A high-speed and low-power encoder and an encoding method, wherein the encoder includes a switching unit for receiving a thermal code of a predetermined number of bits received in series, and outputting one bit among the received bits as a most significant bit and the other bits in parallel, and an encoder for dividing the bits received from the switching unit in parallel into groups having a predetermined number of bits, encoding the bits in each group into a predetermined number of bits, selecting one group of encoded bits using bits not used by the groups, and outputting least significant bits together with the most significant bit output from the switching unit.
FIG. 4

301a

420

INV3

P0

INV4

P3

410

INV1

N3

N6

N4

N5

i1

i1b

data

data b
HIGH SPEED ENCODER AND METHOD THEREOF

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

The present invention relates to a high-speed encoder and decoder, and more particularly, to an encoder which operates at high speed and uses a small amount of power, and an encoding method using the same.

[0002] Another objective of the present invention is to provide an encoding method for reducing current consumption and delay time by shortening a data path without increasing the area of use.

[0003] To achieve the first objective, the present invention provides a high-speed encoder including a switching block for receiving a thermal code of a predetermined number of bits received in series, and outputting one bit among the received bits as a most significant bit and the other bits in parallel; and an encoder for dividing the bits received from the switching unit in parallel into groups having a predetermined number of bits, encoding the bits in each group into a predetermined number of bits, selecting one group of encoded bits using bits not used by the groups, and outputting least significant bits together with the most significant bit output from the switching unit. The encoder includes: a block unit for dividing the received bits into blocks having a predetermined number of bits and encoding the signals in each group into a predetermined number of bits; a selection unit for selecting the encoded bits in one among the blocks by combining bits not used by the blocks among the received bits; and a bit generation unit for generating bits other than the encoded bits selected by the selection unit and the bit generated by the switching unit, by combining the unused bits.

[0004] To achieve the second objective, the present invention provides a method of encoding a thermal code output from an analog-to-digital converter, the method including: dividing received bits into blocks having a predetermined number of bits and encoding the bits in each group into a predetermined number of bits; selecting one among the blocks by combining bits not used by the blocks among the received bits, and generating the encoded bits in the selected block; and generating bits other than the encoded bits generated in the previous step, by combining the unused bits.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] The above objectives and advantage of the present invention will become more apparent by describing in detail a preferred embodiment thereof with reference to the attached drawings in which:

[0015] FIG. 1 is a block diagram of a typical priority encoder;

[0016] FIG. 2 is a block diagram of a high-speed encoder according to the present invention;

[0017] FIG. 3 is a detailed block diagram of the switching unit of FIG. 2;

[0018] FIG. 4 is a detailed circuit diagram of the latch of FIG. 3; and

[0019] FIG. 5 is a detailed block diagram of the encoder of FIG. 2.

DESCRIPTION OF THE PREFERRED EMBODIMENT

[0020] Referring to FIG. 2, a high-speed encoder according to the present invention includes a switching unit 210 and an encoder 220. The switching unit 210 receives a thermal code consisting of a total of 32 bits received in series, and outputs bit 1 as an MSB and the remaining
The encoder 220 generates bits b1 through b5, which are least significant bits (LSBs), using bit 2 through bit 32 output from the switching unit 210.

Referring to FIG. 3, the switching unit 210 of FIG. 2 is made up of 32 latches 301a through 332a, 31 multiplexers 302b through 332b, and 6 inverters INV1 through INV6.

The latches 301a through 332a receive bits 1 through 32 and complementary bits i1 through i32 via two input ports in1 and in1b, respectively. The latches 301a through 332a and the complementary bits i1 through i32, latch the bits 1 through 32 and the complementary bits i1 through i32, respectively, from the two output ports data and datab of the first latch 301a, receive signals via input ports dat and datab from the output ports data and datab of the latches 302a through 332a in response to the control signals c1 and c1b, and latch the signals data and datab, respectively, and convert the zero return signal into a non-zero return signal in order to save the power for bit switching.

The multiplexers 302b through 332b output 32 bits in response to the control signals c1 and c1b generated by the first latch 301a. That is, when the bit 1 received by the first latch 301a is high, the multiplexers 302b through 332b output signals i1 through i32 received by the latches 302a through 332a without change. Also, when the bit 1 received by the first latch 301a is low, the multiplexers 302b through 332b output the complementary signals i1 through i32 received by the latches 302a through 332a. The inverters INV1 through INV6 buffer the control signals c1 and c1b to be applied to the selection ports in and inb of the multiplexers 302b through 332b.

FIG. 4 is a detailed circuit diagram of the first latch 301a of FIG. 3. Referring to FIG. 4, the first latch 301a includes an input unit 410 and an output unit 420. The input unit 410 is made up of N-channel MOS transistors N3, N4, N5 and N6. The N-channel MOS transistor N3 transfers the output signal of the first inverter INV1 to a node a in response to the input bit i1 of the input port 410. The N-channel MOS transistor N4 transfers the output signal of the second inverter INV2 to a node b in response to the input bit i1b of the input port 410. The N-channel MOS transistor N5 transfers the output signal of the second inverter INV2 to a node b in response to the input bit i1b of the input port 410. The N-channel MOS transistor N6 transfers the output signal of the first inverter INV1 to a node a in response to the input bit i1b of the input port 410. The output unit 420 is made up of P-channel MOS transistors P9 and P3 and third and fourth inverters INV3 and INV4. One end of the P-channel MOS transistor P9 is connected to the node a, and the other end is connected to the output port data. One end of the P-channel MOS transistor P3 is connected to the node b, and the other end is connected to the output port data, and the gate is connected to the output port datab. The third inverter INV3 is connected between the node a and the output port data, and the fourth inverter INV4 is connected between the node b and the output port datab.

Referring to FIG. 4, the output unit 420 outputs data for controlling the multiplexers 302b through 332b. That is, when the first bit i1 received by the output unit 420 is in a high state, the signals 1 through 32 are output without change, and when the first bit i1 received by the output unit 420 is in a low state, the complementary signals i2 through i32 are output.

FIG. 5 is a detailed block diagram of the encoder 220 of FIG. 2. Referring to FIG. 5, the encoder 220 includes first, second, third and fourth blocks 510, 520, 530 and 540, each for blocking a predetermined number of the input signals 2 through 32 and i2 through i32, an LSB selector 550 for selecting one among the first, second, third and fourth blocks 510, 520, 530 and 540, a switching unit 560 for outputting the outputs of one among the first, second, third and fourth blocks 510, 520, 530 and 540 in response to a control signal output from the LSB selector 550, a B4 generator 570 for generating a bit b4, a B5 generator 580 for generating a bit b5, and a D flip flop 590 for latching bits b1-b6 output from the switching unit 560, the B4 generator 570, the B5 generator 580 and the switching unit 210.

The first, second, third and fourth blocks 510, 520, 530 and 540 receive bit 2 through bit 8 (12 through 16), bit 10 through bit 16 (10 through 16), bit 18 through bit 24 (18 through 24), and bit 26 through bit 32 (26 through 32), respectively, and each encode the received bits into 3 bits b1 through b3.

The switching unit 560 transfers three bits selected from the outputs of the first through fourth blocks 510 through 540 to the D flip flop 590 in response to the control signal of the LSB selector 550.

The LSB selector 550 generates the control signal for selecting one among the first, second, third and fourth blocks 510, 520, 530 and 540 using input signals 9, i17 and i25 not used by the first through fourth blocks 510 through 540 among the input signals 2 through 32.

The B4 generator 570 generates a bit b4 using the input signals 9 and i25 not used by the first through fourth blocks 510 through 540 among the input signals 2 through 32.

The B5 generator 580 generates a bit b5 using the input signals i17 and i25 not used by the first through fourth blocks 510 through 540 among the input signals 2 through 32.

Here, the first through fourth blocks 510 through 540 require the time taken for data to undergo 3 multiplexers, and the LSB selector 550 requires only about the same time for data to undergo 2 multiplexers. Thus, little delay occurs.

The D flip flop 590 latches bits b4 and b5 output from the B4 generator 570 and the B5 generator 580, bits b1 through b6 output from the switching unit 560, and a bit b6 output from the switching unit 210.

As described above, the high-speed encoder according to the present invention can reduce current con-
sumption and delay time by shortening a data path without increasing the area occupied by the high-speed encoder within a chip. Also, power consumption due to clock switching is reduced by converting a zero return signal into a non-zero return signal using latches.

What is claimed is:
1. A high-speed encoder comprising:
 a switching unit for receiving a thermal code of a first predetermined number of bits in series, and outputting a first one of the received bits as a most significant bit and the other bits in parallel; and
 an encoder for dividing the bits received in parallel from the switching unit into a plurality of groups each having a second predetermined number of bits, encoding the bits in each of the plurality of groups into a third predetermined number of bits, selecting the encoded bits of one of the groups based on bits among the received bits not included the groups, and outputting least significant bits together with the most significant bit output from the switching unit.

2. The high-speed encoder of claim 1, wherein the switching unit comprises:
 latches for converting a zero return signal of a received thermal code into a non-zero return signal; and
 a plurality of multiplexers for selectively transmitting signals converted by the latches to the encoder.

3. The high-speed encoder of claim 2, wherein when the input bit received by the first latch is high, the remaining latches output the received signals, and when the input bit received by the first latch is low, the remaining latches output phase-inverted received signals.

4. The high-speed encoder of claim 2, wherein each of the latches comprises:
 a first N-channel MOS transistor for transferring an output signal of a first inverter to a first node in response to an input bit;
 a second N-channel MOS transistor for transferring an output signal of a second inverter to a second node in response to the input bit;
 a third N-channel MOS transistor for transferring the output signal of the second inverter to the second node in response to a complementary input bit;
 a fourth N-channel MOS transistor for transferring the output signal of the first inverter to the first node in response to the complementary input bit;
 a first P-channel MOS transistor having a first terminal which is connected to the first node, a second terminal which is connected to a first output port, and a gate which is connected to a second output port;
 a second P-channel MOS transistor, one end of which is connected to the second node, the other end of which is connected to the first output port, and the gate of which is connected to the second output port;
 a third inverter connected between the first node and the first output port; and
 a fourth inverter connected between the second node and the second output port.

5. The high-speed encoder of claim 1, wherein the encoder comprises:
 a block unit for dividing the received bits into the plurality of groups each having the second predetermined number of bits and encoding the bits in each of the plurality of groups into the third predetermined number of bits;
 a selection unit for selecting the encoded bits of one of the groups by combining the bits not included in the groups among the received bits; and
 a bit generation unit for generating bits other than the encoded bits selected by the selection unit and the first one of the received bits output by the switching unit, by combining the bits not included in the groups.

6. A method of encoding a thermal code output from an analog-to-digital converter, the method comprising:
 dividing a plurality of received bits into a plurality of groups each having a first predetermined number of the received bits and encoding the bits in each of the groups into a second predetermined number of bits;
 selecting one of the groups based on bits among the received bits not included in the groups, and outputting the encoded bits of the selected group; and
 generating bits other than the encoded bits of the selected group, by combining the received bits not included in the groups.

* * * * *