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Method of predicting the survivability of a patient

Field Of The Invention
[0001]  The invention relates to a method of predicting acute cardiopulmonary

(ACP) events and survivability of a patient. The invention also relates to a system

for predicting acute cardiopulmonary events and survivability of a patient.

Background Of The Invention

[0002]  Triage is an important part of any Emergency Medical Response. This is
the clinical process of rapidly screening lafge numbers of patients to assess severity
and assign appropriate priority of treatment. Triage is a reality as medical resourceé
are never enough for all patients to be attended inStantaneously. It is thus impnrfant
to be able to quickly identify patients of higher severity, who would need such
resources more urgently. Therefore, a device for automatic patient outcome (cardiac
arrest and mortality) analysis could be helpful to conduct triage, especially in disaster
or mass casualty situations, where demand overwhelms resources.

[0003] Current triage systems are based on clinical judgment, traditional vital
signs and other physiological parameters. They tend to be subjective, and are not so
convenient and efficient for clinicians. Mbreoyer, the clinical ‘vital signs’ including |
heart rate, respiratory rate, blood pressure, temperature and pulse 6ximetry have not

been shown to correlate well with short or long-term clinical outcomes.

Summary Of The Invention

[0004] Acc'ording to embodiments of the invention, there is provided a method of

producing an artificial neural network capable of predicting ACP events and the

survivability of a patient, the method including: storing in an electronic database

patient ‘health data, the patient health data comprising a plurality of sets of data, each
set having at least one of a first parameter relating to heart rate variability daté and a
second parameter relating to vital sign data, each sét further having a third parametef .
relating to patient survivability; providing a netWofk of nodes interconnected to form .

an artificial neural network, the nodes comprising a plurality of artificial neurons,
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each artificial neuron having at least one input with an associated weight; and
training the artificial neural network using the patient health data such that the
associated weight of the at least one input of each artificial neuron of the plurality of
artificial neurons is adjusted in response to respective first, second and third
parameters of different sets of data from the patient health dafa, suchf that the =
artificial neural network is trained to produce a prediction on the‘ ACP events and
survivability of a patient. \

[0005]  According to efnbodiments of the invention, there is provided a method of
predicting the ACP events and survivability of a patient, the method including:
measuring a first set of parameters relating to heart rate variability data of a patient;

measuring a second set of parameters relating to vital sign data of the patient;

providing an artificial neural network comprising a network of interconnected nodes,

the nodes cofnprising a plurality of artificial neurons, each artificial neuron having at

least one input with an associated weight adj_usted by training the artificial neural

network using an electronic database having a plurality of sets of data, each set

having at least a parameter relating to heart rate variability data and a parameter

relating to vital sign data, each set further having a parameter relating to patient

survivability; processing the first set of parameéters and the second set of pafameters

to produce processed data suitable for input into the artificial neural network;

providing the processed data as input into the artificial neural network; and obtaining

an output from the artificial neural network, the output providing a prediction on the

~ ACP events and survivability of the patient.

[0006] According to embodiments of the invéﬁtion, there is provided afpaﬁent}
ACP events and survivability prediction system iﬁcluding: a first input to réceive .a-
first set of parameters relating to heart rate variability data of a patient;: a’second
input to receive a second set of parameters relating to vital sign data of the patient;"a
memory module storiﬁg instructions to implement an artificial neural network
comprising a network of interconnected nodes, the nodes comprising a plurality of
artificial neurons, each artificial neuron having at least one input with an associated
Wéight_ adjuéted by Uaiﬁing the artificial neural _nétwork using an electronic database

having a plurality of sets of data, each set having at least a parameter relating to heart
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rate variability data and a parameter relating to vital sign data, each set further

having a parameter relating to patient survivability; a processor to execute the

instructions stored in the memory modulé to perform the functions of the artificial

neural network and output a prediction on the ACP events and survivabili,ty{ of the

patient based on the first set of parameters and the second set Qf parame_térs; a.nd a’
display for displaying the prediction on the ACP' events and survivability ofﬁ the

patient. _ | . | _ '

[0007]  According to embodiments of the invenﬁon, there is provided a method of

predicting the ACP events and survivability of a patient, the method including;

measuring a first set of parameters relating to heart rate variability data of a patient; |
measuring a second set of parameters relating to vital sign data of the patient;

obtaining a third set of parameters relating to patient characteristics; providing the

first set of parameters, the second set of parameters and the third set of parameters as '
sets of normalized data values, where required, to a scoring model implemented in an

electronic database, the scoring model having a respective category associated to

each parameter of the first set of parameters, the second set of parameters and the

~ third set of parameters, each category having a plurality of pre-defined value ranges,

each of the plurality of value ranges having a pre-defined score; determining a score
for each parameter of the first set of parameters, the second set of parameters and the
third set of parameters by assigning the sets of normalized data to respective pre-
defined value ranges, encompassing the sets of normalized data values, of the
plurality of value ranges of the category associated to the respecfive p‘aram:ét'ezr of the
first set of parameters, the second set of paramétéfs and thé third set of pér,aﬁie:ters;: ’
obtaining a total score, being a summation of the sbore for each pafameter of the first- :
set of parameters, the second set of parameters a.n'd the third set of paraméters, the
total score providing an indication on the ACP events and survivability of the
patient. V

[0008]  According to aspects of embodiments, a system for the detection of -
impending acute cardiopulmbnary medical events that, left untreated, would with a
reasonable likelihood result in either severe injufy or death includes: an électro—j

cardiogram (ECG) module including a plurality of electrodes for sensing a patient’s. -
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ECG and having an ECG output; a sensor for sensing a patient’s physiologic
parameter other than ECG; a first input for receiving the ECG output;.a second input
for receiving'signals from the sensor for sensing a patient’s physiologic parameter
other than ECG; a third input constructed and arranged to receive: parametric
information describing at least one element of a patient’s demographic infdrmation;
and parametric information describing a patient’s medical history; a digitizing unit
for digitizing the ECG and the physiologic signal other than ECG; av houSing :
containing a memory ﬁnit and processing unit, for storing and processing;
respectively, the ECG, the physiologic signal. other than ECG, patient demographic
information and medical history; and a user communication unit; wherein the
processing unit calculates at least one measure of heart réte variability (HRV),
combines that at least one measure of HRV with at least one parameter each of
patient -demegraphic information and medical history, and calculates a statistical
probability of an ACP event within 72 hours of the calculation. The system may
further be consﬁucted and arranged to be carried by the patient in a wearable
configuration. The sensor may measure the perfusion status of the microvasculature.
The sensor may be a pulse oximeter. The sysfem may further include: an
electromagnetic stimulator of physiologic tissue, which may stimulate cardiac tissue.
The user communication unit may have key entry. The third input may be a key
entry. The user communication unit may be in the main housing. The user
communication unit may be separate from the main housing. The user
commuhication unit may be a display. The stimulation may be pacing or ‘the .
stimulation may be defibrillation. The stimulation may be magnetlc stlmulatlon '
[0009]  According to aspects of embodiments, a. system for predicting mortahty of |
a patient being treated for trauma or as part of a mass casualty occurrence, mcludes
an electro-cardiogram (ECG) module including a plurality of electrodes for sensmg a

patient’s ECG and having an ECG output; a .sensor for sensing a patient’s

‘physiologic parameter other than ECG; a first input for receiving the ECG output; a

second input for receiving signals from the sensor for sensing a patient’s physiologic |
parameter other than ECG; a third input constructed and arranged to receive:

parametric information describing at least one element of a patient’s demographic
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information; and parametric information describing a patient’s medical history; a
digitizing unit for digitizing the ECG and the physiologic signal other than ECG; a
housing containing a memory unit and processing unit, for storing and processing,
respectively, the ECG, the physiologic signal other than ECG, patient demographic
information 'and. medical history; and a user communication unit; wherein ‘the
processing unit calculates at least one measure -of heart rate veriability (HRV),
‘combines that at least one measure of HRV with at least one parametef ealch of R
patient demographic information and medical 'hi'story, and calculates a statistical
probability of mortality for the patient. The system may be constructed and arranged
to be carried by the patient in a wearable conﬁguration. The sensor may measure
the perfusion status of the microvasculature. The sensor may be a pulse oximeter.

[0010]  According to aspects of embodiments of the invention, a method of
treating a cardiac condition of a patient, includes: measuring heart rate variability
(HRV) of the patient; measuring vital sign data of the patient; predicting, using a
computing apparatus constructed and arranged for the purpose, a likelihood of
survival of the patient to one or more selected time limits based on HRV in
combinaﬁon with the measured vital sign data; andb treating the cardiac condition as
indicated by the vital sign data when the likelihood of survival of the patient to one
or more selected time limits is below a desired threshold. The method may further
include: - collecting at least one of patient demographic information and patient
history information; wherein predicting further comprises: computing the likelihood
of survival additionally in view of the collected patient demographic information andv
patient history information. The method may yet further include' selectmg a tlme: ‘
limit of between 4 and 24 hours ora time limit of between 4 and. 72 hours. Z' o :
[0011]  According to aspects of embodiments of the mventlon an appara’cus for
predicting a likelihood of survival of a patient to one or more selected time hmlts due
to cardiac causes, includes: a heart rate sensor having a heart rate output; a vital sign’
sensor having a vital sign output; a computational module receiving the heart rate

output and the vital sign output, and performing: computing heart rate variability

Y(HRV) fromi the heart rate output received; and corﬁputing the likelihood of survival

of the patieﬁt to the one or more selected time 1i_rriits due to cardiac causes, from a
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combination of the HRV computed and the vital sign output; and, an output device
displaying to a user the likelihood of survival. of the patient to thé one or more
selected time limits due to cardiac causes. The apparatus may further include: a data
input device constructed and arranged to collect at least one of patient demographic
information and’ patient history information; and computing the likelihood of
survival additionally in view of the collected patié_nt demographic informiéticﬁm,iand
patient history information. The apparatus may yét further include: a time limit of
between 4 and 24 hours or a time limit of betweeh 4 and 72 hours. | |
[0012]  The invention will be further illustrated in the following description, with

reference to the drawings.

Brief Description Of The Drawings ,
[0013]  In the drawings, like reference characters generally refer to the same parts

throughout the different views. The drawings are not necessarily to scale, emphasis

" instead generally being placed upon illustrating the principles of the invention. In

the following description, various embodiments of the invention are described with
reference to the following drawings, in which:

[0014]  Figure 1 is a flow chart illustrating a method, according to one
embodiment of the present invention, used to produce an artificial neural‘network
capable of predicting the ACP events and survivability of a patient. .

[0015] Figure 2 is a schematic representation of an artificial neural network
accofding to one embodiment of the present invention. ‘

[0016]  Figure 3 is é schematic representatior}i of an artiﬁciai\ neurai; in:etW0rl_<_j )
according to one embodiment of the present invéntibn. | | : |
[0017]  Figure 4 shows a block diagram of a'éyste'm used to predict vt:hje ACP'V
events and survivability of a patient. - ) '
[0018] Figure 5 shows a flow chart, in accordance with embodimen"cs of the .-
invention, implemented by a signal acquisition block. ‘

[0019] Figure 6 shoWs a flow chart, in accordance with embodiments of the

invention, implemented by a signal processing module.
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[0020] Figure 7 shows a flow chart, in accordance with embodiments of the
invention, implemented by a beat detection and post processing module.

{6021] Figure 8 shows a flow chart, in accordance with embodiments of the
invention, implemented by a HRV parameter calculation module.

[0022]  Figure 9 shows a block diagram representation of how data flows in an
analysis block.

[0023]  Figure 10 shows a flow chart illustrating use of a system, in accordance
with embodiments of the invention, utilizing wireless technology.

{0024]  Figure 11 summarizes raw ECG data characteristics of patients.

[0025] Figure 12 shows a flow chart, in accordance with embodiments of the
invention, ‘illustrating how an ‘ECG signal is pre-processed to calculate HRV
parameters.

[0026] Figure 13 shows how data extraction is performed.

[0027]  Figure 14 shows a flow chart illustrating a method, according to one
embodiment of the present invention, of predicting the ACP events and
survivability of a patient.

[0028]  Figure 15 shows a schematic of a patient ACP events and survivability
prediction system in accordance with embodiments of the invention.

[0029]  Figure 16 shows a schematic of a patient ACP events and survivability
prediction system in accordance with embodiments of the invention.

{0030] Figure 17 shows pictures of a patient ACP events and survivability
prediction system in accordance with embodiments of the invention.

[0031]  Figures 18 to 20 show snap shots of the output of a patient ACP events
and survivability prediction system in accordance with embodiments of the
invention.

[0032]  Figure 21 shows a flow chart illustrating a method, according to one
embodiment of the present invention, used to predict the ACP events and
survivability of a patient.

[0033]  Figure 22 shows a flow chart used by a validation system.

[0034]  Figures 23, 24 and 25 respectively show classification results using vital

signs, HRV measures, and combined features.

7
RECTIFIED SHEET (RULE 91) ISA/EP
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[0035] Figure 26 shows results from using a different number of selected
segments using combined features. | |

[0036]  Figure 27 shows four different predictive strategies.

[0037] Figure 28 shows results from different predictive strategies usmg
combmed features. o ‘ | _

[0038] Flgure 29 shows classification results from usmg vital s1gns HRV“
measures, and combined features. ' .
[0039] Figures 30, 31 and 32 depict the performances of extreme learmng :
machine (ELM) in terms of different number of hidden nodes. '

[0040] Figure 33 shows results from different predictive strategies using
combined features. '

[0041]  Figure 34 shows an embodiment of the invention in a wearable medical

- device.

Detailed Description
[0042]  According to aspects of embodiments, a system is able to reliably predict
acute cardiopulmonary medical events that, left untreated, would with a high

likelihood result in either severe injury or death. Examples of such acute

cardiopulmonary (ACP) events would include cardiac or respiratory arrest,

hypovolemic shock particularly due to blunt trauma injury or acute decompensated
heart failure.

[0043] Previous systems seeking to determine and predict patlent morbidity and
patient mortality under vanous trauma, stress, and shock conditions have mcluded 1n‘
the battery of signs monltored heart rate vanablhty (HRV) HRV measurement_
quantifies the variability over time of the R-R interval in the electrocardiographic
signal of the patient. The R-wave of a particular heartbeat corresponds to the point 1n
the cardiac cycle of the early systolic phase, and from a signal processing point of
view, provides a reliable time-fiducial for making cardiac cycle - interval

measurements. HRV is affected by the autonomic nervous system which consists of

- the sympathetlc nervous system (SNS) and the parasympathetic nervous system
: (PNS) Observed HRV is believed to be an 1nd1cator of the dynamic interaction and
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" balance between the SNS and PNS, providing a measure of nervous system

competence.  HRV serves as an indicator for the diagnosis and aesessment of a
variety of conditions that are affected by the autonomic system ranging from
congestive heart failure to sleep apnoea. For example, decreased HRV has been
found to be a predictor of increased mortality in the'elderly for coronary heart
disease. Decreased HRV is also seen after sudden_eardiac arrest and in patients with
diseases such as diabetes, uraemia and hypertension. Unfor:tunately, he'afrt_ iratez
variability alone, while being able to predict inefeased mortality, is only a poor '
predictor of ACP events with any time speciﬁcity. - o
[0044] A variability measure related to HRV is T-wave alternans which is a
measure of the variation in the recovery of the myocardium during the diastolic
(relaxation) phase, and measures the fluctuations in the amplitude of the T-wave of
the ECG. Because of the need to measure minute fluctuations in ECG amplitude, it 18
relatively susceptible to patient motion-induced artifact and so not useful fer
continuous monitoring of a patient’s ECG.

[0045] In accordance with aspects of embodiments, for example in triage systemé,

it would be of value to be able to reliably vprediet acute cardiopulmonary medical

events that, left untreated, would with a high likelihood result in either severe injury
or death. Examples of such acute cardiopulmonary (ACP) events would include
cardiac or respiratory arrest, hypovolemic shock particularly due to blunt trauma
injury or acute decompensated heart failure. Conventional clinical signs, symptoms
and physiolegic measurements provide little warning for these types of events. For.
in‘sta‘nc'e implantable cardioverter defibrillators (ICDs) or wearable- external
deﬁbnllators such as the Lifevest (ZOLL Medlcal) will contmuously analyze thej, :
patient’s electrocardiographic (ECG) signal durlng their daily act1v1t1es and dehver a
life-saving electrical shock to the heart.- . g : |
[0046] In U.S. Apphcatlon 2009/0234410A1 a system 1is described: for the»-i
prediction of heart failure decompensation. This, and similar, systems requlre the
detection of a cardiac arrhythmia via the ECG, which unfortunately limits the
duration of predictive forecast accuracy. For instance, arrhythmia detectors on ICDs

and ‘wearab_le defibrillators only detect a shockable event after the patient is in a
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lethal arthythmia requiring a shock. Despite extensive research, utilizing arrhythmia
analysis for the reliable prediction of impending ACP events has been problematic,
lacking in both predictive accuracy as well as event time specificity (prediction of
when the event might occur). U.S. 2009/0234410 may utilize heart rate variability in
conjunction with the arrhythmia analysis, but again, the use of the arrhythmiai :
detector will :limit the predictive accuracy. o _ : ' .
[0047]  More sophisticated analytic methods 'o:f ‘cardiac arrhythmias su"‘chf as T-
wave alternans also require very accurate measurement of ECG v‘oltages.bto: better :
than 1 microvolt typically and thus tend to be very susceptible ‘to signail artifaci :
generated in systems where the ECG is monitored on a relatively continuous besis

such as a wearable monitoring and therapeutic device. U.S. Pat. No. 4,957,115

describes a system using ECG arthythmia analysis along with other physiological

measurements to generate a probability score of impending death due to a
cardiovascular eventb. Other systems, such as that described in U.S. Pat. No.

7,272,435, might be used in a stress test laboratory where patients are viewed under -
controlled conditions unlike those conditions that would likely be encountered on a

wearable device. Under such strictly controlled conditioné, noise—susceptible

measurement techniques such as T-wave alternans might be applicable.

[0048] U.S. Pat. Nos. 6,665,559 and 5,501,229 describe systems that determine a

probability of cardiovascular risk based on serial comparisons of ECG arrhythmia

analysis. It would thils be advantageous, according to aspects of embodiments of the

invention, to have a system that is both more robust in the presence of ECG signal ?
artifact often enc':ountered during continuous monitoring from an external wearable

dev1ce and further advantageous to have a system that is able to predlct w1th some

reliability when an ACP event is most hkely to occur :

[0049]  Aspects of embodiments of the invention combine HRV with other vital - |
sign data, as distinct from US Published Patent Application 2007/112,275 Al, which
describes a system which alerts a user on any vital sign going out of a desired range.
Further, aspects of embodiments of the invention predict the likeiihood of oceurrence
of acute cardio-pulmonary (ACP) events by combining HRV with other vital sign
data, as compared with US Published Patent Application 2007/276,275 Al, which

10
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dcséribes predicting morbidity and mortality due to an entirely different and

unrelated type of injury, traumatic brain injury, using HRV combined with one or

more other vital signs.

[0050] Measurements of HRV data according to aspects of embodiments provide

a measure of the interaction between the autonomic nervous system and the

cardiovascular system. While HRV has become a well-known' technique used by
researchers in attempts to predict ACP events (See for iristance, Insights from the |
Study of Heart Rate Vai'iability, P.K. Stein, R.E. Kleiger, Annu. ;Rev. Mf.:d.; 1_999.

50:249-61), as Stein et al. point out, HRV a'llone» 1s insufficient to 'predict, With'any '
reasonable degree of accuracy, future clinical events. ' A

[0051]  Aspects of embodiments of the invention differ from commercial devices

for HRV analysis currently available in the market in yet other ways. Some
commercial HRV analysis devices are bulky. Aspects of embodimients are more '
portable and therefore field ready, so as to be convenient for routine use in hospitals

and for outfield environments such as ambulances. Moreover, aspects of

embodiments do more than simply correlate some HRV measures with particular

abnormalities of cardiovascular system, as commercial device currently do. Aspects

of embodiments, in a portable package, predict risk scores for patient outcomes.

Some commercial devices are portable but have limited functions. Experienced

clinicians interpret the outputs and some current commercial devices only provide

simple information such as the health condition of a normal person. Aspects of some

embodiments thus also improve upon existing commercial devices, which lack the

combination. of portability and ability of automatically predicting patient outcomes
that is crucial to triage. | ' | '

[0052] In one embodiment of the invention, there 1s prov1ded a patlent Wearable: j
device such as device 10 shown in overall view in FIG. 34. the patlent—worn dev1ce: '
may include a waist-encompassing belt 14 of suitable fabric, webbmg or the hke and .
may incorporate sprung elements the belt having -a low-profile connector or buckle.
16 and a shoulder strap 18 of like material connected betWeen front and rear portions
of the belt. First and second sensing and pulsé electrode assemblies 20 are carried

respectively on belt 14 and shoulder strap 18. Belt 14 also carries an electronics

11
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housing 24 which may have a supporting strap connection 26 with strap 18 and
electrical conductors, diagrammatically indicated at 28 and 30,. for receiving
electrical signals from and delivering electrical pulses to the respective electrode
assemblies 20. Assemblies 20 have respective sensing electrodes 22 and pulsb
electrodes 32. - _

[0053] In use of the device as thus far described, assemblies 20 are held in
comfbrtable contact with a patient's chest wall and contimiously monitor and détect ﬁ

the heart rhythm by méans of the respective SenSing electrodes 22. Altejli'r‘iati}vvely, :

sensing electrodes may be traditional disposabléb ECG electrodes piaced: on the
patient's skin in a location separate from the pulsé e_lectrodes 32. Device l.Olmay be
wormn over a comfortable undergarment 34, such as a T-shirt, which may have

apertures 36 that receive the respective electrode assemblies 20. Attachments 38, |
such as patches of loop and pile Velcro-type fabric, may be provided between belt

14, strap 18 and the uhdergarment. '

[0054] The housing for the electrode assemblies 20 may contain signal

conditioning and amplification electronics for the EGG electrode. The EGG
electrode 22 may be capacitive, conductive carbon, or any other design that permifs

long-term use without skin irritation. It is understood that the printed circuits of the

respective electrodes are connected to the pulse generator 24 through conductors 28

and 30.

[0055] A sensor for measuring a second physiologic parameter such as a pulse

oximeter 38 is used to measure additional physiologic status of the patient. In the

- case of the pulse oximeter the physiologic parameter is that of tissue perfusion.

-[0056]  The sensor might also be impedance plethysmography- (IP), anv'vn to

those skilled in the art. IP is accomplished by measuring sm:all variatio:n's: 1n the:
electrical impedance of the tissue underl_yingz Ith:e sense elecﬁodes, tyﬁiéally by '
applying a small current to the electrodes and m‘eésuring the induced voltaéé.;As the-
volume of the tissue chéngés, as a result of physiological activity such as blood.
perfusion or as increased air in the lungs with respiration, its electrical ir_npedance:
also changes. Thus the physiologic parameter sensed can be both blood flow and

respiration simultaneously via the same set of impedahce electrodes. Tt is also’
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possible, and known to those skilled in the art that the ECG electrodes 22 can also be
used for both impedance measurements as well as ECG simultaneously as the
impressed current for IP is typically at 30 kHz or higher and thus can be filtered from
the input signal to the ECG amplifiers prior to processing, since ECG signals contain
relevant frequencies no higher than 100 Hz. More than one sensor may be provided |
to obtain multiple measures for two or more physiological parameters. |
[0057] The ECG signal may be detected using passive devices su_ch‘ as an
electrode making an electrical contact, using sticky pads, 'paste‘s or gel W1th the at

least one patient’s skin surfacé. Other means such as an active device, Wﬁic’h.heed _ |
not necessarily contact the at least one patient’é skin surface to detect the patient’s

ECG signal, may be used. Such an active device may be an insulated bioelectrode

(IBE). The IBE may measure the electric potential on the skin without. resistive
electrical contact and with very low capacitive coupling. The IBE may be

connected, Wirelessly or via cable, to a processing unit. To achieve a wireless IBE, a

wireless node platform may be integrated into the IBE. An example of a system that

may function with a wireless IBE is the “Tmote Sky” platform, using three wireless

IBEs to form a 3-lead system. The “Tmote Sky” platform has an 802.15.4 radio

interface at 250 Kbps and is controlled by the MSP430F1611 microcontroller.

[0058]  Referring to FIG. 4, the system 400 has three main functional blocks: a

signal acquisition block 402, a signal processing block 404 and an analysis block

406. The signal acquisition block 402 has sensor and signal conditioning hardware

408 for acquiring an ECG signal and other vital signs from a patient 401. The sensor
and signal conditioning hardware 4(58 may include sensors that detect ECG signals, -
and bthef physiological parameters such as blood pressure, tissue perfusio,n' such as.
SpO?2 and respiration rate. ‘ | _ ' |
[0059]  The signal acqulsltlon block 402 has a data acquisition (DAQ) electromcs: .

410, which in one embodiment contains the 31gna1 conditioning circuits used for

- processing output from the sensor and signal conditioning hardware 408. The signal

conditioning circuits are designed to process signals from these sensors. The signalﬁ
conditioning circuits comprise electronic components that perform functions such as

isolation and amplification of the various signals measured by the sensors as well as
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conversion of the analog signals to digital signals. The DAQ electronics 410
communicate the digitized ECG and other physiological parameters to the processing .
unit 430. The processing unit contains circuit elements known to those skilled in the
art of: a processing unit such as a microprocessor; a program storage circuit such as a
disk drive or solid state storage element such as a ROM or Flash memory; a dynamic |
data storage element such as DRAM; a communication circuit such as a serial data
channel, Bluetooth, USB, etc. for communicating with both the DAQ 410 and '
external devices such as a WiFi network or eellular network; a user interfa_ee}ciricuift

containing a display, audio channel and ‘speak:er, a touchscreen interface »anc:l |
switches; a battery and power supply circuit. An input pahel alse accepts additional

information such as age and gender of the patient 401. |

[0060]  The signal processing block 404 includes a signal processing module 426,
a vital sign module 420 and a patient information module 418. The circuitry may be

configured in such a way as to optimize functions, with the Signal Processing

Module 426 and Analysis Module 406 functions being provided by a digital signal

processor (DSP) chip such as the Texas Instruments Blackfin processor family, and

the user interface and other functions being provided by a general purpose‘
microprocessor such as Dual-Core Intel Xeon Processor running a Linux operating
system. By the word “module”, we refer only to the particular functions performed

by the processing unit 430; the module boundary in the figure may or may not

correspond to actual circuitry. The signal processing module 426 includes an ECG

pre-processing module 412, a beat detection and post processing module 414, and a

HRV parameter calculation module 416. The ECG. pre-processing module 412

processes raw ECG data from the signal acquisition block 402 to suppress unwanted
31gnals such as noise, motion artifacts and power hne 1nterference which may affect, ﬁ
the accuracy of HRV parameters eventually extracted from the ECG data. The beat‘_ :
detection and post processmg module 414 acts on de- n01sed 51gnal from the ECG" '
pre-processing module 412 to detect a heartbeat and to exclude non-sinus beats .
during post-processing. The duration between consecutive sinus beats are compiled

into an RRI (beat to beat interval) sequence from which HRV parameters are
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computed. Extraction is preferably from an ECG srgnal derived from the patlent s
sinus rhythm '

[0061] In one embodiment of the present invention, extracting the heart rate
variability data comprises filtering the ECG signal to remove noise and artifacts;
locating 2 QRS complex within the filtered ECG signal; finding a RR interval |
between successive R Waves of the QRS complex; and processing the sequence of
information within the RR interval to obtain the heart rate Van‘ability data.

[0062]  In one embodiment of the present invention, a band pass filter i is used to .
filter the ECG signal and locate the QRS complex A band- pass ﬁlter wrth an_:
operating frequency range W1der than the frequency components of the QRS': |
complex has to be used. The frequency components of the QRS complex lie
between 10 to 25Hz. Thus, in one embodiment of the present invention, the
operation frequency range of the band pass filter is between about SHz to about
28Hz.

[0063]  In one embodiment of the present invention, the R wave may be located as
follows. A maximum peak data value first occurring in the filtered ECG signal is
located. An upper amplitude threshold and a lower amplitude threshold from the
located maximum peak value are determined. A peak value and minimum values on
either side of the peak value are located. In this embodiment of the invention, either
side refers to the left and right sides of the peak value. The conditions of whether the
peak value is above the upper amplitude threshold, while the minimum values are
below the lower amplitude threshold are met is checked. If the conditions are met,

the location of the peak value is denoted as an R position. The location of the

' mrnrmum value occumng closest on the left side of the R position is denoted asaQ

posrtlon and the location of the minimum value occumng closest on the rrght hand .
side of the R position is denoted asan S posrtlon Wlth reference toa t1me scale thatb ,
the filtered ECG signal is plotted against, the Q posmon occurs at where the' i
minimum value first occurs before the R pos1t10n while the S posmon oceurs at -
where the minimum value first occurs after the R position. The locatron of a QRS :

peak within the filtered ECG signal is thus determrned
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[0064] In onc embodiment of the present invention, where a 1D array of ECG '
sample points x(n) are provided, the upper and lower amplitude thresholds (Tupper and
Tiower) are set after ﬁnding the maximum value (ref peak) within the first few
seconds of data. The thresholds are defined as: |

Tupper = ref_peak + 0.4 * ref’_peak

Tiower = ref_peak - 0.35 * ref peak
Then an R wave is said to occur at the point i if the following conditions are met,
| x(i) lies between Typper and Tiower;

x(i+1) — x(1) < 0; and |

x(i) - x(i-1) > 0
where the R-peak is the point with maximum Value ,
[0065]  The positions of other R waves w1th1n the filtered ECG signal may be -
located by iterating the process of: locatlng another peak value and locating other
minimum values on either side of the another peak value. When the another peak
value is above the upper amplitude threshold while the other minimum values are
both below the lower threshold, the location of the peak value is denoted as an R
position. The location of the minimum value occurrmg closest on the left side of the
R pos1t10n is denoted as a Q position and the location of the minimum value -
occurring closest on the rlght side of the R pos1t1on is denoted as an S position. In
this manner, the location of another QRS peak is determined.
[0066]  Processing the sequence of information within the RR interval may further
comprise removing outliers from the sequence of information within the RR interval.
A median value and a standard deviation value for the RR interval may be found. A
tolerance factor based on the standard deviation value may be calculated ‘A portion
of 1nformat10n that lies within the RR interval ‘Spanning e1ther 81de of the median
Value by the tolerance factor may be retained. Heart rate Varrabrhty data may be;
obtained from the retamed port1on of 1nformat10n .and the remamrng portlon of thei ﬁ
information from the sequence of information may be discarded.. : ' .
[0067] In embodiments of the invention, the heart rate \rariability data rnay

include time domain data, frequency domain data and geometric domain data.
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[0068] Thé time domain data may include,inforination on any one or more of thé :
following pafameters: mean of RR intervals (meah RR), standard deviation of .RR '
intervals (STD), mean of the instantaneous heart rate (mean HR), standard deviation
of the instantaneous heart rate (STD_HR), root mean square of differences betweén
adjacent RR intervals (RMSSD), number of consecutive RR intervals differing by
more than 50 ms (NN50), and percentage of consecutive RR intervals differing by
more than 50 ms (pNN50).

[0069] The frequency domain data may include information on any one or more
of the following parameters: power in very low fréquency range (<= 0.04Hz) (VLF),
power in low frequency range (0.04 to 0.15 Hz) (LF), power in high frequehéy range_: ‘
(0.15 to 0.4 Hz) (HF), total power which is estimated from the Vérianc_e ofiNN'g
intervals in the segmeﬁt and is measured in ms® (TP), ratio of LF power to HF po'we'r'
(LF/HF), LF power in normalized units: LF/(TP-VLF)x100 (LFnorm), and HF
power in normalized units: HF/(TP-VLF)x100 (HFnorm).

[0070] The geometric domain data may include information on any one of the

following data: total number of all RR intervals divided by height of histogram of

interivals (HRV Index) and base width of triangle fit into RR histogram using least
squares method (TINN). |

[0071] In embodiments of the invention, the vital sign data may include any one
or more of the following: systolic blood pressure, diastolic blood pressure, pulse rate,
pulse oximetry, respiratéry rate, glasgow coma scale (GCS), péin score, temperature. -
The vital sign measurement may be either a continuous variable in the form of a
waveform. The vital sign measurement may also be a measurement taken at a single

point in time, or the vital sign measurement miay be a series of measurements,

typically sampled at regular intervals that may sometimes be stored in the form of

so-called trend data. 3 ‘ o |
[0072] In embodiments of ’-the invention, the p:a'tient health datﬁ used t(é :tli'aiﬁ t_he_:z ‘
artificial neural network may.be standard devi'atidn of the instantaneous l_he'art: rate
(STD_HR), power in low frequency range (0.04”[0 0.15 Hz) in normaiiZéd unifs
(LFnorm), age, pulse rate, pulse oximetry, systolic blood pressure and diastéh"c blood

pressure.
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[0073]  In embodiments of the invention, the measured first set of parameters are -
standard deviation of the instantaneous heart rate (STD_HR) and power in low
frequency range (0.04 to 0.15 Hz) in normalized units (LFnorm); and the measured
second set of parameters are age, pulse rate, pulse oximetry, systolic blood pressure
and diastolic blood pressure. 7

[0074] The patient health data includes :parameters relating to heart rate
variability data, vital sign data, patient survivability and patient characteristics. The
patient health data may include a plurality of sets of data, where each set of data may
be formed from a smgle category of these parameters 1.e. erther the first parameter .
relating to heart rate variability, the second parameter relating to vital 51gn data the |
third parameter relating to patient characteristics or a fourth parameter relatmg to
patient survivability. On the other hand, each set of data may have a combination of A
categories of these parameters, such as at least one of the first parameter‘relating to
heart rate variability, the second parameter relating to vital sign data and the third
parameter relating to patient characteristics such as age, gender, or other
demographic characteristic, as well as specific conditions in the patient’s health
history such as diabetes, myocardial infarction, high blood pressure. Severity of the
specific condition is also recorded and provided to the system, such as the date of
occurrence of the myocardial infarction, ‘the' post;infarction ejection fraction or the
pereentage extent of the ventricular tissue damage. Other descriptors may be the
specific medications that a patient uses to treat various medical conditions. A fourth
parameter may be provided relating to patient survivability such as an outcome like
survival to hospital discharge. The fourth'parameter is used as a means of training
the algorithm during the training phase of algorithm development and during use as a
means of improving the accuracy by recording the predictive algorithm’s actual
accuracy and making suitable modifications to improve that accuracy. The s'et of data” -
may not even necessarily include the parameter relatmg to patlent surv1vab111ty
Alternatively, each set of patlent health data may 1nc1ude all four parameters It wrll} j.
thus be appreciated that within the patient health data, one set of data. may noti_
contain the same number of parameters compared to another set of data. Further the

patient health data is stored as digital data converted from the form in whloh each of
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the four parameters is originally obtained (such as an analog signal), whereby the
original form of the obtained measurements. _

[0075]  Data for patient characteristics such as demographics, health history and
survivability may be communicated to the device 10 or system 400 via a wireless
network distributed through a hospital, such as 802.11.

[0076]  According to embodiments of the present invention, a method of
producing an artificial neural network capable of predicting the survivability of a
patient is prdvided. The method includes storing patient health data in an electronic
database. The patient health data includes a plurality of sets of data, each 's_.et having f
at least one of a first parameter relating to heart rate variability data andfa sec_ond
parameter relating to vital sign data. Each of the plurality of sets of data 'ﬁirthér:has ’
a third parameter relating to patient survivébility. A network of | nodes - |
interconnected to form an artificial neural network is provided. The nodes include a
plurality of artificial heurons, each artificial neuron having at least one input with an
associated weight. The artificial neural network is trained using the patient health
data such that the associated weight of the at least one input of each artificial neuron
of the plurahty of artificial neurons is adjusted in response to respective first, second
and third parameters of different sets of data from the patient health data. This
results in the artificial neural network being trained to produce a prediction on the
survivability of a patient.

[0077]  The electronic database used to store patient health data may be a memory
module such as a hard disk drive, an optical disc, or solid state devices (for example
thumb drives). During the training phase of the algorithm, the patient health data
may be obtained from hospital records or from conducting field studies of a pool of
patzent(s) where the pool includes a group of patients acting as a control group.
Thus the patlent health data may include data of patients suffenno from various
allments patients who are healthy (i.e. having no symptoms of 111nesses) patlents of
various race and age and/or patients who are termmally ill. , » '_ |
[0078] It was earlier mentioned that vital sign data may be one of the p‘ar:am'eters_j

(referred to as the second parameter in the plurality of sets of data related to patient
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health) used to train the artificial neural network that can be used to implement a
clinical decision support program or device.

[0079]  Vital sign data is defined as clinical measurements that indicate the state
of a patient's essential body functions. These measurements relate to systolic blood
pressure, diastolic blood pressure, pulse rate, pulse oximetry, respiratory rate,
glasgow coma scale (GCS), pain score and temperature.

[0080] Training phase vital sign data may be obtained from hospital records or
from conducﬁng field studies of a pool of patient(s). When conducting field studies,
each vital sign may be measured as follows. For example, systolic blood pressure .
and diastolic blood pressure may be measured using a blood pressure meéshremeﬁt
device such as the “statMAP™ Model 7200” from “Cardioccmmand” -
Alternatively, devices such as a sphygmomanometer or a mercury manometer may»
be used. Pulse rate, pulse oximetry and resplratory rate may be measured using a
pneumogram. Glasgcw coma scale (GCS) refers to the degree of spontaneity of the
patient"s physical (such as limbs, eyes) motor and/or verbal response to instructions
from a medical professional. Pain score refers to the degree of response (such as
adduction, pronation or extension of a limb or body part; flexion or withdrawal) to
pain applied to the patient. Temperature may be recorded using é thermometer.
[0081] Turning to another parameter that may be used to train the artificial neural
network, patient survivability (referred to as the third parameter in the plurality of |
sets of data related to Epatient health) refers to the outcome, i.e. either death or’
survival, of a patient. Thus, data on the patient survivability is typically associated
with a respective set of both heart rate variability data and vital sign data for the
same patient. ,

[0082] Another parameter that may be used to train the artificial neural network 18
patient charactensncs Patient characteristics include information such as patiem:
age,’ gender and medical history. At the conclusion of the trammg phase thez .
parameters found to be most relevant to ach1ev1ng a high level of accuracy w111 then» ,
be used as inputs to the real t1me detection system :
[0083]  An electronic device may 1ncorporate a processor .or memory module.

storing instructions to implement the trained artificial neural network, sQ that the
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device can analyse health data of a patient being examined. The output of the
electronic device can then be used to assist an operator or a medicall professional to
predict the outcome of the patient and thereby make appropriate clinical decisions oh
how to treat the patient. ’ | |
[0084] In embodiments of the invention, the artificial neural network (ANN) may |
be a mathematical model or computational model simulating thé structure and/or
functional aspects of a biological neural network. In embodiments of the invention,
the nodes of the ANN include at least one input (being the at 1ea§t one actual input of
the ANN), at least one artificial neuron and at least one output (being the at least one :
actual output of the ANN). Thé at least one aﬂiﬁcial néuron.‘méy be prééent ina.
single hidden layer of the ANN. In‘ other embodiments of the -in{/ention Where_ the; |
ANN has a plurality of artificial neurons, the plurality of artificial neurons fnay be
distributed across one or more hidden layérs. Where there is more than oné layer,
each layer may be inferconnected with aiprevious and a subsequent layer.

[0085]  The artificial neurons may processes information using a connectionist

- approach to computation. The ANN may be an adaptive system, where it changes

based on external or internal information that flows through the ANN during the
training or learning phase. Specifically, the weight (or strength) of the connections
(such és between adjacent artificial neurons, or between an input and an artificial
neuron) within the ANN is adapted to change. .

[0086] In embodiments of the invention, the first parameter (heart rate variability
data), the second parameter (vital sign data) or a combination of the first parameter
and the second paramefer may be classified as feature vectors of the patient health
data. The artificial neural network may be trained with the feature vectors.

[0087]  The artificial neural network may be implemented as instructions stored in
a memory fhat when ekecuted by a processor cause the processor to perform the:‘:
functions of the artificial neural network. :

[0088] In embodiments of the 1nvent10n the artlﬁmal neural network may bei
based on support vector machme architecture, wherem the assoc1ated wei ght of the att j
least one input of each artificial neuron of thej plurality of artificial neurons is

initialized from a library used by the sup'portlve:cvtor machine. The supp'orf vector
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machine may have an aggregated output comprising a decision function, the decision
function givén by
_ y o

f(x)= sgn(Z} vk (x,x)+b)
wherein sgn() is a sign function, (x,X;) is set of feature vector, k(x,x;) is a kernel :
matrix constructed by x and x;, y; is 1 or -1, which is the label of feature vector x;, a;
and b are parameters used to define an optimal decision hyperplane so that the
margin between two classes of patterns can be maximized in the feature space.
[0089] In embodimehts of the invention, the artificial neural network may be
based on an extreme learning machine architecture, wherein the associated weight of
the at least ohe input of each artificial neuron of the plurality of artificial neurons is
initialized through random selection by the'extremé 1earriing machine. The axi'tiﬁcialf ’
neural network may be realized as a single—laycf feed-forward network, Wher_eby the

prediction on the suWivability of the patient is derived from the function,
N v '
fox)=> Bgw-x,+b)=t, j=L.,N
i=]

wherein x; is an input vector to an input of one of the plurality of artificial neurons
for j = 1, 2, ..., N input vectors; w; is the associated weight of the input of the
artificial neuron receiving the x; input vector; g(wi.x; + b;) is an output of the
artificial neuron receiving the x; input vector... fori=1, 2, ..., N artificial neurons;
B; is the output weight vector that associates an i:th'hidden neufon with a respective -
output neuron; and b; is the bias for the i® hidden neuron.

[0090] In embodiments of the invention, training of the artificial neural network
may be based on back-propagation learning. '

[0091] In embodiments of the invention, the back-propagation learning may use
the Levenberg-Marquardt algorithm. |

[0092] In embodiments of the invention, each of the plurality of artiﬁcial‘ neurons.
of the artificial neural network may have an activation function, the factivation_
function being selected from a group of functions Ecomprising hardlim, sigrﬁ@)id, ﬁ;sinje,: -

radial basis and linear.
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[0093] In.embodiments of the invention, the sequence of information within the
RR intervallz may be partitioned into non-overlapping segments; and the non--
overlapping segments may be used to train the artificial neural network A length of
signal within the RR interval of each of the filtered ECG sxgnal may be extracted

The length of signal may be partitioned into non-overlapping segments; and at least

one of the non-overlapping segments may be selected to train the artificial neural

network.

[0094] In embodiments of the invention, each of the nen-overl'apping segments.
may be of substantially equal length. In embodiments_ of the invention, the non—':
overlappmg segments may have a fixed length.

[0095]  According to embodiments of the present 1nvent10n a method of -
predicting the survivability of a patient is prov1ded. The method includes measurmg-
a first set of parameters relatihg to heart rate variability data of a patient. A seeoﬁd
set of parameters relating to vital sign data of the patient is also measured. An
artificial neural network ineluding a network of interconnected nodes is provided, the
nodes including a plurality of artificial neurons. Each artificial neuron has at least
one input with an associated weight adjusted by training the artificial neural network
using an electronic database having a plurality of sets of data. Each set of data has at
least a rparameter relating to heart rate variability data and a parameter relating to
Vital' sign deta, each set of data further having a parameter relating to patient
surviVability. The method includes processing the first set of parameters and the
second set of parameters to produce processed' data suitable for input into the
artificial neural network. The processed data is provided as input into the artificial
neural network. An ou_tptlt is then obtained from the artificial neural network, the
output providing a prediction on the survivability of the patient.

[0096] In embodiments of the invention, the processed data of the 'ﬁrst set of
parameters and the ptocessed data of the -second set of parameters may be
represented as a feature ..vector : _ S |
[0097]  In embodiments of the invention, thé processed data may be the ﬁrst set. of : .

parameters and the second set of parameters bein g represented as normahzed data
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[0098] In embodiments of the invention, the processed data may be partitioned
into non- overlappmg segments, so that the 1nput into the artificial neural network
may include sets of one or more of the non- overlappmg segments of processed data.
A result may be obtained for each of the sets of one or more of the non-overlappmg
segments of processed data, so that each of the results may be considered to predict

the survivability of the patient.

[0099] In embodiments of the invention, majority Voting may be used to

determine the prediction on the survivability of the patient; the majority voting -
represented by the function ' |

y maxZD

= a

wherein Dpj is an intermediate variable for ﬁnélidecision making, Dy assigned a -
value of 1 if a m™ classifier chooses class j in the decision _en’sembie, | and 0
otherwise. ‘ |
[00100] In embodiments of the invention, the result of the artificial neural network
may be coded as a two class label. The method of predicting the survivability of a
patient may then further include applying a label-based algorithm to each of the two
class label results to decide the output from the artificial neural network, thereby
providing a prediction on the survivability of the patient.
[00101] In embodiments of the invention, the prediction on the survivability of the
patient is either death or',surxﬁval of the patient. - - | :

[00102] " In embodiments of the invention, a patient survivability prediction syStem
includes: a ‘ﬁrst input to receive a first set of f)arameters relating to heart rate
variability data of a patient; a second input to receive a second set of parameters
relating to vital sign data of the patient; and a merﬁory module storing instructions to
implement an artificial neural network. The artificial neural network includes a.
network of interconnected nodes, the nodes including a plurality of artificial neurons.
Each art1ﬁ01al neuron has at least one input with an associated Welght adgusted byv
training the artificial neural network using an electromc database having a plurahtyz ‘
of sets of data. Each set of data has at least one a parameter relating to heart rate; ’

variability data and a parameter relating to vital slgn data. Each set of d.atal furthcr
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has a parameter relating to patient survivability. The patient survivability prediction
system further includes a processor to execute the instructions stored in the memory
module to perform the functions of the artificial neural network and output a
prediction on the survivability of the patient basedfon the first sét of parameters and
the second set of parameters; and a display for displaying the prediction on the

survivability of the patieht. ,

[00103] In embodiments of the invention, the patieni survivability prediction
system may further include a port to receive the first set of parameters from the first
input and the second set of parameters from the second input.

[00104] In embodiments of the invention, the patient survivability predictiori
system may further include a first port to receive the first set of parameters from the .
first input; and a second port to receive the second:set of parameters from the second
input. |

[00105] According to embodiments of the invention, a method of predicting the -
survivability of a patient is provided. The method includes: measuring a first set of
parém_eters relating to heart rate variability data of a patient; measuring a second set
of parameters relating to vital sign data of the patient and obtaining a third set. of
parameters relating to patient characteristics. The first set of parameters, the second
set of parameters and the third set of parametefs are provided as sets of normalized
data Values; where required, to a scoring model implemented in an electronic
database. The scoring model has a respective category associated to each parametcr.
of the first set of para.meters,v the second set of ‘parameters and the third set of
parameters. Each category has a plurality of pre-defined value ranges, each of the-
plurality of value ranges having a pre-defined score. A score for each parameter of
the first set of parameters, the second set of parameters and the third set of
parameters is determined by assigning the sets of normalized data to respective pre-
defined value ranges, encompassing the sets of normalized data values, of th_é.
plurality of value ranges of the category associated to the respective parameter of the
first set of parameters, the second set of parameters and the third set of par’a'mcfter'sv.: ’

A total score, being a summation of the score for each parameter of the first set of -
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parameters, the second set of parameters and the third set of parameters is obtained.
The total score provides an indication on the survivability of the patient.

[00106] = It will be appreciated that in embodiments of the invention, only selected
parameters of the first set of parameters, the second set of parameters and the third
set of parameters may be provided to the scoring model implemented in the )
electronic database. For instance, the third set of parameters may entirely not be
obtained from the patient or provided to the scoring model. In embodiments of the
invention, further parameters of patient health data may be measured and provided to
the scoring model; ' _ 1 ,
[00107] The scoring model may be any suitable process or algorithm, '
implementable in an electronic database, which can assign a score to each range of
values within each category associated to each parameter of the first set oft‘
parameters, the second set of parameters and the third set of parameters For
instance, the scoring model may be based on a mathematlcal model using logistic
regression, such as univariate analysis.

[00108] In embodiments of the invention, the score may be a numerical value,
which may be determined according to statistical information or standard medical
information. The numerical value of the pre-defined score may also depend on the
pre-defined value range, which the pre-defined score is assigned to, in the respective
category. In embodiments of the invention, adjacent pre—deﬁned value ranges within
the same category may each have an assrgned pre-defined 'score of the same.
numerical value. It will also be appreciated that pre-defined- Value ranges w1th1n, '
different categories may each have an assigned pre-defined- score of .the same
numerical value. | o ,.

[00109] The scope of the pre-deﬁned value ranges may depend on the category to
which they belong to and may be determined according to statistical information or
standard medical information. The scope of a pre-defined value range for a category
associated toa parameter of the first set of parameters may be different to the scope
of a pre-defined value range for a category a35001ated to a parameter of the second :
set of parameters. In embodiments of the 1nvent1on there .may be no overlap

between pre-defined value ranges of the same category.
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[00110] In embodiments of the invention, assigning sets of normalized data to
respective pre-deﬁned value ranges may involve first determining which category of
the scoring model the normalized data belongs to. Subsequently, it may be .
determined which one of the pre—deﬁned value ranges the normalized data \(alue .
belongs to, by ascertaining that the numerical value of the normalized data v?alue:v
falls within or is encompassed by the scope of the respective pre-defined value
range. |

[00111] In embodiments of the invention, scoring model may further include a
plurality of risk categorres, each category having a pre-deﬁned range of values. The
method of predicting the survivability of a patient may further include assigning the
total score to the category having the pre-defined range of values encompassing the
total score, to determine which of the pluralify_of risk categories the th’gal score:
belongs to. _ | : ’. | _

[00112] While embodiments of the invention will be shown and descnbed with
reference to specific embodiments, it should be understood by those skilled in the art
that various changes in form and detail may be made therein without departing from
the spirit and scope of the invention as defined by the appended claims. The scope
of the invention is thus indicated by the appended claims and all changes which
come within the meaning and range of equivalency of the claims are therefore
intended to be embraced.

[00113] It will be apprecrated that common numerals, used in the relevant
drawmgs refer to components that serve a s1m11ar or the same purpose ‘

[00114] Figure 1 is a flow chart 100 1llustrat1ng a method, according to one
embodiment of the present invention, used to produce an artificial neural network |
capable of predicting the survivability of a patient.

[00115] The ‘method includes three steps 102, 104 and 106.

[00116] In step 102, patient health data is stored in an electronic database. - The
patlent health data 1ncludes a plurality of sets of data, each set having at least one of
a ﬁrst parameter relatlng to heart rate variability data and a second parameter relatlno
to vital sxgn data. Each of the plurahty of sets. of data further has a thlrd parameter :

relating to patient surv1vab1hty
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[00117] In step 104, a network of nodes interconnected to form an artificial neural

network (ANN) is provided. The nodes include a plurality of artificial neurons, each
artificial neuron having at least one input with an associated weight. The artificial
néur.al network (ANN) provided in step 104 may be a mathematical 'modél br
computational model - Simul_ating the structure and/or functional aspects of a:
biological neural network. . |

[00118] In step 106, the artificial neural network is trained using the patient health
data such that the associated weight of the at least one iriput of each artificial neuron
of the plurality of artificial neurons is adjusted in response to respective first, second
and third paraméters of different sets of data from the patient health_dafa. This
results in the artificial neural network being trained to produce a prediction on the
survivability of a patient. L ,

[00119] As mentioned above, artificial neural hétworks (such as the ANN providéd.
in step 104) are based on the way the human brain approaches pattern recognition
tasks, providing an artificial intelligence based approach to sblve classification
problems. A model is ‘learned’ during a training process using previously known
input-butput pairs. The trained model is then tested with new data.

[00120] Various artificial neural network topologies are available, including
single-layer and multi-layer feedforward networks. Such ANNs are typically BP
(backpropagation) based, whereby weights of hidden layers are adjusted during
traiﬁing to rﬁinimize an error function. |

' [00121] In embodiments of the invention, the nodes of the ANN inclu_dé at leasti
one input (being the at least one actual input of the ANN), at least one’arti.ﬁcial
neuron and at least one output (being the at Jeast one actual outpﬁt of the ANN).

[00122]  Figure 2 is a schematic representation of an artificial neural network 200
according to one embodiment of the present iﬁvention. With reference to the flow
chart 100 shown in Figure 1, the artificial neurél network 200 inay be provided in the
step 104. - 7 » .

[00123] In the embodiment shown in Figure 2, the ANN 200 is a single hidden-
layef feedforward network (SLFN). The ANN 200 has an inpﬁt layer 20,2:,-‘2:1 hiddéﬁ
layer 204 and an output layer 206. | : | 'b R
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[00124] The input layer 202 includes one or more inpuf nodes 202, 202,, 202, ...
and 202, While Figure 2 shows that the hidden layer 204 has only three artificial
neurons 204;, 204, and 204, it will be appreciated that any number of artificial
neurons may. be used. The output layer has two outpui nqdes 206, and 206,. |

[00125] The output ofv each of the input nodés 2;().21, 202,, 2023, ... and 202, may |
be connected to an input of every one of the artificial neurons 204, 204, and 2043 1n ‘-
the hidden layer 204. However, for the sake of simplicity, only a few such
connections between the input layer 202 and the hidden 1éyer 204 is illustrated in
Figure 2. Similarly, the output of each of the'artiﬁciél neurons .2041, 204, and 204,
may be connected to an input of every one of the output nodes 206, and 2062 in the
output layer 206. In this manner, a network of interconnected nodes is formed.

[0012:6] Eéch of the artificial neurons 204, 204, and 204; has at least one input.
For simplicity, only inputs for one of the artiﬁc_idl neurons are labeled in Figure 2,
being inputs 208, and 208, for the artificial riéuron 204;. ~ Each .inp:1f1t 'o'fi thei
respective artificial neurons (204;, 204, and 204;) has an associated weight.' |

[00127] In training the ANN 200 to predict the survivability of a patient, the
associated weight of the at least one input of each artificial neuron (for example
inputs 208; and 208, of the artificial neuron 204;) is adjusted in response to
respective first, second and third f)arameters of different sets of data from the patient
health data. With reference to step 102 of flow chart 100 of Figure 1, the first

‘,pare.uneter relateé fo heart rate variability data, the second parameter relates to vital
sign data and the third parameter relates to patlent surv1vab1hty »

[00128] The trained ANN 200 can then be used to assist chmcal decmons on:
whether a patient exhibiting certain symptoms Wlll survive or will die, i.e. the tralned,
ANN 200 can assist in the prediction on the survivability of the patient.

[00129] The trained ANN 200 may be used to predict the survivability of the

~patient as féllows. A first set of parameters relating to heart rate variability data of
the- patient 1s measured;: A second set of parameters relating to vital sign data of the
pétient is also measured. The first set of parameters and the second set of parametelv'sv
are processed to produce processed data suitable for input into the traiﬁed :artiﬁcialﬁ

neural network 200. The processed data is prdvided as input 212 into thé ?értiﬁcialﬁ .
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neural network 200, for example at the input layer 202. An oiltput 214 is then
obtained frorn the artificial neural network 202, the output 214 providing a prediction
on the survivability of the patient. - _

[00130] Figure 3isa échematic representation of an artificial' neural network 300 ’
according to one embodiment of the present 1nvent10n With reference to the flow
chart 100 shown in Flgure 1, the artificial neural network 300 may be prov1ded in the
step 104. ' .

[00131] In the embodiment shown in Figure 3, the ANN 300 is a multi-layer
feedforward network. The ANN 300 has an input layer 302, a hidden layer 304 and
an output layer 306. .

[00132]  The main difference between the ANN 300 of Figure 3 and the ANN 200
of Figure 2 is that the ANN 300 of Figure 3 has several layers of interconnected
artiﬁcierl neurons 304, instead of having a single layer of artificial neurons. Each
layer of artificial neurons 304, may be interconnected with a previotls and a
subsequent layer of artificial neurons 304 , ,
[00133] Another difference is that it takes -a longer time to train the ANN 300
(compared to training the ANN 200 of Figure 2) to predict the survivability of a
patient, as there are more artificial neurons 304, having inputs (for instance 308; and
308,) where their associated weights have to be adjusted in response to patient health
data. , ' |

‘[00134] Functionally, the hidden layer 304 still works in'the'seme manner as the
hidden layer 204 of the ANN 200. Similarly, the rnput layer 302 and the o_irtput layer_
306 function in the same manner as the ih'put layer 202 and the output. layer 206
respectively of the ANN 200. Thus, the functiené of the input layer 302, the hidden
layer 304 and the output layer 306 are not further elaborated. .

[00135] In a further embodiment of the inv_ention, the system may be used as a
means of triaging patients such as in combat situations, other mass trauma situations
such as multi-vehicular automobile accidents er terrorist incidents. The trained ANN
300 can be used to assist clinical decisions on whether a patient exhibitrng certain
symptoms will ‘survive or will die, ie. the trained ANN 300 can aséist’ in the

prediction on the survivability of the patient.
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[00136] Figure 4 shows a block diagram of a system 400 used to predict the
survivability_of a patient, the system 400 built 1n accordance to an embodiment of the
invention. ' | _

[00137] - The system 400 acquires ECG signals real-time, filter noise and ectopic
beats‘, generate HRV parameters and combine these with other vital parameters such |
as blood préssure, oxygen saturation, respi'rat'Ory" rate, pulse rate and a'gévinto a
composite triage score. The aim of the system 400 is to have a portable, ﬁe’id usable,
integrated device that will assist medical staff in rapid, real-time triage of patients
based on risk prediction. Such a system 400 would be particularly appli‘cable in.
mass disaster scenarios as well as high volume patient load situations like the
Emergency Department.

[00138] There are known systems that use HRV as a predictor, but such systems.
focused mainly on specific patient conditions such as sepsis and head trauma.
Further, available HRV analysis software packagcs either require the RR interval
(ECG beat-to-beat intervals) to be generated exteﬁnally or have limited fﬁnctionality
in terms of the available features. These packages work ‘off-line’ using the entire

‘record‘ing or on a selected segment and do not have automatic methods to identify
and isolate non-sinus beats before computing HRV parameters.

[00139] The system 400 has the following advantages over known existing
systems:

1. Dynamically acquire and process raw ECG signals from a patient to reduce the
effects of noise and other artifacts such as movement and interférence;

2 Generate ;the RR intéfval sequence after ‘aut_vc')m:atically isolating non-sinus bea;tsz
and artifacts. ‘ N - . PR
3. Compute and display time and frequency domain HRV parameters.

4. Acquire and display real time vital signs including blood pressure, vrespiration rate -
and SpO2 (Saturation of péripheral oxygen) using appropriate sensors and signal
conditioning circuits. ‘ _ |
5. Compute and display a risk score(s) related to the various possible patieﬁti
outcomes. - | ’

The system 400 is able to perform the above functions in “real-time”. »
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[00140] The system 400 has three main functional Blocks: a'signal aéquisition
block 402, é signal processing block 404 and an analysis block 406.

[00141] The signal acquisition block 402 has sensor and signal conditioning
hardware 408 for acquiring an ECG signal and other vital signs from a péltient 401.
The sensor and signal conditioning hardware 408 may include sensors that detect
. ECG signals, blood pressure, SpO2 and respiration rate. | |

- [00142]  The signal acquisition block 402 has a data acquisition (DAQ) card 410,
which in one embodiment contains the signal conditioning circuits used for
processing output from the sensor and .signal conditioning hardware 408. The signal

. conditioning circuits are designed to process signals from these sensors. The signal
conditioning circuits comprise electronic components that perform functions such as
isolation and ampliﬁcaﬁon of the various signals measured by the sensors. vT}he
output of each signal conditioning circuit is a éigﬂal with a peak amplitude of about
V. | | : | | )

[00143] The DAQ card 410 may also act as an:interface to a computer. An input
panel also accepts additional information such as age and gender of the patieht 401.
The DAQ card 1s used to perform analog-to-digital coﬁversion of the acquired
signals from the sensor and signal conditioning hardware 408 for interfacing with a
computer for further processing. A National Instruments PCMCIA or USB card may
be used for this purpose. The DAQ card should preferably have a sampling rate of
around 10kHz and use 16-b1t quantization. v

[00144] The signal processing block 404 includes a s1gnal processmg module 426
a vital sign module 420 and a patient information module 418. | _

[00145] The signal brocessing module ‘426 includes - an ECG pre—processing :
module 412, a beat detection and post processing module 414, and a HRV paramefer
calculation module 416.

[00146] The ECG pre-processing module 412 processes raw ECG datai from the ‘
signal acquisition block 402 to suppress unwanted signals such as noise, motioh
artifacts and power line interference which may affect the accuracy of HRV
parameters eventually extracted from the ECG data. The beat detection ‘and‘ post

processing module 414 acts on denoised signal from the ECG pre-processihgﬁmodulé .'
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412 to detec_t a heartbeat and to exclude non-sinus beats during poétprocessing. ‘The
duration between consecutive sinus beats are compiled into an RRI (beat to beat
interval) sequence from which HRVparameters are computed. ,

[00147] The HRV parameter calculation module 416 is used to extract HRV_
parameters from the output of the beat detection and post processing module 414.

[00148] The patient information module 418. recejves input regarding ;additional,
information about the patient 401, such as age, gender, Glasgow Coma Score (GCS)'.
and medical history. The normalization is carried out with analysis block 406. _

[00149]  Vital sign data such as blood pressure, SpO2 and respiration rate is
processed by the vital sign module 420. The normalization is carried out with
analysis block 406. ’ »

[00150]  The analysis block 406 includes a HRV parameter and patient information:
analysis module 422 and a risk score module 424. It will be appreciated that the
ANN in accordance with embodiments of the invention (see for instance Figures_ 1to
3) is implemented in the analysis block 406, _

[00151] The analysis block 406 computes HRV parameters obtained‘frorn the
signal processing block 404 and compiles them into feature sets using results -
obtained from patient health data obtained from hospital records or from conducting
field studies. Patient 401 demographics such as age, gender, Glasgow Coma Score,
ete, which can be keyed into the system, are also used in the analysis along with the
vital signs of the patient 401. A risk score providing a prediction on different
outcomes siich as death, ward admission and intensive care unit (ICU) admission of
the patx ent 401 1s computed and may be displayed ona computer screen.

[00152] The signal processing block 404 and’ the analys1s block 406 may be
1mplemented using software, such as “LabV1ew deployed on a hand held electromc
device 430 (illustrated in Flgure 4 as a dotted block). The “LabView” program
performs signal acquisition, noise removal, beat detection, post-processing,
computation of HRV parameters and display of the risk scores as described above.
In this manner, the hand held electronic device 430 acts as a standalone device,
where a suitable deployment platform for the hand held electronic dev1ce 430 would
be “CompactRIO” by “National Instruments”.
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[00153]  In further detéil, for an ECG signal from the signal acqﬁisition block 402,
noise removal is performed within the “LabView” program using a 1-50Hz band-
pass filter which suppresses high ﬁequency interference as wéll as low frequency
variations due to baseline wander and shift, and motion artifacts. The denoised
signal is displayed on a screen 432. o | _

[00154]  In another embodiment (not shown), the signal acquisition _block 402, th}eI
signal processing block :404 and the analysis modﬁle 406 are integrated into‘ a single
hand held electronic device. - ‘ ‘ | »

[00155] Beat detection is performed from a 1D array of ECG sample points X(n),
as follows. In one embodiment of the present invention, where a 1D array of ECG
sample points x(n) are provided, the upper and lower amplitude thresholds (Tupper and
Tiower) are set after finding the maximum value (ref peak) within the first few
seconds of data. The thresholds are defined as: o

v Tgpper =ref peak + 04 * ref peak
Tiower = ref_peak - 0.35 * ref_peak
Then a QRS peak is said to occur at the point 1 if the following conditions afe rﬁet,
x(i) lies between Typper and Tiower; |
x(i+1) — x(1) < 0; and
x(i) - x(i-1) > 0;
where the R-peak is the point with maximum value.

[00156] The positions of other QRS peaks within the filtered ECG signal may be
located by iterating the process of: locating 'cinother peak value and locating other
minimum valueé on eifher side of the another péak value. When the another peak
value is above the upper amplitude threshold Whﬂe the other .minimum ﬁ{/:alue;s are
both below the lower threshold, the location of the peak value is denoted as an R
position. The location of the minimum value occurring closest on the left side of the
R position is denoted as a Q position and the location of the minimum value
occurring closest on the right side of the R position is denoted as an S position. In
this manner, the location of another QRS peak is determined.

[00157] The above technique of beat detectiéh automatically generates RR interval

sequerices from given ECG data, after correcting for ectopic beats and noise, with
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minimal user input. The beat detection technique was tested using data from known
databases .(for example the MIT-BIH arrhythmia database, website:
http://www.physionet.org/physiobank/database/mitdb/) and results were found to
match closely to manually annotated values.  The technique was also tested on
ambulance ECG data, which is subject to higher levels of noise and motion artifacts, |
~with good results
[00158] From detected QRS complexes the processed RR interval (RRI) sequence _
can be obtained. The processed RRI is used to calculate the followmg HRV
parameters, from which include time domain and frequency ddmain measures may
be measured: |
Examples of time domain measures are:

Time Domain Measures

1. Average length of the RR interval (aRR): Mean of all sinus RR intervals (N-N) in-

the sequence

2. Standard deviation of all N-N interval (SDNN)

3. Mean heart rate (mean HR) '

4. Standard deviation of all instantaneous heart rate values (SDHR)

5. Square root of the mean squared differences of successive N-N intervals

(RMSSD): The square root of the mean of the sum of the squares of differences

between adjacent N-N intervals

6. HRV tnanoular mdex Total number of all N-N intervals divided by the height of
the histogram of all NN intervals.

7. Baseline width of a trrangle fit into the N-N interval histogram usir_ig a least
squares technique (TINN) | . ‘

Examples of frequency domain measures are:

Frequency Domain Measures

Frequency domain measures are calculated based on the power spectrum of the RRI
sequence which is generated using a Lomb-Scargle periodogram. The following
parameters are then calculated:

1. Total poWer (TP): Variance of N-N intervals oxter the segment till 0.4 Hz |
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2. VLF: Power in very low frequencyrange <0.04 Hz

3. LF: Power in low frequency range. 0.04-0.15 Hz

4. HF: Power in high frequency range. 0.15-0.4 Hz

5. LF norm: LF vpower in normalized units: LF norm=LF/(TP-VLF) x 100%
6. HF norrn::HF power in normalized units: HF normzHF/(TP-VLF) x 100%

7. LE/HF: Ratio of LE/HF | | "

[00159] In addition to the above HRV parameters a user can also input other
patient 401 parameters such as age, gender Glasgow Coma Score respiration rate, |
blood pressure, SpO2 and heart rate. These parameters _for the patlent 401 are used
to calculate a risk score to predict the survivability of the patient 401. In calculating
the risk score, it will be appreciated that the artificial neural network within the
analysis block 406 has been trained as outlined in Figures 1 to 3 above. The output
of the analysis block 406 will be a risk score which will classify the r)atient as being
‘high’, ‘medium’ or ‘low’ risk for each of the hospital outcomes including death,
hospital admission and ICU admission. ,

[00160] Each of the Figures 5 to 9 show a ﬂow chart 1in® accordance Wlthr
embodiments of the invention, implemented by a respectlve functional block of the
system 400 of Figure 4.

[00161] Figure 5 shows a flow chart 500, in accordance with embodiments of the
inventicn, implemented by the signal acquisition block 402 of Figure 4.

[00162] In step 502 a patient is chosen to perform prediction on survivability.

[00163] In step 504, the patient’s ECG signal, pulse rate, pulse oximetry, blood
pressure and clinical mformatlon are obtarned ‘Examples of clinical mformatlon
include age, gender and. medlcal hlstory (eg cancer diabetes, heart disease). - _

[00164] In step 506, the patrent s ECG s1gna1,: pulse rate, pulse ox1metry, bloodj ’
pressure and clinical information is sent to a data acquisition (DAQ) card. All the
information from step 506 will be acquired by the DAQ card sent as data to a
computer or stand-alone device in real-time.

[00165] In step 508, the information from step 506 is sampled and converted from
an analog signal into digital data in step 510. o | »
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[00166] | In step 512, the signal acquisition block 402 (see Figure 4) checks the
recording length of digital ECG data that has been collected. For reliable calculation
of HRV parameters from the digital data obtained in step 510, it has been noticed
that a recording length of at least six minutes :i.s required. If six minutes worfh of
digital ECG data has yet to be collected, the flow chart 500 returns to step 504. On
the other hand, if six minutes of digital ECG data has been recorded, the flow chart
stops at step 514. In step 514, the digital ECG data is stored, along with V1tal 51gns'
and clinical information of the patient, into the computer or stand-alone device. |

[00167] Figure 6 shows a flow chart 600, in accordance with embodlments of the
invention, implemented by the signal processing module 426 of Figure 4.

[00168] The flow chart 600 begins with step 602 with the ECG pre-processing
module 412 having a raw ECG data and vital sign data as input.

[00169] Raw ECG data may not always contain a single continuous length of data
points. Ofteu, leads may be removed or settings may have been changed, resulting in
gaps in the data. Hence in step 604, the calibration values are removed or trimmed,
the data segments separated and concatenated to get one continuous stream of data

[00170] In step 606, the signal processing module 426 has unﬁltered ECG data:
with calibration values trimmed. The effects of noise and artifacts in unfiltered ECG
data are well known. The low amplitude of the ECG signal makes it highly
susceptible to noise and interference from a variety of sources. These include high-
frequency noise, power line interference, baseline wander, motion artifact, and other

low frequency distortions. The presence of noise can result in false positives at the

QRS detection stage and thus injects errors into the generation of the HRV sequence

and in the subsequent HRV analysis. ,
[00171] Noise removal techniques exist (such as using band pass filters) te refhove: |
low frequency noise such as. baseline drift and also attenuate hlgh frequency _
variations without 51gn1ﬁcant distortion of the QRS complex. The presence of abrupt
baseline shift and other artifacts can result in peaks being wrongly detected as QRS
complexes. Since these artifacts may lie within the same frequency range as the QRS

complex, they may be difficult to eliminate. Thus, in step 610 baseline wandering is
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refnoved from the unfiltered trimmed ECG data and in step 612, the DC offset is
removed. |

[00172] Frequency components of the QRS complex typically lie between a range
of 10 and 25Hz. In step 614, the data from step 612 is processed using a band pass
filter with an operating frequency range of 5 to about 28Hz. It willv thus be
-appreciated that the band pass filter facilitates location of QRS complex by

- enhancing the QRS complex inside the unfiltered trimmed ECG data from step 612

and to suppress high frequeney variations. A bandpass frequency range, that 'is:
successful in eliminating baseline drift and maghifying the QRS complex without
significantly distorting the signal and increasing the chance of false detections, ié
applied.

[00173] In step 616, a de-noised ECG signal is obtained which is used for further
processing to detect QRS and calculate HRV measures. In step 618, the de-noised
ECG signal waveform is displayed for instance in the screen 432 (see Figure 4).

[00174] Figure 7 shews a flow chart 700, in accordance with embodiments of the

invention, implemented by the beat detection and post processing module 414 of

~ Figure 4.

[00175] The flow chart 700 begins with step 702 with the beat detection and post
processing module 414 having a de-noised ECG signal.

[00176] In summary, the objective of steps 704 to 726 is to detect the location of
the QRS complexes, which allows us the calculation of RR intervals. The location,
magnitude and shape of the QRS complex as well as the duration between adjacent
complexes allows sifting out ectopic beats and other non-sinus rhythm which is to be .
excluded from the HRV analysis. In this manner, reliable heart rate vanablhty data
can be extracted from an ECG signal from a patlent ‘ : : , _
[00177] In steps 706 to 714, a maximum peak data value ﬁrst occurrmg in the
filtered ECG signal is located. An upper amplitude threshold and a lower amphtude
threshold from the located maximum peak value are determined. A peak value and
minimum values on either side of the peak value are located. In embodiments of the
invention, either side refers to the left and right sides of the peak value. The

conditions of whether the peak value is above the upper amplitude threshdld, while
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the minimum values are below the lower amplitude threshold are met is ch_ecked. If.
the conditiohs are met, the location of the peak value is denoted as an R position.
The location of the minimum value occurring closest on the left side of the R
position is denoted as a Q position, and the location of the minirhum value occurring
closest on the right hand side of the R position is denoted as an S position. The
location of a QRS peak within the filtered ECG signal is thus determined.

[00178] Further detail on steps 704 to 726 is provided as follows.

[00179] In step 704, a.  modified threshold- plus denvatrve method 18 used as it hasz
found to be effective and robust in the presence o_f norse. The modified algonthm_
‘works as follows. |

[00180] In step 706, a maximum peak data (ref peak) value is found, given a 1D
array of ECG sample points x(n), within the first few seconds of de-noised ECG
data. In step 708, upper and lower amplitude thresholds are found. |

[00181] In embodiments of the invention, the upper and lower amplitude
thresholds (Tupper and Tiower) are set after finding the maximum value (ref peak)
within the first few seconds of data. The thresholds are defined as:

Tupper = ref_peak + 0.4 * ref_peak - ‘
Tiower = ref_peak - 0.35 * ref peak .

[00182] In step 710, it is determined whether the ECG sample points cross the
upper and lower amplitude thresholds (Tupper and Tiower). The flow chart 700 does
not proceed to step 712 if the ECG sample poirlts do not pass this criteria. The use of
the upper and lower amplitude thresholds (Tyupper and Tiower) for QRS .complex
detection ensures that large peaks due to noise (e. g.asa result of electrode »placementﬁ
or motion artifacts) are not detected as QRS complexes '

[00183] Step 712 occurs if the ECG sample pomts Cross the upper and lower
amplitude thresholds (Tuppcr and Tiower). In step 712, it is determined Whether the |

sample points that pass the criteria check at step 710 can be eonsrdered as a QRS '

| peak. A QRS peak is said to occur at the point i if the following further conditions |

are met,
x(1) lies between Typper and Tiower;

x(i+1) - x(i) < 0
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x(1) - x(1-1) > 0; _
where the R-peak is the point with maximum value.

[00184]  If the further conditions above are met, the points corresponding to the Q
and S waves are then determined by locating the nearest local minimum within a
window on either side of the R-peak. The exact locations of the Q, R and S positions
-are then saved in step 714. Otherwise (i.e. if the further conditions above are not
met), the flow chart 700 returns to step 710. The positions of other QRS peaks
within the filtered ECG signal may be located by iterating the ‘pro'cess of steps 710
and 712, i.e. locating another peak value and lQCating other minimum Values on
either side of the another peak value. When another peak value is aboverthé uppér
amplitude threshold while the other minimum values are both below the lower
threshold, the location of the peak value is denoted as an R position. The location of
the minimum value occurring closest on the left side of the R positioﬁ is denoted as a
Q position and the location of the minimum Valué occurring closest on the right side
of the R position is denoted as an S position. In this manner, the location of another

QRS peak is déte_rmined. All positions of QRS peaks are then stored in step 714.
[00185] Besides noise, ectopic beats and other outliers (due to exercise, jmuscle or:
other artifacts) have to be identified because fhey can pertﬁrb the RR intérvél
sequence. |

[00186] Ectopic beats are generated when autonomic modulation of the sinoatrial
node is temporarily lost, initiating a premature contraction of the atria or ventricles,
occurring both in normal subjects as well as patients with heart disease. Generally,
most such ectopics are manifested with a wide QRS complex.

[00187] Steps 716 to} 726 are used to rembviﬁg outliers from the sequence of
information. within the RR interval. The procéés involves finding a mediap value
and a standard deviation value for the RR interzvalg. A tolerance factor based on the;
standard deviation value 1s caléulated. A portidn: of information that lies Wfthin t}.le‘ |
RR interval spanning either side of the median value by the tolerance factor is |
retained. Heart rate variability data may be obtained from the retained portion of
information and the remaining portion of the information from the sequence of

information 1s discarded.
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[00188] Further detail on steps 716 to 726 is pfoxfided aé follo.v.,vs."' 7
[00189] In step 716, non-sinus beats are isolated. Beats adjacent to the non-sinus
beats are removed to produce a clean QRS peak in step 718. ‘
[00190] The RR interval sequence is then generated in step 720 based on nofmal
beats. Once this is done, the locations of beats ébrresponding to sinus rhythm are
stored in an array for the next stage of processing. Using the detected pe‘akjs,. the RR
intervals correspond to the distance between successive QRS peaks. The calculated
intervals aré stored in én array for post-processing. Alth.ough noise, artifacts and.v
isolated abnormal beats are already been ﬁlfered, the beats can result in very short or
~ very long RR intervals either due to compensatory pauses or by virtue of removal of
some beats. Hence, the sequence may contain outliers.
[00191] To automatically identify these outliers, the statistical properties of the
sequence are applied onto the RR interval sequence in step 720.
[00192] In step 722, a RRI limit is calculated as follows.
1. Find the median and standard deviation for the RR interval sequence
2. Calculate a tolerance factor based on the standard deviation (s)
3. Search for any intervals lying more than Ms away from the median interval, where |
M is the tolerance factor. Outliers exist within the intervals lying more than Ms
away from the median interval. ' |
4. Separate these outliers, which occurs in step 724 |
[00193] In step 724, ‘a tolerance factor is calculated based on the spread of thé
values. The tolerance factor this is used to separate the outliers, thus tackling both
noisy as well as normal data. Therefore, sinus RRI sequences‘which are hoise-frce
and ectoplc -free are oenerated in step 726 before computing HRV parameters
[00194] To summarize Figures 6 and 7, extractmg the heart rate vanablhty data, in
embodiments of the invention, comprises ﬁltenng the ECG 51gna1 to' remove noise
and artifacts, locating a QRS complex within the filtered ECG signal; ﬁndlno a RR
interval between successive QRS peaks of the QRS complex; and processmg the
sequence of information within the RR interval to obtain the heart rate variability

data.
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[00195] Figure 8 shows a flow chart 800, in acéordanée with erribodiments of the
invention, irﬁplemented by the HRV parameter calculation module 416 of Figure 4.

[00196] The flow chart 800 begins with step 802 with the HRV parameter
calculation module 416 having sinus RR interval (sinus RRI) sequences. | |

[00197] Three categories of HRV measures, time domain data, frequéncyv domain
data and geometric domain data are calculated from the sinus RRI sequences..

[00198] In step 804, time domain data such as mean of RR intervals (méan RR),
standard deviatioh of RR intervals (STD), mean of the instantane»ous' heart rate (mean
HR), standafd deviation of the instantaneous heért'raté (STD_HR), root mean square
of differences between adjacent RR intervalé (RMSSD), number of conseéutivc RR-
intervals differing by more than 50 ms (NN50), and percentage of consecutive RR
intervals differing by more than 50 ms (pNN50) is calculated. Time domain analysis
is based on statistical parameters (prifnarily based on standard deviation) calculatéd
from the RR intervals over time for both short-term (less than Smins) as well as long-
term recordings (more than 24h).

[00199] The meaning of each of the terms: mean RR, STD, mean HR, STD_HR,
RMSSD, NN50 and pNN50 is-provided below. - T

[00200] Mean RR (or aRR) is the average w:ivdth of the RR interval measured in’
milliseconds or seconds. This gives a general idea of the heart rate and can be:
calculated for both long-term as well as short-term recordings.

[00201] | STD (or SDNN) is the standard deviation of all RR intervals in the data set
[21], giving a general idea of the spread of the values. STD is suitable for both short-

term as well as long-term recordings.

v [00202] Mean HR is the mean of the instantaneous heart rate.
' [00203] STD HR is the standard deviation of the instantaneous heart rate.

[00204] | RMSSD (or r-MSSD or SDSD) is found by taking the square root O.f the:‘
mean of the sum of thef:,squarés of differences befWeen successive heart périéds ina
24-hour interval. It 1s an‘ index of the variation in RR interval l.ength.v RMSSD 1s ﬁot
a sensitive measure of variation over long periods of time but it is particularly
sensitive to misclassified or beat-labeling errors like retaining premature ventricular

contractions. Among the time domain variables, this is the most sensitive to vagal
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influences, although it is unable to determine the fsympaihetic and parasympathetic
contn'butions.. ,

[00205] NNSO (or RR-50) is the total number of times in 24 hours that the
difference between 2 successive RR intervals exceeds 50ms. It is the most sensitive

of all measures to mislabeled beats and occurrences of premature ventricular or atrial
contractions will rapidly increase the RR50 count. If is also highly sensitive to longer
variations of the heart periods of normal sinus rhythm.

[00206] pNNS50 (or %RR50) is the percentage of absolute differences between nor- ‘
mal RR intervals that exé;eed 50ms, normalized by the average heart rate.

[00207]  In step 806, frequency domain daté such as: power in very low frequency
range (<= 0.04Hz) (VLF), power in low frequenéy range (0.04 to 0.15 Hz) (LF),
power in high frequency range (0.15 to 0.4 Hz) (HF) being an index of vagal
activity, total power which is estimated from the variance of NN intervals in the
segment and is measured in ms? (TP), ratio of LF power to HF power (LF/HF), LF
power in normalized units: LF/(TP-VLF)x100 (LFnorm), and HF power in
normalized units: HF/(TP-VLF)x100 (HFnorm) is calculated. Spectral analysis is a
sensitive, quantitative method for evalﬁating HRYV in the frequency domain. The
analysis is done by transforming the time series to the frequency domain arid -ﬁn_ding
the power spectrum. The distribution of spectral energy in various bands is
quantified and used as an index of variability. This distribution of energy reflects the
contribution of the sympathetic and parasympathetic arms of the autonomic nervous
system. ' | »

[00208] In step 808, geometric domain data such as: total number éf all RR
intervals divided by height of histogram of intervals (HRV Index) and base width of |
triangle fit into RR histogram using least squares méthod (TINN) is obtaine;i.

[00209]  The meaning of the terms: HRV Index and TINN is provided below.

[00210] HRV index (or HRV triangular index'(}n" RR triangular index) ié .obtaine:d:
after the RR interval sequence is converted to a sample denéity distribution. The
triangular index is the integral of the density distribution, i.e., the number of all RR

intervals divided by the maximum of the density distribution.
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[00211] TINN, the triangular interpolation of RR interval histogram, is the baseline .
width of the sample density distribution measured as a base of a triarrgle
approximating the RR interval distribution

[00212] In step 810, the above 16 HRV parameters (Mean RR, STD, Mean HR
STD_HR, RMSSD, NN50, pNNSO VLF, LF, HF, TP, LF/HF, LFnorm, HFnorm
‘HRV Index and TINN) are combined and sent to the analysis block 406 (see Figure
4) for classifier training (i.e. training of the artificial neural network within the
analysis block 406) and patient outcome prediction. | |

[00213] Figure 9 shows a block diagram representatlon of how data ﬂows in thei
analysis block 406 of Flgure 4, ‘ ‘ | o

[00214] The analysis _block 406 1s first configured to be trained (represented by
reference numeral 902) using training data and subsequently the trained analysis.
block 406 is tested using testing data (represented by reference numeral 904).

[00215] In step 906, a training data set is constructed in which each patient 1s
represented as a feature vector of HRV parameters, clinical information (like age,
gender, ethnicity) and vital signs.

[00216] In step 908, the training data set represented as feature vectors is further
processed with feature selection and/or extraction algorithms for reducing feature
dimensionality so as to remove redundant mformatlon _ |

[00217] Besides discriminatory features, the selec’uon of a classifier plays a key
role in building an efficient prediction system. Judging a classifier usually depends
on evaluating its generalization ability that refers to the classifier's performance in
categorizing unseen patterns. Since the same classifier :may have various>
performances on different applications, the needs of the application should be
analyzed before choosing a proper classifier. . In order to predict the outcomes for
unseen patlents the classrﬁer should be tra1ned w1th training sarnples prlor to domg _
categorization on testmg samples Therefore in step 910 a classrﬁcatlon model _
suitable for the apphcatron at hand, is learnt after choosing proper pattern }
representations in step 908. | ,

[00218] In step 912, testing data from a patient is represented as a combined

feature vector of HRV measures, clinical information and vital signs.
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[00219] In step 914, feature selection and/or extraction algorithms are applied to
the testing data from a patient represented as the combined feature vector for
extracting discriminatory information.
[00220] In step 916, the extracted discriminatory information is processed using
the classification model selected in step 910. The output 918 from step 916 is a label |
of the testing data, giving a prediction on the patient outcome.
[00221] Figure 10 shows a flow chart 1000 illustrating a system, in accordance
with embodiments of the invention, utilizing wireless technelogy |
[00222] The flow chart 1000 begins with step 1002, where a patient survwablhty
predlctlon system, has data on clinical mformatlon HRYV parameters, vital signs and-
a patient survivability risk prediction. _ ,
[00223]  In step 1004, wireless technologies such as GPRS or WAP are used to
estabhsh a network infrastructure between the patient survivability prediction system
described in step 1002 and peripheral systems such as a hospital server, other
handheld devices or a emergency centre server. In steps 1006, 1008 and 1010, the
data of the patient survivability prediction system is transmitted to the hospital
server, the handheld de?ice and the emergency centre server. The steps 1006, 1008
and 1010 allows clinicians to receive and analyze patients’ condition in real-time and
remotely. } . .
[00224]  Figure 11 summarizes raw ECG data chatacteristics of 100 patients chosen
for analysis, including 40 cases of death and 60 cases of survival. The data set
comprised 63 male and 37 female patients between the ages of 25 and 92 years. Vital_
signs and patient outcomes were obtained from hospital records, including
information such as patient demographics (age, race, gender) and pﬁoﬁty code.

[00225] These 100 patients were acquired from critically ill patients attended at the

: Department of Emergency Medicine (DEM), Singapore General Hospltal (SGH).

“Cntlcally ill” refers to. patlents triaged in the most severe categones P or P2 at the |

' DEM. These include trauma and non-trauma patients who underwent BCG -

monitoring. ECG signals were acquired using LIFEPAK 12 deﬁbnllator/momtor,
downloaded using the CODE-STAT Suite and matched with the patients’ hospital

records. Cases were included for review if they contained more than 70% sinus
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thythm and v:excluded if there were 1arge ségments of nbn-sinus fhythm (atrial and
ventricular arrhythmias). ' ' , | ‘

[00226] The raw ECG data shown in Figure ll has to be pre-processed to obtain
reliable HRV measures. Figure 12 shows a flow chart 1200, in accordance ‘with _
embodiments of the in\}ention, illustrating how an ECG signal is pre-processed to

.calculate HRV parameters. | | |

[00227] In step 1202, raw ECG data 1210 is processed to reduce the effects of
noise and artifacts using a 5-28Hz band-pass filter. This frequency range is ‘found to
enhancei the QRS complex against the backgrofmdﬁ ﬁoise fovr easy peak detection.

[00228] In step 1204, a modified threshold-plus-derivative rﬁethod is imiﬁlemented:
to detect the QRS complexes. | | |

[00229] In step 1206, 2111 ectopics and other non-sinus beats are excluded.

[00230] In step 1208,‘ the RR intervals are calculated based on the sihus rhythm.
Cases are inéluded for review if they contain more than 70% sinus thythm (measured
as number of sinus beats detected/total number of detected beats) and excluded if
they contain sustained arrhythmias or large segments of noise/artifact. The resulting
beat-to-beat (RR) interval sequences 1210 are used for calculating various HRV
measures. :

[00231] In embodiments of the invention, s_teps 1202 to 1208 can use the.
methodblogy as described with reference to Figures 6 and 7. Thus, no. further

elaboration is provided on steps 1202 to 1208.

Classification of the artificial neural network
[00232] In training the artificial neural network used in embodiments of the

invention, the first parameter, the second parameter or a combination of the first

~ parameter and the second parameter may be classified as feature vectors of the

patient health data. The artificial neural network is then trained with the feature _
vectors. As one objective of the artificial neural ﬁetwork is to predict mdrtality, ﬂlC. '
artificial neural network will be implemented to solve a two-class classiﬁcation ’

problem (the patient outcome is either death or survival).
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[00233] In :embodiments of the invention, various training algorithms may be used
to train the artificial neural network (200, 300) and determme the opt1ma1 hldden

layer weights (see description 1 in respect of Flgures 2 and 3).

Levenberg-Marquardt algorithm
[00234]  For instance, training of the artificial neural network (200, 300) may be
based on baek-propagation learning. The Levenberg-Marquardt algorithm may be

used to perform the back-propagation learning.

Extreme 1earmn0 machlne (ELM) :

[00235] An extreme 1earn1ng machine archltecture may be used to train
embodiments of the invention where a SLFN is used (such as the one shown _1n
Figure 2). Compared with conventional gradient-based learning approaches, ELM
has a fast learning process and meanwhile retains good generalization ability. The
extreme learning machine has the advantage of improving training speed by
eliminating the need to tune all the parameters of the artificial neural network. The
extreme learning machine may be implemented for SLFN with either additive
neurons or radial basis function (RBF) kernels.

[00236] In an extreme learning machine architecture, the associated Weight and
biases of the at least one input of each artiﬁ:ciial neuron of the artificial neurel
network is initialized through random selection. The output weights of each artificial -
neuron may be determined by finding the least sQuare solution.

[00237]  Given a training set consisting of N samples
L={(x;,t;)|x;eR",t;eR",j=12,,N} (1)
where x; is.a p X 1 input vector and t; is an q x 1 target vector, an SLFN with N

hidden nodés is formulated as v

. o . ‘
fo(x)=> Bgw x,+b)=t; j=1.,N o
i=] A - @)
wherein x; is an input vector to an input of one of the plurality of artiﬁciel heurons
for j = 1, 2, ..., N input vectors, w; is the associated weight of the input of the

artificial neuron receiving the x; input vector; g(wi.x; + bj) is an output of the
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artificial neuton receiving the x; input vector... fori= 1,2,..,N artificial neurons;
B; is the ou‘qﬁut weight vector that associates an i™ hidden neuren'with a fespective -
output neuron; and b; is the bias for the i hidden neuron. The prediction on the;
survivability of the patient is derived from the equetion (2) above. | |
[00238] A compact format of equation (2) can be written as

Hi=T 0O |
where H(wi; ..., Wy, bi, ..., by, X1, oy XN ) is hidden layer output matrix of the
network, hj; = g(w; - x; + b;) is the output of ith .hidden neuron with respect te X,i=1,
2, N oandj=1,2, ., N; f={By, .., B;1 and T =[ti, ..., tn]" are output weight
matrix and 'target matrix, respectively. To obtain small non-zero training error,
random values can be assigned for parametersg w; and b;, and thus the system
becomes linear so that the output weights can be estimated as § = H'T, where H' is
the Moore-Penrose generalized inverse of the hidden layer output matrix H.

HW,,eoy W, by by X5, Xy )

TN

g(w1'?"1+b1) g(wﬁ'fl+éﬁ) 4

gw -xy+b) - g(WN'xN+b1%’) NxF

In general, the ELM algorithm can be summarized as follows:
1) Generate parameters w; and b; for1=1, ..., N s
2) Calculate the hidden layer output matrix H,

3) Calculate the output weight using =H'T.

Support vector machine (SVM) . _
[00239]  Another training algorithm is basing the artificial neural net\Nork on .
support vector machine architecture. A support vector machine is a leaming
machine designed for binary classification. 1n the support vector machine, input
vectors are non-linearly mapped to a very high-dimensional feature space in which a
linear decision surface (_hyperplane) is construct:ed.E The surface is»chosen:s‘u'c:h that it

separates input vectors with maximum margin. - -
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[00240]  The associated weight of the at least one input of each artificial neuron is
initialized frem a library used by the support vector machine. An example of a
suitable library would be the LIBSVM software paekage by Chang et al. o
[00241] Consider a set of linearly separable feattrres (X1,¥1), -5 (XN YN ) arE giVen
as training data, where x; € X)y; € {il.} with a hyperplane <w,: x> +_B = 0. The set
of vectors is said to be optimally separated by the hyperplane if it is separated'
without errors and the margin is maximal. A canonical hyperplane has the constraint
for parameters w and b: min, yi((w, x;) +b) = 1. A separating hyperplane in
canonical form must satisfy the constraints: | |
y(onx)+b)2Li=L. N ()

[00242]  Quadratic provgramming is used for solving the constraint optimizatiop
problem in order to find the optimal hyperplane.j The optimization criterion is the
width of the margin between the class. Then for a new pattern x, the hyperplane

decision function can be written as
A’
f(x)=sgn(Q @y, (x, %) +b) (6)
i=l

Since most real-world data is nonlinearly distributed, a kernel trick has been used to
extend the classifier to be nonlinear, in which kernel functions are used to replace the
sirnple dot product. The weight vector then becomes an expansivon in the feature
space, and we obtain the decision function of the support Vector machine may be

given by ‘
f@=seLayks)+h) ()

wherein sgrr() is a sign function; (x;x;) is set of feature Vector; k(x;x;) is a kernel
matrix constructed by x and x;;y; is 1 or -1; which is the label of feature vector x;; aj
and b are parameters used to define an optimal decision hyperplane sof that the _

margin between two classes of patterns can be maximized in the feature space.

[00243] Three kernels may be used to provide diversified solutions, theyfare 1ineerﬁ

kernel k(x;, x;)= Xi - X; , sigmoid kernel k(xi, x; )':='tanh(axi Xy + Y), and r"cvrdi:al.basis‘
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function (RBF) kernel k(x,,x,)= exp(—“xi -x j.“z /20*) where s is the width of RBF

J

function.

Segment based method ,

[00244] When measuring ECG signals from patients, the length of ECG- signal
varies from one patient to another, which will affect the calculation of HRV
measures. | ' N _

[00245] To avoid possibie effects of length variation, segments of identical length
of ECG signals are extracted for all patients. Since raw ECG data contains non-sinus
beats and nQise, extraction is done on the RR interval sequences. Figure 13 shows
how the extraction is performed. In Figure 13, a sequence of information (1302,
1304 and 1306) within an RR interval (1308, 1310 and 1312) is partitioned into
segments 1314, in accordance with embodiments of the invention.

[00246] In embodiments of the invention, the sequence of information (1302, 1304
and 1306) within the RR interval (1308, 1310 and 1312) may be partitioned into non-
overlapping segments 1314. The non-overlapping segments 1314 may be used to
train an artificial neural network. |

[00247] In other embodiments of the invention, a length of signal within the RR
interval (1308, 1310 and 1312) of each of the filtered ECG signal may be extracted.
The length of signal may be partitioned into non-b_verlapping segments 1314; and at
least one of the non-overlapping segments 13 14:rria_1y be selected to train thze'é'rtiﬁcial‘
neural network. _ | ‘ ‘

[00248] In embodiments of the invention, each of the non—oyerlappingizs‘egments '
1314 may be of substantially equal length. In embodiments of the invenﬁoh, the
non-overlapping segments 1314 may have a ﬁxed_ length. In embodiments of the
invention, each of the non-overlapping segmeﬁts 1314 may be éf unequal length. In
embodiments of the invention, the non-overlapping segments 1314 may be of an
adjustable length. | - S

[00249]  Extraction starts from the signal end 1306 as this portion of re’cofding. '

correlates better with the patient outcome than any other segments in the 'original:
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sequence. The entire sequence (1308, 1310 and 1312). and the extracted portion
(1302, 1304 and 1306) as “global” signal and “local” signal, respectively.

[00250] High prediction accuracy may not be zichieved with only N (number of
patients) feature vectors. The local sequence (1302 1304 and 1306) rnay be further '
partitioned into several non- overlapped segments 1318, 1320 and 1322 of fixed
length and the prediction of the patient outcome is given by maj orlty voting using the
patient’s corresponding segments. |
[00251]  Firstly, an ensemble of classifiers with M segments of the same patient are
combined to improve the overall predictive perfermance'. Since the outprxts of a
predictor can be either class labels or class-specific continuous values (the d'egree;s of
su'pp_ert given to those classes), there are two types of combination rules. The patient -
outcome is eoded as either O or 1, thus the label-based strategy such asrrnajority‘
voting can be used as the combining method. Thrs rule seeks the class that receives |
the highest number of votes and assigns it to the predicted label for the testing.
pattern. The details of the segment based prediction method is elaborated as follows,
noting that while ECG data is shown in Figure 13, the segment based prediction
method is applicable to other 1-D biomedical signals such as electroencephalography
(EEG).

[00252]  Suppose a data set L, {(xm,yn)n =1, , .., N, m =1, ..., M}, consists of N
patients and each local sequence is divided into M, segments. Assume that if x is the

test data, j is predicted by f (%, L). Because M segments are used, we haVe a set of
M predictive labels for x. The objective is. to better predict y using M predlctors
instead of a single one. As a two-class problem is bemo con51dered f(x,L) predlcts
a series of class labels w; {0, 1} where j =1, 2, and the prediction of the m™

classifier (constructed on m™ segment) is Dpj Whose value is assigned to 1 if the m™

classifier chooses class ®;, and 0 otherwise. Then the decision on % is defined as
| 8
§ = max ZD ®
where the output 7 is the value with hlohest number of votes. In apphca‘aons where ‘

there are J classes, i.e., j “1 .» J, the predlctlve label is glven by maxj=l j; D, .
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[00253] Thus far, a total segment (TS) method appreach is discussed as all M

_segments are used for decision making. The complete TS algorithm is provided

below.

TS algorithm

Inputs
- ECG signals of N patients, S; ..., Sy.

- Hospital records including vital signs and patient outcomes yy, ..., Y.

- Number of iterations K and number of total segments M.

Calculation of HRV measures
1. Do pre-proeessmg on the original ECG signals such as filtering, QRS detect1on
non-sinus beat removal, etc. '

2. Extract “local” RR interval signals to obtain- seqﬁences S’ Y ’N‘.
3. Partition S’y into M non-overlapped segments and calculate HRV measures z”
wheren=1, .. ,Nandm=1, .., M.

4. Construct feature vectors x!" with z and vital signs, where m =1, ..., M.

Prediction of ACP event or mortality

Fork=1,.., K |
a) Partition the data set by randomly selectlng Ntm patlents 1nt0 trammg set and the'
rest of Ny patients into testmg set. Since each pat1ent is represented by M feature

vectors, there are N,,M samples in the training s

NegM samples in the testin
set. ‘ | _ _
b) Train classifier with N,,,M feature vectors and predict labels for NiygM samples in |
the testing set. Therefore, each testing patient receives M predicted outcomes.
Applying majority voting rule, final predictive ;results for all testing patients are
ol)tained'using equation (8). o

c) Caleulate accuracy, sensmVlty, and specnﬁmty from the predleted labels and the1r
correspondmg real labels. | ‘ |

End for
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Outputs
- Calculate averaged results of X iterations.

- Store, display, and analyze the final results.

[00254]  Instead of selecting all segments, a seieétive segment 'E(S‘S) methéd can be |
used. The SS method selects only some of the segments. |
[00255]  The rationale behind the SS method is to select some “optimal” segménts |
to minimize the intra-class difference where Euclidean distancé [6] is employed as
the selection criteria. Specifically, within the feature set, the class center is
determined and the distances between each of M segments of ary patient and the
center are calculated. Let M'be the number of selected segments, then M segments
will be retained, which are closer to the correspohding class center thdn the discarded
segments. As a result, the size of data set has been reduced frorh N x Mto N x M\
Since the selecting operation is supervised (the class information is used), the
selection of segments can be considered as a pre-processing for the original data set.

The complete SS algorithm is provided below.

SS algorithm

Ihputs ‘

- ECG signals S; ..., Sy. |

- Vital signs and patient outcomes y1, ..., Y. - _ o

- Number of iterations K, number of total segments M, and number o'fz Selecte:d.

segments M’.

Calculation of HRV measures

1. Do steps 1-3in TS algorithm to obtain M segménts for each patient.

1

}WZ»EW x, and C| = —l—zxew x, where N' 1s

2. C_alcul_ate class centers as’ C, = ~ ;

the number of samples in class w;, fori =0, 1.
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3. Calculate Euclidean distances d;’i between N and M segments and the class

centers Cg, C;.
4. Sort the distances and select M’ segments that are closer to the corresponding

center than other segments for each patient individually.

5. Construct feature vectors x” with z" and vital signs, wherem’ = 1; ..., M".

Prediction of ACP event or mortality

Fork=1, ... K . o

- Do steps a)-c) in TS algorithm with a data set created by using M’ selected
segments instead of the total M segments.

End for

Qutputs
- Calculate averaged results of X iterations.

- Store, display, and analyze the final results.

[00256] In summary, any of the above methods may to classify an artificial neﬁral
network may be used to facilitate a method of predicting the survivability of a
patient. _

[00257] Figure 14 is a flow chart 1400 illustrating a method, according to one
embodiment of the present invention, o.f predicting the survi\}ability of a pafient. _

[00258] In step 1402, a first set of parameters. rélating to heart rate Variabil:ity‘datag :
of a patient is measured. _ | - v . |

[00259] In step 1404, a second set of parameteré relating to vital sign da_“cé of ‘thv‘e.
patient is measured. _ o : |

[00260] In step 1406, an artificial neural network including a némork of »
interéonnected nodes is provided, the nodes including a plurality of 'artiﬁciai
neurons. Each artificial neuron has at least (l)ne‘ input with an'associé.téd Weight‘
adjusted by training the artificial neural network using an electronic databése havingb ‘

a plurality of sets of data. Each set of data has at least a parameter relating to-heart -
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rate variability data and a parameter relating to vital sign data, each set of data
further having a parameter relating to patient survivability.

[00261] In Step 1408, the first set of parameters and the second set of parameters
are processed to produce processed data suitable for input into the artificial neural
network. ' ‘ ' o

[00262] In step 1410, the processed data is previded as input into the'artiﬁciall-
neural network.

[00263] In step 1412, an output is obtained from the artificial neural network, the
output prov,idirig a prediction on the survivabili‘ty of the patient. : ’
[00264] In embodiments of the invention, the processed data of the first set of
vparameters and the processed data of the second set of parameters may be
represented as a feature vector.

[00265] In embodiments of the invention, the processed data may be the ﬁrst set of '
parameters and the second set of parameters being represented as normalized data.
[00266] In embodiments of the invention, the processed data may be partitioned
into non-overlapping segments, so that the input into the artificial neural network
may include sets of one or more of the non-overlapping segrnents of processed data.
A result may be obtained for each of the sets of one or more of the non-overlapping
segments of processed data, so that each of the results may be considered to predict
the survivability of the patient.

[00267] In embodiments of the invention, majority voting may be used to
determine the prediction on the survivability .of  the patient, the majority voting’

represented by the function

wherein Dy, is an intermediate variable for final decision making, Dm; assigned a
value of 1 if a m™ ciassiﬁer chooses class j in the decision ensemble, and 0
otherwise. | |

[00268] In embodiments of the invention, the result of the artificial neural network
may be coded as a two class label. The method of predicting the surv1vab1hty of a
patxent may ‘then further 1nclude applying a 1abel—based algorrthm to each of the two '
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class label results to decide the output from the artificial neural network, thereby
providing a prediction on the survivability of the patient.
[00269] In embodiments of the invention, the heart rate variability' data may
include time domain data, frequency domain data and geometric domain data. -
[00270] Figure 15 shows a schematic of a patieht survivability prediction Sysiem ;
1500 in accordance with embodiments of the invention. _ - R _
[00271] The patient survivability prediction system 1500 includes a first inpu:f
1502 to receive a first set of parameters relating to heart rate variability data of a
patient and a second input 1504 to receive a second set of parameters relating to vital
sign data of the patient. |

[00272] The patient survivability prediction system 1500 includes a memory
module 1506 storing instructions to implement an artificial neural network. The
artificial neural network includes a network ofb interconnected nodes,' the nodés
including a plurality of artificial neurons. Each artificial neuron ﬁas at least one
input with an associated weight adjusted by training the artificial neural network
using an electronic database having a plurality of sets of data. Each set of data has at
least one a parameter relating to heart rate variability data and a parameter relating to
vital sign data. [Each set of data further has a parameter relating to patient
survivability.

[00273] The patient survivability prediction system 1500 further includes a
processor ’1:508 to execute the instructions stored in the memory modulei 1506 to
perform the functions o:f the artificial neural network and outpi;t a prediction on fhe_
survivability of the patient based on the first set of parameters and the seéOhd set of

parameters. A display 1510 displays the prédiction on the survivabilgity of the -

- patient.

[00274] In embodiments of the invention, the patient survivability prediction

system 1500 includes a port 1512 to receive the first set of parameters from the first

input 1502 and the second set of parameters from the second input 1504.
[00275] Figure 16 shows a schematic of a patient survivability predicﬁon system

1600 in accordance with embodiments of the invention.
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[00276] The patient survivability prediction system 1600 shares similar
components with the patient survivability prediction system 1500 of Figure 15. The
main contrast between the patient survivability prediction system 1600 and the
patient survivability prediction system 1500 of Figure 15 is that the patient
survivability prediction system 1600 does not use a single port to receive the first set
of parameters from the first input 1502 and the second set of parameters from the
second input 1504. Rather, the patient survivability prediction system 1600 has a
first port 1602 to receive the first set of parameters from the first input 1502 and a
second port 1604 to receive the second set of parameters from the second input 1504.

[00277] Figure 17 shows pictures of a patient survivability prediction system 1700
in accordance with embodiments of the invention.

[00278] In Figure 17, the patient survivaBility prediction: system has ECG sensors
1702 and a blood pressure sensor 1704. The artificial neural network used to predict
patient survivability is implemented in a laptop 1706.

[00279] Figures 18 to 21 show snap shots of the output of the patient survivability
prediction system as shown in the laptop 1706 screen.

[00280] Figure 18 shows the result of processing raw ECG data 1802 to produce
filtered ECG data 1904.

[00282] Figure 19 shows various signal graphs that the patient survivability
prediction system 1700 is able to display.

[00283] Figure 20 shows the prediction results of two different patients, where in
one case (2102), cardiac arrest is predicted to not occur within 72 hours. In the other
case (2104), cardiac arrest is predicted to occur within 72 hours.

[00284] Figure 21 shows a flow chart 2150 illustrating a method, according to one
embodiment of the present invention, used to predict the survivability of a patient.

[00285] The method includes six steps, 2152, 2154, 2156, 2158, 2160 and 2162.

[00286] In step 2152, a first set of parameters relating to heart rate variability data

of a patient is measured.
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[00287] In step 2154, a second set of parameters relating to vital sign data of the
patient is measured.
[00288] In step 2156, a third set of parameters relating to patient characteristics is

obtained.

[00289] In step 2158, the first set of parameters;, the second set of parari;ét_ers’_anidi

the third set of parameters are provided as sets of normalized data valuﬁs,: where

required, to a scoring model implemented in an electronic database. The scbririg‘
model has a respective category associated to ééch parameter of the first set of
parameters, the second set of parameters. and the third set of paramefers, each
category having a plurality of pre-defined value ranges, each of the plurality of value
ranges having a pre-defined score.

[00290] In step 2160, a score for each parameter of the first set of parameters, the
second set of parameters and the third set of parénieters is determined. The score is
determined by assigning the sets of normalized data (from step 2158) to respecti\:/e
pre-defined value ranges, encompassing the sets of normalized data values, of the
plurality of value ranges of the category associated to the respective parameter of the
first set of parameters, the second set of parameters and the third set of parameters.

[00291] In step 2162, a total score, being a summation of the score (see step 2160)
for each parameter of the first set of parameters, the second set of parameters and the
third set of parameters, is obtained. The total score provides an indication on the
survivability of the patient. | , _ |

[00292] - The rhethod illustrated in Figure 21B may be implefnented in e@ccordanc_:e :
to the example that follows, the example relatinﬁg’ to predicting cardiac éfr:est:. in:a; :
patient within 72 hrs of assessment. ‘ | : |

[00293]  When a patient is delivered to a mage area for assessment, th‘éfﬁatient’:s:

characteristics (such as age), vital signs (such as GCS, temperature, pulse rat_e,ﬁ'

respiratory rate, SBP, DBP, SpO2 and pain score) and HRV parameters (time,

frequency and geometric domain) will be recorded and analyzed by a patient

survivability prediction system in accordance to an embodiment of the invention. In

this- embodiment, the measured HRV parameters become a first set of parameters,

while the measured vital sign data form a second set of parameters. The patient

58



WO 2011/115576 PCT/SG2011/000102

characteristics form a third set of parameters, which may also be obtained from the
patient’s hospital records. It will be appreciated that further patient health data may
also be recorded by the patient survivability prediction system. _
[00294] The patiént survivability prediction system may have an electronic .
5 database in Which a scoring model is implemented. The scoring inodel may be based
on a mathematical model which may be based"on logistic _:regression,f‘ such a_sj.
univariate analysis. In one embodiment, the logistic regression mathematical'rhbdel '
may be used, for example, on data from samples of cardiovascular (CVS). and non-
cardiovascular (non- CVS) patients. The 10g1st1c regression mathematical model may
10 be fitted separately with a combination of demographic parameters (age), vital signs
and HRV parameters for the CVS and non-CVS patients. The prediction
performance may be investigated through Receiver Operating Characteristic (RQC)
aﬁalysis as well as Sensitivity, Specificity, Positive Predictive Value (PPV) and
‘N'egative Predictive Value (NPV). Table 1 below summarizes the organization of
15 first set of parameters, the second set of parameters and the third set of parametefs.

inside a scoring model, according to one embodiment of the invention.

Table 1: Model based scoring scheme for demographic, vital sign and HRV parameters.
Parameter & respective range of values Score :
Age <40 1
40-49
50-59
60-69
70-79
>=80
GCS ; <=5
‘ 6-10 -
11-14 -
. 15
Temperature <36.5
' 36.5-37.4
>37.4
Pulse rate ' <60
60-99
100-129
>=130

VA R o low s oln B W N
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Respiratory rate

<10
10-16
>16

SBP

<90
90-120
>120

DBP

<60

60-95

>95

SPO2

<95
>=95

Pain score

0
1-5
6-10

aRR(s)

<0.73

0.73-0.95
>0.95

STD(s)

<0.04
0.04-0.08
>0.08

avHR(bpm)

<63.46
63.46-83.24
>83.24

sdHR(bpm)

<3.84
3.84-6.36
>6.36

RMSSD

<0.02
0.02-0.07
>0.07

nn50 (count)

<3.34 -
3.34-39.64
>39.64

pnn50 (%)

<17.43
>=17.43 -

RR triangular index

<3.20
>=3.20

TINN {ms)

<0.18
0.18-0.33
>0.33

LS-VLF power (ms2)

<0.15
>=0.15

OUUC)OUJUJU1I—\UUUUOOUJO'OWOOUUO'OUUOOWOO#UUOOWWN#U'INO\bwm
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LS-LF power (ms2) ' <0.12
' >=0.12
LS-HF power (ms2) <0.08
© 0.08-0.20
>0.20
LS-total power (ms2) <0.46
, >=0.46
LS-LF power (nu) . <4191
41.91-70.76.
| >70.76
LS-HF power (nu) <29.24
29.24-58.09
>58.09
LS-LF/HF ratio : <0.62
0.62-2.54
>2.54

olo wlw o oloo wlo wica w VIO W

[00295]  As shown in table 1, the scoring model has a plurality of categories (Age,
GCS, Temperature, Pulse rate, -, LS-LF/HF ratio), with each category having a

_plurality of pre-defined Value ranges (for instance: the category “age” has a range of ’

values <40, 40-49, ..., >=80). Each of the plurality of pre-defined value ranges has a
pre-defined score (for instance: for the category “age”, the range of values <40, 40-
49, ...,>=80 have scores 1, 2, ... and 4 respectively).

[00296]  Each of the categories is associated to a respective pafameter of the first
set of parameters, the second set of parameters and the third set of parameters. For
instance, the categories “aRR(s)”, “STD(s)”, ... and “LS—LF/HF ratio” are HRV
parameters and are therefore, in this embodlment associated with the ﬁrst set of

parameters. The “aRR, STD, ... and LS-LF/HF ratio” parameters of the ﬁrst set of _

parameters will be assoc1ated with the correspondmg aRR(s) STD(S) and LS—: :' |
LF/HF ratio” categories of the scoring model shown in table 1. - _ | |
[00297] In table 1, both the predefined value:ranges and their respecﬁ:\/e score .

values for the category “age” are derived , for example, from samples of CVS aﬁd
non-CVS patients to group variables. Both the:predeﬁned value ranges and their
respective score values for vital signs (i.e. the .categories “GCS”, “temperature”,

“pulse rate”, “respiratory rate”, “SBP”, “DBP”, “Sp02” and “pain score”) are
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derived according to data derived from samples of CVS and non-CVS patients. Both
the predeﬁnéd value ranges and their respective score values for the HRV parameters
(i.e. the categories “aRR(s)”, “STD(s)”, ... and “LS-LF/HF ratio”) are based on ECG
studies of a healthy population in Singapore. |
[00298] As shown in table 1, only required parameters from the first set of |
parameters, the second set of parameters and the third set of parameters are
4normalized. .For instance, the parameter “age” from the ﬁrst set of paraméters and
the parameter “temperature” from the second seti of parameters do not néed to be
normalized as their corresponding categori‘e.s in the scoring mc}dcl are de_sighe‘_d to
process the actual recorded values from the patient. . | |
[00299] Normalized data, where required, for each parameter of the first set of |
parameters, the second set of parameters and the third set of parameters is assigned
to its associated category. Further, the normalized data is assigned to the respective
value range within the associated category, the normalized data.falling within or
being encompassed by the respective value range. The purpose of assigning the
normalized data to its respective value range within its associated category is to
determine a score, based on the scoring rhetho'd summarized in table 1, of the
normalized data. From table 1, it can be observed that a maximum possible score is
100 and a minimum possible score is 135.
[00300]  Table 2 below shows a summary of individual scores, obtained from using
the scoring method summarized in table 1, for each parameter of a patient’s

demographic, vital sign and HRV parameters. .

‘Table 2: Patient demographic, vital sign and HRYV parameters

Parameter & categories - Score
Age - >=80 4
GCS - 11-14 3
Temperature : 537.4 4
Pulse rate i >=130 5
Respiratory rate . >16 4
SBP  >120 5
DBP  >05 3
SPO2 <95 5
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Pain score 6_10

4
aRR(s) >0.95 3

STD(s) >0.08 3

avHR(bpm) >83.24 3

'sdHR(bpm) - >6.36 3
RMSSD >0.07 3

nn50 (count) >39.64 3

pnn50 (%) <17.43 3

RR triangular index . <3.20 ' 5.

TINN (ms) . <018 3

LS-VLF power (ms2) <0.15 3

LS-LF power (ms2) <0.12 3

LS-HF power (ms2) >0.20 4

LS-total power (ms2) <0.46 3

LS-LF power (nu) <4191 | 3

LS-HF power (nu) - >58.09 3

LS-LF/HF ratio <0.62 3

Total score 88

[00301] As shown in table 2, a total score, being a summation of each score for
each parameter of the first set of parameters, the second set of parameters and the
third set of parameters, is obtained. The total score provides an indication on the
survivability of the patient.

[00302] Table 3 beloW summarizes organization of a plurality of risk categories

inside a scoring model in accordance to an embodiment of the invention.

Table 3: Organization of risk categories inside a scoring model

‘Level of risk to have cardiac arrest within 72 hrs . Score -
 Low - - 15-40 -
Moderate ' o - 41-60 . .
'High ' 61-80 -
Very high 81-100

[00303] Eaéh category (such as low, moderaté, high and very high) of the plurality

of risk categories has a pre-defined range of values. The total score obtained in table
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2 is assigning to the category having the pre-defined range of values encompassing

the total score. Thus, for the total score “88” from table 2, the patient is assessed to

have a “very high” level of risk to have cardiac arrest within 72 hours. In the

embodiment shown in table 3, the numerical range of each of plurality of nsk

5 categories may be determined in an arbitrary manner. . -

[00304] Table 4 shows a summary of results obtained from using the ‘scoring

model, as shown in Figure 21B, against actual results of whether cardiac arrest
occurred within 72 hours for a sample of 1021 patiéhts. ,

| [00305] From table 4, the results obtained by lisirig the scoring model _,of‘i Figure.

10 21B indicates that for the 1021 patients, 26 (or 2.5% of the sample size) bélohgéd to

the “low” risk categofy, 661 (or 64.7% of the sample size) belonged to the

“moderate” risk category, 333 (or 32.6% of the sample size) belonged to the “high”

risk category, while 1 (or 0.1% of the sample size) belonged to the “very high” risk

category. Single decimal place accuracy applies for the percentage values of the

15 sample sizes. _

[00306] Ainong the 26 patients of the “low” risk categbry, cardiac arrest did not.
occur. Amongst the 661 patients of the “modetate” risk category, 3.2% suffered
cardiac arrest within 72 hours. Amongst the 333 patients of the “high” risk category,
9.0% suffered cardiac arrest within 72 hours. For the 1 patient of the “very high”

20 nisk category, cardiac arrest occurred within 72 hours.

Table 4: Assessment of scoring model against actual results

Level of risk to : cardiac arrest within 72 hrs (%)
‘have cardiac arrest ' :

within 72 hrs Patient-at-risk

n (%) .- No ..~ - Yes
Low 26(2.5) 1000 .. 200
Moderate - 661 (64.7) S 9.8 . - L3200
High - 333 (32.6) o 91.0 = . C9.0 -
_ Very high 1(0.1) ; 00 ©100.0

25 :
[00307]  From table 4, the area under curve (AUC) at a 95% CI (confidence

interval) of the scores to predict cardiac arrest within 72 hrs ranges from 0.633 to

0.769, to have an average accuracy of 0.701.
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Experimentél data set 1 _

[00308]  Experiments were conducted where eight vital signs are used to form part
of the feature vector for patient outcome prediction. These vital signs afe
temperature, respiration rate, pulse, systolic blood preséure (SBP), diastolic blood
pressure (DBP) oxygen saturation (SpO2), Glasgow Coma Score (GCS), and pain
score. .

[00309] In the data set, each patient was represented as a 24-dimensional feature >
vector and the corresponding outcome coded as either 0 (survwed and dxscharged) or
1 (died). Among 100 patients, 40 cases died and 60 cases survived. Prior to
classification, the feature set is transformed into the interval [-1,1] by performing
min-max normalization on the original data. Suppose that mins and max, are the
minimum and maximum values of an attribute vector A =[x;(i), ..., XN (1)] where i €
[1, 24] and N is the total number of samples. Min-max normalization maps a value v,

of A to v’in the range [min’ 4 and max’A] by computing

v'= ——-V;I—nif*—— (méx'A —min', ) +min', 9
max ,—min

This type of normalization preserves the relationships among the original data
values, and therefore facilitates the prediction. To validate embodiments of the
patient survivability prediction system, 75 patients were randomly selected for
training and the rest 25 patients are used for testing. This part1t10n and classxﬁcatlon
procedure is repeated 50 times, and the averaged output values are recorded. :
[00310] It is known from Figure 11 that 60 patients belong to class 0 and 40

patients are cateoorlzed into class 1. As a consequence, random selection 1 may result

in biased training and testing sets, i.e., the sample number of two classes are:

unbalanced. Alternatively, random partitioning 1s done for both” classes separately SO

that 75% samples in class 0 and 75% samples in class 1 will go into the trammg set
in each iteration. The validation system is illustrated in Figure 22. It is seen that the

architecture depicted in Figure 22 is straight-forward like most pattern recognition
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systems, in which data acquisition, feature extraction, and c1assiﬁcati0n are
individually implemented.

[00311] In practice, the ECG recordings vary widely in length and signal quality.
Therefore, several pre-processing steps are required to ensure qualified RR interval
sequences. Before computing the HRV measures, the QRS detection and non-sinus
beat detection algorithms were validated against the MIT-BIH database. Thesc ,
algorithms were found to. perform well with high sensitivify (99.8%) and speciﬁcity |
(99.4%) in detecting QRS complexes and detecting‘ non—siﬁus beats for ECG signals -
in the MIT-BIH database. B ' | , o

[00312] In the experiments, ELM and SVM are implcmcntcd for clas‘s:iﬁcat:ion. :
Therefore, several parar‘heters used in these algorithms should be clarified. In ELM, |
the number of hidden neurons 1s assxgned as 30. For SVM, the default settings of the
parameters in the LIBSVM package are used. To evaluate .the pred1ct1ve
performances, sensitivity and specificity are calculated in addition to classification
accuracy. Serving as widely used statistical measures for binary classification,
sensitivity measures the ratio of the number of ccrrectly predicted positive samples
to the actualvnumbcr of positives, and specificity is the proportion of negatives which
are correctly identiﬁcd.‘ The decision was defined as positive if the patient outcome
is death, while negative case refers to survival. Therefore, the fcllowing measures are
obtained
-True positive (TP): Death case correctly predicted as death.-

- False positive (FP): Survival case wrongly predicted as death.
- True negative (TN): Survival case correctly predicted as survival.
- False negative (FN): Death case wrongly predlctcd as surv1va1

[00313] Subsequently, SCnSIthlty, specificity, and accuracy was detcrmmed andzﬁ _

used to evaluate the proposed methods in the cxpcnmcnts. ‘
Sensitivity = TP / (TP + FN) o
Specificity = TN / (TN + FP) |
Accuracy = (TP + TN) /(TP + FP + TN + FN)

In general, high sensitivity, specificity, and accuracy are desired so that more cases

in both classes can be correctly recognized.
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Segment based prediction

[00314] In the implementation, each segment is set as 250 beats and 9 segments
per patient are extracted from the original RR interval sequences. By applyingtlre
voting-based predictive strategy on three selected segments (M’ = 3), the
classification results using vital signs, HRV measures, and combined features are
presented in F igures 23, 24 and 25 respectively. | ‘

[003151 Frgures 23 and 24 show the predlctlon results with traditional v1ta1 signs
and HRV measures, respectively. It can be observed that SVM generally
outperforms ELM with respect to accuracy and spemﬁmty Both ELM and SVM |
algorithms achieve comparable performance in terms of sensitivity. Compared with |
the results based on vi’ral signs, the results based on HRV measures give higher
accuracy and sensitivity using ELM. Using SVM, results based on vital signs and
HRV measures produce similar performance in terms of accuracy. In addition,
sensitivity is increased and specificity is reduced by replacing vital signs with HRV
measures. In general, prediction of mortality with either HRV measures or vital
signs individually is not satisfactory. By combining the HRV measures and the vital
signs, the best results (Accuracy: 78.32%, Sensitivlty: 65%, Specificity: 87.2%) are
obtained using SVM with linear kernel, as can be seen from Flgure 25. From these
results, it is observed that combining the HRV measures and the vital signs can
improve the performance of prediction in general.

[00316] Several parameters may affect the final results, particularly the number of
selected segments M’. Hence, prediction results with different values of the
parameter M’ are mvestlgated in the followmg ‘When M’ = M, the entire collectlon_
of segments are selected, i.e., the TS method. If M’ <M, M’ segments for generatmg_
a more compact data set (ie., ‘a smaller 1ntra-class Vanat1on) are employed for-

prediction. In applying the majorrty voting for a two-class problem, an od_d number.

 of predictors should be used for decision combination. Consequently, different M"

segments are selected for voting and the results are shown in Figure 26. It is
observed that when Mf 1s 3, SVM performs the best and ELM can achieve good

results as well. Furthermore, with the increment of M’, the number of samples in the
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" data set increases. Therefore, M’ is set as 3 in order to maintain a simple but

effective prediction system for clinical usage.-

Comparison of different predictive strategies

’ [00317] The predictive strategies are summarized as follows and illustrated‘in

Figure 27.

" - Global: The HRV measures are calculated from the entire RR interval sequence

where the length of signal varies from 2273 beats to 21697 beats.
- Local: The HRV measures are calculated from a local sequence which is the las:tg a
portion (2250 beats long) of the original signal. o v 7 | »

- Total segmént: All non-overlapped segments in the local sequence are used forv
prediction by the majority voting rule. In this study, -each segment is 250 beats long,.
and therefore 9 segments per patient are obtained from local sequence'. ' |

- Selective segment: M’ selected non-overlapped segments in the local sequence are
used for prediction by th¢ majority voting rule. Since M’ segments are selected,
signal of M’ X 250 b‘eats long per patient is used for analysis.
[00318]' As seen in Figure 28, in some cases the Global strategy outperforms the
Local strategy, and vice versa in other cases, but the best results are achieved by

using the selective segment method.

Experimental data set 2

[00319] In another study, eight vital signs and raw ECG data were acquired from

critically ill patients at the Department of Emergency Medicine (DEM), Singapore

General Hospital (SGH). These vital signs include temperature, respiration rate,

pulse, systolic blood pressure (SBP), diasfolic blood pressure (DBP), oxygeri _
saturation (SpO2), Glasgow coma score (GCS), aﬁ_d pain score. The ECG Sigjnals are _
acquired using LIFEPAK 12 deﬁbﬁllator/moﬁitor -and download‘ed_;‘ujs_ing- ‘th:c :
CODESTAT Suite. To ensure that qualified RR intervals are: used for éaléuiétiné :
HRYV measures, only cases containing more than 70% sinus rhythm are included in
the data set. In summary, 100 patients are chosen for analysis, among which 40 cases

are died and 60 cases are survived to discharge.

68



10

15

25

30

WO 2011/115576 PCT/SG2011/000102

- [00320] In the data set, each patiént is represénted as a 24-dimensional feature

vector (16 HRV measures and 8 vital signs) and the corresponding outcome is coded

as either 0 (survived to discharge) or 1 (died). In the experiments, 75 patients are

- randomly selected for training and the remaining 25 patients are used for testing.

This procedure of partition and classification is repeated 50 times, and the final

results are the averaged output values. However, random selection of samples may

* result in unbalanced training and teéting sets, we therefore do the random partition .

for each class individually se that 75% samples in class 0 and 75% Samplesin class 1
w111 go into the training set in each iteration. ‘ _ .

[00321]  Prior to 1mplement1ng ELM for class1ﬁcat10n min-max normahzat1on 1S
performed to transform the feature set into the interval [-1,1], and the number Qf
hidden neurons is heuristically determined as 30. Furthermore, sensitivity,
specificity, and classification accuracy are calculated to evaluaté the predictive

performances. In the following, experimental results are reported and analyzed.

Segment based analysis of patient outcome

[00322] Within the data set of 100 patients, the length of RR interval varies from
2273 beats to 21697 beats, hence the maximal length of local sequence is 2273 beats.
The local sequence was divided into 9 segments (M = 9), each of which was 250
beats long. By applying the segment based predictive strategy, the classification
results using vital signs, HRV measures, and combined features are presented in
Figure 29. It can be observed that the best results (Accuracy: 70.88%, Sensitivity:
47.93%, Specificity: 78.92%) are obtained using combined features with sigmoid
activation function, and prediction of mortality with either HRYV measures or vital
signs 1s not. satlsfactory When vital signs and HRV measures are used 1nd1v1dually,
hlgher sensitivity 1s achleved by HRV measures, whereas vital s1gns outperforrn in
prediction specificity. From the Figure 29, it is observed that cornbmmg the HRV
measures and vital signs can generally i 1mprove the performance of predlctlon v
[00323] In practice, the number of hidden nodes in ELM usually controls the :

network complexity and learning performance, and thus may affect the final results.
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[00324]  Figures 30, 31 and 32 depict the performaﬁces of ELM in terms of
different nurﬁber of hidden nodes. In Figures 30 to 32, the following activation
functions were respectively used: hard limit, sigmoid and sine. , _ »

[00325] 1t is seen that good prediction results are obtained when the number on
hidden nodes varies from 20 to 30 regardless of activation functions. We also
observe that the best results are obtainod using 30 hidden neurons with sigmoid
function. Moreover, as seen in Figure 29, both training and testlng with ELM can be

accomphshed within several milliseconds.

Comparison of different predictive strategies

[00326] The three predictive strategles used accordmg to the way that the HRV'
measures are calculated from the ECG signal are the global, local, and segment
based methods Detailed descriptions of these strategies are as follows

- Global based method: The HRV measures are calculated from the entire RR
interval sequence.

- Local bésed method: The HRV measures are calculated from a local sequence to
represent the patient. |

- Segment based method: All non-overlapped segments in he local sequence are used

for prediction with majority voting rule.

[00327] It is obvious that one set of features ére used to represent the patient when
the global and local strategies are implemented, while M sets of features are
calculated for one patient if the segment based method is adopted. As seen in Figure
33, the local strategy outperforms the global strategy, and the best results are
achieved by the segment based method.
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CLAIMS

1. A method of producing an artificial neural netwofk capable of predicting the
survivability of a patient, the method comprising: " | ’. :
storing m an electronic database patient health data, the patient health data
comprising a plurality of sets of data, each set having at least one of a first parameter
relating to heart rate variability data and a second parameter relating to vital sign data,
each set further having a third parameter relating to patient surviifability;' |
providing a network of nodes interconnected to form an artificial neural network, v

the nodes comprising a plurality of artificial neurons, each artificial neuron having at

least one input with an associated weight; and |

training the artificial neural network using the patient health data such that the
associated weight of the at least one input of each artificial neuron of the plurality of
artificial neurons is adjusted in response to respective first, second and third parameters
of different sets of data from the patient health data, such that the artificial neural network

is trained to produce a prediction on the survivability of a patient.

2. The method of claim 1, wherein the heart rate variability data is extracted from an

electrocardiogram (ECG) signal from at least one patient.

3. The method of claim 2, uwherein extracting the heart fate variability datab
comprises
filtering the ECG signal to remove noise and artifacts;
locating a QRS complex within the filtered ECG signal;.
finding a RR 1nterva1 between successive QRS peaks of the QRS complex and
processing the sequcnce of information w1th_1n_the RR interval to tham :the heart :

rate variability data.

4. The method of claim 3, wherein a band pass ﬁlter 1s used to -ﬁl:ter:the ECG sighal | ;

and locate the QRS complex.
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5. The method of claim 4, wherein the band pass filter frequency range 1s between
about SHz to about 28Hz.

6. The method of claims 3 to 5, wherein the QRS peaks are located by:

locating a maximum peak data value first occurring in the filtered ECG signal;

determining an upper amplitude threshold and a lower amplitude threshold from

the located maximum peak value;

locating a peak value

loeating minimum values on either side of the peak. value; and _

denoting, when the peak value is above the upper amplitude threshold :X.&hile the
minimum values are below the lower amplitude thresheld, the location of the p'eak value
as a R position, the location of the minimum value occﬁrring closest on the left side of the
R position as a Q position, and the location of the minimum value occurring closest on
the right side of the R positien as a S position, so as to form the location of a QRS peak -
within the filtered ECG signal.

7. The method of claim 6, wherein the positions of other QRS peaks within the
filtered ECG signal are located by iterating the process of:

locating another peak value;

locating other minimum values on either side of the another peak value; and

denoting, when the another peak value is above the upper amplitude threshold
while the other minimum values are both below the lower threshold, the location of the
peak value asaR position, the location of the minimum value occurring closest on the
left side of the R position as a Q position, and the location of the minimum value
occurring closest on the right side of the R position as a S position, so as to form the

location of another QRS»peak.

8.  The method of claims 3 to 7, wherein processmg the sequence of mformauonﬁ .
within the RR interval further compnses removmg outliers from the sequence of
information within the RR interval by: ' o

finding a median value and standard deviation value for the RR interval;
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calculatmg a tolerance factor based on the standard deviation value

retaining a portion of mformation that lies W1th1n the RR interval spanning elther ‘
side of the median value by the tolerance factor, so that the heart rate variability data is
obtained from the retained portion of 1nformat10n and |

discarding the remaining portion of the information from the sequence of |

information.

9. The method of claims 1 to 8, further comprising classifying the first parameter,
the second parameter or a combination of the first parameter and the second parameter as
feature vectors of the patient health data and training the artificial neural networl{_ with the

feature vectors.

10.  The method of claims 1 to 9, wherein the artificial neural network is implemented
as Instructions stored in a memory that when executed by a processor cause the processor

to perform the functions of the artificial neural network.

11. The method of claim 10, wherein the artificial neural network is based on support

vector machine archite'cture, wherein the associated weight of the at least one input of

each artificial neuron of the plurality of artificial neurons is initialized from a library used

by the support vector machine.

12. The method of claim 11, the support vector machine cornprises a decision

function, the decision function given by

£ =sen(> ayyk(x,x,)+ )

- wherein sgn() is a sign function; (x:x;) is set of feature vector; k(x;x;) is a kernel matrix

- constructed be and x;;y; is ‘1 or -1; which is the label- of feature vectcr Xj; aj and b are .

parameters used to define an optimal decision hyperplane so that the margm between two -

classes of patterns can be max1mized in the feature space
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13. The method of claim 10, wherein the artificial neural network is based on an

extreme learning machine architecture wherein the associated weight of the at least one

mput of each artificial neuron of the plurahty of artificial neurons is 1n1t1ahzed through

“random selection by the extreme learning machine.

14. The method of claim 13, wherein the artificial neural network is realized as a
single-layer feed-forward network, whereby the prediction on the survivability of the

patient is derived from the function,
. o |
i) =) Bgw x,+b)=t, j=1.,N
i=l1

wherein x; is an input vector to an input of one of the plurality of artificial neurons for j =
1,2, ..., N input vectors; w; is the associated weight of the input of the artificial neuron.
receiving the x; input vector; g(w;.x; + b;) is an output of the artificial neuron recei.vihg.
the x; input vector... fori =1, 2, ..., N artificial neurons; B; is the output weight vector
that associates an i hidden neuron with a respective output neuron; and b; is the bias for

the i™ hidden neuron.

15.  The method of claims 1 to 14, wherein the training of the artificial neural network

1s based on back-propagation learning.

~16.  The method of claim 15, wherein the back—propagatron learmno uses the

Levenberg- Marquardt algomthm

17. The method of claims 1 to 16, wherein each of the plurality of artificial neurons
has an activation function, the activation function being selected from a group of

functions comprising hardlim, sigmoid, sine, radial basis and linear.

18, The method of claims 3 to 17, further comprising

partitioning the sequence of information _ within the RR interval _:_;i'rr‘to ‘non- :
overlapping segments; and . - v' :

using the non-overlapping segments to train the artificial neural ne‘tw‘orkf., .
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19.  The methbd of claims 3 to 17, further comprising
eXtracting a length of signal within the RR interval of each of the filtered ECG
signal;. _ o | ' :
partitioning the length of signal into non-overlapping segments; and }
selecting at least one of the non-overlapping segments to train the artificial neurai

network.

2Q. The method of claim 19, wherein each of the non-overlapping segments is of

substantially equal lehgth;

21. The method of claim 19, wherein each of the hon—overlapping segments is of ank'
unequal length. » | | o
22. The method of claims 18 to 21, wherein the non-overlapping segments have a
fixed length.

23. The method of claims 18 to 21, wherein the non-overlapping segments have an
adjustable length.

24. - The method of claims 1 to 23, wherein each .’s‘,et of the plurality of séts of data

further comprises a fourth parameter relating to patient characteristics.

25.  The method of claim 24, wherein the patient characteristics comprises any one or

more of the following: age, gender and medical history.

26. A method of predlctmg the survivability of a patient, the method comprlsm0
measurmg a first set of parameters relatmg to heart rate vanab1hty data of a
patlent ' :

measuring a second set of parameters relating t_b vital sign data of the péﬁéht;ﬂ .
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providing an artiﬁcial neural network comprising a ‘network of interconnected
nodes, the nodes comprising a plurality of artificial neurons, each artificial neuron having
at least dne inpﬁt with an associated Weight adjuSted by training the artificial neural
network using an electronic database_ having a plurality of sets of data, each set havihg at
least a parameter relating to heart rate variability data and a parameter relating to vital
sign data, each set further having a parameter relating to patient survivability;

processing the first set of parameters and the second set of parameters to produce
processed data suitable for input into the artificial neural network; o

‘providing the processed data as input into the artificial neural network; and

-obtaining. an output from the artificial neural network, the output providing a

prediction on the survivability of the patient.

27. The method of claim 26, wherein the processed data of the first sét of 'parameters .

and the processed data of the second set of parameters are represented as a feature vector.

28. The method of claim 26, wherein the processed data is the first set of parameters

and the second set of parameters being represented as normalized data.

29.  The method of claims 26 to 28,

~ wherein the processed data is partitioned into non-overlapping segments, so that.

- the input into the artificial neural network comprises.sets of one or more of the non--

overlapping segments of processed data; and wherein
a result is obtained for each of the sets of one or more of the non-overlapping
segments of processed data, so that each of the results is considered to predict the

survivability of the patient.

30. The method of claim 29, wherein majority Vvoting is used to detefﬁline the

prediction on the survivability of the patient, the majority voting represented by the

function
2 Mo
¥y =max ZDM ;
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wherein D, is an intermediate variable for-final decision making, D, assigned a value

‘of 1if am™ classifier chooses class j in the decision ensemble, and 0 otherwise.

31. Thé method of claims 26 to 30, wherein the feSult of the artificial neural netWofk
is coded as a two class label, so that the method further comprises |

applying a label-based algorithm to each of thé two class label results. to decide
the output from the artificial neural network, thereby providing a predlctlon on the

survivability of the patient.

32.  The method of claims 1 to 31, wherein the heart rate variability data compnses

time domain data frequency domain data and geometric domain data.

33.  The method of claim 32, wherein the time do_mjain data comprises‘info'rma'tion on.

- any one or more of the following parametersﬁ mean of RR intervals (mean RR), standard

deviation of RR intervals (STD), mean of the instantaneous heart rate (mean HR),
standard deviation of the instantaneous heart rate (STD_HR), root mean square of
differences between adjacent RR intervals (RMSSD), number of consecutive RR
intervals differing by more than 50 ms (NN50), and percentage of consecutive RR

intervals differing by more than 50 ms (pNN50).

34, | The method of claims 32 or 33, wherein the. frequency domain data_fcomprisés
information on any one or more of the following:_yparameters: power in very low
frequency range (<= 0.04Hz) (VLF), power in low frequency range (0.04 to 0.15 Hz)
(LF), power in high frequency range (0.15 to 0.4 Hz) (HF), total power which is
estimated from the variance of NN intervals in the segment and is measured in ms” (TP),
ratio of LF power to HF power (LF/HF), LF power in normalized units: LF/(TP-
VLF)x100 (LFnorm), and HF power in normalized ﬁnits: HF/(TP-VLF)x100 (HFnonn).. _

35.  The method of claims 32 to 34, wherein the geometric domain data';cb:mprisés .

information on any one of the following data: total nu_fflber of all RR intervals di\)idéd by . )
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height of histogram of intervals (HRV Index) and base width of triangle fit into RR
histogram using least squares method (TINN).

36.  The method of claims 1 to 35, wherein the vital sign data comprises any one or =
more of the following: systolic blood pressure, diastolic blood pressure, pulse rate, pulse

oximetry, respiratory rate, glasgow coma scale (GCS), pain score, temperature and age.

37. The method of claims 1 to 36, wherein the patient heaith data used to train the
artificial neural network are standard deviation of the instantaneous heart rate (STD_HR), |
power in low frequency range (0.04 to 0.15 Hz) in normalized units (LFnorm), age, pulse

rate, pulse oximetry, Systolic blood pressure and diastolic blood pressure.

38. The method of claims 24 to 37, wherein the 'm;easured first set of pararhete_rs a.r_ei
standard deviation of the instantaneous heart rate (STD_HR) and poWer in low frequency.
range (0.04 to 0.15 Hz) in normalized units (LFnorm); and the measured second set of
parameters are age, pulse rate, pulse oximetry, systolic blood pressure and diastolic blood

pressure.

39. The method of claims 1 to 38, wherein the prediction on the survivability of the

patient is either death or survival of the patient.

40. A patient survivability prediction system compfi‘sing: v ‘

a first input to receive a first set of parameters relating to heaft rate Variability data
of a patient; -

a second input to receive a second set of parameters relating to vital sign data of
the patient; |

- a memory module stonno instructions to 1mp1ement an art1ﬁc1a1 neural network
compnsmg a network of interconnected nodes, the nodes compnsmg a plurahty of
artificial. neurons each artificial neuron having at least one input Wlth an assomated
weight adjusted by training the artificial neural network using an electronlc database

having a plurality of sets of data, each set havmg at 1east one a parameter relatmo to heart .
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rate variability data and a parameter relating to vital sign data, each set further having a
parameter relating to patient survivability;

a processer to execute the instructions stored in the memory module to perform
the functions of the artificial neural network and output,a prediction on the survivability
of the patient based on the first set of parameters and the second set of parameters; and

a display for dlsplaymg the prediction on the survxvabrhty of the patient.

41.  The patient survivability prediction system of claim 40, further comprising a port
to receive the first set of parameters from the first input and the second set of parameters

from the second input.

42.  The patient survivability prediction system of claim 40, further comprising
a first port to receive the first set of parameters from the first input;' and

a second port to receive the second set of param_éters from the: second input. ;

43. A method of predicting the survivability of a patient, the method comprising;
measuring a first set of parameters relating to heart rate t/aﬁability data of a
patient;
measuring a second set of parameters relating to vital sign data of the patient;
obtaining a third set of parameters relating to patrent characteristics;
provrdmg the first set of parameters, the second set of parameters and the third set

of parameters as sets of normahzed data values, where required, to a scormg model

implemented in an electronic database, the sconngmodel having a respectlv_e category '

associated to each parameter of the first set of parameters, the seco_nd set of parameters
and the third set of parameters, each category having a plurality of pre-defined value
ranges, each of the plurality of value ranges having a pre-defined score; ‘

determining a score for each parameter of the first set of parameters, the second
set of parameters and the third set of parameters by assigning the sets of normalized data
to respect1ve pre deﬁned value ranges, encompassing the sets of normalized data values,
of the plurality of value ranges of the cateoory assocrated to the respectlve parameter of j

the ﬁrst set of parameters, the second set of parameters and the third set of parameters
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obtaining a total score, being a summation of the score for each parameter of the
first set of parameters, the second set of parameters and the third set of parameters, the

total score provid:ing an indication on the survivability of the patient.

44. The method of claim 41, wherein the scoring model further comprises a plurality |
of risk categories, each catégory having a pre-deﬁned rénge of values, the method fﬁrthgr
comprising assigning the total score to the category having the pre-defined range of
values encompassing the total score, to determine which of the piurality of risk categories

the total score belongs to.

45. A system for the detection of impending acute cardiopulmonary medical events
that, left _untreated, would with a reasonable likelihood result in either severe injury or
death compﬁsing: | |

| an electro-cardiogram (ECG) module including a plurality‘ of electrodes for.
sensing a patient’s ECG and having an ECG output; |

a sensor for sensing a patient’s physiologic parameter other than ECG;

a first input for receiving the ECG output;

a second input for receiving signals from the sensor for sensing a patient’s
physiologic parameter other than ECG;

a third input constructed and arranged to receive:

parametric information describing at least one element of a patient’s demographic
information; and |

| parametric information describing a patieht’s »miedical history; _

a digitizing unit for digitizing the ECG and the physiologic signal other than
ECG; »

a housing containing a memory unit and processing unit, for storing and
processing, resﬁectively, the ECG, the physiologic signal other than ECG, patient
demographic information and medical history; and - | . '

a user communication unit;

wherein the processing unit calculates at least one measure of heart rate V_afiabilityﬁ _

(HRV), combines that at least one measure of HRV With at least one jparametéf je_acvh 6f )
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patient demographic information and medical history, and calculates a statistical

probability of an ACP event within 72 hours of the calculation.

46. The system of claim 45 constructed and arranged to be carried by the patient in a

wearable configuration.

47. The system of claim 45 wherein the sensor measures the peffusion status of the
microvasculature.
48.  The system of claim 47 wherein the sensor is a pulse oximeter.

49. The system of claim 45 further comprising:

an electromagnetic stimulator of physiologic tissue.

50. The system of claim 49 wherein the electromagnetic stimulator stimulates cardiac
tissue. |

51. The system of claim 45 wherein the user communication unit has key entry.

52. The system of claim 51 wherein the third input is a key entry.

53.  The system of claim 45 wherein the user communication unit is in the main
housing; - | '

54.  The system of claim 45 wherein the user communication unit is separate from

main housing.
55. The system of claim 45 wherein the user communication unit is a display.

56. - The systém of claim 50 wherein the stimulation is pacing.

81



10

15

25

30

WO 2011/115576 v PCT/SG2011/000102

57. The system of claim 50 wherein the stimulation is deﬁ‘brillation.'

58.  The systein of claim 50 wherein the stimulation is magnetic stimulation.

59. A system for predicting mortality of a patient being treated for trauma or as part
of a mass casualty occurrence, comprising: : _ -

an electro-cardiogram (ECG) module including a plurality of electrodes for-
sensing a patient’s ECG and having an ECG output; »

a sensor for sensing a patient’s physiologic parameter other than ECG;

a first input for receiving the ECG output; | _

a secord input for receiving signals from the sensor for sensing a patient’s
physiologic parameter other than ECG; |

| a third input const_rﬁcted and arranged to receive:

parametric information describing at least one element of a patient’s demographic.
information; and ‘ : | |

parametric information describing a patient’s medical history;,

a digitizing unit for digitizing the ECG and the physiologic signal other than
ECG;

a housing containing a memory unit and processing unit, for storing and

_processing, “respectively, the ECG, the physiologic signal other than ECG, patient

~ demographic information aﬁd medical history; and

. auser c_o_mmunicatioh unit; _
wherein the processiilg unit calculates at least one measure of heart rate :Variability '
- (HRV), combines that at least one measure of HRV with at least oné parameter -
each of patient demographic information and medical history, and calculates a

statistical probability of mortality for the patient.

60. The system of claim: 59 constructed and arﬁanged to be carried by the patient in a

wearable configuration.
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61. The system of claim 59 wherein the sensor measures the perflision status of the
microvasculature.

62.  The system of claim 61 wherein the sensor is a pulse oximeter.

63. A method of treating a cardiac condition of a patient, comprising:

measuring heart rate variability (HRV) of the patient;
measuring vital sign data of the patient;
predicting, using a computing apparatus constructed and arranged for the purpose,
a likelihood of survival of the patient to one or more selected time limits based on HRV
in combination with the measured vital sign data; and
| treating the cardiac condition as indicated by the vital sign data when th.ev

likelihood of survival of the patient to one or more selected time limits s below a desired

threshold.

64. The method of claim 63, further comprising:

collecting at least one of patient demographic information and patient history
information; wherein predicting further comprises:

computing the likelihood of survival additionally in view of the collected patient

demographic information and patient history information.

65. - The method of claim 63, further comprising:

selectingz a time limit_'of between 4 and 24 hours:

66.  The method of claim 63, further comprising:

selecting a time limit of between 4 and 72 hours.

67. Apparatus for predicting a likelihood of survival of a patient to one or more
selected time limits due to cardiac causes, comprising:
a heart rate sensor having a heart rate output;

a vital sign sensor having a vital sign output; -
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a computational module receiving the heart rate output and the Vi_tél sign output,
and performing;
computing heart rate variability (HRV) related measures from the heart
rate output recelved and »

: computmg the likelihood of survival of the patient to the one or more
selected time limits due to cardiac causes, from a eombmatlon of the HRV related
measures computed and the vital sign output and » ‘

-an output device displaying to a user the likelihood of survival of the patient to the

one or more selected time limits due to cardiac causes.

68.  The apparatus of claim 67, further comprising:

a data 1nput device constructed and arranged to collect at least one of patlent_
demographlc information and patient history information; and

computmg the likelihood of survival additionally in view of the collected patient

demographic information and patient history information.

69. The apparatus of claim 67, further comprising:

a time limit of between 4 and 24 hours.

70. The method of claim 67,. further comprising:

a time limit of between 4 and 72 hours.
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storing in an electronic database patient health data, the patient
health data comprising a plurality of sets of dam, each set having
at least one of a first parameter relating to heart rate variability \

| data and a second parameter relating to vital sign data, each set 102
further having a third parameter relating to parient survivability

~providing a network of nodes interconnected to form an artificial
neural network, the nodes comprising a plurality of artificial
-aeurons, each artificial neuron having at least ane input with an \ .
associated weight 104

training the artificial neural network using the patient health data
[ such-that the associated weight of the at least one input of each
artificial neuron of the plurality of artificial neurons is adjusted in
response to respective first, second and third parameters of
different sets of data from the patient health data, such that the \
- artificial neural network is trained to produce a prediction on the 106
-survivability of a patient

\ 100
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Characteristics (N=100)
Mean age (SD) 65.21 (15.95)
Female (%) ' 37 (37.00)
Ethnicity (%)
Chinese 73 (73.00)
Maloy 15 (15.00)
indian 7 (7.00)
Other 5 (5.00)
Priority class (%)
P1 B7 (87.00)
p2 13 (13.00)
Vital Signs (SD)
Temperature (°C) 36.81 (0.75)
Resp rate (/min) 19.47 (4.34)
.Pulse (/min) 91.82 (27.35)
SBP (mmHG) 135.99 (37.80)
DBP (mmHG) 75.94 (20.89)
Sp02 95.19 (7.12)
GCS 14.01 (2.77)
Pain Score 1.84 (3.15)
Patient outcome (%)
Died 40 (40.00)
Survived ‘ 60 (60.00)
ECG characteristics (SD)
Mean iength (min) 207.52 (102.07)
% sinus rhythm 89.64 (13.99)

FIG. 11
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1400
/

measun'ng a first set of parameters relating to heart rate
variability data of a patient

1402

measuring a second set of parameters relating to vital sign data of
the patient

1404

providing an artificial neural network comprising a network of
interconnected nodes, the nodes comprising a plurality of
artificial neurons, each artificial neuron having at least one input
with an associated weight adjusted by training the artificial neural
network using an electronic database having a plurality of sets of
data, each set having at least a parameter relating to heart rate
variability data and a parameter relating to vital sign data, each
set further having a parameter relating to patient survivability

1406

processing the first set of parameters and the second set of
_parameters to produce processed data suijtable for input into the
artificial neural network

1408

providing the processed data as input into the artificial neural
network

\

obtaining an output from the artificial neural network, the output
providing a prediction on the survivability of the patient

\ 1412
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2150
~

2152
Measuring a First Set of Parameters Relating /
to Heart Rate Variability Data of o Patient
Measuring a Second Set of Parameters Relating to —2154
Vital Sign Data of the Patient
Obtaining @ Third Set of Parameters Relating ——2156
to Patient Characteristics

Providing the First Set of Parameters, the Second Set | —2158
of Parameters and the Third Set of Parameters as Sets
of Normalised Data Values, where Required, to a Scoring
Model Implemented in on Electronic Database, the Scaring
Model Having a Respective Category Associated to Each

Parameter of the First Set of Parameters, the Second

Set of Parameters and the Third Set of Parameters,

Each Category Having o Plurality of Pre—defined Vaiue

Ranges, Each of the Plurdlity of Value Ranges
Having a Pre—Defined Score

Determing a Score for Each Parameter of the First Set | —2160
of Parameters, the Second Set of Parameters and the
Third Set of Parameters by Assigning the Sets of
Normalised Data to Respective Pre—defined Value
Ranges, Encompassing the Sets of Normalised Data
Values, of the Plurality of Value Ranges of the Category
Associcted to the Respective Parameter of the First Set
of Parameters, the Second Set of Parameters and the
Third Set of Parameters

’l
Obtoining a Total Score, Being a Summation of the |_—2162
Score for Each Parameter of the First Set of
Parameters, the Second Set of Parometers and the
Third Set of Parameters, the Total Score Providing
an indication on the Survivability of the Patient

FIG. 21

RECTIFIED SHEET (RULE 91) ISA/EP



WO 2011/115576

(_ Row Ecc (

b

Pre~—processing

HRV Ca

lculation

22/27

PCT/SG2011/000102

Vital Signs and
Patient Outcomes
from Records

\

Data Preparation

Generate Training and

Testing Data Sets

Training
Testing

ELM:

\
SWM:
Training
Testing

Trial<=50

Yes

No

Output rResults

FIG. 22

RECTIFIED SHEET (RULE 91) ISA/EP



WO 2011/115576 PCT/SG2011/000102
23/27

Classifier Activation/ Accuracy Sensitivity  Specificity
kernel function (%) (%) (%)
Hardlim 61.44 41.20 74.93

ELM Sigmoid 62.72 42.20 75.33
Sine 60.72 41.80 74.84
RBF 71.60 41.20 91.87

SW Linear 69.76 46.60 85.20
Sigmoid 71.68 39.40 93.20

FIG. 23

Classifier Activation/ Accuracy Sensitivity  Specificity
kernel function (%) (%) (%)
Hardlim 85.76 51.27 7213

ELM Sigmoid 67.60 53.23 72.53
Sine 68.48 54.04 72.83
RBF 71.20 59.60 78.93

SWM Linear 71.04 58.00 79.73
Sigmoid 66.08 48.80 77.60

FIG. 24

Classifier Activation/ Accuracy Sensitivity  Specificity
kernel function (%) (%) (%)
Hardlim 68.48 51.07 76.71

ELM Sigmoid 72.40 53.47 78.42
Sine 68.80 52.84 78.13
RBF 73.68 56.00 85.47

SWM Linear 78.32 65.00 87.20
Sigmoid 71.04 47.00 88.40

FIG. 25
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Classifier Activation/

Number of Selected Segments

kermme! function M’ = 1 M=3 M=5 M=7 M=29
Hardlim 65.60 68.48 69.44 67.28 67.52
ELM Sigmoid 68.48 72.40 73.44 7112 69.36
Sine 64.96 68.80 68.24 67.36 65.84
RBF 73.04 73.68 72.40 73.28 70.96
SW Linear 70.00 78.32 73.84 75.04 74.24
Sigmoid 62.54 71.04 72.00 71.28 70.24
FIG. 26
Start of Signal End of Signal
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FIG. 27

Table 7 Cassification accuracy with different predictive strategies using combined fectures.

Classifier Activation/ Giobal Local Total Selective
kernel function (%) (%) segment (%) segment (%)
Hardlim 60.48 60.96 67.52 68.48

ElM Sigmoid 64.24 65.28 69.36 72.40
Sine 58.92 61.12 65.84 68.80
RBF 62.32 66.72 70.96 73.68

SVM Linear 70.00 68.64 74.24 78.32
Sigmoid 60.64 60.72 70.24 71.04

FIG. 28
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Feature Activation Global Local Segment
type function (%) (%) (%)
Hordlim 60.48 60.96 64.24
Combined Sigmoid 64.24 65.28 70.88
Sine S59.92 61.12 65.92
—
- 36
/ /]
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