PROCESS FOR THE PREPARATION OF DICHLOROFULVENE

The invention relates to a process for the preparation of formula (I) which process comprises pyrolysing a compound of formula (II) wherein X is chloro or bromo, and to compounds which may be used as intermediates for the manufacture of the compound of formula I and to the preparation of said intermediates.

$$\text{(I)}$$

$$\text{(II)}$$
The present invention relates to a process for the preparation of dichlorofulvene from a substituted cyclopentadiene and to compounds which may be used as intermediates for the manufacture of dichlorofulvene and to the preparation of said intermediates.

Dichlorofulvene is an important intermediate for the preparation of fungicidally active carboxamides as described, for example, in WO 2007/048556.

According to WO 2010/049228, dichlorofulvene can be prepared by reacting a compound of formula II

\[
\text{CCl}_3 \quad (\text{II})
\]

wherein X is chloro or bromo, with a base like alkali metal alcohole, for example sodium tert-butoxide or potassium tert-butoxide or a metal amide like NaNH\textsubscript{2} or lithiumdiisopropylamide in an appropriate solvent to dichlorofulvene of formula I

\[
\text{Cl} \quad \text{CH} \quad \text{Cl} \quad (\text{I}).
\]

However, the prior art process has several disadvantages. The obligatory use of more than 2 equivalents of an expensive base makes the process uneconomical. Further, the use of organic solvents and for good yields also catalysts and solubiliser especially for the alkali metal alcohole bases requires complete separation of said chemicals after the reaction to avoid environmental issues. The isolation of the solvent from the effluent and its water free recycling is cumbersome and technologically difficult.

The aim of the present invention is therefore to provide a novel process for the production of dichlorofulvene that avoids the disadvantages of the known process and makes it possible to prepare dichlorofulvene in high yields and good quality in an economically and ecologically advantageous way.

Thus, according to the present invention, there is provided a process for the preparation of the compound of formula I
which process comprises pyrolysing a compound of formula II

wherein X is chloro or bromo, preferably chloro at temperatures of at least 200 °C.

The pyrolysis temperature should be chosen high enough to allow spontaneous HCl elimination. The pyrolysis reaction preferably takes place in a reactor at temperatures of preferably from 200 to 1000 °C, more preferably from 400 to 800 °C. An example of suitable reactors for the pyrolysis reaction are tubular reactors (pipe heaters) available from e.g. Parr Instrument Company, 211 Fifty Third Street, Moline, Illinois 61265-9984.

In a preferred embodiment of the invention the compound of formula II is conveyed to the reactor in gaseous form.

In another preferred embodiment a carrier gas can be used for the transport of the gaseous compound of formula II into the reactor. The compound of formula II is then conveyed to the reactor under continuous carrier gas flow. Preferably, gaseous hydrogen chloride, an inert gas like nitrogen or an evaporated solvent like xylene is used as carrier gas. Since gaseous hydrogen chloride is a by-product of the pyrolysis reaction, parts of the reactor exhaust stream can be advantageously used as the carrier gas. Alternatively, the compound of formula II or a solution of it can be directly sprayed into the reactor.

Preferably the product is transferred after the pyrolysis reaction from the outlet of the reactor into a cooled trap. The temperature of trap can vary within wide limits. The trap is preferably kept at a temperature from +150 °C to -150°C, in particular at +70°C to -70°C, preferably from +30 to -70°C.
The trap can be filled with inert material which is able to increase the surface area of the trap, in particular with a metal and/or glass packing so that the compound of formula I can condense on the surface of the packing. In another embodiment of the invention the compound of formula I is absorbed into a solvent or co-condensed with a solvent. Preferred solvents are acetone, toluene or xylene and mixtures thereof.

It is also advantageous to use the compound in gaseous form directly into the succeeding stage of the synthesis of fungicidally active compounds as described in WO 2007/048556.

The pressure for performing the reaction can vary within wide limits and can be selected depending on the method of feeding the reactor. Pressures under atmospheric pressure are preferred if the compound of formula II is conveyed into the reactor in gaseous form. Reduced pressure gives a lower condensation temperature which is beneficial in avoiding high liquid temperatures when the product is unstable, which is the case here. Higher pressure brings the benefit of reduced reactor volume. The selection of a beneficial pressure is within the skills of an artisan.

In a preferred embodiment of the invention the reactor for the pyrolysis reaction and the vessel which contains the compound of formula II is kept under reduced pressure, in particular under a pressure from 0.008 to 0.08 Mpa, in particular under 0.004 Mpa to 0.04 Mpa.

The pyrolysis of the compound of formula II to the compound of formula I is a two stage reaction in which in situ intermediates of formula IIie, IIif and IIig are formed which then react to the compound of formula I (X is chloro or bromo):
The intermediates of formulae IIle and IIIlf wherein X is chloro or bromo, are novel and form further aspects of the invention. Depending on the isomer content of the compound of formula II, the compounds of formulae IIle, IIIlf and IIIlg can occur in different isomeric forms, here shown for the compounds of formula III, wherein X is chloro:
Alternatively, the compound of formula III can also be prepared for example by contacting aqueous sodium hydroxide with an organic solution of the compound of formula II. Since the intermediate of formula III is a chemically stable compound, the compound of formula I can also be prepared by pyrolysing a compound of formula III (llle, lllf and llig) which itself has been prepared by a process other than pyrolysis. This process variant also forms a further aspect of this invention. The reaction conditions including the preferred embodiments and temperature ranges are the same as mentioned above for the pyrolysis of the compound of formula II to the compound of formula I.

Preparatory Examples:

Example P1: Preparation of the compound of formula I, variant with carrier gas:

The rig* for this preparatory example was assembled as shown in Figure 1. A 500 ml Parr reactor was used as the trapping vessel and was pre-packed with glass and metal packing material (2:1 ratio) in order to maximise the trapping surface area. Approximately 50 ml of acetone was also charged into the trap, ensuring the level was kept below that of the outlet pipe (see expansion in Figure 1). The trap was submerged in a dry ice/acetone bath and given time to equilibrate at approximately -70°C. The pipe heater was pre-heated to 595°C and the entry pipe (B) was preheated to 250°C through use of an electric rope heater. The compound of formula II (15g, a mixture of isomers llb, lib and lie in a ratio of 66:8:26) was charged to a 25ml 3-necked round-bottomed flask (A) - One neck was connected to the entry pipe to the furnace, the second served as an inlet for the nitrogen flow and the final neck was equipped with a vacuum monitor. The vessel containing the compound of formula lid (containing all isomeric forms) was heated to 135°C with a nitrogen flow rate of approximately 100 ml/min. A vacuum of 0.004 Mpa was then applied and the process was allowed to proceed for 90-120 minutes. Upon completion, as adjudged by observing the loss of compound of formula lid, the trap was disconnected. All connections and components of the trap were rinsed with acetone and the resulting deep orange solution was filtered. Analysis by GC through use of an internal standard revealed a collected yields of 87% (8.7g) compound of formula I and only very minor traces of compound of formula lid.
materials of construction throughout rig: glass and stainless steel.

Example P2: Preparation of the compound of formula i, variant without carrier gas:
Repeating the experiment of example P1 without the nitrogen flow resulted in a collected yield of 80% (8.0 g) of compound of formula i.

Example P3: Preparation of the compound of formula i, variant with continuous liquid feed into the pre-heater:
The compound of formula Ilia (21 g) was delivered to the preheated chamber via a pump at a flow rate of approximately 0.2 ml/min as shown in Figure 2. A vacuum of 0.004 Mpa was then applied and the process was allowed to proceed for 90-120 minutes. Upon completion, the product treated was analysed as for Example P1. Analysis by GC through use of an internal standard revealed collected yields of up to 72% (13.9 g) compound of formula I and 8% recovery (2.1 g) of compound of formula lid.

Example P4: Preparation of compounds of formula Ilia and Illb:
A solution of isomers of formulae Ilia, lib and lie (22 g in a ratio of 66:8:26) in toluene (266 ml) was added to a mixture of 25% NaOH (aq, 133 ml), benzyltriethylammonium chloride (5.67 g, 25 mol%) and pinacol (3 g, 25 mol%) and stirred at 40°C. After 30 minutes, as adjudged by GC analysis, the chemical yield of the compounds of formulae Ilia and Illb versus an internal standard was approximately 90%. At this stage, water (200 ml) was added and the organic layer was separated and dried over magnesium sulfate. Filtration, followed by concentration under vacuum afforded the compounds of formulae Ilia and Illb as a brown oil (70%, 12.8 g). The NMR is depicted as Figure 3. (DCF signifies dichlorofulvene.)
What is claimed is:

1. A process for the preparation of the compound of formula I

 \[
 \text{Cl} - \text{Cl} \quad (I),
 \]

 which process comprises pyrolysing a compound of formula II

 \[
 \text{CCl}_3 - \text{X} \quad (II),
 \]

 wherein \(X \) is chloro or bromo at temperatures of at least 200 °C.

2. A process according to claim 1, wherein the compound of formula II is pyrolysed in a reactor at temperatures of 200 to 1000 °C.

3. A process according to claim 2, wherein the compound of formula II is conveyed to the reactor in gaseous form.

4. A process according to claim 3, wherein the compound of formula II is conveyed to the reactor under continuous carrier gas flow.

5. A process according to claim 4, wherein the carrier gas is selected from nitrogen, gaseous hydrogen chloride and gaseous xylene.

6. A process according to claim 2, wherein the product is transferred after the pyrolysis reaction from the outlet of the reactor into a trap containing an inert solvent.

7. A process according to claim 2, wherein the reactor and the vessel containing the compound of formula II is kept under reduced pressure.

8. A process according to claim 1, wherein \(X \) is chloro.
9. A compound of formula \textit{llle}

\begin{center}
\includegraphics[width=0.2\textwidth]{formula lle.png}
\end{center}

wherein \(X \) is chloro or bromo.

10. A compound of formula \textit{lllf}

\begin{center}
\includegraphics[width=0.2\textwidth]{formula lllf.png}
\end{center}

wherein \(X \) is chloro or bromo.

11. A process for the preparation of the compound of formula \textit{l} which process comprises pyrolysing a compound of formula \textit{llle} according to claim 9.

12. A process for the preparation of the compound of formula \textit{l} which process comprises pyrolysing a compound of formula \textit{lllf} according to claim 10.

13. A process for the preparation of the compound of formula \textit{l} which process comprises pyrolysing a compound of formula \textit{lllg}

\begin{center}
\includegraphics[width=0.2\textwidth]{formula llgg.png}
\end{center}
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07C22/02 C07C17/25 C07C23/08

According to International Patent Classification (IPC) onto both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal , WPI Data, CHEM ABS Data, BEILSTEIN Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Wo 2010/049228 AI (SYNGENTA PARTICI PATIONS AG [CH] ; GRIBKOV DENIS [CH] ; ANTELLENN BJOERN) 6 May 2010 (2010-05-06) cited in the applications examples P2, P7</td>
<td>1-13</td>
</tr>
<tr>
<td>A</td>
<td>US 2 721 160 A (NEWCOMER JACK S) 18 October 1955 (1955-10-18) column 2, line 1 - line 33</td>
<td>9, 10</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C.
X See patent family annex.

* Special categories of cited documents:

A* document defining the general state of the art which is not considered to be of particular relevance

E* earlier document but published on or after the international filing date

L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another invention or other special reason (as specified)

O* document referring to an oral disclosure, use, exhibition or other means

P* document published prior to the international filing date but later than the priority date claimed

* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

* member of the same patent family

Date of the actual completion of the international search: 5 September 2011

Date of mailing of the international search report: 14/09/2011

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer: van Bergen, Marc

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>KREBS JUERG ET AL: "Fulvenes and fulvalenes. 29. 6-Halofulvenes from lithium carbenoids and cyclpentenone", CHIMIA, SCHWEIZERISCHE CHEMISCHE GESELLSCHAFT, CH, vol. 35, no. 2, 1 January 1981 (1981-01-01), pages 55-57, XP001537317, ISSN: 0009-4293, page 56, left-hand column; compounds lc,4c, page 57, right-hand column, last paragraph</td>
<td>1-13</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2009309884 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2739656 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EC SP111004 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2349975 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011207958 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UY 32195 A</td>
</tr>
<tr>
<td>US 2721160 A</td>
<td>18-10-1955</td>
<td>NONE</td>
</tr>
</tbody>
</table>