAIL_ChangePassword

Prototype

SAILRETCODE SAIL_ChangePassword
(
CONST CHAR * CONST szCurrentPassword,
CONST CHAR * CONST szNewPassword
)i

Description
This function allows the user to change his/hers password.

Parameters
Name o S iiDirectiont s iDeseription 1 0) L
szCurrentPassword In A pointer to a null-terminated character string

specifying the current password of the user.

This pointer must not be NULL pointer.
szNewPassword In A pointer to a null-terminated character string
specifying the new password for the user.

This pointer must not be NULL pointer.

Return Value .

Returns an error code or SAIL_SUCCESSFUL if the operation was successful. Use
SAIL GetErrorMessage () to return a textual representation of the error code.

The developer should test for the following return values and perform the appropriate action:

Error Coder ...k o wl il iDesceriptio
SAIL_SUCCESS The operation was The Software Application
successful. may now proceed with
: further execution.
SAIL PASSWORDDENIED The Optimiser Online The Software Application

Server denied the request | should report to the user that
to change the password | the change has been denied
by the server.
SAIL_PASSWORDBAD The Optimiser Online The Software Application
Server denied the request | should report to the user that
to change the password. | it is a bad password and the
This might be due to the | change has been denied by
password length or the server.

wrong characters used.

Examples

C++ Pseudo Code

// NOTE: The following user passwords should never be hardcoded,
// the user must be provided with a mechanism for entering
// these details.

CHAR currentPassword [] = "xxxxx";
CHAR newPassword(] = "yyyyy":

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
57

SAILRETCODE RetCode:
RetCode = SAIL ChangePassword(currentPassword, newPassword);
if (RetCode == SAIL_ SUCCESSFUL) ({
// Inform user that password has been changed
} else {

// Inform user that password change was not successful
}

Visual Basic Pseudo Code

Option Explicit

Private Detlare Function SAIL ChangePassword _
Lib "SAIL.d11l" (ByVal currentPassword As String, _
ByVal newPassword As Long) As Long

Dim RetCode As Long
Dim strNewPassword As String
Dim strCurrentPassword As String

' NOTE: The following user passwords should never be hardcoded,
! the user must be provided with a mechanism for entering
' these details.
strCurrentPassword = "xxxxx"
strNewPassword = "yyyyyy"
RetCode = SAIL ChangePassword(strCurrentPassword, strNewPassword)
If (RetCode = SAIL SUCCESSFUL) Then
' Inform user that password has been changed
Else

' Inform user that password change was not successful

End If

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
58 ’

12 SAIL_SetHeartBeatFrequency

Prototype

VOID SAIL SetHeartBeatFrequency

(
CONST UNSIGNED INT uiMinutes

)i

‘Description
Sets the frequency to signal the server that the application is still active. This signal prevent the
disconnection of the network connection.

Parameters
Name 1.7 "0 7% Direction |:Description <~ - Uiy L o
uiMinutes In The number of minutes before sending another signal

to the server

Return Value
None

Remarks
The default frequency is 5 minutes if this operation is not invoked to set another frequency period.

The HeartBeat is a separate thread that initiates a message on time intervals. This HeartBeat thread
will not be created if the SAIL,_SetHeartBeatFrequency is set to 0 before the SAIL, Login function call.

Examples

C++ Pseudo Code

UINT uiSeconds;

uiMinutes = 10; // 10 minutes
SATL SetHeartBeatFrequency(uiMinutes);

Visual Basic Pseudo Code

Option Explicit

Private Declare Sub SAIL SetHeartBeatFrequency _
Lib "SAIL.d1ll" (ByVal uiMinutes As Long)

Dim lngHeartBeat As Long

IngHeartBeat = 10 ' 10 minutes timeout period

SAIL SetHeartBeatFrequency lngHeartBeat

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557
59

13 SAIL_GetHeartBeatFrequency

Prototype

UNSIGNED INT SAIL_ GetHeartBeatFrequency():

Description
Returns the number of minutes to which the HeartBeat is set.

Parameters
None

Return Value
Returns the frequency in minutes.

Remarks

PCT/AU01/00350

The default frequency of 5 minutes is returned if the frequency has not been previously set by the

SAIL_SetHeartBeatFrequency () operation.

Examples

C++ Pseudo Code

UINT uiMinutes;
uiMinutes = SAIL_GetHeartBeatFrequency():
cout << "The current frequency is " << uiMinutes

<< " minutes."
<< endl;

Visual Basic Pseudo Code

Option Explicit

Private Declare Function SAIL GetHeartBeatFrequency _
Lib "SAIL.dll" () As Long

Dim lngMinutes As Long

lngMinutes = SAIL_ GetHeartBeatFrequency ()

MsgBox "The current time out period is " & _
ingMinutes & " minutes."

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
60

14 SAIL_AccountBalance

Prototype

SAILRETCODE SAIL_ AccountBalance
(
UNSIGNED INT * CONST uiAccountBalance
):

Description
Returns the balance of the Optimiser Online account.

Parameters
Naiie - -4 - 1% 7 Direction” : |“Deseriptioni: . -+ il N ST
uiAccountBalance In A pointer to-an integer that contains the Optimiser

Online account balance. The content of the integer
will be modified by the operation to the value of the
| account balance.

This pointer must not be NULL pointer.,

Return Value

Returns an error code or SATIL_SUCCESSFUL if the operation was successful. Use
SAIL_GetErrorMessage () to return a textual representation of the error code.

Remarks

None

Examples

C++ Pseudo Code
char * userName;
char * userPassword;
char * proxyUserName;

char * proxyPassword;

unsigned int majorVersion, minorVersion, revisionVersion;
char applicationID[] = "abcdefghijklm";

int errCode;

unsigned int accBalance;

errCode = SAIL Login({
' userName, userPassword,
proxyUserName, proxyPassword,
majorVersion, minorVersion, revisionVersion,

applicationID,
0, NULL);
errCode = SAIL_ AccountBalance(&accBalancel);
cout << "Account Balance :" << accBalance
<< endl;

Visual Basic Pseudo Code
Option Explicit

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
61

Private Declare Function SAIL_AccountBalance _
Lib "SAIL.dll" (AccountBalance As Long) As Long

Dim lngAccountBalance As Long
errCode = SAIL AccountBalance (lngAccountBalance)

MsgBox "Account Balance :" & lngAccountBalance

FLAG SETTINGS FOR COMPILATION AND LINKING

SAIL is a multi-threaded library and requires the following flag setting at compile time.

1 Windows
‘Flag:. | -Meaning’ + Ly
/MD Defines MT and DLL so that both multithread and DLL-specxﬁc versions of

the Tun-time routines are selected from the standard .H files. This option also
causes the compiler to place the library name MSVCRT.LIB into the .OBI file.

Applications compiled with this option are statically linked to MSVCRT.LIB.
This library provides a layer of code that allows the linker to resolve external
references. The actual working code is contained in MSVCRT.DLL, which must
be available at run time to applications linked with MSVCRT.LIB.

2 SunOS5
Flags .. | Meaning: S,
-mt Specify options needed when compiling multi-threaded code
-Isocket | The socket library required for network calls.
-Insl The network services library required by Isocket.
'3 Notes

Having more than one copy of the run-time libraries in a process can cause problems, because static
data in one copy is not shared with the other copy. To ensure that your process contains only one copy,
avoid mixing static and dynamic versions of the run-time libraries. The linker will prevent you from
linking with both static and dynamic versions within one .EXE file, but you can still end up with two
(or more) copies of the run-time libraries. For example, a dynamic-link library linked with the static
(non-DLL) versions of the run-time libraries can cause problems when used with an .EXE file that was
linked with the dynamic (DLL) version of the run-time libraries.

SYSTEM SETTINGS

1 All Platforms

SAIL can be configured through the setting environment variables prior to executing a SAIL-enabled
Software Application. The environment variables that SAIL uses are as follows:

System Variable Name Description

HTTP_PROXY If the SAIL enabled Software Application resides behind an HTTP
proxy server then setting this variable will instruct SAIL to direct
communication through the specified HTTP proxy.

The value of this variable should be of the form:

<proxy host name>:<proxy port number>

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
62

Where <proxy host name> is the name of the host acting as proxy
and <proxy port number> is the port on which the proxy is
listening.

Example values are:
proxy.mydomain.com: 8080
192.168.1.1:80

SAIL_HOST_ NAME If this environment variable is set then SAIL will establish a
connection to the host specified in the variable’s value.

If this variable has not been set then SAIL will connect to the
Optimiser Online Server at salmon.optimiser.com.au.
SAIL_PORT_NUMBER If this environment variable is set then SAIL will establish a
connection to the port specified in the varjable’s value.

If this variable has not been set then SAIL will connect to port 80.

2 Windows System Settings

If the HTTP_PROXY €nvironment variable has not been set, then SAIL will determine from the Registry
whether an enabled HTTP proxy has been entered for the current user. These settings can be
configured through the Internet applet found in Control Panel.

If the registry settings do not exist or the proxy setting has been found disabled, then SAIL will not use
a proxy to establish a connection to the Optimiser Online Server. SAIL will establish a connection to
the Optimiser Online Server directly.

RETURN CODES

The return codes are listed in the SAIL.H file. The most common error codes and their meanings are
listed as follows:

ErrorCode & .- Desc?lptlo ity RS
SAIL_SUCCESS The operation was successful.
SAIL_PROXY_ AUTH_REQUIRED The developer should prompt the user for their proxy

username and proxy password. Another

SAIL Login() operation should be called with the
parameters szProxyUserName and
szProxyPassword set to the data entered by the user.

SAIL_ALREADYLOGGEDIN The operation failed because an attempt was made to re-
login without logging out the current login session.

SAIL_NOTLOGGEDIN The operation failed because a login session has not
been established.

SAIL_WRONGNAMEPASSWORD The user entered the wrong user name and/or password.

SAIL_SERVERDENIESREQUEST The Optimiser Online Server denied the request for

consuming more RTLs from the user’s account.

Possible causes could be:

e There are insufficient RTLs in the user’s Optimiser
Online account to consume the required amount.

o The Software Application is not registered with
Optimiser Online.

SAIL_INSUFFICIENT RTLs_LEFT | There are insufficient RTLs in the user’s account to

allow the Software Application to continue running.

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350

63
APPENDIX 3

The following is scenarios of how the SAIL library could be used :

Scenariol - MS Word

Micro Soft could say that people should pay them $1 for every hour someone uses the
MS Word. They could also say that every time one uses the Table functionality they
should pay two dollars.

The implementation of SAIL would be as follows:

Stepl

Step2

Step3

Step4

StepS

Step6

At the beginning of the program display a login screen asking the user
for his User Name and Password as registered in the SALMON server

Use the SAIL_Login api as follows directly after the login screen
errCode = SAIL_Login(userName, userPassword, ..., co. 5 veey cveyeees
. applicationID,
60, “Time charge”);

where: userName and UserPassword has been retrieved from the login screen
application ID is a identifier created in SALMON
60, “Time charge™ this will charge $1 every 60 minutes

Validate the return code, errCode, from SAIL_Login.

If it is successful continue with application otherwise call SAIL,_ErrMessage to
display the Error message. The error message could be something like “Wrong
User Name Password” etc

In the code where it handles the event from “Insert Table” in MS Word they
should insert a SAIL_onsumeRTL api as follows

errCode = SAIL,_ConsumeRTL(2, "Table Function Used");

where : 2 is the amount of dollars charged for this function and “Table Function
Used" is the information logged in SALMON

Validate the return code, errCode, from SAIL_ConsumeRTL.

If it is successful continue with application otherwise call SAIL,_ErrMessage to
display the Error message. The error message could be something like
“Insufficient funds in account” etc

In the code where it handles the event from “File -> Exit” in MS Word they
should insert a SAIL,_Logout api as follows

SAIL_Logout();

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350

64

Scenario2 - Game

Company ABC Pty(Ltd) develops a game that has different stages which get charged as
following :

Stage 1 : Entry Level — No Charge

Stage 2 : Charge $2 on entry of this stage 1 and play Unlimited time

Stage 3 : Charge $3 on entry of this stage 1 and play Unlimited time

The implementation of SAIL would be as follows:

Stepl

Step2

Step3

Step4

Step5

Step6

At the beginning of the program display a login screen asking the user
for his User Name and Password as registered in the SALMON server.

Use the SAIL_Login api as follows directly after the login screen

errCode = SAIL_Login(userName, userPassword, ..., co.y vevy ver s eens
applicationiD,
0, NULL);

where : userName and UserPassword has been retrieved from the login screen
application ID is a identifier created in SALMON

Validate the return code, errCode, from SAIL_Login.

If it is successful continue with application otherwise call SAIL, ErrMessage to
display the Error message. The error message could be something like “Wrong
User Name Password” etc

In the code where it handles the event from “Start Stage 2” in games menu they
should insert a SAIL. onsumeRTL api as follows

errCode = SAIL_ConsumeRTL(2, "Game ABC Stage 2");

where : 2 is the amount of dollars charged to this account for this stage and
“Game ABC Stage 2" is the information logged in SALMON

Validate the return code, errCode, from SAIL, ConsumeRTL.
If it is successful continue with application otherwise call SAIL_ErrMessage to

display the Error message. The error message could be something like
“Insufficient funds in account” etc

In the code where it handles the event from “Start Stage 3” in games menu they
should insert a SAIL,_onsumeRTL api as follows

errCode = SAIL_ConsumeRTL(3, "Game ABC Stage 3");

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350

Step7

Step8

65

where : 3 is the amount of dollars charged to this account for this stage and
“Game ABC Stage 3" is the information logged in SALMON

Validate the return code, errCode, from SAIL_ConsumeRTL.

If it is successful continue with application otherwise call SAIL_ErrMessage to
display the Error message. The error message could be something like
“Insufficient funds in account” etc

In the code where it handles the event from “File -> Exit” in the Game they
should insert a SAIL,_Logout api as follows

SAIL_Logout();

Scenario3 — Accounting Program

Company XYZ Pty(Ltd) developed an accounting package and want to charge people $2
per hour usage.

The implementation of SAIL would be as follows:

Stepl

Step2
screen

Step3

At the beginning of the program display a login screen asking the user
for his User Name and Password as registered in the SALMON server.

Use the SAIL_LoginConsumeoneLogout api as follows directly after the login

errCode = SAIL..LoginConsumeonel.ogout(userName, userPassword, ..., ... ,
“MYO Accounts” ..., ..., ... applicationlD, 60);

where : userName and UserPassword has been retrieved from the login screen,
“MYO Accounts” is a message that is logged on the server, applicationID isa

identifier created in SALMON , 60 is the amount of minutes before he will be
charged again.

In the code where it handles the event from “File -> Exit” in the Game they
should insert a SAIL _Logout api as follows

SAIL_Logout();

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350

10

15

20

25

30

66

The claims defining the invention are as follows:

1. | A method of authorising use of a computer program, said method including
the steps of:

providing an authorisation' system;

recording an identification of a computer program to be authorised of use
by the authorisation system;

a user registering with the authorisation system and receiving a login .
identification from the authorisation system;

the user making ;a request to use the computer program;

the computer program identifier and user identification being sent to the
authorisation system in a login request message;

the authorisation system verifying the identity of the user from the user
login identification and checking that the user is authorised to use the computer program
identified by the comj:uter program identifier;

the authorisation system recording the information sent with the request
message;

if the user is verified and authorised to use the computer program, then a
login authorisation message is sent to the computer program, otherwise an authorisation
denied message is sent to the computer program;

whereby upon receipt of the authorisation message the computer program

may be used by the user.

2. A method according to claim 1, wherein the method includes the steps of:
the computer program sending a request to the authorisation system to
incur a charge for the use of the computer program,
the authorisation system recording a charge against the identified user for

use of the computer program.

3. A method according to claim I, wherein the computer program is a

software application or a sub-component of the software application.

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350

10

15

20

25

30

67

4, A method according to claim 1, wherein an interface program signals the

login request to the authorisation system.

5. A method according to claim 2, wherein the charge is recorded in program
use units that operate as a currency for payment of the user of one or more computer

programs.

6. A method according to claim 5, wherein the rate of program use units are

charged for the use of the particular program is recorded in the authorisation system.

.

7. A method according to claim 6, wherein the program use units are charged

by the authorisation system upon receipt of the request to charge this at the recorded rate.

8. A method according to claim 1, wherein the request to the authorisation

system to charge the user is sent once per use of the computer program.

9. A method according to claim 1, wherein the request to the authorisation

system to charge the user is sent once per specified period during the use of the computer

program.

10. A method according to claim 1, wherein the authorisation message is
encrypted.

11. A method according to claim 1, wherein the communication between the

interface program and the authorisation system is encrypted.
12. A method according to claim 11, wherein messages sent between the
interface program and the authorisation system includes a unique component that is only

valid for a single use.

13. A method according to claim 1, wherein the user identification is obtained

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350

10

15

20

25

30

68

from the user by providing the user with a login prompt, the user entering the login
identification provided by the authorisation system and the entered user identification

being included in the login request.

14, A method according to claim 4, wherein the interface program is a separate
program called by the computer program being authorised as part of the initialisation of
the authorised computer program.

15. A method according to claim 4, wherein the interface program forms part

of the computer program and is started when a user attempts to use the computer program.

16. A method according to claim 4, wherein the interface program is part of an

operating system and is started when a user attempts to use the computer program.

17. A method according to claim 1, wherein the authorisation system is at a

location remote from a computer running the activated computer program.

18. A method according to claim 4, wherein the computer running the
activated computer program also runs the interface program, the interface program

communicates with the authorisation system over a computer network.

19. A method according to claim 1, wherein the authorisation system is

configured to record and authorise a plurality of computer programs.

20. A method according to claim 4, wherein the authorisation system

is configured to record and authorise a plurality of uses of the same computer program.

21. A system wherein there is provided a distributed system for authorising use
of a computer program, said system comprising at least:

an authorisation system, with a storage means for recording an identifier of
a computer program to be authorised for use with the authorisation system and recording

a user identification;

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350

10

15

20

25

30

69

a computer for running the computer program;

the computer being configured to send the identifier of the computer
program and user identification to the authorisation system in a login request message
when the user makes a request to use the computer program;

the authorisation system being configured to verify the identity of the user

. from the recorded user login identification and check that the user is authorised to use the

computer program identified by the recorded computer program identifier;

the authorisation system configured to record the information sent with the
request message;

the authorisation system being configured to send a login authorised
message to the computer if the user is verified and authorised to use the computer program
and otherwise send an authorisation denied message is sent to the computer;

whereby the computer is configured to continue use of the computer
program upon receipt of the authorisation message but otherwise terminate the use of the

computer prograt.

22, A system according to claim 21, wherein the system wherein the computer
is configured to sending a request to the authorisation system to record a charge or the use

of the computer program against the identified user for use of the computer program.

23. A system according to claim 22, wherein the storage means records the rate

of charge for the use of the computer program

24 A system according to claim 23, wherein the authorisation system records a
charge against the user upon receipt of the request to charge for use of the computer

program.

25. A system according to claim 24, wherein the computer is configured to
send a request to the authorisation system to charge the user once per use of the computer

program.

26. A system according to claim 24, wherein the computer is configured to

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350

10

15

20

70

send a request to the authorisation system to charge the user is sent once per specified

period during the use of the computer program.

27. A system according to claim 22, wherein the communication between the

computer program and the authorisation system is encrypted.

28. A system according to claim 23, wherein the computer and the
authorisation system are configured to include a unique component in the encrypted

messages communicated therebetween.

29. " A system according to claim 22, wherein the authorisation system is ata

location remote from a computer running the activated computer program.
30. A system according to claim 22, wherein the computer running the
activated computer pfogram also runs the interface program, an interface program that

communicates with the authorisation system over a computer network.

31. A system according to claim 22, wherein the authorisation system is

configured to record and authorise a plurality of computer program.

SUBSTITUTE SHEET (RULE 26) RO/AU

WO 01/73557 PCT/AU01/00350
1/5

5 10 14 20 18
* A /

Computer Online Server
w-——\ Software || SAIL L~ internet_) SALMON

Application System System
User 7 7 Y
/ / \
12 16 22
Figure 1

Can
Consume
RTL

3 8 ‘Activities

Figure 2a

30 32 34 42

/

Consume
RTL

fetdivihies

Figure 2b

WO 01773557 PCT/AU01/00350
2/5
User PC Server
202~ Start]
20t N Run 9)
Application + 20
212,
_ 20% 2
Validate) . / . /
2067 User [validate
Username,
Password
and Status
[| \
206 [N 216
T
Continue with E
222 | Avplication N
v E
Pay for T
224 — Use
'L 22% .
276 Validate Account '] ZF@
Credihility ¥ Valas -
Account
and Debhit d
Validation Account
Successful / M \
226 234
240
ﬁ,ontinue with _—
Application
73%

ngr& ?)

WO 01/73557 PCT/AU01/00350

3/5
5 50 12 52 16 22
<<create>>
54
Request Login] <coreate>>
[T Details
g
(Username, Password)
58
. — —
Login (Username, 60
Password)
56
<
: OK
Consume One Off
RTL() ol
< OK
N - _
72 174 70 76
Lo,f;@uto/T
" OK 7
N
84 80 82 7
<<destroy>> /
>X
<Proceed With Use
|86
<<desM :

Figure 4

WO 01/73557 PCT/AU01/00350
4/5

5 50 12 52
g Request Login L. <<create>>
i Details
-
(Username,
Password) Login (Username,
4 ‘Password)
56 84
OK
AN
64 62
Proceed With Usev
98 100
/
Consume RTL(() ’l_
........................]
" OK \ 4 /
. 104 102
. - 106
_—
Consume RTL() -
il
u —
OK—__
86 12| 110
<<destroy>>
—
<
§x

Figure 5

WO 01/73557 PCT/AU01/00350

5/5

302 3

s
General
Registratlon

Slingle
Applicatlon

EEC I 7 33U 326, 272

User paid
Optimiser
for Usage

User Paid
Vendor for
usage

Software
Vendor
registered

EXIT

SAIL
intergrated

SAIL PAYU
initiated

INTERNATIONAL SEARCH REPORT

International application No.
PCT/AU01/00350

A.

CLASSIFICATION OF SUBJECT MATTER

Int. CL 7

GO6F 12/14

According to International Patent Classification (IPC) or to both national classification and IPC

B.

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such docurmnents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPAT and USPTO with keywords
C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5138712 A (CORBIN) 11 August 1992 1-31
X US 5553143 A (ROSS et al) 3 September 1996 1-31
X US 5671412 A (CHRISTIANO) 23 September 1997 1-31

Further documents are listed in the continuation of Box C See patent family annex

*
IIA"
IIEII

HLII

"O"

IIPII

Special categories of cited documents:

document defining the general state of the art which is
not considered to be of particular relevance

earlier application or patent but published on or after
the international filing date

document which may throw doubts on priority claim(s)
or which is cited to establish the publication date of
another citation or other special reason (as specified)
document referring to an oral disclosure, use,
exhibition or other means

document published prior to the international filing
date but later than the priority date claimed

v

IIXII

wyn

II&II

later document published after the international filing date or
priority date and not in conflict with the application but cited to
understand the principle or theory underlying the invention
document of particular relevance; the claimed invention cannot
be considered novel or cannot be considered to involve an
inventive step when the document is taken alone

document of particular relevance; the claimed invention cannot
be considered to involve an inventive step when the document is
combined with one or more other such documents, such
combination being obvious to a person skilled in the art
document member of the same patent family

Date of the actual completion of the international search

Date of mailing of lae international search report

24 April 2001 '
Name and mailing address of the ISAJAU Authorized officer
AUSTRALIAN PATENT OFFICE '
PO BOX 200, WODEN ACT 2606, AUSTRALIA

J.W. THOMSON

E-mail address: pet@ipaustralia.gov.au
Facsimile No. (02) 6285 3929

Telephone No : (02) 6283 2214

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT International application No.

PCT/ATU01/00350
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to
claim No.
X US 5745879 A (WYMAN) 28 April 1998 1-31
X US 6023766 A (YAMAMURA) 8 February 2000 1-31

Form PCT/ISA/210 (continuation of Box C) (Tuly 1998)

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.
PCT/AU01/00350

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the
above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars

which are merely given for the purpose of information.

Patent Document Cited in Search Patent Family Member
Report
Us 5138712 CA 2025434 GB 2236604 HK 485/94
JP 4100148 SG 24/94
UsS 5553143 AU 67317/94
UsS 5671412 NONE
Us 5745879 AU 20158/92 AU 22470/92 EP 538453
EP 538464 IE 921475 NZ 242627
WO 9220021 WO 9220022 IE 922107
IL 102114 IL 116271 NZ 243271
Us 5260999 Us 5204897 US 5438508
Us 6023766 JP 10228504
END OF ANNEX

Form PCT/ISA/210 (citation family annex) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

