a2 United States Patent

Jain et al.

US007203706B2

US 7,203,706 B2
*Apr. 10, 2007

(10) Patent No.:
45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(60)

(1)
(52)

(58)

BUFFERED MESSAGE QUEUE
ARCHITECTURE FOR DATABASE
MANAGEMENT SYSTEMS WITH MEMORY
OPTIMIZATIONS AND “ZERO COPY”
BUFFERED MESSAGE QUEUE

Inventors: Namit Jain, Emeryville, CA (US);
Neerja Bhatt, Mountain View, CA
(US); Kapil Surlaker, Mountain View,
CA (US); Krishnan Meiyyappan,
Fremont, CA (US); Shailendra Mishra,
Fremont, CA (US)

Assignee: QOracle International Corporation,

Redwood Shores, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 413 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 10/443,207

Filed: May 21, 2003

Prior Publication Data

US 2004/0034664 Al Feb. 19, 2004

Related U.S. Application Data

Provisional application No. 60/410,883, filed on Sep.
13, 2002, provisional application No. 60/400,532,
filed on Aug. 1, 2002.

Int. Cl1.
GO6F 17/30 (2006.01)
US.CL ... 707/104.1; 707/100; 707/101;

707/102; 707/103 R; 709/206; 709/207
Field of Classification Search 707/102,
707/203, 100, 101, 103 R, 104.1; 719/314;
709/206, 207

See application file for complete search history.

900

(56) References Cited
U.S. PATENT DOCUMENTS
4,318,182 A * 3/1982 Bachman et al. 718/105
(Continued)

OTHER PUBLICATIONS

Current Claims in PCT applications, International Application No.
PCT/US03/23747, 14 pages.

(Continued)

Primary Examiner—Frantz Coby

(74) Attorney, Agent, or Firm—Hickman Palermo Truong &
Becker LLP; Edward A. Becker

57 ABSTRACT

A buffered message queue architecture for managing mes-
sages in a database management system is disclosed. A
“buffered message queue” refers to a message queue imple-
mented in a volatile memory, such as a RAM. The volatile
memory may be a shared volatile memory that is accessible
by a plurality of processes. The buffered message queue
architecture supports a publish and subscribe communica-
tion mechanism, where the message producers and message
consumers may be decoupled from and independent of each
other. The buffered message queue architecture provides all
the functionality of a persistent publish-subscriber messag-
ing system, without ever having to store the messages in
persistent storage. The buffered message queue architecture
provides better performance and scalability since no persis-
tent operations are needed and no UNDO/REDO logs need
to be maintained. Messages published to the buffered mes-
sage queue are delivered to all eligible subscribers at least
once, even in the event of failures, as long as the application
is “repeatable.” The buffered message queue architecture
also includes management mechanisms for performing buft-
ered message queue cleanup and also for providing unlim-
ited size buffered message queues when limited amounts of
shared memory are available. The architecture also includes
“zero copy” buffered message queues and provides for
transaction-based enqueue of messages.

18 Claims, 15 Drawing Sheets

902

-

PUBLISHER ALLOCATES MEMORY IN SHARED MEMORY

|

/ 904

| PUBLISHER GENERATES A NEW MESSAGE IN THE ALLOCATED MEMORY |

506

PUBLISHER ENQUEUES A REFERENCE TO THE NEW MESSAGE TO THE BUFFERED
MESSAGE QUEUE

¥

908

r NEW MESSAGE IS ENQUEUED INTO BUFFERED MESSAGE QUEUE

]

910

SUBSCRIBER REQUESTS THAT A MESSAGE BE DEQUEUED FROM THE BUFFERED
MESSAGE QUEUE

912

r PROVIDE REFERENCE TO NEW MESSAGE TO SUBSCRIBER

__1

914

I DE-ALLOCATE MEMORY FROM SHARED MEMORY FOR RE-USE

US 7,203,706 B2

Page 2
U.S. PATENT DOCUMENTS 6,658,596 Bl * 12/2003 Owen et al.cccceeeeunnne 714/16
6,691,155 B2 2/2004 Gottfried
5,113,522 A * 5/1992 Dinwiddie et al. 713/375 6,826,182 Bl 11/2004 Parthasarathy
5222217 A 6/1993 Blount et al. 2001/0047270 Al 11/2001 Gusick et al.
5,347,632 A 9/1994 Filepp et al. 2002/0112008 Al 82002 Christenson et al.
5,357,612 A 10/1994 Alaiwan 2002/0138582 Al 9/2002 Chandra et al.
5,465,328 A * 11/1995 Dievendorff et al. 714/15 2002/0144010 A1 10/2002 Younis et al.
5,627,764 A 5/1997 Schutzman et al. 2003/0093576 Al* 52003 Dettinger et al. 709/313
5,790,807 A 8/1998 Fishler et al. 2003/0110085 Al 6/2003 Murren et al.
5,802,253 A 9/1998 Gross et al. 2003/0144187 Al* 7/2003 Dunstan et al. 514/12
5,828,835 A 10/1998 Isfeld et al. 2003/0212657 Al 11/2003 Kaluskar et al.
5,867,665 A * 2/1999 Butman et al. 709/239 2003/0212670 Al 11/2003 Yalamanchi et al.
5,867,667 A * 2/1999 Butman et al. 709/249 2003/0236834 Al 12/2003 Gottfried
5,870,562 A * 2/1999 Butman et al. 709/238 2004/0024771 A1* 2/2004 Jain et al. ..ococevreienn. 707/100
5,878,056 A 3/1999 Black et al. 2004/0024774 A1* 2/2004 Jain et al. 707/102
5,884,035 A % 3/1999 Butman et al. 709/218 2004/0024794 A1* 2/2004 Jain et al. 707/201
5,940,839 A 8/1999 Chen et al. 2004/0034640 A1* 2/2004 Jain et al. ..ococovererennnne. 707/10
6,026,430 A * 2/2000 Butman et al. 709/203 2004/0034664 Al* 22004 Jain et al. 707/104.1
6,029,205 A 2/2000 Alferness et al. 2004/0049738 Al* 3/2004 Thompson et al. 715/513
6,058,380 A * 52000 Chandraetal. 707/1 2004/0107125 Al* 62004 Guheen et al. 705/7
6,182,086 B1* 1/2001 Lomet et al. 707/202
6,188,699 Bl 2/2001 Lang et al. OTHER PUBLICATIONS
6,334,114 Bl 12/2001 Jac.obs et al. International Searching Authority, “Notification of Transmittal of
6,338,074 B1* 1/2002 Poindexter et al. 715/500 the International Search Report or the Declaration,” dated May 25
6,393,423 Bl 5/2002 Goedken 2004, 6 pages ' '
6,442,568 Bl §/2002 Velasco et al. Kei Kurakawa et al., “Life Cycle Design Support Based on Envi-
6,473,794 B1* 10/2002 Guheen et al. 709/223 . A% :
ronmental Information Sharing,” IEEE, Feb. 1-3, 1999, Proceedings
6,493,826 Bl 12/2002 Schofield et al. 00 T : -
EcoDesign *99, First International Symposium, pp. 138-142.
6,515,968 Bl 2/2003 Combar et al. . « .
Oliver Gunther, et al., “MMM: A Web-Based System for Sharing
6,519,571 B1* 2/2003 Guheen et al. 705/14 gl Computine. Modules” TEEE. Mav-tun. 1997. vol. 1
6,529,932 Bl 3/2003 Dadiomov et al. Loue 3 o sopg : » vaysiun 5, VoL
6,536,037 BL* 3/2003 Guheen et al. 717/151 » bP- '
6,654,907 B2 11/2003 Stanfill et al. * cited by examiner

U.S. Patent

Apr. 10, 2007

Sheet 1 of 15

FIG. 1A

DBMS 100

US 7,203,706 B2

P2

P3

@)

SHARED MEMORY 104

BUFFERED MESSAGE QUEUE 106

M1

M2

M3 M4

Mb

)

DATABASE 102

MESSAGE QUEUE

PERSISTENT

108

CHECKPOINT TABLE 110

P1
P2
P3

PUBLISHERID VALUE

M1
M2
M3

«

US 7,203,706 B2

Sheet 2 of 15

Apr. 10, 2007

U.S. Patent

SN PN te— SN te—{ 2N | LN

901 3IN3NO IOVSSIN A3J344Ng

F0I AYOWNIN QIIYHS

001~ SWda

T O

FPI AQOE 3OVSSIN

{

\

871 AQOg 3IVSSIN OL ¥3LINIOd

¢S1 INNOD 3ON3Y343d

97T a1 39VSSIW 3NDINN

A

0ST ¥31INIOd 3OVSSIW IX3N

Zpl "3av3aH 39VSSIN

opL/ FOVSSIN

oor\

a1 "Old

U.S. Patent Apr. 10, 2007 Sheet 3 of 15 US 7,203,706 B2

FIG.2 20
\l /202
CREATE BUFFERED MESSAGE QUEUE
SUBSCRIBER SUBSCRIBES TO RECEIVE MESSAGES FROM BUFFERED
MESSAGE QUEUE

STORE FIRST MESSAGE IN BUFFERED MESSAGE QUEUE

/208
SUBSCRIBER REQUESTS THAT A MESSAGE BE DEQUEUED FROM
BUFFERED MESSAGE QUEUE
v {,21 0
DETERMINE WHETHER FIRST MESSAGE SATISFIES SUBSCRIPTION
DATA FOR SUBSCRIBER
y 27
PROVIDE FIRST MESSAGE TO SUBSCRIBER IF FIRST MESSAGE
SATISFIES SUBSCRIPTION DATA
v f21 4

DELETE FIRST MESSAGE FROM MESSAGE QUEUE IF FIRST MESSAGE
DOES NOT SATISFY ANY OTHER SUBSCRIPTION DATA

US 7,203,706 B2

Sheet 4 of 15

Apr. 10, 2007

U.S. Patent

N

80E
[/N| 3n3nD 39vSSaW
IN3LSISYId

o

____ @

A,

(] (] [n] [m] [0]

90F ININD IOVSSIN QIY344Na

POE AHONIW a3HYHS

TN

80E
3N3N0O 3OVSSIN
INILSISHId

=

[on] [on] [o] [on]

90€ N3N0 IOVSSIN AY344ng

F0E AJOWIN Q3VHS

00§ _/ singa

a¢ "DIA

00c -~/ SWEQ

Ve 'Ol

US 7,203,706 B2

Sheet 5 of 15

Apr. 10, 2007

U.S. Patent

N

g0¢

E aN3NO IOVSSIN

IN3LSISH3d

Z0% 3Svav.iva

.
Ly
.

(] Tor] [on] [w] [ed]

90t 3IN3ND IOVSSIW AFY344N9

F0E AJOWIN QIIVHS

00c—’ SWEa

dg "Old

TN

808
N IN3N0 FOVSSIN
IN31SISH3d

)

¢0€E 3svavlvd

90 3IN3ND IDVYSSIN G34344ng

$OE AJOWIN QIVHS

00c -~/ SNaa

¢ D14

US 7,203,706 B2

Sheet 6 of 15

Apr. 10, 2007

U.S. Patent

TN

80t
3INAND IOVSSIN E
IN3LSISYd

¢0¢ 3svaviva

90t 3N3N0 IOVSSIN A3y344nd

m & & @ o

FOT AMOW3W 3HVHS

N

80t
3IN3ND FOVSSIN £N
IN31SISH3d

)

0t 3svav.Lvd

90¢ IN3ND IOVSSIN AFY344Ng

F0E AHOW3W G3dVHS

00§ -/ swaa

d€ "OId

00§ -/ Swaa

aHe "D

U.S. Patent Apr. 10, 2007 Sheet 7 of 15 US 7,203,706 B2

FIG.4 %
402

RECEIVE REQUEST TO ENQUEUE A NEW MESSAGE INTO A
BUFFERED MESSAGE QUEUE FOR WHICH THERE IS INSUFFICIENT
SPACE IN THE BUFFERED MESSAGE QUEUE

v 404

SPILLOVER TO NON-VOLATILE STORAGE EITHER CURRENT
MESSAGES IN BUFFERED MESSAGE QUEUE OR NEW MESSAGE

\) 406

STORE MESSAGE HEADER IN BUFFERED MESSAGE QUEUE FOR
SPILLED OVER MESSAGE

\) 408

STORE NEW MESSAGE IN BUFFERED MESSAGE QUEUE

U.S. Patent Apr. 10, 2007 Sheet 8 of 15 US 7,203,706 B2

500
FIG. 5§ \
r502
MESSAGE PUBLISHED TO BUFFERED MESSAGE QUEUE
)l 504
MESSAGE DEQUEUED TO SUBSCRIBERS
506
YES
< SUBSCRIBERS?
(508
CREATE CHECKPOINT VALUES AND STORE IN NON-VOLATILE STORAGE
v 510
FAILURE CAUSES LOSS OF MESSAGES IN BUFFERED MESSAGE QUEUE
v /512
RESTORE BUFFERED MESSAGE QUEUE AND RETRIEVE CHECKPOINT VALUES
) /514
PROVIDE CHECKPOINT VALUES TO PUBLISHERS AND REQUEST THAT
MESSAGES BE RE-PUBLISHED
v 516
PUBLISHERS RE-PUBLISH MESSAGES TO BUFFERED MESSAGE QUEUE

US 7,203,706 B2

Sheet 9 of 15

Apr. 10, 2007

U.S. Patent

TN

859

3N3ND JOVSSIN
IN3LSISY3d

e

989 3N3aND JOVSSIW a3H334ng

4}

909

EW

909

AV

304N0sS

WMH

I0HN0S

0£9-/T18YL YOV 1530 099~/ T1AVL WMH
759 AHOWIW a34YHS

om@k SWaa

119~

809

IN3ND FOVSSIN
IN31SISH3d

)

¢09 3svavlva

S

L]

[en

909 3N3ND 3OVYSSIW A3H344N8

4

069 SWad

909

AV

1834

30dN0S

¢l9

318VL MOV
NOILYOVdOdd

019 SS3004d

F09 AJOW3W A3dYHS

NOILYOVdOUd

009- Swaa

9Ol

U.S. Patent Apr. 10, 2007 Sheet 10 of 15 US 7,203,706 B2

FIG. 7 73‘0

702

INITIAL SET OF MESSAGES PROPAGATED FROM LOCAL BUFFERED
MESSAGE QUEUE TO REMOTE BUFFERED MESSAGE QUEUE

\ 704
UPDATE HIGH WATER MARK TABLE ON DESTINATION DBMS

4, 706

MESSAGES ARE DEQUEUED FROM REMOTE BUFFERED MESSAGE
QUEUE

[708

UPDATE DESTINATION ACKNOWLEDGE TABLE ON DESTINATION

DBMS

T 710

UPDATE PROPAGATION ACKNOWLEDGEMENT TABLE ON SOURCE
DBMS

J 712

AFTER FAILURE, USE PROPAGATION ACKNOWLEDGEMENT TABLE
TO RE-PROPAGATE MESSAGES TO REMOTE BUFFERED MESSAGE
QUEUE

U.S. Patent Apr. 10, 2007 Sheet 11 of 15 US 7,203,706 B2

FIG. 8
pBMs 800
SHARED MEMORY 804
SM1
BT
/2....

_,__\BU?&’RED SSAGE QUEUE 806
Y _...#
T HE

/I;\TABASE _8_0_2\
—

PERSISTENT
MESSAGE QUEUE
808

~

U.S. Patent Apr. 10, 2007 Sheet 12 of 15 US 7,203,706 B2

900
FIG.9 \
/902
PUBLISHER ALLOCATES MEMORY IN SHARED MEMORY
v /904
PUBLISHER GENERATES A NEW MESSAGE IN THE ALLOCATED MEMORY
v 908
PUBLISHER ENQUEUES A REFERENCE TO THE NEW MESSAGE TO THE BUFFERED
MESSAGE QUEUE
N 908
NEW MESSAGE IS ENQUEUED INTO BUFFERED MESSAGE QUEUE
v 910
SUBSCRIBER REQUESTS THAT A MESSAGE BE DEQUEUED FROM THE BUFFERED
MESSAGE QUEUE
v 912
PROVIDE REFERENCE TO NEW MESSAGE TO SUBSCRIBER
V 914
DE-ALLOCATE MEMORY FROM SHARED MEMORY FOR RE-USE

U.S. Patent

Apr. 10, 2007

FIG. 10A

Sheet 13 of 15

DBMS /1 000

SHARED MEMORY 1004

BUFFERED MESSAGE QUEUE 1006

M4

WORKLIST 1010

—

\

DATABASE JQD
\

§

:j
PERSISTENT
MESSAGE QUEUE

008]

FIG. 10B

DBMS /1000

SHARED MEMORY 1004

BUFFERED MESSAGE QUEUE 1006

M4

[

PERSISTENT
MESSAGE QUEUE
1008

\

US 7,203,706 B2

U.S. Patent Apr. 10, 2007 Sheet 14 of 15 US 7,203,706 B2

FIG. 11

1100

\ /1102

PUBLISHER PERFORMING WORK WITHIN A TRANSACTION REQUESTS
THAT BUFFERED MESSAGES BE ENQUEUED

v / 1104
STORE MESSAGES IN WORKLIST

1106

YES HAS

TRANSACTION NO
COMMITTED? 7]
¥ 1108
ENQUEUE MESSAGES FROM WORKLIST INTO BUFFERED
MESSAGE QUEUE AND DELETE MESSAGES FROM
WORKLIST
\’ / 1110

DELETE MESSAGES FROM WORKLIST WITHOUT
ENQUEUEING MESSAGES INTO BUFFERED MESSAGE
QUEUE

US 7,203,706 B2

Sheet 15 of 15

Apr. 10, 2007

U.S. Patent

}
MHOMLIN ~ JOVAYALNI voct ! [5]x4)
9007 | NOLLYOINMINGO 40S$300Yd o e [IV
_ _ HOSHND
] !
! f
| |
f !
" 7020 _
_ She ! 30IA30 LNaNI
| |
| |
| |
JEINEITY | |
I _
I101el 30T 9021 !
sect e | onaa AMONIN | [—> Nﬂﬁ,ﬁ S0
wangs ||| Fovdols oY NIV |

¢l 9Old

US 7,203,706 B2

1

BUFFERED MESSAGE QUEUE
ARCHITECTURE FOR DATABASE
MANAGEMENT SYSTEMS WITH MEMORY
OPTIMIZATIONS AND “ZERO COPY”
BUFFERED MESSAGE QUEUE

RELATED APPLICATION AND CLAIM OF
PRIORITY

This application is related to and claims benefit of U.S.
Provisional Patent Application No. 60/400,532, filed on
Aug. 1, 2002, and this application is also related to and
claims benefit of U.S. Provisional Patent Application No.
60/410,883, filed on Sep. 13, 2002. The entire contents of
these prior and related applications are hereby incorporated
by reference in their entirety for all purposes. This applica-
tion is also related to U.S. Non Provisional application Ser.
No. 10/443,206, entitled “BUFFERED MESSAGE QUEUE
ARCHITECTURE FOR DATABASE MANAGEMENT
SYSTEMS?”, filed on May 21, 2003. This application is also
related to U.S. Non Provisional patent application Ser. No.
10/443,175, entitled “BUFFERED MESSAGE QUEUE
ARCHITECTURE FOR DATABASE MANAGEMENT
SYSTEMS WITH UNLIMITED BUFFERED MESSAGE
QUEUE WITH LIMITED SHARED MEMORY™, filed on
May 21, 2003. This application is also related to U.S. Non
Provisional patent application Ser. No. 10/443,323, entitled
“BUFFERED MESSAGE QUEUE ARCHITECTURE FOR
DATABASE MANAGEMENT SYSTEMS WITH GUAR-
ANTEED AT LEAST ONCE DELIVERY?”, filed on May
21, 2003. This application is also related to U.S. Non
Provisional patent application Ser. No. 10/443,174, entitled
“BUFFERED MESSAGE QUEUE ARCHITECTURE FOR
DATABASE MANAGEMENT SYSTEMS WITH TRANS-
ACTIONAL ENQUEUE SUPPORT”, filed on May 21,
2003.

FIELD OF THE INVENTION

This invention relates generally to information manage-
ment systems and, more specifically, to an approach for
implementing message queues in database systems.

BACKGROUND OF THE INVENTION

The approaches described in this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceived or pursued. Therefore,
unless otherwise indicated, the approaches described in this
section may not be prior art to the claims in this application
and are not admitted to be prior art by inclusion in this
section.

Messaging is a communication model that is used to
handle the complexity of communications between multiple
nodes in a distributing environment or a “directed network.”
In the context of database management systems (DBMSs),
the term “message” may refer to any type of data. For
example, a database application may submit a request for
data in the form of a query to a database server and the
request is stored in a message queue in the DBMS. Messages
can be stored persistently, propagated between queues on
different machines and database, and transmitted over a
network. Publish subscriber and point-to-point communica-
tion modes are supported. The database server retrieves the
request from the message queue and processes the request
against the database. The database server stores results of
processing the request in the message queue and the data-

10

20

25

30

35

40

45

50

55

60

65

2

base application retrieves the results from the message
queue. In this example, both the request and the results may
be stored as messages in the message queue of the DBMS.

In DBMS environments, data contained in message
queues, i.e., messages, is sometimes stored in persistent
database tables, which provides the benefits of high avail-
ability, scalability and reliability. For example, in the event
of a failure, a message queue can be recovered using the
particular recovery mechanism used in the DBMS to recover
database tables. For example, a prior version of a database
table and REDO records may be used to construct a later
version of the database table. Storing DBMS message
queues in persistent database tables has the disadvantage of
high overhead associated with maintaining the persistent
database tables. For example, recovery mechanisms require
the creation and management of UNDO and REDO data for
the database tables containing the message queue data. The
overhead attributable to maintaining message queue data in
database tables can be very expensive in situations where
messages are small. Furthermore, the approach generally
may not be selectively applied to messages, resulting in the
overhead costs being incurred for messages that do not
contain important data.

Based on the foregoing, an approach for implementing
message queues in database systems that does not suffer
from limitations in prior approaches is highly desirable.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example,
and not by way of limitation, in the figures of the accom-
panying drawings and in which like reference numerals refer
to similar elements and in which:

FIG. 1A is a block diagram that depicts a DBMS config-
ured with a message queue according to an embodiment of
the invention.

FIG. 1B is a block diagram that depicts an example
buffered message queue message format according to an
embodiment of the invention.

FIG. 1C is a block diagram that depicts how subscribers
each maintain a reference to the next available message in a
buffered message queue.

FIG. 2 is a block diagram that depicts an approach for
processing messages in a DBMS according to an embodi-
ment of the invention.

FIGS. 3A-3F are block diagrams that depict a database
management system configured to perform message spill-
over in accordance with an embodiment of the invention.

FIG. 4 is a flow diagram that depicts an approach for
performing message spillover in accordance with an
embodiment of the invention.

FIG. 5 is a flow diagram that depicts an approach for
providing buffered message queue recovery using a single
checkpoint value according to an embodiment of the inven-
tion.

FIG. 6 is a block diagram that depicts a distributed
database arrangement.

FIG. 7 is a flow diagram that depicts an approach for using
a propagation acknowledgement table to provide for re-
propagation of messages to a destination DBMS after a
failure, according to an embodiment of the invention.

FIG. 8 is a block diagram that depicts a DBMS configured
to provide “zero copy” access to a buffered message queue
according to an embodiment of the invention.

US 7,203,706 B2

3

FIG. 9 is a flow diagram that depicts an approach for
performing “zero copy” access to a buffered message queue
in a database system according to an embodiment of the
invention.

FIGS. 10A and 10B are block diagrams that depict a
DBMS configured to perform transactional enqueue accord-
ing to one embodiment of the invention.

FIG. 11 is a flow diagram that depicts an approach for
performing transactional enqueue according to one embodi-
ment of the invention.

FIG. 12 is a block diagram that depicts a computer system
on which embodiments of the present invention may be
implemented.

DETAILED DESCRIPTION OF THE
INVENTION

In the following description, for the purposes of expla-
nation, numerous specific details are set forth in order to
provide a thorough understanding of the present invention.
It will be apparent, however, to one skilled in the art that the
present invention may be practiced without these specific
details. In other instances, well-known structures and
devices are shown in block diagram form in order to avoid
unnecessarily obscuring the present invention. In some
instances, flow diagrams are used to depict steps performed
in various embodiments of the invention. The invention is
not limited to the particular order of steps depicted in the
figures and the order may vary, depending upon the require-
ments of a particular implementation. Furthermore, steps
that are depicted and described may be removed and/or other
steps may be added, depending upon the requirements of a
particular implementation. Various aspects of the invention
are described hereinafter in the following sections:
1. OVERVIEW
1I. BUFFERED MESSAGE QUEUE ARCHITECTURE
1I. BUFFERED MESSAGE QUEUE CREATION AND
OPERATION

IV. CONTENT-BASED PUBLISH AND SUBSCRIBE

V. TRANSFORMATION AND EVENT NOTIFICA-
TIONS

VI. BUFFERED MESSAGE QUEUE CLEANUP

VII. UNLIMITED BUFFERED MESSAGE QUEUE
WITH LIMITED SHARED MEMORY

VIII. GUARANTEED AT LEAST ONCE DELIVERY IN
BUFFERED MESSAGE QUEUES

IX. DISTRIBUTED BUFFERED MESSAGE QUEUE
IMPLEMENTATIONS

X. “ZERO COPY” BUFFERED MESSAGE QUEUES
IN DATABASES

XI. TRANSACTIONAL ENQUEUE

XII. IMPLEMENTATION MECHANISMS, ALTERNA-
TIVES & EXTENSIONS

1. Overview

A buffered message queue architecture for managing
messages in a database management system is disclosed. As
used herein, the term “buffered message queue” refers to a
message queue implemented in a volatile memory, such as
a RAM. The volatile memory may be a shared volatile
memory that is accessible by a plurality of processes.
According to one embodiment of the invention, an approach
for managing messages in a database system includes cre-
ating a message queue in a shared volatile memory of the
database system. A message is stored in the message queue
and then a determination is made whether the message
satisfies subscription data for a subscriber process. If so,

20

25

30

35

40

45

50

55

60

65

4

then the message is provided to the subscriber process,
without having to first store the message in a persistent
message queue.

The buffered message queue architecture supports a pub-
lish and subscribe communication mechanism, where the
message producers and message consumers may be
decoupled from and independent of each other. An entity
that produces a message is referred to as a “publisher.” An
entity interested in messages in a buffered message queue
“subscribes” to the buffered message queue and is referred
to as a “subscriber.” When a publisher publishes or
“enqueues” messages to the buffered message queue, the
messages become available to the subscribers who may
“consume” or “dequeue” the messages that they are eligible
for from the buffered message queue.

The buffered message queue architecture provides all the
functionality of a persistent publish-subscriber messaging
system, without ever having to store the messages in per-
sistent storage. The buffered message queue architecture
provides better performance and scalability since no persis-
tent operations are needed and no UNDO/REDO logs need
to be maintained. As described in more detail hereinafter,
messages published to the buffered message queue are
delivered to all eligible subscribers at least once, even in the
event of failures, as long as the application is “repeatable.”
This is in contrast to persistent messaging systems where
there is exactly one delivery of messages to subscribers for
all applications.

II. Buffered Message Queue Architecture

FIG. 1A is a block diagram that depicts a DBMS 100
configured with a buffered message queue in accordance
with an embodiment of the invention. DBMS 100 includes
a database 102 that may be implemented using any type of
non-volatile storage device, such as one or more disks, and
may include any type of data, for example, database tables.
DBMS also includes a shared memory 104 that is imple-
mented in a shared volatile memory, such as Random Access
Memory (RAM).

DBMS 100 is configured with a buffered message queue
106 that is created in shared memory 104. The amount of
shared memory 104 allocated to buffered message queue
106 may be fixed, or may change over time, depending upon
the requirements of a particular implementation. For
example, buffered message queue 106 may be allocated a
specified amount of storage in shared memory 104 that does
not change for the life of buffered message queue 106. As
another example, buffered message queue 106 may be
allocated an initial amount of storage in shared memory 104
that may be increased or decreased over time as storage
requirements change. The amount of memory allocated to
buffered message queue 106 may be specified automatically
by a database server process or specified manually, for
example by a database administrator. Example factors that
may be considered in determining the amount of shared
memory 104 allocated to buffered message queue 106
include, without limitation, the size of shared memory 104,
the past and present amount of shared memory 104 required
by processes accessing shared memory 104 and the esti-
mated amount of data that will be stored in buffered message
queue 106 at any given time.

DBMS 100 also includes a conventional persistent mes-
sage queue 108 that is maintained in a database table in
database 102. For purposes of explanation, embodiments of
the invention are depicted in the figures and described in the
context of a DBMS configured with a single buffered
message queue disposed in a shared memory and a single

US 7,203,706 B2

5

persistent message queue implemented in a database. The
invention, however, is not limited to this context and is
applicable to arrangements with any number of buffered
message queues and any number of persistent message
queues.

DBMS 100 includes three processes P1, P2 and P3 that
are each configured to act as publishers and enqueue mes-
sages into buffered message queue 106. Processes P1, P2
and P3 are also each configured to act as subscribers and
subscribe to buffered message queue 106 and dequeue
messages that they are eligible to dequeue. Hereinafter,
processes are referred to as “publishers” when they are
publishing messages and as subscribers when they are
subscribing or dequeuing messages, e.g., publisher P1 or
subscriber P1. Processes P1, P2 and P3 may be any type of
processes and the invention is not limited to particular types
of processes. Examples of processes P1, P2 and P3 include,
without limitation, client processes, server processes and
other internal DBMS administrative processes.

For purposes of explanation, embodiments of the inven-
tion are depicted in the figures and described in the context
of processes P1 and P2 executing within DBMS 100.
Processes P1, P2 and P3 may be client processes, i.e., client
processes that can execute at any location so long as they can
establish connectivity to DBMS 100. Processes P1, P2 and
P3 may also be database server/background processes that
execute within DBMS 100.

II1. Buffered Message Queue Creation and Operation

Buffered message queues are created in shared memory in
response to requests from processes. For example, process
P1 may request the creation of buffered message queue 106.
According to one embodiment of the invention, buffered
message queues are related to persistent message queues and
are created after persistent message queues have been cre-
ated. For example, process P1 first requests the creation of
persistent message queue 108. Process P1 may then request
that a buffered message queue be added, which in the present
example, causes the creation of buffered message queue 106.

According to another embodiment of the invention, buff-
ered message queues are created in response to a request to
enqueue a message to a buffered message queue, when a
buffered message queue does not currently exist. For
example, suppose that publisher P1 issues a request to
enqueue a first message into buffered message queue 106
before buffered message queue 106 exists. An example of
such a request issued by P1 is “ENQUEUE (MSG1, BUFF-
ERED),” where MSG1 contains or points to, i.e., addresses,
the first message and the BUFFERED flag specifies that the
first message is to be enqueued to a buffered message queue,
rather than persistent message queue 108. The processing of
this request causes the creation of buffered message queue
106 in shared memory 104. The first message is then
enqueued into buffered message queue 106.

A subscriber may subscribe to a buffered message queue
whose messages the subscriber has an interest in receiving.
When DBMS 100 receives a request to subscribe to buffered
message queue 106, DBMS 100 stores the subscription data
in persistent or non-persistent storage. For example, the
subscription data may be stored in buffered message queue
106 or elsewhere in shared memory 104. The subscription
data may also be stored in a non-volatile storage, such as
database 102, albeit with a performance penalty associated
with reading and writing to database 102. Subscribers may
optionally specify a condition or rule indicating an interest
in a subset of messages published to buffered message queue

20

25

30

35

40

45

50

55

60

65

6

106. DBMS 100 tracks all subscriptions to buffered message
queue 106 and ensures that messages are received by all
eligible subscribers.

Once buffered message queue 106 has been created,
processes may begin enqueuing and dequeuing messages to
and from message queue 106. Messages may be enqueued
and dequeued in any manner, depending upon the require-
ments of a particular implementation. According to one
embodiment of the invention, requests to enqueue and
dequeue messages from a buffered message queue are
processed by a database server process. The invention is not
limited to processing of such requests by server processes,
however, and other processes may be used for this purpose,
depending upon the requirements of a particular implemen-
tation.

Publishers may issue enqueue requests as described above
to enqueue messages. When DBMS 100 receives a request
to enqueue a message to a buffered message queue, the
message included in the request is copied to shared memory
104 and stored in buffered message queue 106. The message
is then available for dequeuing by subscribers.

To dequeue a message from a buffered message queue, a
subscriber requests that a message be dequeued. For
example, subscriber P1 issues a dequeue request requesting
that a message be dequeued from a buffered message queue.
According to one embodiment of the invention, the dequeue
request specifies a particular queue against which the
dequeue request is to be processed. For example, the
dequeue request may specify persistent message queue 108
or buffered message queue 106. An example dequeue
request to dequeue a message from buffered message queue
106 is “DEQUEUE (BUFFERED).” An example dequeue
request to dequeue a message from persistent message queue
108 is “DEQUEUE (NON-BUFFERED)” or “DEQUEUE
(PERSISTENT)”.

When a dequeue request is processed, the requesting
process is provided access to a message in a buffered
message queue. Providing access to a message may include
providing a copy of a message to a requesting process. This
approach may be used, for example, when the requesting
process is a client process. Alternatively, a reference to the
location of the message in the buffered message queue may
be provided to the requesting process. This approach may be
used, for example, when the requesting process is a database
server process. As described in more detail hereinafter, after
the requesting process is provided access to a message, the
message may also be deleted from the message queue to free
up space in the buffered message queue, depending upon the
requirements of a particular implementation.

Enqueuing and dequeuing messages to and from buffered
message queue 106 is performed directly in shared memory
104 without requiring the processing of SQL statements or
the creation of UNDO or REDO data. Enqueuing and
dequeuing messages to and from buffered message queue
therefore consumes relatively fewer computational and stor-
age resources, requires fewer disk /O operations and
requires relatively less time than enqueuing and dequeuing
messages to persistent message queue 108.

FIG. 1B is a block diagram that depicts an example
buffered message queue message format according to an
embodiment of the invention. A message 140 resides in
buffered message queue 106 and includes a message header
142 and a message body 144. Message header 142 includes
a unique message 1D 146 that uniquely identifies message
140. Message header 142 also includes a pointer to message
body 148 that references message body 144. Message
header 142 is linked via a next message pointer 150 to other

US 7,203,706 B2

7

message headers in a single linked list in the order in which
the messages were enqueued into buffered message queue
106. According to one embodiment of the invention, the
unique message IDs of older messages are less than the
unique message IDs of newer messages. Although message
140 may have multiple subscribers, only one copy of mes-
sage 140 is maintained in buffered message queue 106.
Message header 142 also includes a reference count 152 that
indicates the number of subscribers to buffered message
queue 106.

FIG. 1C is a block diagram that depicts how subscribers
S1, S2 each maintain a reference to the next available
message, M1 and M3, respectively, in buffered message
queue 106.

According to one embodiment of the invention, messages
are dequeued from buffered message queue 106 using a
First-In-First-Out (FIFO) approach. According to the FIFO
approach, messages are dequeued from buffered message
queue 106 in the order in which the messages were enqueued
in buffered message queue 106.

In FIG. 1, buffered message queue 106 contains five
messages that are each assigned a message identifier that
uniquely identifies the message and also specifies the posi-
tion of each message in a sequence in which the messages
were enqueued into buffered message queue 106. In the
present example, the messages in buffered message queue
106 have been assigned message identifications of M1-M5.
Using the FIFO approach, messages are dequeued in the
order in which they were enqueued, starting with message
M1 and proceeding to message M5. For example, the first
time a subscriber P1 requests that a message be dequeued
from buffered message queue 106, message M1 is dequeued,
since message M1 was the first message enqueued in buff-
ered message queue 106. The next time subscriber P1
requests that a message be dequeued from buffered message
queue 106, message M2 is dequeued, since message M2 was
the next message enqueued in buffered message queue 106
after message M1. When a message is dequeued by a
subscriber, the reference count in the message header is
decremented. Also, the subscriber points to the next message
in the buffered message queue. When all subscribers have
dequeued the message, the reference count is zero.

Subscribers may make dequeue requests at different rates.
Therefore, according to one embodiment of the invention, a
next message reference is maintained for each subscriber
that identifies the next available message. In the present
example, it is assumed that subscriber P1 has dequeued all
five messages M1-M5 from buffered message queue 106
and the next message identifier for process P1 is M6, as
indicated in FIG. 1. The next message identifiers for sub-
scribers P2 and P3 are M4 and M3, respectively, indicating
that subscribers P2 and P3 have dequeued messages M1-M3
and M1-M2, respectively. Thus, message M3 would be the
next message provided to P3 from buffered message queue
106 on the next dequeue request from P3. Next message
identifiers may be maintained in shared memory 104 by
subscribers.

According to one embodiment of the invention, processes
are permitted to “browse” messages in a buffered message
queue. When a process browses a buffered message queue,
copies of messages in the buffered message queue are
supplied to the process without messages being deleted from
the buffered message queue. In the present example, suppose
that process P3 has dequeued messages M1 and M2. Sup-
pose that process P3 now desires to browse messages
M3-MS5 in buffered message queue 106. Process P3 requests
that the next message be dequeued in browse mode. For

20

25

30

35

40

45

50

55

60

65

8

example, process P3 issues a request such as “DEQUEUE
(BUFFERED, BROWSE).” The BROWSE flag indicates
that after providing message M3 to process P3, message M3
is not to be deleted, even though processes P1 and P2 do not
require message M3. Ordinarily, message M3 would be
deleted from buffered message queue 106 since all other
subscribers have already dequeued message M3. If process
P3 issues another dequeue request with the BROWSE flag
asserted, then message M4 is dequeued to process P3, but
not deleted from buffered message queue 106. This process
may be repeated as many times as necessary. According to
one embodiment of the invention, a separate last message
identifier is maintained for each process that issues a
dequeue request in the browse mode, so that browsed
messages can be tracked separately.

FIG. 2 is a block diagram 200 that depicts an approach for
managing messages in a DBMS using a buffered message
queue according to an embodiment of the invention. In step
202, a buffered message queue is created. For example,
buffered message queue 106 is created in shared memory
104.

In step 204 a subscriber subscribes to receive messages
from buffered message queue 106. This includes creating
subscription data that defines one or more attributes of
messages that are to be dequeued and provided to the
subscriber. In step 206, a first message is stored in buffered
message queue 106.

In step 208, the subscriber requests that a message be
dequeued from buffered message queue 106. This may be
accomplished, for example, by the subscriber generating and
submitting a dequeue command.

In step 210, a determination is made whether the first
message satisfies the subscription data for the subscriber. In
step 212, if the first message satisfies the subscription data
for the subscriber, then the first message is provided to the
subscriber.

In step 214, the first message is deleted from buffered
message queue 106 if the first message does not satisty any
other known subscription data and is therefore no longer
needed.

IV. Content-Based Publish and Subscribe

According to the content-based publish and subscribe
approach, messages are dequeued to subscribers based upon
subscription data. The subscription data specifies subscrib-
ers and attributes of messages that each subscriber is to
receive. According to one embodiment of the invention, the
subscription data is an SQL condition that may include a
reference to the message attributes. The SQL condition may
also reference other objects in the database. Example
attributes include, without limitation, a message identifica-
tion, a message sender or recipient, a message type and a
message priority. The subscription data may be implemented
in any mechanism or formatted depending upon the require-
ments of a particular implementation. For example, sub-
scription data may be stored in a look-up table or other data
structure.

Consider the following example. Subscriber P2 sub-
scribes to receive messages having a specified attribute, for
example, messages relating to a particular subject. When
subscriber P2 requests that a message be dequeued, a
message in buffered message queue 106 that satisfies the
subscription data for subscriber P2, i.e., that is related to the
particular subject, is provided to subscriber P2. According to
the FIFO approach, messages M1-M5 are each tested, in
order, against the subscription data until a message is
identified that satisfies the subscription data. This may result

US 7,203,706 B2

9

in messages being skipped that do not satisfy the subscrip-
tion data for subscriber P2. For example, the first time that
subscriber P2 submits a dequeue request, message M1 is
tested against the subscription data for subscriber P2. If
message M1 does not satisfy the subscription data for
subscriber P2, then message M3 is tested against the sub-
scription data. If message M3 satisfies the subscription data,
then message M3 is provided to subscriber P2. If not, then
the subscriber continues with the remaining messages in
buffered message queue 106. If none of the messages in
buffered message queue 106 satisty the subscription data for
subscriber P2, then an exception may be generated and
provided to subscriber P2 to indicate this condition. Accord-
ing to one embodiment of the invention, the subscription
data is evaluated at the time messages are enqueued into
buffered message queue 106 and data indicating the sub-
scribers receiving the messages stored in the message head-
ers. Evaluation subscription data at dequeue time has the
advantage that less state information needs to be maintained
in shared memory 104. This also allows the publish opera-
tions to be fast, independent of the number of subscribers to
buffered message queue 106.

V. Transformation and Event Notifications

The buffered message queue architecture described herein
also supports message transformations, modification of the
content and/or formatting of messages. This transformation
may occur at enqueue time. Transformation may also occur
at the time messages are delivered to subscribers, as speci-
fied by the subscribers. Transformation may be ruled based,
meaning that different transformations may be specified
depending upon the particular rule that was satisfied for a
subscriber. Subscribers may be notified when new messages
are published to buffered message queue 106 that satisfy the
subscription data of the subscribers. Notification may take
may forms, depending upon the requirements of a particular
implementation. For example, subscribers may be notified
by an http post request, or as a callback invoked in the client
process or the database server.

V1. Buffered Message Queue Cleanup

Over time, buffered message queue 106 may contain a
large number of messages that consume a significant amount
of storage space. Eventually, there may be an insufficient
amount of available space in buffered message queue to
enqueue any additional messages. Therefore, according to
one embodiment of the invention, messages that are no
longer needed are deleted from buffered message queue 106.
A message is considered to no longer be needed if the
message has been dequeued to all known subscribers for
which the message satisfies the corresponding subscription
data. In the present example in FIG. 1, messages M1 and M2
have been dequeued, or at least been evaluated for dequeu-
ing, by subscribers P1, P2 and P3. This is true since, as
depicted in FIG. 1, subscriber P1 has last dequeued message
MS, subscriber P2 has last dequeued message M3 and
subscriber P3 has last dequeued message M2. Assuming that
there are no other active subscribers than P1, P2 and P3,
messages M1 and M2 are deleted from buffered message
queue 106 to free up memory. This buffered message queue
cleanup process may be performed at any time, depending
upon the requirements of a particular implementation. For
example, the amount of available free space in buffered
message queue 106 may be periodically monitored and if it
falls below a specified amount, then the buffered message
queue cleanup process may be performed. According to one
embodiment of the invention, the buffered message queue

20

25

30

35

40

45

50

55

60

65

10

cleanup process is performed when the last subscriber
dequeues the message, as indicated by a reference count of
Zero.

VII. Unlimited Buffered Message Queue with Limited
Shared Memory

There may be situations where the amount of memory
consumed by a buffered message queue reaches a maximum
specified amount of memory allocated to the buffered mes-
sage queue. This may occur, for example, when messages
are enqueued into the buffered message queue faster than
they are dequeued. One condition that might cause this is a
delay in the dequeuing of messages from a buffered message
queue attributable to a slow subscriber process. In this
situation, no additional messages can be enqueued to the
buffered message queue until either one or more messages
are deleted from the buffered message queue or additional
memory is allocated to the buffered message queue.

According to one embodiment of the invention, an
approach referred to herein as “spillover” is used to manage
the amount of available space in a buffered message queue.
More specifically, spillover is used to address situations
where a request is made to enqueue a new message into a
buffered message queue when the buffered message queue
does not currently have sufficient available space to store the
new message. According to the spillover approach, the new
message is stored (“spilled over”) to a non-volatile storage
instead of the buffered message queue. Only the message
header is stored in the buffered message queue. The message
header maintains the place of the new message in the
buffered message queue. The message header contains data
that identifies that the new message is stored on the non-
volatile storage and may also specify the location on the
non-volatile memory where the new message has been
stored. When the message header is processed, the message
is retrieved from the non-volatile storage. Therefore, the
header functions as a placeholder in the buffered message
queue for the new message stored on the non-volatile
storage, while consuming significantly less space in the
buffered message queue than if the new message itself was
stored in the buffered message queue.

According to one embodiment of the invention, spilled
over messages are stored in a persistent message queue on
the non-volatile storage. Spillover may be implemented
transparent to subscriber processes so that no changes are
required to the enqueue and dequeue semantics used by
subscriber processes.

FIG. 3A is a block diagram of a DBMS 300 configured to
perform message spillover in accordance with an embodi-
ment of the invention. DBMS 300 includes a database 302,
a shared memory 304, a buffered message queue 306 dis-
posed in shared memory 304 and a persistent message queue
308 stored on database 302.

A set of messages M3—M6 are currently stored in buffered
message queue 306. Suppose that a publisher process sub-
mits a request to publish a new message M7 to buffered
message queue 306. In accordance with an embodiment of
the invention, a determination is made whether there is
sufficient available space in buffered message queue 306 to
store the new message M7. The determination may be made,
for example, by computing the sum of the current amount of
memory consumed by buffered message queue 306 and the
additional amount of memory that would be required to store
the new message M7, and comparing this sum to a specified
amount of memory allocated to buffered message queue 306.
If there is sufficient available space in buffered message
queue 306 to store the new message M7, then the new

US 7,203,706 B2

11

message M7 is stored in buffered message queue 306 as
previously described herein. This computation and check
may be performed every time a request to enqueue a
message is processed. Alternatively, the computation and
check may be performed only if a threshold percentage, e.g.,
50%, of the storage space allocated to buffered message
queue 306 has been used.

If a determination is made that there is insufficient avail-
able space in buffered message queue 306 to store the new
message M7, then, as depicted in FIG. 3B, the new message
M7 is stored to persistent message queue 308. In addition, a
message header H7, for new message M7, is created and
stored in buffered message queue 306. Message header H7
contains data that specifies that message M7 is stored in
persistent message queue 308. Message header H7 may also
specify an address where the new message M7 is stored.
Message header H7 maintains the position of message M7 in
buffered message queue 304 so that message M7 is pro-
cessed in the same order as if message M7 had been stored
in buffered message queue 306.

According to another embodiment of the invention, when
a buffered message queue does not have enough available
space to store a new message, then one or more messages
that are currently stored in the buffered message queue are
moved to a non-volatile storage to make space available for
the new message in the buffered message queue. Only the
message headers corresponding to the messages moved to
the non-volatile storage remain in the buffered message
queue. This may be performed, for example, when there is
insufficient space in the buffered message queue to store a
header for the new message.

For example, referring again to FIG. 3A, suppose that
messages M3-M6 are currently stored in buffered message
queue 306 and that a publisher process submits a request to
publish a new message M7 to buffered message queue 306.
Furthermore, a determination is made that there is not
sufficient available space in buffered message queue 306 to
store the new message M7.

In accordance with this embodiment of the invention, as
depicted in FIG. 3C, message M6 is moved from buffered
message queue 306 to persistent storage to provide space for
new message M7 in buffered message queue 306. As
depicted in FIG. 3D, a message header H6 for message M6
is stored in buffered message queue 306. Message M7 is
then stored in buffered message queue 306.

Although this embodiment is described and depicted in
the figures in the context of moving a single message (M3)
to a non-volatile storage, any number of messages may be
moved from a buffered message queue to a non-volatile
storage, depending upon the amount of space required by the
new message.

The “cost” associated with performing spillover for a
particular message refers to the amount of computational
resources and/or time that is attributable to enqueuing and
dequeuing the particular message to a persistent message
queue that would otherwise not be incurred had the particu-
lar message been enqueued and dequeued to a buffered
message queue. The cost associated with performing spill-
over is not the same for all messages since the cost is
dependent upon the number of dequeues of the message that
are made. For example, suppose that messages M1 and M2
are enqueued to a persistent message queue. Suppose further
that message M1 is dequeued once from the persistent
message queue, while message M2 is dequeued six times
from the persistent message queue. In this situation, the cost
associated with spilling over message M2 is relatively
higher than spilling over message M1. Thus, given a choice

20

25

30

35

40

45

50

55

60

65

12

between spilling over message M1 or M2, it would be more
beneficial to spillover message M1, since the cost of doing
so would be lower than spilling over message M2.

The number of dequeues that are yet to be made for a
queued message is often related to the age of the message.
In particular, where an older message in a buffered message
queue has already been dequeued to most subscribers and a
newer message will need to be dequeued to several sub-
scribers, then the cost of spilling over the older message will
be lower than spilling over the newer message, since rela-
tively fewer accesses will be made to retrieve the older
message from the non-volatile storage. Therefore, according
to one embodiment of the invention, older messages are
spilled over to persistent memory before newer messages to
reduce the cost of associated with performing spillover.

Referring to FIG. 3E, suppose that message M3 has
already been dequeued to all subscribers except for one
particular subscriber. The particular subscriber may be
dequeuing messages at a substantially slower pace than the
other subscribers. Suppose further that new message M7
will need to be dequeued to several subscribers. In this
situation, there is likely to be a smaller cost associated with
spilling over message M3 rather than the new message M7
since message M3 would only need to be retrieved once
from persistent message queue 308, while message M7
would need to be retrieved at least once, and probably
several times, from persistent message queue 308. There-
fore, in accordance with this embodiment of the invention,
message M3 is spilled over rather than new message M7. As
depicted in FIG. 3E, message M3 is moved from buffered
message queue 306 to persistent storage to provide space for
new message M7 in buffered message queue 306. As
depicted in FIG. 3F, a message header H3 for message M3
is stored in buffered message queue 306. Message M7 is
then stored in buffered message queue 306.

Although the spillover approach described herein is
described in the context of being initiated in response to a
request to enqueue a new message into a buffered message
queue, the spillover approach may be initiated in other
situations. For example, the amount of available space in a
buffered message queue may be periodically monitored and
if the amount of available space falls below a specified
amount, then spillover may be initiated with respect to
messages currently stored in the buffered message queue.

FIG. 4 is a flow diagram 400 that depicts an approach for
performing message spillover according to an embodiment
of'the invention. In step 402, a request is received to enqueue
a new message into a buffered message queue for which
there is insufficient space to store the new message in the
buffered message queue. For example, a request is received
to enqueue new message M7 in buffered message queue 306
when there is currently insufficient space to store new
message M7 in buffered message queue 306.

In step 404, either current messages in the buffered
message queue or the new message is spilled over to a
non-volatile storage. For example, either one or more of
messages M3-M6 or new message M7 are spilled over to
persistent message queue 308, depending upon whether a
particular implementation is configured to spillover older
messages before new messages, as described herein.

In step 406, a message header is generated and stored in
the buffered message queue for the messages that are spilled
over to the non-volatile storage. For example, if message M3
is spilled over to database 302, then message header H3 is
stored in buffered message queue 306. Alternatively, if new

US 7,203,706 B2

13

message M7 is spilled over to persistent message queue 308,
then message header H7 is stored in buffered message queue
306.

In step 408, the new message is stored in the buffered
message queue, assuming the new message was not spilled
over to a persistent message queue.

VIII. Guaranteed at Least Once Delivery in Buffered Mes-
sage Queues

Since buffered message queues are created and main-
tained in shared volatile memory, there may be situations
where a failure causes the loss of messages and other data
contained in a buffered message queue. Example failures
that might cause the loss of message data in buffered
message queues include, without limitation, a failure of
DBMS 100, shared memory 104 or of buffered message
queue 106. Similarly, when a subscriber dequeues a mes-
sage, as opposed to browsing the message, the message is
consumed for that particular subscriber. If a failure causes
the loss of the dequeued message at the subscriber, the
subscriber will not be able to obtain another copy of the
message from buffered message queue 106 since the mes-
sage will be marked as being consumed by the subscriber.

According to one embodiment of the invention, subscrib-
ers are configured to issue browse requests, which results in
the subscribers getting copies or references to buffered
messages, depending upon whether the subscribers are client
processes or server processes. The subscribers then process
the messages as necessary. After a subscriber has completed
processing of a message, the subscriber issues a dequeue
request to cause the message to be marked as consumed by
the subscriber. This guarantees that a message is not
removed from buffered message queue 106 until all sub-
scribers have completed processing the message.

According to one embodiment of the invention, a form of
checkpointing is employed to provide recovery of a buffered
message queue after a failure where all messages in the
buffered message queue are lost. Referring to FIG. 1, a
checkpoint table 110 is generated and stored in a non-
volatile storage, such as database 102. Checkpoint table 110
is described herein in the context of being stored in database
102, but the invention is not limited to this context and may
be stored on any non-volatile storage. According to one
embodiment of the invention, checkpoint table 110 contains
values that identify, for each publisher, the last message
published and dequeued by all eligible subscribers, as deter-
mined by their respective subscription data. The messages
indicated by checkpoint table 110, and all messages pub-
lished to buffered message queue 106 prior to the messages
indicated by checkpoint table 110, do not need to be restored
to buffered message queue 106 after a failure since these
messages have all been dequeued by all eligible subscribers.

In the present example, checkpoint table 110 includes
three entries associated with publishers P1, P2 and P3. The
first entry for publisher P1 indicates that message M1 was
the last message published by publisher P1 to buffered
message queue 106 that was dequeued by all eligible sub-
scribers. The second entry for publisher P2 indicates that
message M2 was the last message published by publisher P2
to buffered message queue 106 that was dequeued by all
eligible subscribers. The third entry for publisher P3 indi-
cates that message M3 was the last message published by
publisher P3 to buffered message queue 106 that was
dequeued by all eligible subscribers. Note that the check-
point values stored in checkpoint table 110 may be any data
that is understood by each respective publisher. Checkpoint

20

25

30

35

40

45

50

55

60

65

14

table 110 may be created and initialized at any time, depend-
ing upon the requirements of a particular implementation.

Suppose now that a failure causes the loss of buffered
message queue 106 and messages M1-MS5 contained
therein. During recovery, buffered message queue 106 is
re-generated in shared memory 104. Checkpoint table 110 is
retrieved from non-volatile storage and each checkpoint
value is provided to its respective publisher. For example,
the checkpoint value indicating that message M1 was the
last message published by publisher P1 and dequeued by all
subscribers is provided to publisher P1. All publishers then
re-publish to buffered message queue 106 all messages after
the message identified by their respective checkpoint value.
For example, publisher P1 re-publishes to buffered message
queue 106 all messages published by publisher P1 after
message M1.

The values in checkpoint table 110 may be periodically
updated to reflect dequeue requests that have been processed
since the time the values in checkpoint table 110 were
initially determined or since the last time that the values in
checkpoint table 110 were updated. For example, suppose
that publisher P1 publishes message M4 to buffered message
queue 106 and that message M4 is dequeued by all eligible
subscribers. The checkpoint value in checkpoint table 110
associated with publisher P1 is updated to reflect that
message M4 was the last message both published by pub-
lisher P1 to buffered message queue 106 and dequeued by.
all eligible subscribers. After a failure and the retrieval of
checkpoint table 110, the checkpoint value for publisher P1
is provided to publisher P1. Publisher P1 re-publishes all
messages published to buffered message queue after mes-
sage Md4. The frequency at which the values in checkpoint
table 110 are updated may vary depending upon the require-
ments of a particular implementation. Updating the values in
checkpoint table 110 more frequently requires more system
resources, but reduces the number of messages that have to
be re-published to buffered message queue 106 in the event
of a failure.

This checkpointing approach guarantees, subject to the
availability of checkpoint table 110, that each subscriber will
receive at least one copy of each message in buffered
message queue 106 that satisfies the subscriber’s subscrip-
tion data, even if a failure causes the loss of all messages in
buffered message queue 106. Furthermore, compared to
conventional recovery mechanisms, the approach reduces
the amount of data that must be maintained in volatile
storage, since only checkpoint table 110 must be maintained
in a non-volatile storage, and not all of the messages.

One consequence of the approach is that some processes
may be required to re-publish messages to a buffered mes-
sage queue as previously described. In some situations, it
may also be possible that processes that dequeued messages
prior to the failure may receive duplicate copies of some
messages from the buffered message queue. Thus, the
approach guarantees that subscribers will receive the mes-
sages they are supposed to receive at least once, even in the
event of a failure.

FIG. 5 is a flow diagram 500 that depicts an approach for
providing buffered message queue recovery using check-
point values according to an embodiment of the invention.
In step 502, publisher P1 publishes a message to buffered
message queue 106. In step 504, the message is dequeued to
one or more subscribers. In the present example, the mes-
sage is dequeued to process P3.

In step 506, a determination is made whether the message
satisfies subscription data for any other subscribers. If yes,
then control returns to step 504 where the message is

US 7,203,706 B2

15

dequeued to those subscribers for which the message satis-
fies the corresponding subscription data. If not, then control
proceeds to step 508, where a checkpoint value in check-
point table 110 is created for publisher P1. The checkpoint
value for publisher P1 indicates that message M1 was the
last message published by publisher P1 to buffered message
queue 106 and dequeued by all eligible subscribers. At some
point in time, checkpoint table 110 is stored to a non-volatile
memory, such as database 102.

In step 510, a failure occurs and the message data con-
tained in buffered message queue 106 is lost. In step 512,
buffered message queue 106 is restored and checkpoint table
110 is retrieved from the non-volatile storage, which in the
present example is database 102.

In step 514, the checkpoint value for publisher P1 from
checkpoint table 110 is provided to publisher P1 and pub-
lisher P1 is requested to re-publish messages published to
buffered message queue 106 by publisher P1 after message
M1. In step 516, publisher P1 re-publishes messages pub-
lished by publisher P1 to buffered message queue 106 after
message M1.

According to one embodiment of the invention, check-
point values are updated in response to receipt of an
acknowledge message from all eligible subscribers indicat-
ing that the subscribers have received dequeued messages.
For example, suppose that a remote subscriber P3 submits a
request to dequeue a message from buffered message queue
106. A determination is made that message M3 is the next
message that satisfies the subscription data for subscriber P3
and a copy of message M3, or a reference to message M3,
is provided to subscriber P3. Upon successful receipt of
message M3, subscriber P3 generates and provides to
DBMS 100 an acknowledge message indicating that mes-
sage M3 was successfully received by subscriber P3. In
response to receipt of the acknowledge message from sub-
scriber P3, a determination is made whether any other
eligible subscribers have not yet dequeued message M3. If
not, then the checkpoint value for the publisher of message
M3 is updated to reflect that message M3 has been dequeued
to all eligible subscribers. This approach ensures that sub-
scriber P3 will receive a copy of message M3 during
recovery if a failure occurs after message M3 is dequeued,
but before subscriber P3 receives message M3. This
approach is particularly useful in distributed database imple-
mentations where a failure of a communications link may
prevent receipt by a subscriber of a dequeued message. If an
acknowledge message is not received, then the correspond-
ing checkpoint value for the publisher is not updated.

According to another embodiment of the invention, an
acknowledge message may acknowledge receipt by a sub-
scriber of two or more dequeued messages. For example,
suppose that subscriber P3 makes three requests to dequeue
messages from buffered message queue 106 and messages
M3-MS5 are provided to subscriber P3. Subscriber P3 then
generates and provides to DBMS 100 an acknowledge
message that indicates that messages M3-M5 were success-
fully received by subscriber P3.

There may be situations where a failure prevents genera-
tion or receipt of an acknowledge message. For example, a
subscriber may have failed or be executing extremely
slowly, due to heavy loading, which prevents, or at least
significantly delays, the generation of an acknowledge mes-
sage. As another example, a subscriber may have generated
and transmitted an acknowledge message, but a communi-
cations failure prevents the acknowledge message from
being received by the DBMS from which the message was
dequeued. Therefore, according to one embodiment of the

20

25

30

35

40

45

50

55

60

65

16

invention, if an acknowledge message is not received from
a subscriber within a specified amount of time of dequeuing
a message, then a failure is presumed to have occurred. In
this situation, administrative personnel may be notified of a
potential problem with the subscriber process so that appro-
priate action may be taken.

IX. Distributed Buffered Message Queue Implementations

The approach described herein for using buffered message
queues to manage messages in database systems is appli-
cable to distributed database implementations where mes-
sages are propagated between distributed database systems
with buffered message queues. FIG. 6 is a block diagram that
depicts a distributed database arrangement that includes a
DBMS 600 with a database 602, a shared memory 604, a
buffered message queue 606 disposed in shared memory 604
and a persistent message queue 608.

DBMS 600 is communicatively coupled via a communi-
cations link 611 to a remote DBMS 650. DBMS 650
includes a database 652, a shared memory 654, a buffered
message queue 656 disposed in shared memory 654 and a
persistent message queue 658. Communications link 611
may be implemented by any medium or mechanism that
provides for the exchange of data between DBMS 600 and
DBMS 650. Examples of communications link 611 include,
without limitation, a network such as a Local Area Network
(LAN), Wide Area Network (WAN), Ethernet or the Inter-
net, or one or more terrestrial, satellite or wireless links.

According to one embodiment of the invention, DBMS
600 includes a propagation process 610 that is configured to
propagate messages from buffered message queue 606 on
DBMS 600 to buffered message queue 656 on DBMS 650.
A quality of service of “at least once” delivery is guaranteed
for propagation of messages from a source buffered message
queue on one DBMS to a destination buffered message
queue on another DBMS. This presumes the availability of
repeatable applications that are capable of re-enqueuing
messages based on a given checkpoint value, as described
herein previously.

In the example depicted in FIG. 6, buffered message
queue 606 includes messages M1-M5 and messages
M1-M3 have been propagated from buffered message queue
606 to buffered message queue 656. In this scenario, mes-
sage M3 (at DBMS 650) is considered to be the high water
mark (HWM). The HWM represents the latest message that
has been enqueued to a destination DBMS from a specific
source buffered message queue. A HWM table 660 is
maintained in shared memory 654 and contains an entry for
each source buffered message queue/destination buffered
message queue pair. Messages M1-M3 are not deleted
immediately after they are propagated to the destination
DBMS. Rather, they are deleted only when the source
DBMS has determined that the messages have been con-
sumed by all subscribers at the destination DBMS. In the
present example, DBMS 600 receives an acknowledgment
from DBMS 650 indicating the messages that have been
consumed by all subscribers at DBMS 650. Message iden-
tifiers are strictly increasing and messages are consumed in
FIFO order. Hence, it is sufficient for DBMS 650 to send as
an acknowledgment, the highest message identifier, for all
messages previously received from DBMS 600, that has
been consumed by all subscribers on DBMS 650. A propa-
gation acknowledgment table 612 is maintained in shared
memory 604 of DBMS 600. Propagation acknowledgment
table 612 contains an entry for each source buffered message
queue/destination message queue pair.

US 7,203,706 B2

17

The destination DBMS 650 keeps track, in a destination
acknowledgment table 670 maintained in shared memory
654, of the highest message identifier from the source
buffered message queue that has been consumed by all of its
subscribers. Destination acknowledgment table 670 contains
an entry for each source buffered message queue/destination
buffered message queue pair. The values are provided to
DBMS 600 and used by DBMS 600 as propagation
acknowledgment values for propagation acknowledgment
table 612. DBMS 600 may also periodically poll DBMS 650
for the acknowledgments. In the present example, all mes-
sages up to message M2 have been completely consumed by
all subscribers at DBMS 650. Hence, M2 is returned to
DBMS 600 as the propagation acknowledgment and stored
in propagation acknowledgment table 612. A checkpoint
table 614 is maintained on DBMS 100 and the values
contained therein are updated after all subscribers have
consumed a message.

The frequency and specific manner in which messages are
propagated from buffered message queue 606 to buffered
message queue 656 may vary depending upon the require-
ments of a particular implementation and the invention is not
limited to any particular approach. For example, bulk trans-
fers may be used to propagate groups of messages. The
frequency at which new messages are enqueued into buft-
ered message queue 606 and the frequency at which mes-
sages are propagated from buffered message queue 606 to
buffered message queue 656 determine how current buffered
message queue 656 is with respect to buffered message
queue 606. In the present example, messages M4 and M5
were enqueued in buffered message queue 606 since the last
propagation of messages from buffered message queue 606
to buffered message queue 656.

According to one embodiment of the invention, propaga-
tion acknowledgement table 612 is used to identify one or
more messages which, after a failure of DBMS 650, DBMS
600 or propagation process 610.

In the event of a failure of DBMS 650, messages that were
enqueued into buffered message queue 606 after the mes-
sage identified in propagation acknowledgment table 612,
are re-propagated from buffered message queue 606 to
buffered message queue 656. Messages enqueued into buff-
ered message queue 606 on or before the message indicated
by propagation acknowledgment table 612 do not need to be
re-propagated from buffered message queue 606 to buffered
message queue 656 since those messages were already
consumed by all eligible processes on DBMS 650.

In the event of a failure of DBMS 600, propagation
process 610 will also fail as it is a process associated with
DBMS 600. When DMBS 600 re-starts, the repeatable
application enqueueing to DBMS 600 queries checkpoint
table 614 to determine where to start re-enqueueing mes-
sages. That is, the application starts re-enqueuing messages
from the messages identified in checkpoint table 614. All
messages in buffered message queue 606 are propagated to
buffered message queue 656, which may result in some
duplicate messages being sent to DBMS 650, depending
upon the frequency at which the values in checkpoint table
614 were updated.

In the event of a failure of propagation process 610,
DBMS 600 spawns a new propagation process. The new
propagation process queries DBMS 650 to obtain the HWM
value in the HWM table 660 for DBMS 600, which in the
present example is message M3. The new propagation
process then begins propagating messages with the next
message onward, i.e., from message M4 onward. This

20

25

30

35

40

45

50

55

60

18

approach avoids propagating duplicate messages when
propagation process 610 fails.

The frequency at which propagation acknowledgment
table 612 is updated may vary according to the requirements
of a particular implementation. Updating propagation
acknowledgment table 612 more frequently will generally
reduce the number of messages that need to be re-propa-
gated after a failure. Also, the memory of buffered message
queue 606 may be freed up more aggressively. Further,
checkpoint table 614 can also be updated more aggressively,
which reduces the cost and time involved in re-publishing
messages to buffered message queue 606 during recovery.

According to one embodiment of the invention, propaga-
tion acknowledgment table 612 is stored on a non-volatile
storage, such as database 602. This ensures that propagation
acknowledgment table 612 may be recovered after a failure
of DBMS 600. This is not required, however, and propaga-
tion acknowledgment table 612 may be stored in a volatile
memory, such as shared memory 604.

FIG. 7 is a flow diagram 700 that depicts an approach for
using a propagation acknowledgment table to provide for
re-propagation of messages to a destination DBMS after a
failure, according to an embodiment of the invention. In step
702, an initial set of messages is propagated from a local
buffered message queue to a remote buffered message
queue. For example, messages M1-M3 are propagated from
buffered message queue 606 on DBMS 600 to buffered
message queue 656 on DBMS 650.

In step 704, a high water mark table on the destination
DBMS is updated to reflect the latest message to be
enqueued in the destination DBMS. In the present example,
HWM table 660 is updated to reflect that message M3 is the
last message from buffered message queue 606 to be
enqueued in buffered message queue 656 on destination
DBMS 650.

In step 706, messages are dequeued to subscribers at the
remote buffered message queue on the destination DBMS. In
the present example, messages M1 and M2 are dequeued to
all eligible subscribers to buffered message queue 656.

In step 708, the destination acknowledgement table is
updated to reflect the messages dequeued at the destination
DBMS. In the present example, a value in destination
acknowledgment table 670 is updated to reflect that, of the
messages in buffered message queue 656 from buffered
message queue 606, all messages up to message M2 have
been dequeued by all eligible subscribers.

In step 710, the propagation acknowledgement table on
the source DBMS is updated to reflect the messages from the
source DBMS that have been dequeued by all eligible
subscribers on the destination DBMS. In the present
example, DBMS 800 obtains the value from destination
acknowledgement table 670 that corresponds to buffered
message queue 606, namely, the value that indicates mes-
sage M2.

In step 712, after a failure that cause the loss of messages
in the remote buffered message queue, a value from the
propagation acknowledgement table 612 is used to re-
propagate messages to the remote buffered message queue.
In the present example, after a failure that cause the loss of
messages from buffered message queue 656, the value from
propagation acknowledgment table 612 corresponding to the
source/destination pair of buffered message queue 606 and
DBMS 650 is used to re-propagate messages to buffered
message queue 656. Messages M3-M5 were enqueued in
buffered message queue 606 after message M2 specified by
the corresponding value in propagation acknowledgment

US 7,203,706 B2

19

table 612. Accordingly, messages M3-M5 are propagated
from buffered message queue 606 to buffered message
queue 656.

Propagation values may also be used to perform buffered
message queue cleanup on a local buffered message queue.
According to one embodiment of the invention, the check-
point table for the local buffered message queue and the
propagation acknowledgement table value for the local
buffered message queue/remote buffered message queue pair
are used to determine which messages can be removed from
the local buffered message queue. More particularly, mes-
sages up to the oldest message specified by both the check-
point table for the local buffered message queue and the
propagation acknowledgement table value for the remote
buffered message queue are removed from the local buffered
message queue. In the present example, propagation
acknowledgment table 612 specifies message M2. If check-
point table 614 specifies message M1, then message M1 is
not required by either buffered message queue 606 or
buffered message queue 656 and therefore is deleted from
buffered message queue 606.

X. “Zero Copy” Buffered Message Queues in Databases

The processing of enqueue requests by database processes
requires that messages be transferred from the local memory
associated with the enqueuing processes to the memory
associated with the buffered message queue. Similarly, the
processing of dequeue requests by database processes
requires that messages be transferred from the memory
associated with the buffered message queue to the memory
associated with the dequeuing processes. Both of these
scenarios involve message transfers between the memory
associated with the process and the memory associated with
the buffered message queue. These transfers may also
involve converting the format of messages between process-
specific formats and formats required by the database for the
buffered message queue. Memory copy operations are gen-
erally computationally expensive to execute. The expense of
making message copies is justified in unavoidable situations
where the enqueuing and dequeuing processes are required
to simultaneously read/update a private copy of the message.
There are many situations, however, where this is not
required and the expense is unjustified.

The processing of enqueue and dequeue requests from an
external process may also require special processing of the
message data between a format in which the data is stored
in the local external memory and a format in which the data
is stored in the database. For example, message data is
sometimes linearized or “pickled” before being stored on
disk and delinearized, “objectified” or “unpickled” when
retrieved from disk.

According to one embodiment of the invention, for pro-
cesses that execute within a database system, a “zero copy”
access approach is used to enqueue and dequeue messages.
This approach reduces the amount of overhead that is
required to processes enqueue and dequeue requests.

FIG. 8 is a block diagram that depicts a DBMS 800
configured to provide “zero copy” access to queued mes-
sages according to an embodiment of the invention. DBMS
800 includes a database 802, a shared memory 804, a
buffered message queue 806 disposed in shared memory 804
and a persistent message queue 808 stored on database 802.
DMBS 800 also includes a publisher P1 and a subscriber S1
executing within DBMS 800.

The enqueuing and dequeuing of messages from a buft-
ered message queue using “zero copy” access is now
described with reference to FIG. 8 and a flow diagram 900

20

25

30

35

40

45

50

55

60

65

20

of FIG. 9. In step 902, a publisher allocates a portion of a
shared memory in which a buffered message queue is
disposed. In the present example, publisher P1 allocates a
portion SM1 of shared memory 804.

In step 904, the publisher process generates a new mes-
sage in the allocated portion of the shared memory. In the
present example, publisher P1 generates a new message M1
in portion SM1 of shared memory 804.

In step 906, the publisher enqueues a reference to the new
message into the buffered message queue. In the present
example, publisher P1 enqueues a reference R1 to the new
message M1 into buffered message queue 806.

In step 908, the new message is enqueued into the
buffered message queue. In the present example, the new
message M1 is enqueued from portion SM1 of shared
memory 804 into buffered message queue 806, which is also
in shared memory 804.

In step 910, the subscriber requests that a message be
dequeued from the buffered message queue. A determination
is made whether a message in the buffered message queue
satisfies the subscription data for the subscriber process. In
the present example, subscriber S1 requests that a message
be dequeued from buffered message queue 806 and a deter-
mination is made whether message M1 satisfies the sub-
scription data for subscriber S1. In the present example, it is
presumed that message M1 satisfies the subscription data for
subscriber S1.

In step 912, a reference to the new message in the buffered
message queue is provided to the subscriber. In the present
example, the reference R1 to the new message M1 is
provided to subscriber S1. At this point, subscriber S1 may
use the reference R1 to operate on the new message M1.
Also, other subscribers may request that a message be
dequeued from buffered message queue 806 and the refer-
ence R1 to the new message M1 may also be given to them.

In step 914, the allocated memory is de-allocated from the
shared memory for re-use after all subscribers of the mes-
sage have consumed the message. In the present example,
the portion SM1 of shared memory 804 is de-allocated for
re-use by other processes.

As should be apparent from the foregoing example, the
“zero copy” access approach for enqueuing and dequeuing
messages reduces the amount of overhead required to pro-
cesses enqueue and dequeue requests by reducing the num-
ber of memory copy operations that are performed. Since
portion SM1 and buffered message queue 806 are disposed
in the same shared memory 804, expensive memory copies
are not required to enqueue and dequeue messages. Further-
more, the overhead attributable to formatting message data
into a format required by database 802 is avoided since
messages are maintained in buffered message queue 806 in
shared memory 804.

XI. Transactional Enqueue

In some situations, messages to be enqueued into a
buffered message queue are associated with “atomic” trans-
actions. One important characteristic of atomic transactions
is that either all of the changes associated with the transac-
tion are made or none of the changes associated with the
transaction are made. This ensures that data changed by the
transaction is always in a known state and provides certainty.
This is particularly useful in implementations where changes
made by a transaction are dependent upon each other, for
example, in financial transactions.

According to one embodiment of the invention, an
approach referred to as “transactional enqueue” is used to
perform operations related to a buffered message queue

US 7,203,706 B2

21

based upon transactional association of messages. A work
list is created for operations to be performed on messages
related to the same transaction. The work list contains data
that defines the operations to be performed on the messages
related to the same transaction. The operations may be any
type of operations and the invention is not limited to
particular operations. The work list may also contain mes-
sages that are to be processed. When the transaction com-
mits, then all of the operations specified by the work list are
performed. If the transaction does not commit, then none of
the operations specified by the work list are not performed.
The transaction may not commit, for example, because of an
error or the expiration of a timeout.

This approach provides for the enqueuing of messages
associated with a transaction in an atomic manner. That is,
either all of the operations are performed if the associated
transaction commits, or none of the operations are per-
formed if the associated transaction does not commit.

FIG. 10A is a block diagram that depicts a DBMS 1000
configured to perform transactional enqueue according to
one embodiment of the invention. DBMS 1000 includes a
database 1002, a shared memory 1004, a buffered message
queue 1006 disposed in shared memory 1004 and a persis-
tent message queue 1008 stored on database 1002. DBMS
1000 also includes a work list 1008 disposed in shared
memory 1004.

The transaction enqueue approach is now described with
references to FIGS. 10A and 10B and a flow diagram 1100
of FIG. 11. Buffered message queue 1006 initially includes
one enqueued message M1 and two local processes P1, P2
are executing in DBMS 1000.

In step 1102 a publisher process performing work within
a transaction requests that new messages associated with the
transaction be enqueued into a buffered message queue. In
the present example, publisher P1 is performing work within
a transaction and requests that messages M2—M4, that are
associated with the transaction, be enqueued in buffered
message queue 1006.

In step 1104, the new messages are stored into a work list.
In the present example as depicted in FIG. 10A, messages
M2-M4 are stored into work list 1008 instead of being
enqueued into buffered message queue 1006. Work list 1008
may also contains data that specifies the operations to be
performed on the new messages. For example, work list
1008 may contain data that specifies that messages M2-M4
are to be enqueued into buffered message queue 1006.

In step 1106, a determination is made whether the trans-
action has committed. If the transaction has committed, then
in step 1108, the new messages are enqueued into the
buffered message queue from the work list. In the present
example, if the transaction has committed, then messages
M2-M4 are enqueued from work list 1008 into buffered
message queue 1006, as depicted in FIG. 10B.

If the transaction has not committed, for example because
an error occurred or a timeout expired, then in step 1110, the
new messages are deleted from the work list and are not
enqueued into the buffered message queue. In the present
example, messages M2-M4 are deleted from work list 1008
without being enqueued into buffered message queue 1006.

According to another embodiment of the invention, mes-
sages are stored in work list 1008 in a specified order and
enqueued into buffered message queue 1006 in the same
specified order. In the present example, messages M2-M4
are stored in work list 1008 in order, i.e., first message M2,
then M3, then M4. If the transaction associated with mes-
sages M2—M4 commits, then message M2 is first enqueued

20

25

30

35

45

50

55

60

65

22

into buffered message queue 1006, followed by message M3
and then message M4. This preserves an order that may be
important for the transaction.

XII. Implementation Mechanisms, Alternatives & Exten-
sions

The approach described herein for managing messages in
database systems using buffered message queues is appli-
cable to a variety of contexts and implementations and is not
limited to a particular context or implementation.

FIG. 12 is a block diagram that illustrates a computer
system 1200 upon which an embodiment of the invention
may be implemented. Computer system 1200 includes a bus
1202 or other communication mechanism for communicat-
ing information, and a processor 1204 coupled with bus
1202 for processing information. Computer system 1200
also includes a main memory 1206, such as a random access
memory (RAM) or other dynamic storage device, coupled to
bus 1202 for storing information and instructions to be
executed by processor 1204. Main memory 1206 also may
be used for storing temporary variables or other intermediate
information during execution of instructions to be executed
by processor 1204. Computer system 1200 further includes
a read only memory (ROM) 1208 or other static storage
device coupled to bus 1202 for storing static information and
instructions for processor 1204. A storage device 1210, such
as a magnetic disk or optical disk, is provided and coupled
to bus 1202 for storing information and instructions.

Computer system 1200 may be coupled via bus 1202 to a
display 1212, such as a cathode ray tube (CRT), for dis-
playing information to a computer user. An input device
1214, including alphanumeric and other keys, is coupled to
bus 1202 for communicating information and command
selections to processor 1204. Another type of user input
device is cursor control 1216, such as a mouse, a trackball,
or cursor direction keys for communicating direction infor-
mation and command selections to processor 1204 and for
controlling cursor movement on display 1212. This input
device typically has two degrees of freedom in two axes, a
first axis (e.g., X) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

The invention is related to the use of computer system
1200 for managing messages in a database system using
buffered message queues. According to one embodiment of
the invention, the management of messages in a database
system using buffered message queues is provided by com-
puter system 1200 in response to processor 1204 executing
one or more sequences of one or more instructions contained
in main memory 1206. Such instructions may be read into
main memory 1206 from another computer-readable
medium, such as storage device 1210. Execution of the
sequences of instructions contained in main memory 1206
causes processor 1204 to perform the process steps
described herein. One or more processors in a multi-pro-
cessing arrangement may also be employed to execute the
sequences of instructions contained in main memory 1206.
In alternative embodiments, hard-wired circuitry may be
used in place of or in combination with software instructions
to implement the invention. Thus, embodiments of the
invention are not limited to any specific combination of
hardware circuitry and software.

The term “computer-readable medium” as used herein
refers to any medium that participates in providing instruc-
tions to processor 1204 for execution. Such a medium may
take many forms, including but not limited to, non-volatile
media, volatile media, and transmission media. Non-volatile
media includes, for example, optical or magnetic disks, such

US 7,203,706 B2

23

as storage device 1210. Volatile media includes dynamic
memory, such as main memory 1206. Transmission media
includes coaxial cables, copper wire and fiber optics, includ-
ing the wires that comprise bus 1202. Transmission media
can also take the form of acoustic or light waves, such as
those generated during radio wave and infrared data com-
munications.

Common forms of computer-readable media include, for
example, a floppy disk, a flexible disk, hard disk, magnetic
tape, or any other magnetic medium, a CD-ROM, any other
optical medium, punch cards, paper tape, any other physical
medium with patterns of holes, a RAM, a PROM, and
EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave as described hereinafter, or any
other medium from which a computer can read.

Various forms of computer readable media may be
involved in carrying one or more sequences of one or more
instructions to processor 1204 for execution. For example,
the instructions may initially be carried on a magnetic disk
of a remote computer. The remote computer can load the
instructions into its dynamic memory and send the instruc-
tions over a telephone line using a modem. A modem local
to computer system 1200 can receive the data on the
telephone line and use an infrared transmitter to convert the
data to an infrared signal. An infrared detector coupled to
bus 1202 can receive the data carried in the infrared signal
and place the data on bus 1202. Bus 1202 carries the data to
main memory 1206, from which processor 1204 retrieves
and executes the instructions. The instructions received by
main memory 1206 may optionally be stored on storage
device 1210 either before or after execution by processor
1204.

Computer system 1200 also includes a communication
interface 1218 coupled to bus 1202. Communication inter-
face 1218 provides a two-way data communication coupling
to a network link 1220 that is connected to a local network
1222. For example, communication interface 1218 may be
an integrated services digital network (ISDN) card or a
modem to provide a data communication connection to a
corresponding type of telephone line. As another example,
communication interface 1218 may be a local area network
(LAN) card to provide a data communication connection to
a compatible LAN. Wireless links may also be implemented.
In any such implementation, communication interface 1218
sends and receives electrical, electromagnetic or optical
signals that carry digital data streams representing various
types of information.

Network link 1220 typically provides data communica-
tion through one or more networks to other data devices. For
example, network link 1220 may provide a connection
through local network 1222 to a host computer 1224 or to
data equipment operated by an Internet Service Provider
(ISP) 1226. ISP 1226 in turn provides data communication
services through the worldwide packet data communication
network now commonly referred to as the “Internet” 1228.
Local network 1222 and Internet 1228 both use electrical,
electromagnetic or optical signals that carry digital data
streams. The signals through the various networks and the
signals on network link 1220 and through communication
interface 1218, which carry the digital data to and from
computer system 1200, are example forms of carrier waves
transporting the information.

Computer system 1200 can send messages and receive
data, including program code, through the network(s), net-
work link 1220 and communication interface 1218. In the
Internet example, a server 1230 might transmit a requested
code for an application program through Internet 1228, ISP

20

25

30

35

40

45

50

55

60

65

24

1226, local network 1222 and communication interface
1218. In accordance with the invention, one such down-
loaded application provides for managing messages in a
database system using buffered message queues as described
herein.

The received code may be executed by processor 1204 as
it is received, and/or stored in storage device 1210, or other
non-volatile storage for later execution. In this manner,
computer system 1200 may obtain application code in the
form of a carrier wave.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous spe-
cific details that may vary from implementation to imple-
mentation. Thus, the sole and exclusive indicator of what is,
and is intended by the applicants to be, the invention is the
set of claims that issue from this application, in the specific
form in which such claims issue, including any subsequent
correction. Hence, no limitation, element, property, feature,
advantage or attribute that is not expressly recited in a claim
should limit the scope of such claim in any way. The
specification and drawings are, accordingly, to be regarded
in an illustrative rather than a restrictive sense.

What is claimed is:

1. A method for managing messages in a database system,
the method comprising the computer-implemented steps of:

a first process that is executing in the database system,
creating, in a first portion of a volatile memory in the
database system, a message in a native format of the
first process, wherein the first portion of the volatile
memory is associated with the first process;

the first process causing a reference to the message to be
enqueued into a message queue that is disposed in the
volatile memory separate from the first portion of the
volatile memory; and

the first process causing the message to be enqueued
directly from the first portion of the volatile memory
into the message queue.

2. The method as recited in claim 1, wherein the step of
causing the message to be enqueued directly from the first
portion of the volatile memory into a message queue
includes copying the message directly from the first portion
of the volatile memory into the message queue.

3. The method as recited in claim 1, further comprising
the computer-implemented steps of:

a second process that is executing in the database system,
requesting that a message be dequeued from the mes-
sage queue; and

in response to the second process requesting that a mes-
sage be dequeued from the message queue, dequeuing
the reference to the message to the second process.

4. The method as recited in claim 3, wherein the step of
dequeuing the reference to the message to the second
process includes providing to the second process, an address
where the message is stored in the message queue.

5. The method as recited in claim 1, further comprising
the computer-implemented step of deleting the message
from the first portion of the volatile memory.

6. The method as recited in claim 1, wherein the step of
causing the message to be enqueued directly from the first
portion of the volatile memory into the message queue is
performed without formatting data into a format required by
a database in the database system.

7. A computer-readable storage medium for managing
messages in a database system, the computer-readable
medium carrying one or more sequences of instructions
which, when executed by one or more processors, cause the
one or more processors to perform the steps of:

US 7,203,706 B2

25

a first process that is executing in the database system,
creating, in a first portion of a volatile memory in the
database system, a message in a native format of the
first process, wherein the first portion of the volatile
memory is associated with the first process;

the first process causing a reference to the message to be
enqueued into a message queue that is disposed in the
volatile memory separate from the first portion of the
volatile memory; and

the first process causing the message to be enqueued
directly from the first portion of the volatile memory
into the message queue.

8. The computer-readable storage medium as recited in
claim 7, wherein the step of causing the message to be
enqueued directly from the first portion of the volatile
memory into a message queue includes copying the message
directly from the first portion of the volatile memory into the
message queue.

9. The computer-readable storage medium as recited in
claim 7, further comprising one or more additional instruc-
tions which, when executed by the one or more processors,
cause the one or more processors to perform the steps of:

a second process that is executing in the database system,
requesting that a message be dequeued from the mes-
sage queue; and

in response to the second process requesting that a mes-
sage be dequeued from the message queue, dequeuing
the reference to the message to the second process.

10. The computer-readable storage medium as recited in
claim 9, wherein the step of dequeuing the reference to the
message to the second process includes providing to the
second process, an address where the message is stored in
the message queue.

11. The computer-readable storage medium as recited in
claim 7, further comprising one or more additional instruc-
tions which, when executed by the one or more processors,
cause the one or more processors to perform the step of
deleting the message from the first portion of the volatile
memory.

12. The computer-readable storage medium as recited in
claim 7, wherein the step of causing the message to be
enqueued directly from the first portion of the volatile
memory into the message queue is performed without for-
matting data into a format required by a database in the
database system.

13. An apparatus for managing messages in a database
system, the apparatus comprising a memory carrying one or

10

20

25

30

35

40

26

more sequences of instructions which, when executed by
one or more processors, cause the one or more processors to
perform the steps of:

a first process that is executing in the database system,
creating, in a first portion of a volatile memory in the
database system, a message in a native format of the
first process, wherein the first portion of the volatile
memory is associated with the first process;

the first process causing a reference to the message to be
enqueued into a message queue that is disposed in the
volatile memory separate from the first portion of the
volatile memory; and

the first process causing the message to be enqueued
directly from the first portion of the volatile memory
into the message queue.

14. The apparatus as recited in claim 13, wherein the step
of causing the message to be enqueued directly from the first
portion of the volatile memory into a message queue
includes copying the message directly from the first portion
of the volatile memory into the message queue.

15. The apparatus as recited in claim 13, wherein the
memory further comprises one or more additional instruc-
tions which, when executed by the one or more processors,
cause the one or more processors to perform the steps of:

a second process that is executing in the database system,
requesting that a message be dequeued from the mes-
sage queue; and

in response to the second process requesting that a mes-
sage be dequeued from the message queue, dequeuing
the reference to the message to the second process.

16. The apparatus as recited in claim 15, wherein the step
of dequeuing the reference to the message to the second
process includes providing to the second process, an address
where the message is stored in the message queue.

17. The apparatus as recited in claim 13, wherein the
memory further comprises one or more additional instruc-
tions which, when executed by the one or more processors,
cause the one or more processors to perform the step of
deleting the message from the first portion of the volatile
memory.

18. The apparatus as recited in claim 13, wherein the step
of causing the message to be enqueued directly from the first
portion of the volatile memory into the message queue is
performed without formatting data into a format required by
a database in the database system.

#* #* #* #* #*

