(19) AUSTRALIAN PATENT OFFICE

(11) Application No. Al 2004262379 B2

(54) Title

Ownership reassignment in a shared-nothing
(51)2 International Patent Classification(s)

GO6F 9,50 (2006.01) sBuEP GOGF

GO6F 17,30 (2006.01) 17730

GOGF 950 20060101ALTI2005100

20060101AFI2005100 8BMEP
PCT US2004-024554

(21) Application No: 2np4262379
(87) WIPO No: woos,013156

(30) Priority Data

database system

(22) Application Date: 5gp4 07 28

(31) Number (32) Date (33) Country
10/665,062 2003 .09 .17 us
60,492,019 2003 .08 .01 us
(43) Publication Date : 2005 02 .10
(1) Applicant(s)
Oracle Internaticnal Corporation
(72) Inventor(s)
Pruscino, Angelo, Bamford, Roger J.. Chandrasekaran, Sashikanth

(74) Agent/Attorney

Pizzeys Patent and Trade Mark Attorneys, Level 14, ANZ Centre 324 Queen Street, Brisbane,

QLD, 4000

(56) Related Art
CA 2435388
EP 0483424

“
<
o
v
v
e
e

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATE

(19) World Tntellectual Property
Organization
International Bureau

(43) International Publication Date
10 February 2005 (10.02.2005)

T COOPERATION TREATY (PCT)

0O O

(10) Tnternational Publication Number

WO 2005/013156 A3

(51) Tnternational Patent Classification”: GOG6F 9/46
{21) International Application Number:
PCTUS2004/24554

(22) International Filing Date: 238 luly 2004 (28.07.2004)

(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/492,019 1 August 2003 (01.08.2003) US
10/665,062 17 September 2003 (17.09.2003) US
(71) Applicant (for all designated States except 1iS): ORACLE

INTERNATIONAL CORPORATION [US/US|; 500 Or-
acle Parkway, Redwood Shores, CA 94065 (US).

(72) Inventors; and

(75) Inventors/Applicants {for US only): BAMFORD, Roger,
J. [US/UST; 555 Munzanila Way, Woodside, CA 94062
(US). CHANDRASEKARAN, Sashikanth [IN/US[;
2545 Carlmont Drive #24, Belmont. CA 94002 (US).

(74

(81

(84)

)

)

PRUSCINO, Angelo [TT/AUS]; 436 Distel Drive, Los
Altos, CA 94022 (US).

Agent: HICKMAN, Brian, D.; Hickman, Palermo
Truong & Becker LLP, Suite 550, 2055 Gateway Place,
San Jose, CA 95110-1089 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
Al AU, AZ, BA, BB, BG, BR, BW. BY, B, CA. CH, CN,
CO, CR, CU, C7Z, DE, DK, DM, D7, KC, EE, KG, ES, K1,
GB, GD, GE, GII, GM, IIR, IIU, ID. IL, IN, IS, JP, KE.
KG, KP, KR, KZ, LC, LK, LR, LS, LI, LU, LV, MA, MD,
MG, MK, MN, MW, MX. MZ, NA, N1, NO, NZ, OM. PG,
PIL PL, PT, RO, RU, SC, 8D, SE, SG, SK, SL, Y, TJ, TM,
INVIR, TTTZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM.,
VA'A

Designated States (unless otherwise indicated, Jor every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, 8D, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, 1), TM),
Furopean (A1, BE, BG, CH, CY, CZ, DE, DK, EE, ES, KL,
FR, GB, GR.IIU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPL (BE, Bl, CFK, CG, CL, CM, GA, GN, GQ.
GW, ML, MR, NE, SN, D, 'I'G).

[Continued on next page|

(54) Title: OWNERSHIP REASSIGNMENT IN A SHARED-NOTHING DATABASE SYSTEM

CLUSILE 101

~—

v
NOLE "z NODE N4

PARTITION 12 ‘
PARTITION 14 ’

4 i

YOLE 106

PARTITION 115 /
‘,/‘/

(57) Abstract: Various thechniques are described for improving the performance of a shared-nothing database system in which at
& least two of the nodes that are running the shared-nothing database system have shared access te a disk. Specifically, techniques are
g provided for changing the ownership of data in a shared-nothing database without changing the location of the data on persistent
@ storage. Because the persistent storage location for the data is not changed during a transfer of ownership of the data, ownership
&> can be transferred more freely and with less of a performance penalty than would otherwise be incurred by a physical relocation of
) the data. Various techniques are also described for praviding fast run-time reassignment of ownership. Because the reassignment
o can be performed during run-time, the shared-nothing system does not have to be taken offline to perform reassignment. Turther,
the techniques describe how the reassignment can be performed with relatively fine granularity, avoiding the need to perform bulk
reassignment of large amounts of dara across all nodes merely to reassign ownership of a few data items on one of the nodes.

WO 2005/013156 A3 1 INEAHIOVOAHO0 0RO OO0 O

Published: For two-lerter codes and other abbreviations, refer to the "Guid-
— with international search report ance Notes on Codes and Abbreviations” appearing at the begin-

i cach regi issue of the PC ctte.
(88) Date of publication of the international search report: ning of each regular issue of the PCT Gazette

10 November 2005

5

10

15

20

25

WO 2005/013156 PCT/US2004/024354

OWNERSHIP REASSIGNMENT IN A SHARED-NOTHING DATABASE SYSTEM

FIELD OF THE INVENTION
The present invention relates to techniques for managing data in a shared-nothing

database system running on shared disk hardware.

BACKGROUND OF THE INVENTION

Multi-processing computer systems typically fall into three categories: shared
everything systems, shared disk systems, and shared-nothing systems. In shared
everything systems, processes on all processors have direct access to all volatile memory
devices (hereinafter generally referred to as "memory") and to all non-volatile memory
devices (hereinafter generally referred to as "disks") in the system. Conscquently, a high
degree of wiring between the various computer components is required to provide shared
everything functionality. In addition, there arc scalability limits to shared everything
architectures.

In shared disk systems, processors and memories are grouped into nodes. Each
node in a shared disk system may itself constitute a shared everything system that
includes multiple processors and multiple memories. Processes on all processors can
access all disks in the system, but only the processes on processors that belong to a
particular node can directly access the memory within the particular node. Shared disk
systems generally require less wiring than shared everything systems. Shared disk
systems also adapt easily to unbalanced workload conditions because all nodes can access
all data. However, shared disk systems are susceptible to coherence overhead. For
example, if a first node has modified data and a second node wants to read or modify the
same data, then various steps may have to be taken to ensure that the correct version of

the data is provided to the second node.

10

15

20

25

WO 2005/013156 PCT/US2004/024354

In shared-nothing systems, all processors, memories and disks are grouped into
nodes. In shared-nothing systems as in shared disk systems, each node may itself
constitute a shared everything system or a shared disk system. Only the processes
running on a particular node can directly access the memories and disks within the
particular node. Of the three general types of multi-processing systems, shared-nothing
systems typically require the least amount of wiring between the various system
components. However, shared-nothing systems are the most susceptible to unbalanced
workload conditions. For example, all of the data to be accessed during a particular task
may reside on the disks of a particular node. Consequently, only processes running
within that node can be used to perform the work granule, even though processes on other
nodes remain idle.

Databases that run on multi-node systems typically fall into two categories: shared

disk databases and shared-nothing databases.

SHARED DISK DATABASES

A shared disk database coordinates work based on the assumption that all data
managed by the database system is visible to all processing nodes that are available to the
database system. Consequently, in a shared disk database, the server may assigu any
work to a process on any node, regardless of the location of the disk that contains the data
that will be accessed during the worlk.

Because all nodes have access to the same data, and each node has its own private
cache, numerous versions of the same data item may reside in the caches of any number
of the many nodes. Unfortunately, this means that when one node requires a particular
version of a particular data item, the node must coordinate with the other nodes to have

the particular version of the data item shipped to the requesting node. Thus, shared disk

10

15

20

25

WO 2005/013156 PCT/US2004/024554

databases are said to operate on the concept of "data shipping," where data must be
shipped to the node that has been assigned to work on the data.

Such data shipping requests may result in "pings". Specifically, a ping occuts
when a copy of a data item that is needed by one node resides in the cache of another
node. A ping may require the data item to be written to disk, and then read from disk.
Performance of the disk operations necessitated by pings can significantly reduce the
performance of the database system.

Shared disk databases may be run on both shared-nothing and shared disk
computer systems. To run a shared disk database on a shared-nothing computer system,
software support may be added to the operating system or additional hardware may be

provided to allow processes to have access to remote disks.

SHARED-NOTHING DATABASES

A shared-nothing database assumes that a process can only access data if the data
is contained on a disk that belongs to the same node as the process. Consequently, if a
particular node wants an operation to be performed on a data item that is owned by
another node, the particular node must send a request to the other node for the other node
to perform the operation. Thus, instead of shipping the data between nodes, shared-
nothing databases are said to perform "function shipping".

Because any given piece of data is owned by only one node, only the one node
(the “owner” of the data) will ever have a copy of the data in its cache. Consequently,
there is no need for the type of cache coherency mechanism that is required in shared disk
database systems. Further, shared-nothing systems do not suffer the performance
penalties associated with pings, since a node that owns a data item will not be asked to
save a cached version of the data item to disk so that another ﬁode could then load the

data item into its cache.

2004262379 08 Apr 2008

10

15

20

Shared-nothing databases may be run on both shared disk and shared-nothing multi-
processing systems. To run a shared-nothing database on a shared disk machine, a mechanism
may be provided for partitioning the database, and assigning ownership of each partition to a
particular node.

The fact that only the owning node may operate on a piece of data means that the
workload in a shared-nothing database may become severely unbalanced. For example, in a
system of ten nodes, 90% of all work requests may involve data that is owned by one of the
nodes. Consequently, the one node is overworked and the computational resources of the
other nodes are underutilized. To"rebalance"the workload, a shared-nothing database may be
taken offline, and the data (and ownership thereof) may be redistributed among the nodes.
However, this process involves moving potentially huge amounts of data, and may only
temporarily solve the workload skew.

The reference to any prior art in this specification is not, and should not be taken as an
acknowledgement or any form of suggestion that the referenced prior art forms part of the
common general knowledge in Australia.

In the specification the term “comprising” shall be understood to have a broad
meaning similar to the term “including” and will be understood to imply the inclusion of a
stated integer or step or group of integers or steps but not the exclusion of any other integer or
step or group of integers or steps. This definition also applies to variations on the term

“comprising” such as “comprise” and “comprises.”

WO 2005/013156 PCT/US2004/024554

5 BRIEF DESCRIPTION OF THE DRAWINGS
The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference
numerals refer to similar elements and in which:
FIG. 1 is a block diagram illusirating a cluster that includes two shared disk
10 subsystems, according to an embodiment of the invention; and
FIG. 2 is a block diagram of a computer system on which embodiments of the

invention may be implemented.

5

10

15

20

25

30

WO 2005/013156 PCT/US2004/024554

DETAILED DESCRIPTION OF THE INVENTION

Various techniques are described hereafter for improving the performance of a
shared-nothing database system that includes a shared disk storage system. In the
following description, for the purposes of explanation, numerous specific details are set
forth in order to provide a thorough understanding of the present invention. It will be
apparent, however, that the present invention may be practiced without these specific
details. In other instances, well-known structures and devices are shown in block

diagram form in order to avoid unnecessarily obscuring the present invention.

FUNCTIONAL OVERVIEW

Various techniques are described hereafter for improving the performance of a
sharcd-nothing database system in which at least two of the nodes that are running the
shared-nothing database system have shared access lo a disk. As dictated by the shared-
nothing architecture of the database system, each piece of data is still owned by only one
node at any given time. However, the fact that at least some of the nodes that are running
the shared-nothing database system have shared access to a disk is exploited to more
efficiently rebalance and recover the shared-nothing database system.

Specifically, techniques are provided for changing the ownership of data in a
shared-nothing database without changing the location of the data on persistent storage.
Because the persistent storage location for the data is not changed during a transfer of
ownership of the data, ownership can be transferred more freely and with less of a
performance penalty than would otherwise be incutred by a physical relocation of the
data.

Various techniques are also described for providing fast run-time reassignment of
ownership. Because the reassignment can be performed during run-time, the shared-
nothing system does not have to be taken offline to perform the reassignment. Further,

6

10

15

20

30

WO 2005/013156 PCT/US2004/024554

the techniques describe how the reassignment can be performed with relatively fine
granularity, avoiding the need to perform bulk reassignment of large amounts of data

across all nodes merely to reassign ownership of a few data items on one of the nodes.

EXEMPLARY CLUSTER THAT INCLUDES SHARED DISK SYSTEMS

FIG. 1 is ablock diagram illustrating a cluster 100 upon which embodiments of
the invention may be implemented. Cluster 100 includes five nodes 102, 104, 106, 108
and 110 that are coupled by an interconnect 130 that allows the nodes to communicate
with each other. Cluster 100 includes two disks 150 and 152. Nodes 102, 104 and 106
have access to disk 150, and nodes 108 and 110 have access to disk 152. Thus, the
subsystem that includes nodes 102, 104 and 106 and disk 150 constitutes a first shared
disk system, while the subsystem that includes nodes 108 and 110 and disk 152
constitutes a second shared disk system.

Cluster 100 is an example of a relatively simple system that includes two shared
disk subsystems with no overlapping membership between the shared disk subsystems.
Actual systems may be much more complex than cluster 100, with hundreds of nodes,
hundreds of shared disks, and many-to-many relationships between the nodes and shared
disks. In such a system, a single node that has access to many disks may, for example, be
a member of several distinct shared disk subsystems, where each shared disk subsystem

includes one of the shared disks and all nodes that have access to the shared disk.

SHARED-NOTHING DATABASE ON SHARED DISK SYSTEM
For the purpose of illustration, it shall be assumed that a shared-nothing database
system is running on cluster 110, where the database managed by the shared-nothing
database system is stored on disks 150 and 152. Based on the shared-nothing nature of
the database system, the data may be segregated into five groups or partitions 112, 114,

116, 118 and 120. Each of the partitions is assigned to a corresponding node. The node

-10-

5

10

15

25

30

WO 2005/013156 PCT/US2004/024554

assigned to a partition is considered to be the exclusive owner of all data that resides in
that partition. In the present example, nodes 102, 104, 106, 108 and 110 respectively own
partitions 112, 114, 116, 118 and 120. The partitions 112, 114 and 118 owned by the
nodes that have access to disk 150 (nodes 102, 104 and 106) are stored on disk 150.
Simﬂarly, the partitions 118 and 120 owned by the nodes that have access to disk 152
(nodes 108 and 110) are stored on disk 152.

As dictated by the shared-nothing nature of the database system running on cluster
100, any picce of data is owned by at most one node at any given time. In addition,
access to the shared data is coordinated by function shipping. For example, in the context
of a database system that supports the SQL language, a node that does not own a
particular piece of data may cause an operation to be performed on that data by

forwarding fragments of SQL statements to the node that does own the piece of data.

OWNERSHIP MAP

To efficiently perform function shipping, all nodes need to know which nodes
own which data. Accordingly, an ownership map is established, where the ownership
map indicates the data-to-node ownership assignments. During runtime, the various
nodes consult the ownership map to route SQL fragments to the correct nodes at run-time.

According to one embodiment, the data-to-node mapping need not be determined
at compilation time of an SQL (or any other database access language) statement. Rather,
as shall be described in greater detail hereafter, the data-to-node mapping may be
established and revised during runtime. Using the techniques described hereafter, when
the ownership changes from one node that has access to the disk on which the data resides
to another node that has access to the disk on which the data resides, the ownership

change is performed without moving the data from its persistent location on the disk.

11-

10

15

25

30

WO 2005/013156 PCT/US2004/024554

LOCKING

Locks are structures used to coordinate access to a resource among several entities
that have access to the resource. In the case of a shared-nothing database system, there is
no need for global locking to coordinate accesses to the uscr data in the sharcd-nothing
database, since any given piece of data is only owned by a single node. However, since
all of the nodes of the shared-nothing database require access to the ownership map, some
locking may be required (o prevent inconsistent updates to the ownership map.

According to one embodiment, a two-node locking scheme is used when
ownership of a piece of data is being reassigned from one node (the "old owner") to
another node (the "new owner"). Further, a global locking mechanism may be used to
control access to the metadata associated with the shared-nothing database. Such

metadata may include, for example, the ownership map.

TRANSFER OF OWNERSHIP WITHOUT MOVING DATA

According to one aspect of the invention, ownership of data can be changed from
one node (the old owner) to another node (the new owner) that has connectivity to the
data without data movement. For example, assume that a particular data item currently
resides in partition 112. Because the data item resides in partition 112, the data item is
owned by node 102. To change ownership of the data to node 104, the data must cease to
belong to partition 112 and instead belong to partition 114. In a conventional
implementation of a shared-nothing database system, such a change of ownership would
typically cause the data item to actually be moved from one physical location on disk 150
that corresponds to partition 112 to another physical location on disk 150 that corresponds
to partition 114.

In contrast, according to an embodiment of the invention, partitions 112 and 114

are not physical partitions that are bound to specific locations of disk 150. Rather,

-12-

10

15

20

30

WO 2005/013156 PCT/US2004/024354

partitions 112 and 114 are location-independent partitions that merely represent the sets
of data items that are currently owned by nodes 102 and 104, respectively, regardless of
where the specific data items reside on disk 152, Thus, because partitions 112 and 114
are location-independent, data items can be moved from one partition to the other (i.e.
assigned from one owner to the other) without any actual movement of the data on disk
150.

While changing the ownership of a data item does not require movement of the
data item, it does require a change in the ownership map. Unlike the user data in the
shared-nothing database, the ownership map is shared among the various nodes.
Consequently, portions of the ownership map may be cached in the private caches of the
various nodes. Therefore, in response 1o the change of ownership of a data item, the
ownership map is changed, and the cached copies of the affected portion of the ownership
map are invalidated.

According to an alternative embodiment, ownership change is implemented
similar to a schematic change to the underlying object. Specifically, after the change is
made to the ownership map, compiled statements that reference the ownership map are

invalidatcd and recompiled to use the new ownership map.

NODE ADDITIONS AND REMOVALS
During the operation of cluster 100, it may be desirable to add or remove nodes
from the cluster 100. In conventional shared-nothing systems, such operations would
involve moving large amounts of data, frequently from onc physical partition of a file or
disk to another physical partition in another file or disk. By using location-independent
partitions, the only data that must be physically relocated is data whose ownership is
being transferred to a node that does not have access to the disk on which the data

currently resides.

10

13-

10

15

20

25

30

WO 2005/013156 PCT/US2004/024554

For example, assumc that a new node X is added to cluster 100, and that node X
has access to disk 152 but not to disk 150. To rebalance the workload between the nodes,
some data that is currently owned by nodes 102-110 may be reassigned to node X.
Because the data whose old owners are nodes 102-106 resides on disk 150 to which node
X does not have access, the data must be physically moved to disk 152 to which node X
has access. However, because the data whosc old owners are nodes 108 and 110 already
resides on disk 152 to which node X has access, the ownership of that data may be
transferred to node X by updating the ownership map without moving the actual data.

Similarly, when a node is removed from cluster 100, only those data items that are
transferred to a node that does not currently have access to the disk on which the data
items reside need to be physically relocated. Those data items whose ownership is
transferred to a node that has access to the disk on which the data resides need not be
moved. For example, if node 102 is removed from cluster 100 and ownership of all of the
data items previously owned by node 102 is transferred to node 104, then none of the data

items will need to be physically relocated in response to the change of ownership.

GRADUAL TRANSFER OF OWNERSHIP

According (o one embodiment, the performance penalty associated with the bulk
reassignment of data ownership in response to added or removed nodes is lessened by
performing the ownership transfer gradually rather than all at once. For example, when a
new node is added to a cluster, rather than transfer the ownership of enough data to have
the new node as busy as the existing nodes, the system may instead initially transfer
ownership of few or no data items to the new node. According to one embodiment,
ownership is gradually transferred based on workload needs. For example, the transfer of
ownership of dala may be triggered when the system detects that one of the nodes is

getting overworked. In response to detecting that a node is overworked, some of the data

11

-14-

5

10

15

20

30

WO 2005/013156 PCT/US2004/024554

items that belong to the overworked node may be assigned to the previously added node.
Gradually more and more data items may be reassigned from the overworked node to the
new node until it is detected that the overworked node is no longer overworked.

On the other hand, the reassignment of ownership may be triggered when the
workload on an existing node falls below a certain threshold. Specifically, it may be
desirable to transfer some ownership responsibilities from an otherwise busy node to the
new node when the workload of the busy node lessens in order to avoid having the
reassignment operation reduce the performance of an already overworked node.

With respect to the gradual transfer of ownership from a removed node, the
ownership transfers may be triggered, for example, by necessity. For example, if a data
item X was owned by a removed node, then data item X may be reassigned to another
node upon detecting that some node has requested an operation that involves data item X.
Similarly, transfer of ownership from a removed node to an existing node may be

triggered when the workload of the existing node falls below a certain threshold.

BUCKET-BASED PARTITIONING

As mentioned above, the data that is managed by the shared-nothing database is
partitioned, and the data in each partition is exclusively owned by one node. According
to one embodiment, the partitions are established by assigning the data to logical buckets,
and then assigning each of the buckets to a partition. Thus, the data-to-node mapping in
the ownership map includes a data-to-bucket mapping, and a bucket-to-node mapping.

According to one embodiment, the data-to-bucket mapping is established by
applying a hash function fo the name of each data item. Similarly, the bucket-to-node
mapping may be established by applying another hash function to identifiers associated
with the buckets. Alternatively, one or both of the mappings may be established using

range-based partitioning, or may by simply enumerating each individual relationship. For

12

-15-

5

10

15

20

25

30

WO 2005/013156 PCT/US2004/024554

example, one million data items may be mapped to fifty buckets by splitting the
namespace of the data items into fifty ranges. The fifty buckets may then be mapped to
five nodes by storing a record for each bucket that (1) identifies the bucket and (2)
identifics the node currently assigned the bucket.

The use of buckets significantly reduces the size of the ownership mapping
relative to a mapping in which a separate mapping record was storcd for each data item.
Further, in embodiments where there number of buckets exceeds the number of nodes, the
use of buckets makes it relatively easy to reassign ownership to a subset of the data
owned by a given node. For example, a new node may be assigned a single bucket from a
node that is currently assigned ten buckets. Such a reassignment would simply involve
revising the record that indicates the bucket-to-node mapping for that bucket. The data-
lo-bucket mapping of the reassigned data would not have to be changed.

As mentioned above, the data-to-bucket mapping may be established using any
one of a variety of techniques, including but not limited to hash partitioning, range
partitioning or list values, If range based partitioning is used and the number of ranges is
not significantly greater than the number of nodes, then the database server may employ
finer grained (narrower) ranges to achieve the desired number of buckets so long as the
range key used to partition the data items is a value that will not change (e.g. date). If the
range key is a value that could change, then in response to a change to the range key
value for a particular data item, the data item is removed from its old bucket and added to

the bucket that corresponds to the new value of the data item’s range key.

TREE-BASED PARTITIONING
Another way of partitioning the data items managed by the database system into
subsets is to have a hierarchical sorted structure (e.g. BTres) such that the upper level(s)
of the tree structure (e.g. root) are owned by all nodes, and the lower levels (e.g. leaf

nodes) are partitioned among nodes, According to one embodiment, the tree structure

13

-16-

5

10

15

20

25

30

WO 2005/013156 PCT/US2004/024554

includes a plurality of subtrees, where each subtree is assigned to a particular node.
Further, each lower level tree node corresponds to a set of data. The set of data
associated with a lower level tree node is owned by the node associated with the subiree
that includes that tree node.

In such an embodiment, when ownership of subtrees change, the upper levels are
invalidated through a locking/broadcast scheme. The pointers at the lower levels are

modified to move ownership of a subtree under a different node.

HANDLING DIRTY VERSIONS DURING REASSIGNMENT

As mentioned above, when the new owner of data has access to the disk on which
the data resides, ownership of data is changed by reassigning buckets to nodes without
physically moving the physical location of the data on disk. However, it is possible that
the old owner has in its volatile memory one or more "dirty" versions of the reassigned
data item. A dirty version of a data item is a version that includes changes that are not
reflected on the version that currently resides on disk.

According to one embodiment, dirty versions of data items are written to the
shared-disk as part of the ownership transfer operation. Consequently, when the new
owner reads from disk a data item for which it has recently acquired ownership, the
version of the item read by the new owner will reflect the most recent changes made by
the previous owner.

Alternatively, to avoid the overhead associated with writing the dirty versions of
data items to disk, the dirty versions of the data items can be purged from the volatile
memory ol the old owner before the dirty data items are written to the shared disk if redo
is forced and not over-written. Specifically, when the owning node makes a change to a
data item, a "redo" record is generated that reflect the change. As long as the redo record

for the change is forced to disk on or before the change of ownership of the data item, the

14

17-

10

15

20

25

30

WO 2005/013156 PCT/US2004/024554

old owner can purge the dirty version of the data item without first saving the dirty
version to disk. In this case, the new owner can reconstruct the most recent version of the
data item by (1) reading the redo record to determine what changes must be made to the
disk version of the data item and (2) making the indicated changes to the disk version of
the data item.

As another alternative, the dirty data items are transferred to the new owner's
cache either voluntarily (proactively by the old owner) or on demand (in response to
requests from the new owner) as transactions request the data in the new owner's node.

Changes to a data item may be reflected in multiple recovery logs if the dirty
versions of data items are not flushed to disk before ownership change. For example,
assume that a first node makes a change to a data item, and then ownership of the data
item is transferred to a second node. The [irst node may (lush the redo log to disk, but
transfer the dirty version of the data item directly to the second node without first storing
it on disk. The second node may then make a second change to the data item. Assume
that the second node flushes to disk a redo record for the second change, and then the
second node fails before storing the dirty version of the data item to disk. Under these
circumstances, the changes that have to be reapplied to the disk version of the data item
are reflected in both the redo log of the first node, and the redo log of the second node.
According to one embodiment, online recovery is performed by merging the redo logs to
recover data item.

According to one embodiment, ownership of a data item may be transferred
without waiting for the transaction that is modifying the data item to commit,
Consequently, changes made by a single transaction to the dala item, may be spread
across multiple redo logs. Under these circumstances, the transaction rollback mechanism
of the databasc server is configured to undo changes from multiple logs, where the undo

operations are performed on a data block in an order that is reverse relative to the order in

15

18-

10

15

20

25

30

WO 2005/013156 PCT/US2004/024554

which the changes were made to a data block. In addition, a media recovery mechanism
is provided that merges the redo logs from all owners, where the merge process involves

the redo records for all changes made since data was backed up.

REASSIGNMENT WITHOUT BLOCKING UPDATES

According to onc aspect of the invention, reassignment of ownership of data items
is performed without blocking updates to the data thal is being reassigned. According to
one embodiment, the ownership assignment is performed without blocking updates by
causing the database server to wait for all transactions accessing any data items that
belong to a reassigned bucket to commit, and for all dirty data items belonging to the
bucket to be flushed to disk. Under these conditions, data belonging to a reassigned
bucket can be updated immediately (without waiting for dirty versions to be flushed to
disk) if the old owner did not have exclusive-mode or shared mode access to the data. If
the old owner did have exclusive-mode access to the data, then the old owner may have
dirty versions of the data in its cache, so updates are delayed until the old owner writes
the dirty pages (or the redo for the associated changes) to shared disk.

Prior to allowing new updates to a data item whose ownership has been newly
transferred, the database server may be configured to wait for in-progress updates that
have been requested of the old owner to complete. On the other hand, the database server
may be configured to abort the in-progress operations and then reissue the transactions to
new owner. According to one embodiment, a determination is made as to whether to wait
for a given in-progress operation to complete based on a variety of factors. Such factors
may include, for example, how much work has already been done for the operation,

Under certain situations, waiting for the updates that have been requested of the
old owner to be completed may create false deadlocks, For example, assume row A is in

bucket 1 and rows B, and C are in bucket 2. Assume that a transaction T1 updated row A,

16

-19-

5

10

15

20

25

30

WO 2005/013156 PCT/US2004/024554

and another transaction T2 has updated row B. Assume that at this point, ownership of
bucket 2 is remapped to a new node. Ifat this point T1 wants to update row C, T1 will
wait for the remapping to complete. Thus, T1 will wait for T2. If T2 wants to update row
A, then there is a deadlock between T1 and T2.

According to one embodiment, even when ownership of several buckets is
desired, the ownership transfer is performed one bucket at a time to minimize the amount

of time a transaction will have to wait in order to access data in the reassigned bucket.

TECHNIQUES FOR TRANSFERRING OWNERSHIP

The following examples illustrate techniques for transferring ownership of data,
within a shared-nothing database implemented on a shared disk system, according to
various embodiments of the invention. In the following example, it is assumed that the
ownership of the data is changed while transactions that have modified the data are still
active. That is, the database system does not wait for in-progress transactions that have
accessed the to-be-reassigned data to quiesce.

One technique for transferring ownership shall be described in reference to an
example in which it is assumed that ownership of a subset of an object ("bucket B") is
changed from node X to node Y. According to one embodiment, the database system
initially marks the bucket B as being "in transit" from X to Y. The change in ownership
map is then broadeast to all nodes, or invalidated through global locking.

According to one embodiment, query execution plans that involve data in bucket
B are regenerated in response to the ownership map change. Altematively, the cached
map is invalidated and reloaded in response to the owncrship map change.

After the reassignment, any new sub-queries/dml fragments that access data in
bucket B will be shipped to node Y. Optionally, SQL fragments currently running in X
can be rolled back before the buckst is matked as being in transit from X to Y. These

fragments may then be reissued to node Y after the reassignment. It should be noted that

17

-20-

10

15

20

25

30

WO 2005/013156 PCT/US2004/024554

the transaction to which these fragments belong is not itself rolled back, but rather only
the current call is rolled back and resent to the new owner. In particular, changes made by
node X to data in bucket B in previous calls are untouched.

According to one embodiment, node X can detect that there are no in-progress
calls that are accessing data in bucket B through a simple local locking scheme. The
locking scheme may involve, for example, causing every process accessing data in a
bucket to get a shared lock/latch on the bucket. When the bucket is to be reassigned, the
process performing the reassignment waits until it can get an exclusive lock/latch on the
bucket. By obtaining an exclusive lock/latch on the bucket, the reassignment process
ensures thal no other process is currently accessing the bucket.

According to one embodiment, node X does not wait for all calls to complete
successfully before marking the bucket as in-transit because of potential deadlocks. The
following is an example of how such deadlocks could occur. Consider three rows, 1,2 &
3 in a bucket that will be remapped.

The following sequence of events can lead to a deadlock.
(a) T1 updates row 2.
(b) T2 does a multi-row update of row 1 followed by row 2.

T2 now waits for T1.

(c) It is decided that the bucket will be remapped.
(d) T1 wants to update row 3. T1 now waits for T2.

According to one embodiment, the forced abort of in-progress calls at node X is
avoided by allowing in-progress calls continue to execute normally as long as the data
they access from bucket B is in cache. In other words, X cannot read a block from disk
for bucket B without inter-node locking, If there is a cache miss and the bucket is in
transit, X must send a message to Y and either retrieve the block from Y or read the block
from disk. While the bucket is in transit a cache coherence protocol is used between X

and Y.

21-

10

15

20

25

30

WO 2005/013156 PCT/US2004/024554

HANDLING REQUESTS AT THE NEW OWNER

After bucket B has been reassigned to node Y, any new SQL fragments that need
to access the data in bucket B start executing in node Y. The technique used by node Y
when reading newly transferred data items from disk may vary based on what the
previous owner node X did before the bucket was marked as in-transit. The following
cases are examples that illustrate how different scenarios may be handled by the new
owner node Y.

Case A: Assume that node X aborted all in-progress calls and wrote all dirty
Dblocks mapping to this bucket to shared disk. For efficiency, each node can link dirty data
items to a per-bucket object queue. Under these conditions, node Y can directly read from
disk. There is no need for any cache coherence. Node Y is immediately marked as the .
new owner for this bucket.

Case B: Assume that node X aborted all in-progress calls but dirty data items are
pot written out. Under these conditions, node Y will need to retrieve or verify that node
X does not have a dirty copy before reading a block from disk. If X has a dirty copy, then
a past image is lefl in node X for recovery as well as to ensure that the checkpoint does
not advance past a change made in node X that has not yet been reflected in disk by a
block write in node Y. After all dirty data items in X have been written (either by itself or
a past image (PI) purged by a write in Y), the bucket state is changed from in-transit to Y
as the owner. Y can now access disk hlocks in this bucket without checking with X.

Ifnode X fails while the bucket state is in-transit, the recovering node (node Y if
it survives) will need to apply redo generated for this bucket in node X (and then perhaps
redo generated in node Y if it failed too) if node Y does not have the current copy of the
data item.

Case C: Assume that node X aborted in-progress calls and purges dirty data items.

Under these conditions, node Y can directly read the block from disk without cache

19

22-

5

10

15

20

25

30

WO 2005/013156 PCT/US2004/024554

coherence. However the block may need to be brought up-to-date if there is unapplied
redo in X. The bucket will be considered in-transit until all the redo generated in X has
been applied by Y and written to disk. This is needed to prevent X from advancing its
checkpoint past a piece of redo that has not yet been reflected in disk.

If node X fails while the bucket state is in-transit, then the recovering node (node
Y if it survives) will need to apply redo generated for this bucket in node X (and then
perhaps redo generated in node Y if it failed too) if node Y does not have the current
copy of the data item.

Case D: Assume that node X continues to execute in-progress calls. Both node X
and node Y will need to check with the other before accessing a block from disk. When
all in-progress calls have completed and all blocks are either written out or transferred to
Y, Y is marked as the new owner. From this point there is no need for cache coherence.

Ifnode X or node Y fails while the bucket is in-transit, a recovery must be
performed. The recovery techniques used in this context may be similar to those
described in U.S. Patent Number 6,353,836, and U.S. Patent Application Number
10/092,047 filed March, 4, 2002, each of which is incorporated herein in its entirety, If
both nodes fail, then the redo logs from X and Y will need to be merged.

Various benefits result from allowing node X to continue to execute in-progress
calls, as described in Case D. Specifically, allowing node X to continue to execute in-
progress calls allows for the ownership to be reassigned with minimum impact on
ongoing transactions. However, it requires a cache coherence and recovery scheme to be
implemented between the nodes X and Y for the bucket B.

One approach for providing cache coherency under these circumstances involves
having node X obtain locks for all data items that it has currently cached for bucket B.
The master/directory node for all data items in B can be assigned asnode Y. A

notification is then sent to all nodes that bucket B will be moved from X to Y. This

20

-23-

5

10

15

20

25

30

WO 2005/013156 PCT/US2004/024554

notification invalidates/updates the ownership map such that further accesses to B will be
sentto Y.

If there is a failure before this point, the ownership reassignment operation is
aborted. Otherwise the map is updated to indicate that Y is the new owner and that cache
coherence is in effect.

A cache coherence protocol, such as the protocol described in U.S. Patent Number
6,353,836, and U.S. Patent Application Number 10/092,047 is then executed by X and Y
for all data items in bucket B. When there are no more dirty data items in B, the cache
coherence protocol can be stopped. Y can release any locks that it might have obtained
for data items in B.

According to one smbodiment, a cache coherence protocol is always in effect
such that the node that owns a buckel is also the master for those locks. In most cases,
each node would only allocatc a local lock (because it is the master) and cache coherence
messages will be needed only when the ownership changes. When ownership changes,

the locks opened in this bucket can be dynamically remastered to the new owner.

MODIFICATIONS BEFORE OWNERSHIP CHANGE

According to an embodiment, a sub-transaction that modified data in node X
before the ownership change will still be considered active because these changes will be
needed for transaction rollback. If a transaction rolls back and it had made changes to
this bucket in node X, node Y will need to apply undo logs by reading it from X's part of
the shared disk logs.

A sub-transaction that modified data in node X before the ownership change
might update the same data in node Y. This requires that requests for transactional locks
such as row locks or page locks in node Y need to be coordinated with node X. If a sub-

transaction requests a lock and the lock is already held by its sibling transaction in node

21

-24-

10

15

20

30

WO 2005/013156 PCT/US2004/024554

X, then the lock request is granted. Ho@ever, if the ‘lock is held by an unrelated
transaction, then the lock request is blocked. The waits-for-graph reflects this wait as a
wait on the parent iransaction so that global deadlocks can be detected. Once the
ownership change is complete and all transactions that had acquired locks to access data
in bucket B in node X have completed (committed or aborted), only local Tocks are
needed for transactional locks.

Requests for transactional locks can always be coordinated locally by causing the
database server to wait for transactions to complete before initiating the change in

ownership.

HARDWARE OVERVIEW

Figure 2 is a block diagram that illustrates a computer system 200 upon which an
embodiment of the invention may be implemented. Computer system 200 includes a bus
202 or other communication mechanism for communicating information, and a processor
204 coupled with bus 202 for processing information. Computer system 200 also
includes a main memory 206, such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 202 for storing information and instructions to be executed
by processor 204. Main memory 206 also may be used for storing temporary variables or
other intermediate information during execution of instructions to be executed by
processot 204. Computer system 200 further includes a read only memory (ROM) 208 or
other static storage device coupled to bus 202 for storing static information and
instructions for processor 204. A storage device 210, such as a magnetic disk or optical
disk, is provided and coupled to bus 202 for storing information and instructions.

Computer system 200 may be coupled via bus 202 to a display 212, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device

214, including alphanumeric and other keys, is coupled to bus 202 for communicating

22

-25-

5

10

15

20

25

30

WO 2005/013156 PCT/US2004/024554

information and command selections to processor 204. Another type of user input device
is cursor control 216, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selections to processor 204 and for
controlling cursor movement on display 212. This input device typically has two degrees
of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

The invention is related to the use of computer system 200 for implementing the
techniques described herein. According to one embodiment of the invention, those
techniques are performed by computer systern 200 in response to processor 204 executing
one or more sequences of one or more instructions contained in main memory 206. Such
instructions may be read into main memory 206 from another compuier-readable
medium, such as storage device 210. Execution of the sequences of instructions
contained in main memory 206 causes processor 204 to perform the proccss steps
described herein. In alternative smbodiments, hard-wired circuitry may be used in place
of or in combination with software instructions to implement the invention. Thus,
embodiments of the invention are not limited to any specific combination of hardware
circuitry and software.

The term “computer-readable medinm” as used herein refers to any medium that
participates in providing instructions to processor 204 for execution. Such a medium may
take many forms, including but not limited to, non-volatile media, volatile media, and
transmission media. Non-volatile media includes, for example, optical or magnetic disks,
such as storage device 210. Volatile media includes dynamic memory, such as main
memory 206. Transmission media includes coaxial cables, copper wire and fiber optics,
including the wires that comprise bus 202. Transmission media can also take the form of
acoustic or light waves, such as those generated during radio-wave and infra-red data

communications.

23

-26-

10

15

25

WO 2005/013156 PCT/US2004/024554

Common forms of computer-readable media include, for example, a floppy disk, a
flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any
other optical medium, punchcards, papertape, any other physical medium with patterns of
holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave as desctibed hereinafter, or any other medium from which a
computer can read.

Various forms of computer readable media may be involved in carrying one or
more sequences of one or more instructions to processor 204 for execution. For example,
the instructions may initially be carried on a magnetic disk of a remote computer. The
remote computer can load the instructions into its dynamic memory and send the
instructions over a telephone line using a modem. A modem local to computer system
200 can receive the data on the telephone line and use an infra-red transmitter to converl
the data to an infra-red signal. An infra-red detector can receive the data carried in the
infra-red signal and appropriate circuitry can place the data on bus 202. Bus 202 carries
the data to main memory 206, from which processor 204 retrieves and executes the
instructions. The instructions received by main memory 206 may optionally be stored on
storage device 210 either before or after execution by processor 204,

Computer system 200 also includes a communication interface 218 coupled to bus
202. Communication interface 218 provides a two-way data communication coupling to
a network link 220 that is connected to a local network 222. For example,
communication interface 218 may be an integrated services digital network (ISDN) card
or a modem to provide a data communication connection to a corresponding type of
telephone line. As another example, communication interface 218 may be a local area
network (LAN) card to provide a data communication connection to a compatible LAN.

Wireless links may also be implemented. In any such implementation, communication

24

27-

5

10

15

20

25

30

WO 2005/013156 PCT/US2004/024554

interface 218 sends and receives electrical, electromagnetic or optical signals that catry
digital data streams representing various types of information.

Network link 220 typically provides data communication through one or more
networks to other data devices. For example, network link 220 may provide a connection
through local network 222 to a host computer 224 or to data equipment operated by an
Internet Service Provider (ISP) 226. ISP 226 in turn provides data communication
services through the world wide packet data communication network now commonly
referred to as the “Intemet” 228. Local network 222 and Internet 228 both use electrical,
electromagnetic or optical signals that carry digital data streams. The signals through the
various networks and the signals on network link 220 and through communication
interface 218, which carry the digital data to and from computer system 200, are
exemplary forms of carrier waves transporting the information.

Computer system 200 can send messages and receive data, including program
code, through the network(s), network link 220 and communication interface 218. In the
Internet example, a server 230 might transmit a requested code for an application program
through Internet 228, ISP 226, local network 222 and communication interface 218.

The received code may be executed by processor 204 as it is received, and/or
stored in storage device 210, or other non-volatile storage for later execution. In this
manner, computer system 200 may obtain application code in the form of a carrier wave.

In the foregoing specification, embodiments of the invention have been described
with reference to numerous specific details that may vary from implementation to
implementation. Thus, the sole and exclusive indicator of what is the invention, and is
intended by the applicants to be the invention, is the set of claims that issue from this
application, in the specific form in which such claims issue, including any subsequent
correction. Any definitions expressly set forth herein for terms contained in such claims

shall govern the meaning of such terms as used in the claims. Hence, no limitation,

25

-28-

WO 2005/013156 PCT/US2004/024554

5 element, property, feature, advantage or attribute that is not expressly recited in a claim
should limit the scope of such claim in any way. The specification and drawings are,

accordingly, to be regarded in an illustrative rather than a restrictive sense.

26

-29-

2004262379 02 Aug 2010

The claims defining the invention are as follows:

1. A method for managing data, the method comprising the steps of:
maintaining a plurality of persistent data items on persistent storage accessible to a
plurality of nodes, the persistent data items including a particular data item
5 stored at a particular location on said persistent storage;
assigning exclusive ownership of each of the persistent data items to one of the nodes,
wherein a particular node of said plurality of nodes is assigned exclusive
ownership of said particular data item;
when any node wants an operation performed that involves said particular data item,
10 the node that desires the operation to be performed ships the operation to the
particular node for the particular node to perform the operation on the
particular data item as said particular data item resides at said particular
location;
while the particular node continues to operate, reassigning ownership of the particular
15 data item from the particular node to another node without moving the
particular data item from said particular location on said persistent storage;
after the reassignment, when any node wants an operation performed that involves
said particular data item, the node that desires the operation to be performed
ships the operation to said other node for the other node to perform the
20 operation on the particular data item as said particular data item resides at said
particular location;
after a first node has been removed from the multi-node system, continuing to have a

set of data items owned by the first node; and

27

-30-

2004262379 02 Aug 2010

20

reassigning ownership of data items from the first node to one or more other nodes in

response to detecting requests for operations that involve said data items.

A method for managing data, the method comprising the steps of:

maintaining a plurality of persistent data items on persistent storage accessible to a
plurality of nodes, the persistent data items including a particular data item
stored at a particular location on said persistent storage;

assigning exclusive ownership of each of the persistent data items to one of the nodes,
wherein a particular node of said plurality of nodes is assigned exclusive
ownership of said particular data item;

when any node wants an operation performed that involves said particular data item,
the node that desires the operation to be performed ships the operation to the
particular node for the particular node to perform the operation on the
particular data item as said particular data item resides at said particular
location;

while the particular node continues to operate, reassigning ownership of the particular
data item from the particular node to another node without moving the
particular data item from said particular location on said persistent storage,
wherein at the time said particular data item is to be reassigned to said other
node, the particular node stores a dirty version of said particular data item in
volatile memory, and wherein said reassigning ownership includes:

forcing to persistent storage one or more redo records associated with
said dirty version; and
after the reassignment, when any node wants an operation performed that involves

said particular data item, the node that desires the operation to be performed

28

-31-

2004262379 02 Aug 2010

10

20

ships the operation to said other node for the other node to perform the
operation on the particular data item as said particular data item resides at said

particular location.

3. A method for managing data, the method comprising the steps of:

maintaining a plurality of persistent data items on persistent storage accessible to a
plurality of nodes;

assigning ownership of each of the persistent data items to one of the nodes by
assigning each data item to one of a plurality of buckets; and

assigning each bucket to one of the plurality of nodes;

wherein the node to which a bucket is assigned is established to be owner of all data
items assigned to the bucket;

wherein the step of assigning each data item to one of said plurality of buckets is
performed by either (a) applying a hash function to a name associated with
each data item, or (b) using range-based partitioning;

when a first node wants an operation performed that involves a data item owned by a
second node, the first node ships the operation to the second node for the

second.node to perform the operation.

4. The method of Claim 3 wherein the step of assigning each data item to one of a
plurality of buckets is performed by applying a hash function to a name associated with each
data item.

5. The method of Claim 3, wherein the step of assigning each bucket to one of the
plurality of nodes is performed by applying a hash function to an identifier associated with

each bucket.

29

-32-

2004262379 02 Aug 2010

10

15

20

6. The method of Claim 3 wherein the step of assigning each data item to one of a

plurality of buckets is performed using range-based partitioning.

7. The method of Claim 3 wherein the step of assigning each bucket to one of the

plurality of nodes is performed using range-based partitioning.

8. The method of Claim 3 wherein the step of assigning each bucket to one of the

plurality of nodes is performed by enumerating individual bucket-to-node relationships.

9. The method of Claim 3 wherein the number of buckets is greater than the number of

nodes, and the bucket-to-node relationship is a many-to-one relationship.

10. The method of Claim 3 further comprising the step of reassigning from a first node to
a second node ownership of al] data items that are mapped to a bucket by modifying a bucket-

to-node mapping without modifying a data-item-to-bucket mapping.

11. The method of Claim 3, wherein the data item is assigned to a first bucket and the first
bucket is assigned to the first node, further comprising assigning said first bucket to a

different node.

12. A method as recited in Claim 2, further comprising purging said dirty version from
said volatile memory without writing said dirty version of said particular data item to said

persistent storage.

13. A method as recited in Claim 2 or 13, wherein said other node reconstructs said dirty
version by applying said one or more redo records to the version of the particular data item

that resides on said persistent storage.

30

-33-

2004262379 02 Aug 2010

10

15

20

14. A method as recited in Claim 2, further comprising transferring the dirty version of
said particular data item from volatile memory associated with said particular node to volatile

memory associated with said other node.

15. The method of Claim 14 wherein the step of transferring the dirty version is performed

proactively by the particular node without the other node requesting the dirty version.

16. The method of Claim 14 wherein the step of transferring the dirty version is performed

by the particular node in response to a request for the dirty version from said other node.

17. A method as recited in Claim 2, wherein the step of reassigning ownership of the
particular data item from the particular node to another node is performed as part of a gradual

transfer of ownership of data items from said particular node to one or more other nodes.

18. A method as recited in Claim 19, wherein said gradual transfer is initiated in response
to detecting that said other node is underworked relative to one or more other nodes in said

multi-node database system.

19. A method as recited in Claim 2, wherein the reassigning ownership of the particular
data item is performed without waiting for a transaction that is modifying the particular data

item to commit.

20. A method as recited in Claim 19 wherein the transaction makes a first set of
modifications while the particular data item is owned by the particular node and the
transaction makes a second set of modifications while the particular data item is owned by

said other node.

21, The method of Claim 20 further comprising rolling back changes made by said

transaction by rolling back the second set of modifications based on undo records in an undo

31

-34-

2004262379 02 Aug 2010

10

15

20

log associated with said other node, and rolling back the first set of modifications based on

undo records in an undo log associated with said particular node.

22. A method as recited in Claim 2, further comprising:
the other node receiving a request to update the data item;
in response to receiving said request, determining whether the particular node
held exclusive-mode or shared-mode access to the particular data item;
if the particular node did not hold exclusive-mode or shared-mode access to the
particular data item, then the other node updating the particular data item
without waiting for the particular node to flush any dirty version of the

particular data item, or redo for the dirty version, to persistent storage.

23. The method of Claim 22 further comprising the steps of:
in response to transferring ownership of said particular data item to said other
node, aborting an in-progress operation that involves said particular data
item;
after ownership of the particular data item has been transferred to said other node,

automatically re-executing the in-progress operation.

24. The method of Claim 3, wherein said persistent data items are rows within a table that
includes a first persistent data item and a second persistent data item, wherein said first
persistent data item is assigned to a first bucket owned by a first node and said second
persistent data item is assigned to a second bucket owned by a second node, wherein said first

bucket is different from said second bucket.

32

-35-

2004262379 02 Aug 2010

25. A computer-readable medium carrying one or more sequences of instructions which,
when executed by one or more processors, causes the one or more processors to perform the

method recited in any one of Claims 1-24.

26. A method for managing data substantially as hereinbefore described with reference to

the accompanying drawings.

33

-36-

PCT/US2004/024554

WO 2005/013156

172

T

0l NOILILYYd

811 NOLLILYYd

)

¢Sl AsId

04} 30ON

80} 3dON

A
\ 4

A
\ 4

BE

811 NOILILYVd

yi} NOILILYYd

ZLL NOILILHYd

061 XsId

90} 3GON

70} 3QON

¢0} 300N

A
A

A
A

-
<

ocl

J

400} ¥318N719

\

-37-

PCT/US2004/024554

WO 2005/013156

2/2

LSOH

k444

1v007

92¢

dsl

NHOMLAN

LINHIINI

8cc

i34

EEIEN]

__ ¢ B4

” ELLAREM 70¢

_ NOILYDINNWIOD ¥0883004d
1

i

|

|

|

| 70

| sng

|

|

I

|

I

N 907 90

! 30IA30 AdONIN
“ 39Y40LS WOy NIVA

gl¢
TOYINOI
40s¥Nd

712
301A30 LNdNI

114
AY1dSI

¢ 9l4

-38-

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

