UK Patent Application .. GB 2391963 .. A

(12)
(43) Date of A Publication 18.02.2004
(21) Application No: 0218911.6 (581) INTCL”:
GO6F 12/08
(22) Date of Filing: 14.08.2002
(62) UK CL (Edition W):
G4A AMC AMU
(71) Applicant(s):
Flyingspark Ltd (56) Documents Cited:
{Incorporated in the United Kingdom) US 6070230 A US 6044439 A
The Courtyard, White Horse Lane, US 5305389 A
FIN.CHAI\{IPSTEAD, Berkshire, RG40 4LW, Improving World-Wide-Web performance using
United Kingdom domain-top approach to prefetching, Shin et al, High
Performance Computing in the Asia-Pacific Region,
(72) Inventor(s): 2000. Proceedings. 05/14/2000 -05/17/2000, 2000
Simon Hugh Cassia page(s): 738-746, INSPEC Accession Number: 6598262
Keith Charles Day
Simon David Wood (58) Field of Search:
UK CL (Edition V) G4A
(74) Agent and/or Address for Service: INT CL7 GO6F
Antony Wray Other: Online: EPODOC, WPI, JAPIO, TDB, XPESP,
Optimus Grove House, Lutyens Close, INSPEC, IEL
Chineham Court, BASINGSTOKE,
Hampshire, RG24 8AG, United Kingdom
(54) Abstract Title: Method and apparatus for preloading caches
{57) A method {400} of preloading data on a cache (210) in a

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

local machine (235) . The cache (210) is operably coupled
to a data store (130), in a remote host machine (240) . The
method includes the steps of determining a user
behaviour profile for the local machine (235); retrieving
data relating to the user behaviour profile from the data
store (130); and preloading the retrieved data in the cache
(210), such that the data is made available to the cache
user when desired.

A local machine, a host machine, a cache, a
communication system and preloading functions are also
described.

FIG. 4 400
115 -

i
'
i

Calculate Minimum
| Mcssage Delivery

[Calcuiate Maximum
Preload Lead Time

Guarantee Time ! (Tmpl} - the
(Tmmdg) - the ' |earliest time to Get
latest time to start the expected
start the preload |preload, (allows event |\
{allows for | { for the event time Te | 4.

being cancelled
and 8o wasting

delays and/or
less in the !

, communications the preload) J i
network) |]]
— Get safety N

423 420 lead time |
N Ts 410
Get } -
current
- time
A
| Tnow ? : 4
noi‘ yes| no‘ yes
N /N /o / N Va
VRN SN VAN / N y
/ N no ¥ yes N\, ho nomid, Yes,/ .
\//Tnow>Te N\ :’ Tnow> >_’/Cache N ’étc;“e NNV I
. -Ts- Te-Ts- . full? /"& e)—’<.\ systen /
5, \, /
\Tromdg 3 \3‘mp1? \ J “Joady \\?usy?/,
AVATER A A
yes ¢ 430 435 440 445 nol| 45¢C
4
s/ \\._

/ AN

4 Cache “\Y®%: Discaré——
4 S
(Eul? »—1 cached
“ _,/ data 46C

A |

no | 455

e

4€5
| Begin
ipreload

vV €96 L6EC 9

-
. e Ll

1/3

FIG. 1 Prior Art 100

Local information 135
processing device 140 Remote information
system
105 Application
\\“ Data store
110 ¢ or gerv1pg
application
\\\\ Cache
11b +
N
\\\ Local
communication [Remote 130
unit communication
unit
pd
120
Communication
network

/

155

2/3

200
FIG. 2 ////
Local machine ////'235 240\\\\ Host machine
105
\\ Application
255 265 Data store
or serving

\SL* _j//// application

Local (
preload H?ft 4
function preloa
Cache function
210 i
Local i Host 130
communication communication
unit unit
i

/
7N o
115

Communication
network

155////

FIG. 3
350 300
) Tmpl L ///
o Tmmag Ts
“330 320
1'360 ¢ | 360 | 310
1 : {1 : |~
| 340 [| |
pa— — Te Time
preload preferably
370 380

occurs in this interval

415
N\

3/3

FIG. 4

Calculate Minimum
Message Delivery
Guarantee Time
(Tmmdg) - the
latest time to
start the prelocad
(allows for
delays and/or
loss in the
communications
network)

425
\

Get
current

Calculate Maximum
Preload Lead Time
(Tmpl) - the
earliest time to
start the
preload, (allows
for the event
being cancelled
and so wasting
the preload)

400

start /
l

Get
expected

event \\
time Te 405

i

N\

420

Get safety~\

lead time
Ts 410

I

~— time

Tnow

Tnow>Te

Discard N
cached
data 460

Begin
preload/’/

10

15

20

25

30

ecece
esese
ae L
o @

. X)

-1 - 2391963

METHOD AND APPARATUS FOR PRELOADING CACHES
Field of the Invention

This invention relates to a mechanism for preloading
caches. The invention is applicable to, but not limited
to, preloading of caches using knowledge or prediction of

the cache user’s behaviour.

Background of the Invention

Present day communication systems, both wireless and
wire-line, have a requirement to transfer data between
communication units. Data, in this context, includes
many forms of communication such as speech, video,
signalling, WEB pages, etc. Such data communication
needs to be effectively and efficiently provided for, in

order to optimise use of limited communication resources.

In the field of this invention it is known that an
excessive amount of data traffic routed over a core
portion of a data network may lead to a data overload in
the network. This may lead to an undesirable, excessive
consumption of the communication resource, for example
pandwidth in a wireless network. To avoid such overload
problems, many caching techniques have been introduced to

manage the data traffic on a time basis.

It is known that caching techniques have been used for

many other reasons, for example, to reduce access time,

10

15

20

25

30

to make data readily available if there is a potential

that a communications network may go down.

An example of a cache, which may be considered as a local
storage element in a distributed communication or

computing system, includes network file systems. In the
context of network file systems, data is retrieved from a
file storage system (e.g. a disk) and can be stored in a

cache on the computer that is requesting the data.

A further example of cache usage is a database system,
where data records retrieved from a host machine are
stored in a local machine’s cache. As such, many
computer systems keep a local copy (or cache) of machine-
readable information, the master copy of which is stored

on a host system.

FIG. 1 illustrates a known data communication system 100
that employs the use of a cache 110 to store data
locally. A local information processing device 135, such
as a personal computer, a personal digital assistant or
wireless access protocol (WAP) enabled cellular phone,
includes a communication portion 115, operably coupled to
the cache 110. The device 135 also includes application
software 105 that cooperates with the cache 110 to enable
the device 135 to run application software using data
stored in, or accessible by, the cache 110. A primary
use of the cache 110 is effectively as a localised data

store for the local information-processing device 135.

10

15

20

25

30

The communication portion 115 is used to connect the
cache to remote information system 140, accessible over a
communication network 155. In this regard, as well as
for many other applications, caches are often used to
reduce the amount of data that is transferred over the
communication network 155. The amount of data transfer
is reduced if the data can be stored in the cache 110.
This arrangement avoids the need for data to be
transferred to the local information-processing device
135, from a data store 130 in a remote information system
140, over the communication network 155 each time a

software application is run.

Furthermore, in general, caches provide a consequent
benefit to system performance, as if the data needed by
the local information-processing device 135 is already in
the cache 110 then the cached data can be processed
immediately. This provides a significant time saving
when compared to transferring large amounts of data over
the communication network 155. In addition, caches
improve the communication network’s reliability, because
if the communication network fails then:

(i) The data in the cache 110 is still available,
allowing the local information-processing device 135 to
continue its functions, to the extent possible given the
extent of the data in the cache 110; and

(ii) The application in the local information-
processing device 105 can create new items or modify
existing items in the cache, which can then be used to
update the remote information system 140 when the

communications network is restored.

10

15

20

25

30

Caches are also known to have a self-managing capacity
function, so that once the cache approaches being full it
discards some of the data that it is holding. A number
of algorithms exist for this function: a common one is to
delete the data that was least recently accessed. In
this manner, necessary (and frequently accessed data) is
not deleted. Furthermore, the amount of unnecessary
information maintained in the cache is minimised. In
this context, unnecessary information may be viewed as
information that is rarely, if ever, requested by the

user.

It is also important that relevant information is
downloaded to the cache. Downloading unnecessary
information reduces the effective use of the
communications channel between the cache and the original
data source. Not only does this incur unnecessary
communication costs, it utilises the data retrieval

resource in both the host and cache.

Most caches are not filled with information until the
user requests it, at which point a copy of the
information is retrieved and saved in the cache. The
information is often stored in the cache in case the user
should need the same information again. An example of
this type of cache operation is a browser that requests
web pages from a remote web server. Once the web page 1is
retrieved, it is stored on the local machine. If the
user re-requests the page then (provided it is still

valid) the web browser displays the cached version of the

10

15

20

25

30

page, rather than retrieving it once more from the remote

web server.

However, this approach to caching suffers from the
drawback that it is only after the user has requested the
information that it is retrieved and saved in the cache.
In this regard, if the purpose of the particular caching
operation is to speed up information access, then the
first access will still be slow. Alternatively, if the
purpose of the particular caching operation is to make
the information available when the original data store is
not accessible, then it is only data that has already

been downloaded that is available in the cache.

Hence, it is known that some caches are ‘preloaded’ with
data so that the data is already available if the user

needs it. Two examples of cache preloading are:

(i) Disk file systems, where files of information
are stored on a disk in a series of blocks, each block
holding only part of a file's information. Many disk
file systems assume that users will request an entire
file and so retrieve and store all the blocks that
comprise the file into the cache before they are
specifically requested by the file retrieval management

system.

(ii) Furthermore, Web servers are known to cache
jdentified web pages in network servers closer to a
recognised requesting party. In this manner, data is

preloaded onto a cache in a machine that is closer to the

10

15

20

25

30

.
aes
*

s &
o W
saaas
s

user than the original source of the data, to reduce an
amount of communications traffic in the data transfer as
well as speeding up access to the cached data. The
organisation responsible for the Web servers often
downloads a page or set of pages to load onto the caching
‘servers’ based, for example, on the frequency that pages

are requested from that server.

However, the inventors of the present invention have
recognised jnefficiencies and limitations in the
operation and use of such preloaded caches. In
particular, the methods are not suitable in the case
where an individual user requests the information across
a communications network that has costs or other

limitations associated with using that resource.

In a first example, a lot of unnecessary information
(i.e. information that is never requested by a user) may
be preloaded onto the cache. If the communications
system between the data store and cache has performance
limitations or is costly to use, then the user may also
incur unnecessary costs or suffer unnecessary performance
degradation whilst loading unnecessary data into the

cache.

In the second example, the system relies on a statistical
prediction of the pages that will be requested by many
hundreds or even thousands of users. In this case, it is
cost effective to load many pages on the server, as the
gains from having some of the pages read many times over

outweighs the losses of having some pages that are hardly

10

15

20

25

30

read at all. If being accessed by a single user then
these systems are no longer effective, as they are not
able to predict with any certainty what information a

single user might request in the future.

Within unrelated fields, such as wireless cellular
communications, user-behaviour based concepts are known.
One example is where a functionality of a mobile cellular
phone is modified based on user-profiles (user
behaviour). In this regard, a user may be provided with
preferred hand-over options, oOr enhanced handset
features, based on these user profiles, say when entering
a particular location, or following an estimated travel
itinerary. These profile-based features are always
downloaded and stored in a ‘memory element’ of the mobile
cellular phone, a substantial amount of time before they
are used. Notably, such approaches are not only
unrelated to cache functions as herein described, but are
focused on the operational capabilities of the device, to
effectively re-configure mobile cellular phone’s

operation.

Thus, there exists a need to provide an improved
mechanism for preloading data objects to a cache, wherein

the aforementioned problems are substantially alleviated.
Statement of Invention
In accordance with a first aspect of the present

invention, there is provided a method of preloading data

on a cache in a local machine, as claimed in Claim 1.

10

15

20

25

30

In accordance with a second aspect of the present
invention, there is provided a cache, as claimed in Claim

28.

In accordance with a third aspect of the present
invention, there is provided a local machine, as claimed

in Claim 29.

In accordance with a fourth aspect of the present
invention, there is provided a local machine, as claimed

in Claim 30.

In accordance with a fifth aspect of the present
invention, there is provided a host machine, as claimed

in Claim 32.

In accordance with a sixth aspect of the present

invention, there is provided a host machine, as claimed

in Claim 33.

In accordance with a seventh aspect of the present
invention, there is provided a communication system, as

claimed in Claim 34.

In accordance with an eighth aspect of the present
invention, there is provided a storage medium, as claimed

in Claim 35.

Further aspects of the present invention are as claimed

in the dependent Claims.

10

15

20

25

30

.
- -~

The preferred embodiments of the present invention
provide a mechanism for preloading data on a cache based
on a determined user behaviour profile, such that the
data is made available to the cache user when the user

desires.

In this manner, data within the cache is maintained in a
substantially optimal state, and configured to be

available to a cache user when it is predicted that the
user wishes to access the data. Thus, selected items of
data are cached for predicted retrieval by a cache user
on an predicted demand basis, to avoid the cache memory
problems and delays in downloading or preloading data to

caches in known cache operations.

Brief Description of the Drawings

FIG. 1 illustrates a known data communication system,
whereby data is transferred from a host machine to a

cache residing in a local machine.

Exemplary embodiments of the present invention will now
be described, with reference to the accompanying

drawings, in which:

FIG. 2 illustrates a functional block diagram of a data

communication system, whereby data is transferred from a
host machine and preloaded on a cache in a local machine,
in accordance with a preferred embodiment of the present

invention;

10

15

20

25

30

- 10 - ol

FIG. 3 illustrates a preferred timing arrangement for
effecting the preload operation, in accordance with the

preferred embodiment of the present invention; and

FIG. 4 is a flowchart illustrating a method of
preloading, in accordance with the preferred embodiment

of the present invention.

Description of Preferred Embodiments

The inventive concepts of the present invention detail,
at least, a general approach and a number of specific
techniques for efficiently preloading caches with data.
In the context of the present invention, the term “user”
means either a human user or a computer system, and the
term “data” refers to any machine-readable information,
including computer programs. Furthermore, in the context
of the present invention, the term “local” as applied to
data transferred to a local cache or local machine,
refers to any element that is closer to the user than the

original source of the data.

Referring next to FIG. 2, a functional block diagram 200
of a data communication system is illustrated, in
accordance with a preferred embodiment of the present
invention. Data is transferred between a remote
information system (or machine) 240 and a local machine
235, via a communication network 155. An application 105
runs on the local machine 235 and uses data from a data

store 130 located on the host machine 240. The local

10

15

20

25

30

"11‘ .:0'

machine 235 and the host machine 240 are connected
through one or more communication networks 155 through
respective (transceiver) communications units 115, 120
located in each machine, as known in the art. The local
machine 235 has a cache 210 that stores selected local
copies of data that resides in the data store 130 in the

host machine 240.

The preferred embodiment of the present invention is
described with reference to a wireless communication
network, for example one where personal digital
assistants (PDAs) communicate over a GPRS wireless
network to an information database. However, it is
within the contemplation of the invention that the
inventive concepts described herein can be applied to any

data communication network - wireless or wireline.

Notably, in accordance with the preferred embodiment of
the present invention, a local preload function 255 has
peen incorporated into the local machine 235, and
operably coupled to both the cache 210 and the
application 105. Furthermore, a host preload function
265 has been preferably incorporated into the host
machine 240, and operably coupled to both the data store
130 and the host transceiver communication unit 120.
Generally, in the preferred embodiment, one or both of
the preload functions 255, 265 use information (user
profile or user behaviour) that they know or can deduce
about a user of the cache (210)/local machine (235) to
predict what data the user is likely to need.

Furthermore, the preload functions 255, 265 preferably

10

15

20

25

- 12 - A

determine at what time the user is likely to need the
data. 1In this regard, one or both of the respective
preload functions 255, 265 is/are configured to ensure
that the cache 210 has the requisite data, predicted to

be required by the cache user, when the user so desires

it.

Thus, the intelligence to initiate a preload operation is
located at the host machine, at the local machine, or at
both. Generally, it is advantageous to have the preload
intelligence on the machine that has most knowledge of
the user’s behaviour, i.e. the local machine 235 of FIG.
2. However, if both machines have knowledge of the
user’ s behaviour then it is envisaged that beneficially
the machines synchronise their user profile knowledge to
build up the best picture possible of the user's need for
selected data items. The machines may also schedule

preload operations as appropriate.

In a first enhanced embodiment of the present invention,
a mechanism to enable the respective preload functions
255, 265 decide what data is to be preloaded to the cache
210 is described. It is envisaged that many pieces of
knowledge about a user may be used to predict what data
to preload into the cache 210. Table 1 provides a non-

exhaustive set of examples.

- 13 - L

Table 1:

Knowledge Example of Use

Item type

Meeting If a sales meeting is to be held at a certain

schedule / |date and time, preload all relevant data for

diary that meeting (customer name, address, maps of
the location, prior business details, etc.).

Tasks If a user must carry out a specific task at
a set time (e.g. stock check) then preload
existing stock details and the stock
checking application.

Personal If a user has an interest in a sports team,

Interests stock market investment, industry sector,
etc., then preload news items related to
that interest so the user can view then at
his/her leisure.

Routine If a user is determined as exhibiting a

behaviour predictable behaviour, e.g. every Friday he
downloads the latest sales forecasts to
prepare a report, preload the sales forecast
at an appropriate time each Friday.

Predictable | If the user carries out a set of linked

behaviour tasks, such as filling in a parcel delivery
multi-page report form that uses drop-down
boxes, schedule a preload of the drop-down
box contents for all pages as soon as the
user enters the first page.

Foreseeable | If the user carries out task-based

behaviour activities (such as a field service engineer
repairing domestic appliances) then, if the
engineer has a job to repair a washing
machine, preload the parts list for that
washing machine so the list is available
when the engineer needs to record which
parts were replaced.

10

15

20

25

30

Those skilled in the art will realise that known

heuristic and artificial intelligence techniques can also
be used to predict the user’s future behaviour based, for
example, on previous behaviour, and preload data into the

cache based on these predictions. Such techniques are

known to be complex, and are not described further here.

A preferred example application of the inventive concepts
of the present invention is in a wireless domain.
Wireless communication systems, where a communication
link is dependent upon the surrounding (free space)
propagation conditions, the proximity of suitable
transmitter/receiver sites and the availability of free
bandwidth on the link, are known to be unreliable.

Hence, the inventors of the present invention have
recognised the need to carefully control the data types,
the amount of data and the timing of cache preloading
operations in such situations. Such preloading processes
need to ensure the preloading process is complete in
advance of the data being accessed, in case the local
machine 235 were to become disconnected from the
communication network for any length of time (for example

if it is a wireless device and moves into an area with no

radio coverage).

Therefore, in a second enhanced embodiment of the present
invention, a mechanism to enable the respective preload
functions 255, 265 decide when data is to be preloaded to

the cache 210 is described.

10

15

20

25

30

- 15 - L
Once one of the respective preload functions 255, 265 of
FIG. 2 decides that a user may need a specific data item,
for example a data item in Table 1, and then it must

decide when to load it into the cache 210.

The inventors of the present invention have both
recognised and appreciated the criticality of the timing
of preload operations. For example, data should not be
loaded a substantial time before it is (predicted to be)
needed by the cache user. In this context, the user’s
profile may change in the interim period between the
cache being preloaded and the cache user needing the
information. Thus, the user may no longer need the
cached data. Alternatively, if the data is preloaded
from the host machine 240, the data may have been updated
in the host machine 240 during this interim period.
Thus, the updated data will also need to be preloaded
into the cache 210.

If the data is preloaded particularly early, or if the
cache dynamics are rapidly changing to optimise its use
in accordance with the preferred embodiment of the
present invention, the cache 210 will subsequently
receive other data items. Hence, a previously preloaded
data item may be discarded before the cache user has read
it. In a similar manner, the data item may cause the
cache 210 to be filled, thereby initiating other ‘to-be-

read’ items to be discarded.

Similarly, the inventors have appreciated that the data

must not be preloaded too close to the time it is

10

15

20

25

30

- 16 - SRR
(predicted to be) needed by the cache user. In this
regard, it is important to predict, with as much accuracy
as possible, when the cache user will need the data.
Factors that are preferably considered by the respective
preload functions 255, 265 when predicting the time for
preloading includes whether the communications network
155 is, or is likely to be, unreliable or busy. In this
case, the respective preload functions 255, 265 should
factor into the download time the fact that the
communications network 155 may not be available when a
preload is ideally performed. Furthermore, consideration
that the communications network 155 may not be available

again until after the time the data is required by the

using application 105 needs to be made.

In a typical data communication environment, such as a
packet data wireless network, the time allotted for a
preloading operation will depend upon a number of
factors, for example including, but not limited to, any
of the following:

(i) The available bandwidth of the communication
network,

(ii) The loading on the communication channel,

(iii) The size of the block of data to be
transmitted to the cache, and

(iv) An amount of processing required to retrieve

the data identified from the data store 130.

Hence, referring now to FIG. 3, a preferred preload
timing scheme 300 is described. Before beginning the

process, a number of timing parameters are determined,

10

15

20

25

30

—_ 17 - ™ : .' :-:

based on the factors, for example preload time, network
availability, etc., that are known to affect the prelcad
operation. A first timing calculation performed by the
preload functions 255, 265 is a determination of a
Minimum Message Delivery Guarantee Time Tmmdg 330. A
second timing calculation performed is a determination of

the Maximum Preload Lead Time Tmpl 350.

Tmmdg 330 is a margin selected to allow for the case when
the communications network 155 may not be available when
the preload begins, for example due to wireless coverage,

congestion, failure or any other reason.

It is envisaged that Tmmdg 330 will be the same for all
knowledge item types. However, this need not be the case
if a priority rating is also applied to particular data
items, dependent upon, say the time of day. One example
of this would follow from determining that news items are
of particular importance to the cache user first thing on
a morning. In this regard, a higher priority rating, and
therefore a larger Tmmdg 330 margin, will ensure that
current news items are preloaded into the cache at the
beginning of a working day. 1In this manner, the user
habits for news items have been appreciated by the
preload functions 255, 265, and a determination has been
made that news items are more important to the user at

the beginning of the day, rather than at the end.

The Tmpl timing parameter 350 is a timing parameter
determined by the preload functions 255, 265 as the

maximum duration, before a predicted event (Te) 310, when

10

15

20

25

30

- 18 - .:..o

the preload operation can be started. The Tmpl timing
parameter 350 is selected to prevent unnecessary
information being preloaded if the event was to
subsequently change. Preferably, the Tmpl timing
parameter 350 is configured to be different for each

knowledge item type.

It is envisaged that the values of these timing
parameters 330, 350, as well as a safety margin timing
parameter Ts 320 described later, can be selected based
on theoretical studies of the network behaviour. Such
studies may result from simulating or otherwise modelling
the network behaviour, by monitoring the network
behaviour over time and/or estimating the timing values
or by trial and error in each particular implementation.
It is also envisaged that the timing parameters 320, 330,
350 may be fixed once set, or can be dynamically or
continuously updated in response to changes in the cache

or local machine operational environment.

A preferred method for achieving a dynamic or continuous
updating of the timing parameters 330, 350 is to first
initialise Tmmdg 330 and Tmpl 350 with two threshold
values. The threshold values are selected using the
approaches described above and effectively set upper and
lower targets (thresholds) for both the cache hit rate
(i.e. the probability that the data required is in the
cache 210 when needed) and the preload success rate (i.e.

a probability that preloaded data is used).

10

15

20

25

30

~ 19 - MR .:".

The cache hit rate is then measured over time. If the
hit rate is higher than the selected upper threshold then
the value of Tmmdg 330 is reduced so that the success
rate falls. If the success rate is lower than the lower
threshold (which must be less than or equal to the upper
threshold) the value of Tmmdg 330 is increased by a
suitable increment. When the success rate lies between
the two thresholds the local machine 235 may be assumed

to be receiving cache data in an efficient manner.

In this regard, data packet 360 is shown as being
transmitted at the latest time period 380 when the
communication network conditions are ideal, and at an
earlier time period 370 when the communication network

conditions are, or are likely to be unreliable.

Additionally, the preload success rate is measured over
time. If the preload success rate is higher than the
upper threshold then Tmpl 350 is increased so that the
success rate falls. If the success rate is lower than
the lower threshold (which must be less than or equal to
the upper threshold), Tmpl 350 is reduced by a suitable
increment. When the preload success rate lies between
the two thresholds the selection of data items and the
timing of preload operations is being performed in an

acceptable manner.

In the basic embodiment of the present invention, all
preload types are given the same initial Ts 320, Tmmdg
330, and Tmpl 350 values, which are subsequently adjusted

if the preload time or operating conditions change. 1In

10

15

20

25

30

- 20 - .

-

ave

-

an ©

e @

eve®
«

FLEE]

an enhanced embodiment of the present invention, each
type of preload operation (scheduled event, foreseeable
event, etc.) can be provided with a different initial,
and/or subsequently adjusted, Ts 320, Tmmdg 330 and Tmpl
350 value.

In accordance with a yet further enhanced embodiment of
the present invention, it is envisaged that events within
the same knowledge type can be grouped into categories.
For example, two or more categories may be distinguished
within, say, a routine behaviour knowledge item type.
Such categories could be, for example, those items whose
uncertainty in the predicted time for being accessed by
the cache user varies by less than thirty minutes and
those whose uncertainty in the predicted time varies by
more than thirty minutes. 1In this scenario, each
category is provided with its own initial and
subsequently adjusted Tmmdg 330 and Tmpl 350 timing
parameter values. In a similar manner, instead of the
categories being selected based on predicted time, the
categories may be selected based on a priority rating

applied to the respective knowledge items within the

behaviour type.

Furthermore, for some knowledge types there may be
uncertainty in the time at which data items are predicted
to be required by the user. To improve the assurance of
providing preloaded cache data to the user when he/she
wishes it, a safety margin ‘Ts’ 320 is preferably
introduced. The value of Ts will depend on the

confidence in the prediction of the time the data item is

10

15

20

25

30

[R XX]
(AR X]
‘e L)
L] LN

- 21 -

needed: if the confidence is low, Ts will be set to a

high value; if it is high then Ts will be set to a small
value. Ts may be chosen and subsequently adjusted using
the same techniques as apply to Tmmdg and Tmpl described

previously.

Referring now to FIG. 4, a flowchart 400 illustrates the
breload operation of the preferred and a number of the
enhanced embodiments of the present invention. The first
task in the preferred process of preloading data to the
cache is to obtain a value for Te 310, the predicted time
of the event at which the preloaded data will be used, as
shown instep 405. A number of example mechanisms for
determining a timing of a predicted event are described
above in Table 2. Such determinations can be made for a

variety of knowledge items.

In accordance with an enhanced embodiment of the present
invention, the inventors have appreciated that the
prediction of an event time for a number of knowledge
items will include an element of uncertainty. For
example, knowledge items from the routine behaviour,
predictable behaviour and foreseeable behaviour items in
Table 1 may not be accessed at the same time of day by
the user. For these types, a prediction of the
uncertainty of these times is made, and an adaptation of
the safety margin, Ts, is calculated in step 410. An
ideal Ts 320 margin is calculated such that the preload
functions ensure that the preload operation occurs early

enough to take into account such unpredictability.

- 22 -
Table 2 shows preferred mechanisms for determining how Te
and/or Ts can be calculated, for different knowledge item

types.

Table 2 - Calculating Te and Ts for different knowledge

item types

Knowledge Calculating Te Calculating Ts

Item Type

Meeting Specified as part of the item | Zero

schedule/ | (e.g. meeting time).

diary

Tasks Either specified as part of 1. Set manually:;
the task (e.g. due date) or 2. Monitor prior
through observing previous occurrences and
behaviour and predicting the make prediction
repetition pattern. based on history

Routine Through observing previous 1. Set manually;

behaviour | behaviour and predicting the 2. Monitor prior
repetition pattern. occurrences and

make prediction
based on history

Predict- Triggered by another event 1. Set manually;

able (e.g. download a list of 2. Monitor prior

behaviour | items required to populate occurrences and
the next page in a series of make prediction
pages to be filled in by the based on history
user) .

Foresee- Triggered by another event, 1. Set manually;

able likely with less certainty 2. Monitor prior

behaviour | and an additional delay than occurrences and
predictable behaviour (e.g. a | make prediction
service person may not need a | based on history
parts list until recording a
job as being completed).

10

15

20

25

30

- 23 -

In order to perform the desired timing calculations, the
respective preload function obtains a current time value,

in step 425.

Clearly, if it is predicted that the user wishes to view
the knowledge item imminently, an immediate preload is
required, as shown in step time 430. 1In this regard, a
value for Tmmdg is calculated, in step 415, as described
above. Following the calculation of Tmmdg, a
determination is preferably made as to whether the
predicted timing of the event is within the minimum time
period calculated for the safety time Ts added to the
communication delay time Tmmdg. If it is, and the local
preload function is initiating the preload operation, a
determination is made as to whether the cache is full, in
step 455. If the cache is not full, the preload
operation commences in step 465. If the cache is full,
or sufficiently full that the data to be preloaded into
the cache will cause the cache to be full, the preload
function initiates a discarding operation of the data
within the cache, as in step 460. This discarding
operation may be performed using any of the known
techniques. After cache space has been made available,
the preload operation may then commence, as shown in step

465.

A value for Tmpl is calculated, in step 420, as described
above. If the determination in step 430 is that there is
available time before the preload operation needs to
start, i.e. the time of the event is further away than

the minimum time period calculated for the safety time Ts

10

15

20

25

30

- 24 -

and communication delay time Tmmdg, then a determination
is made as to whether the time is close enough to the
predicted time of the event to make it worthwhile
beginning the preload operation, as shown in step 435.
The determination in step 435 is preferably made in
consideration of the fact that the event may be changed
or deleted. Such a consideration may make the preload

operation unnecessary.

The algorithm cycles through step 425, step 430 and step
435 until the preload operation is allowed, i.e. the
predicted time to the event is determined as being within
an acceptable window 340, at step 435. It is noteworthy
that, in general, there will be a reasonable time window
between the preload being allowed following step 435 and
the preload being mandatory following step 430.

Once the prelocad function has determined the time to the
predicted event is inside this window, a determination is
made as to whether the cache has available capacity for
receiving the prelcad data, in step 440. If there is not
sufficient capacity within the cache in step 440, then
the preload operation is delayed until there is
sufficient capacity, by repeating steps 430, 435 and 440.
This cycling operation only repeats until the minimum

time period is reached in step 430.

The preferred mechanism for determining the fullness of
the cache in step 440 is as follows. The rate of cache
re-loads is measured, i.e. the frequency at which items

that have been dropped from the cache 210 in FIG. 2 are

10

15

20

25

30

- 25 =

subsequently reloaded. This measurement operation is
performed over a suitable averaging period, likely to be
a duration equal to several multiples of the average life
of items in the cache 210. 1If the cache re-load rate is
very low, for example less than a threshold of say 5%,
then the cache 210 is deemed as being rarely full and is
therefore available to be preloaded immediately. If the
cache re-load rate is higher than this threshold, then
the cache 210 is deemed too small for the data it is
typically being asked to hold. In this case, preloading
the data should be delayed as long as possible so as not
to force other data items in the cache 210 to be

discarded before the data has been used.

If a determination is made in step 440 that the cache has
sufficient space to accept the preload data, then a
determination is preferably made in step 445 as to
whether the current time is the most economical time to
preload the data. Advantageously, this provides the
local machine with the opportunity to minimise costs by
ensuring the preload operations are performed at a time
that may incur reduced communications costs. Preferably,
in step 445, the algorithm calculates whether there will
a time within the acceptable window, i.e. before ‘Tnow-
Te<Ts-Tmmdg’ is reached, when the preload operation over
the communication network 155 will be less expensive. If
such a determination is made in step 445, the preload
function waits to initiate the preload operation, in step
465, until the less-expensive communication resource is

available, by cycling through steps 430 to 445.

10

15

20

25

30

26

If, in step 445, a determination is made that it is an
economical time to perform a preload operation, then a
determination is preferably made as to whether the
communications network 155 is busy in step 450, or at
least that the network would not be overloaded by
commencing the preload operation. It is envisaged that
the preload function may take any measures necessary to
reduce overload, depending upon the priority or urgency
of the preload operation. Such measures are described
later. 1If the communication network is determined as not
being busy in step 450, the preload operation is

commenced in step 465.

Those skilled in the art will immediately recognise that
the respective steps can be effected in a variety of
orders. Furthermore, several steps may be omitted or
modified in their operation, depending on the importance
of managing the size of the cache 210, the cost of the
communication network 155 and the load on the
communications network 155. In this regard, in some
scenarios, it is within the contemplation of the
invention that step 445 may be omitted, for example if
there is no cost implication in using the communication
resource at various times. Additionally, the local
machine may be configured such that the cache is rarely,
if ever, full. 1In this scenario, the preferred algorithm
may omit step 440. It is also envisaged that the
determination in step 450 may be omitted, if the preload
function 1s configured to force the preload operation

ahead of other tasks being performed, for example if the

preload operation was of a high (or highest) priority.

10

15

20

25

30

- 27 -

In many communications networks the cost of a specific
transmission varies, depending on factors such as:

(1) The day or time of day;

(ii) The source and destination nodes of the
communication link, for example their geographic location
and/or the communication resources available at that
location; or

(iii) The structure of the data message to be
transferred, for example whether it is a single
unfragmentable large block of data or several smaller

blocks.

In the preferred embodiment of the present invention, the
cost (charging) parameters of the communications network
155 are defined within one or both of the preload
functions 255, 265. 1In this manner, the preload
functions 255, 265 are able to use these cost parameters
to calculate the most cost effective time to preload
particular items of data. For example, the preload
functions 255, 265 may use the preferred algorithm of
FIG. 4 to calculate that there is a wide-enough window
during which a specific piece of data could be preloaded
where the window extends over two (or more) of these cost
parameters. In this regard, the preload function 255,
265 in step 445 would select the most cost effective time

during this window to initiate the preload operation.

In a further enhanced embodiment of the present
invention, it is envisaged that multiple communications

networks connect the local machine 235 and the host

10

15

20

25

30

- 28 -

machine 240. Perhaps, as is often the case, some of the
networks may only be available intermittently, for
example due to time or location constraints. 1In this
case, it is envisaged that in step 445 the preload
functions can calculate the costs of the preload on each
network within the allowed preload window and select the
least expensive communication network to use, as well as

performing the preload operation at the cheapest time.

Optionally, rather than the parameters of the
communications networks 155 being defined within the
preload functions 255, 265, it is envisaged that the
preloaded data or cost (charging) information may be
obtained from a remote server that the preload functions
are able to access. A first example is where the
communications network cost parameters may be stored on a
server within another network (for example, the
Internet). In this regard, the preload functions 255,
265 use communication links to this network to download
the parameters on a regular basis. Alternatively, the
cost parameters may be downloaded automatically, or on
command from the server when a change in the parameters

had been notified or detected.

It is envisaged that a second example would be where the
communications network cost parameters could be stored in
the data store 130, which could itself be updated using
the method described above. The host preload function
265 and/or the local preload function 255 could then
access the cost parameters from the data store.

Alternatively, the host preload function 265 could

10

15

20

25

30

29

download the parameters over the communications network
155 and store them in the cache 210, in which case the
local preload function 255 would appear to be just
another using application as far as the cache 210 was

concerned.

In addition, or in the alternative, a further reason for
preloading a cache in accordance with the preferred
embodiment of the present invention is to preload data
‘only’ when network costs are inexpensive rather than
loading the data at the point it is required but when the
network costs are higher. 1In this regard, the cache
preloading operation may be initiated based on the time
or the location of the local machine 235. As an example,
if either preload function 255, 265 predicted that during
the morning peak time a user would require a certain
piece of data, it could initiate a preload during the
night, i.e. at an off-peak time. In this regard, the
data would be preloaded purely because it can be
preloaded at a minimum cost and would be available in the

cache 210 the following morning when required.

As a yet further optional improvement, one or both of the
preload functions 255, 265 may be configured to assess
how busy the communications network 155, local machine
235 and/or the host machine 240 are. The one or both
preload functions 255, 265 may also schedule preload
operations for times that provide a more acceptable
impact on the performance of their respective machines.
Preferably, the scheduling includes one or both of the

following methods:

10

15

20

25

30

-

aenw

LR R]
.

- 30 -

(i) Scheduling the entire preload operation for
periods when the communication networks is not busy; and

(ii) Scheduling the preload operation to occur in
blocks of time with intervals arranged between the blocks
for other network users to use. In this manner, the
preload operation avoids consuming a whole communication
resource for a prolonged period but instead provides
other network users access to the network while the

preload operation is in progress.

1t is also within the contemplation of the invention that
data may be preloaded for events that have no pre-
requisite time associated with them. One example would
pe for data that is personally interesting to the user
such as sports results. Even though the preload function
is able to predict that the user will want to access the
cached data, the preload function may not be able to
predict when. For these knowledge items, it 1is
preferable for the preload function to initiate the
preload operation as soon as the data becomes available.
The techniques described above, which may be used to
delay the preload operation, can also be applied for
events that have no pre—requisite time associated with
them. However, this is at the risk of the data not being
preloaded and immediately available when the user wants

to use it.

More generally, it is envisaged that the aforementioned
preloading operations may pe implemented in the
respective host or local machines in any suitable manner.

For example, new apparatus may be added to a conventional

10

15

20

25

30

- 31 -

machine, or alternatively existing parts of a
conventional machine may be adapted, for example by
reprogramming one or more processors therein. As such,
the required implementation (or adaptation of existing
local or host machine(s)) may be implemented in the form
of processor-implementable instructions stored on a
storage medium, such as a floppy disk, hard disk, PROM,
RAM or any combination of these or other storage
multimedia.

In the case of other network infrastructures, wireless or
wireline, initiation of a preloading operation may be
performed at any appropriate node such as any other
appropriate type of server, database, gateway, etc.
Alternatively, it is envisaged that the aforementioned
preloading operations may be carried out by various
components distributed at different locations or entities

within any suitable network or system.

It is further envisaged that the applications that use
caches in the context hereinbefore described, will often
be ones in which a human user requests information from
the data store (or serving application) 130. The
application 105 will then preferably provide the
opportunity to select or influence preloading functions
by the user. For example, a user may be provided with a
series of questions to answer, in order to provide an

initial user-behaviour characteristic.

It will be understood that the data communication system

described above, whereby a cache is preloaded with the

10

15

20

25

30

R]

- 32 -

data the user needs, provides at least the following

advantages:

(i) The selected user-specific data is made
available notwithstanding whether, for any reason, the
communications network fails (i.e. the reliability of the
application in the local machine is much increased);

(1i1) The response to the user is shortened, as data
that is more useful is locally stored in the cache.
Therefore, the data does not need to be retrieved across
the network;

(iii) By careful selection of the time that the
preloaded data is scheduled to be loaded into the local
cache, communication costs may be minimised by
configuring downloads when the network capacity is low
and communication resource costs are inexpensive.

(iv) The effects on the performance of the local
machine, host machine and communications network are

minimised.

Whilst the specific and preferred implementations of the
embodiments of the present invention are described above,
it is clear that one skilled in the art could readily
apply variations and modifications of such inventive

concepts.

Thus, an improved mechanism for preloading data objects
to a cache has been described wherein the abovementioned
disadvantages associated with prior art arrangements have

been substantially alleviated.

- 33 -

Claims

1. A method (400) of preloading data on a cache
(210) in a local machine (235), wherein said cache is
5 operably coupled to a data store (130) in a remote host
machine (240), the method characterised by the steps of:
determining a user behaviour profile for said
local machine (235);
retrieving data relating to said user behaviour
10 profile from said data store (130); and
preloading said retrieved data in said cache
(210), such that said data is made available to a user of

said cache when desired.

15 2. The method (400) of preloading data on a cache
(210) according to Claim 1, wherein said step of
determining is performed by a preload function (255) in
said local machine 235 operably coupled to said cache
and/or a preload function (265) in a remote host machine

20 (240) operably coupled to said data store (130) .

3. The method (400) of preloading data on a cache
(210) according to Claim 2, the method further
characterised by the step of:

25 predicting, by at least one preload function, a
data type required by said cache user based on said

determined user behaviour profile.

4. The method (400) of preloading data on a cache
30 (210) according to Claim 3, the method further
characterised by the step of:
predicting (405), by said at least one preload

function, an event time for said data type to be required

10

15

20

25

30

4 ey L] L]
L ’ .+ o
* * .

- .
.. - : .
S mwa/@ oo ien e

- 34 -

by said user based on said determined user behaviour

profile (210).

5. The method (400) of preloading data on a cache
(210) according to Claim 3 or Claim 4, wherein said step
of predicting includes one or more of the following
steps:

predicting said event time based on said data
type:

observing one or more previous user behaviour
patterns; or

predicting said event time following a trigger on

another event.

6. The method (400) of preloading data on a cache
(210) according to Claim 3 or Claim 4 or Claim 5, the
method further characterised by the step of:

predicting a preload time, by said at least one

preload function (255, 265) based on said predicted data

type.

7. The method (400) of preloading data on a cache
(210) according to Claim 6, wherein said predicted
preload time is based on one or more of the following
parameters:

(i) BAn estimate of a cache re-load rate;

(ii) An availability of a communications network
resource (155);

(iii) A previously achieved cache reload rate;

(iv) A cost parameter of one or more available
communications network resources, for example a resource

at a location and/or at a time;

10

15

20

25

30

- 35 -

8. The method (400) of preloading data on a cache
(210) according to any preceding Claim, the method
further characterised by the steps of:
determining (425) a current time; and
calculating a subsequent event or preload time

therefrom.

9. The method (400) of preloading data on a cache
(210) according to any of preceding Claims 6 to 8, the
method further characterised by the steps of:
calculating a safety margin of time; and
performing said preloading of said data to said
cache (210), at a time at or before said saftery margin
prior to said predicted preload time such that said data

is made available to said cache user when desired.

10. The method (400) of preloading data on a cache
(210) according to Claim 9, wherein said step of
calculating a safety margin includes the step of:
predicting (410) an uncertainty of an event time,
for example based on said data type and/or prevailing

network conditions.

11. The method (400) of preloading data on a cache
(210) according to Claim 9 or Claim 10, wherein said
safety margin is either set manually or is based on a

monitoring of previous event occurrences.

12. The method (400) of preloading data on a cache
(210) according to any preceding Claim, wherein said
event includes one or more of the following:

(i) A diarised event for said user;

(ii) A task to be performed by said user:

10

15

20

25

30

- 36 -

(iii) A personal interest identified for said

user;

(iv) A routine behaviour pattern identified for
said user;
(v) A predictable behaviour pattern identified

for said user; or

(vi) A foreseeable behaviour pattern identified

for said user.

13. The method (400) of preloading data on a cache
(210) according to any preceding Claim, wherein the
method is further characterised by a step, prior to said
step of preloading, of:

determining and implementing a timing margin
(Tmmdg) (330) to allow for potential unavailability of
said communications network (155) before commencing said

step of preloading.

14. The method (400) of preloading data on a cache
(210) according to Claim 13 when dependent upon Claim 8,
the method further characterised by the steps of:

determining whether a predicted timing of an
event is within a time period of less than or equal to
the current time minus said safety margin and/or said
timing margin; and

commencing (465) said step of preloading in

response to a positive determination.

15. The method (400) of preloading data on a cache
(210) according to Claim 14, the method further

characterised by an intermediate step of;

determining (455) whether said cache has capacity

to store said data to be preloaded.

10

15

20

25

30

- 37 -

16. The method (400) of preloading data on a cache
(210) according to any preceding Claim, wherein the
method is further characterised by a step, prior to said
step of preloading, of:

determining (435) a preferred maximum time (Tmpl)
(350) before said predicted event timewhen said step of

preloading can commence.

17. The method (400) of preloading data on a cache
(210) according to any preceding Claim, the method
further characterised by the Step of:

adapting one or more timing parameters (330, 350)
continuously or dynamically in response to a change in

the communication network or user behaviour profile.

18. The method (400) of preloading data on a cache
(210) according to Claim 17, the method further
characterised by the steps of:
applying one or more threshold values to said one
or more timing parameters (330, 350) for:
determining an acceptable cache hit rate,
and/or
determining a preload success rate, and
adapting said one or more timing parameters (330,

350) in response to said determination(s) .

19. The method (400) of preloading data on a cache
(210) according to any preceding Claim, the method

further characterised by the steps of:

grouping data types into categories based on, for

example, one or more of the following: said data types, a

10

15

20

25

30

.'.' ": . . .

. o “ * o o
ahnhA 1mr® N S A e
]
o - L] . vee

- 38 -

priority of said data type, a predicted event time for
said data to be preloaded; and
scheduling a preloading operation of data based

on said grouping.

20. The method (400) of preloading data on a cache
(210) according to any preceding Claim, the method

further characterised by the step of:

determining (440) whether said cache has
available capacity for receiving the preload data prior

to commencing said step of preloading.

21. The method (400) of preloading data on a cache
(210) according to Claim 20, wherein the step of
determining whether said cache has available capacity

includes measuring a rate of cache re-loads.

22. The method (400) of preloading data on a cache
(210) according to any preceding Claim, the method

further characterised by the step of:

determining (445) whether the current time is an
economical time to preload said data to said cache, and
in response to a positive determination, preloading said

data to said cache (210).

23. The method (400) of preloading data on a cache
(210) according to Claim 22 when dependent upon Claim 8,
wherein the step of determining whether the current time
is an economical time includes calculating whether a more
economical time may be subsequently available within an

acceptable preload window for said step of preloading.

10

15

20

25

30

- ~ A OD R QA
. é e S
. ¢ eoe

- 39 -

24. The method (400) of preloading data on a cache
(210) according to Claim 22 or Claim 23, the method
further characterised by the step of:

downloading one or more cost parameters
associated with one or more network resource(s) to said
host machine (240) or said local machine (235) or a
remote server accessible by said host machine (240) or
said local machine (235), such that said determination of
whether said current time is an economical time to

preload said data to said cache (210) can be made.

25. The method (400) of preloading data on a cache
(210) according to any preceding Claim, wherein said step
of preloading includes:

preloading said accessed data in said cache
(210), based on said user behaviour profile for said
local machine (235), only when network costs are
inexpensive, such that said data is made available to

said cache user when desired at a substantially minimised

cost.

26. The method (400) of preloading data on a cache
(210) according to any preceding Claim, the method
further characterised by the step of:

determining (450) whether a communications
network (155) to be used in said preloading step is busy
or whether said communications network (155) would be
overloaded when commencing the preload operation, and in
response to a positive determination delaying said step

of preloading said cache (210).

27. The method (400) of preloading data on a cache

(210) according to Claim 26, wherein, in response to

10

15

20

25

30

- 40 -

determining that the communications network (155) is busy
or would be overloaded, the method is further
characterised by the steps of:
scheduling an entire preload operation for
periods when the communication network is not busy; or
scheduling said step of preloading on a block-by-
block basis that provides intervals between said blocks

for other users to use said communications network (155).

28. A cache (210) preloaded in accordance with any of

Claims 1 to 27.

29. A local machine (235) characterised by a cache
preload function (255) operably coupled to a cache (210)
that is preloaded in accordance with any of Claims 1 to

27.

30. A local machine (235) comprising:

a local communication unit (115) for operably
coupling said local machine to a host machine (240) via a
communication network (155); and

a cache (210) operably coupled to said local
communication unit (115);
the local machine (235) characterised by:

a preload function (255), operably coupled to
said cache (210), for determining a user behaviour
profile for said local machine (235) and preloading data
on said cache (210) based on said user behaviour profile,
such that said data is made available to said cache user

when desired.

31. The local machine (235) according to Claim 29 or

Claim 30, wherein said local machine (235) is a personal

10

15

20

25

30

- 41 -

digital assistant configured to communicate over, for
example, a General packet radio network wireless network

to a remote host machine (240).

32. A host machine (240) comprising:

a local communication unit (120) for operably
coupling said host machine (240) to a local machine (235)
via a communication network (155); and

a data store (130), operably coupled to said
local communication unit (120);
the host machine (240) characterised by:

a preload function (265), operably coupled to
said data store (130), for determining a user behaviour
profile for said local machine (235) and preloading data
from said data store (130) to a cache (210) on said local
machine (235) based on said user behaviour profile, such
that said data is made available to a user of said cache

when desired.

33. A host machine (240) characterised by a data
preload function (265) operably coupled to a data store
(130), for performing the cache preload steps according

to any of Claims 1 to 27.

34. A communications system (200) adapted to support

the method (400) of preloading data on a cache (210) in a
local machine (235) according to any of preceding Claims

1 to 27 or comprising a local machine (235) according to

Claim 29, Claim 30 or Claim 31 or a host machine (240)

according to Claim 32 or Claim 33.

10

15

20

- 42 -

35. A storage medium storing processor-implementable
instructions for controlling a processor to carry out the

method of any of Claims 1 to 27.

36. A local machine (235) substantially as
hereinbefore described with reference to, and/or as

illustrated by, FIG. 2 of the accompanying drawings.

37. A host machine (240) substantially as
hereinbefore described with reference to, and/or as

illustrated by, FIG. 2 of the accompanying drawings.

38. A preload function (255, 265) substantially as
hereinbefore described with reference to, and/or as

illustrated by, FIG. 2 of the accompanying drawings.

39. A method (400) of preloading data on a cache
(210) substantially as hereinbefore described with
reference to, and/or as illustrated by, FIG. 4 of the

accompanying drawings.

K e Dy
,N;Q\S)l"«s'j(‘

f’Pa The, X
¢ Office = (}
'.f‘ — _§ S
1, \’.b\jb (‘ E INVESTOR IN PEOPLE
LMY
Application No: GB 0218911.6 Examiner: Jim Calvert
Claims searched: 11039 Date of search: 18 March 2003
Patents Act 1977 : Search Report under Section 17
Documents considered to be relevant:
Category | Relevant Identity of document and passage or figure of particular relevance
to claims
X 1- US5305389 (DEC) See e.g. col.5, 1l. 1547
3,30,32,33
34
A 1,30,32,34 | US6044439 (ACCELERATION SOFTWARE) See e.g.
col.1, 11.50-64 and col.6,1.42-col.7,1.11
A 1,30,32,34 | US6070230 (HP) See e.g. col.4, 11.7-20 and col.6, 11.20-50

X 1,2,30,32, | Improving World-Wide-Web performance using domain-top approach
34 to prefetching, Shin et al, High Performance Computing in the Asia-
Pacific Region, 2000. Proceedings. The Fourth International
Conference/Exhibition on, 05/ 14/2000 -05/17/2000, 2000 page(s): 738-
746, INSPEC Accession Number: 6598262

_Categories:

X Document indicating lack of novelty or inventive stcp A Document indicating technological packground and/or statc of the art.
Y Document indicating lack of inventive step if combined P Document published on or after the declared priority date but before
with one or more other documents of same category. the filing date of this invention.
& Member of the same patent family E Patent document published on or after, but with priority date earlier
than, the filing date of this application.

Field of Search:
Search of GB, EP, WO & US patent documents classified in the following areas of the UKC":

G4A

Worldwide search of patent documents classified in the following areas of the IPC’:
GO6F

earch report :

An Executive Agency of the Department of Trade and 1ndustry

