Abstract:

Title: SEGMENTED SILICONE POLYAMIDE BLOCK COPOLYMERS AND ARTICLES CONTAINING THE SAME

(55) International Patent Classification:
C08G 69/42 (2006.01) C08G 77/42 (2006.01)
C08G 77/26 (2006.01) C08G 77/455 (2006.01)
C08G 77/38 (2006.01) C09J 183/10 (2006.01)
C08G 77/382 (2006.01) C08L 83/10 (2006.01)
C08G 77/388 (2006.01)

(52) International Classification:
C08G 3/08 (2006.01) C08L 1/00 (2006.01)
C08L 5/00 (2006.01) C09J 183/00 (2006.01)

(51) International Application Number:
PCT/US2017/043827

(22) International Filing Date:

(25) Filing Language:
English

(26) Publication Language:
English

(21) International Application Number:
PCT/US2017/043827

(30) Priority Data:

(71) Applicant: 3M INNOVATIVE PROPERTIES COMPANY [US/US]; 3M Center, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US).

(74) Agent: SILVERMAN, Eric E.; et al.; 3M Center, Office of Intellectual Property Counsel, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US).

Declarations under Rule 4.17:
— as to applicant’s entitlement to apply for and be granted a patent (Rule 4.17(i))
— as to the applicant’s entitlement to claim the priority of the earlier application (Rule 4.17(ii))

Published:
— with international search report (Art. 21(3))
SEGMENTED SILICONE POLYAMIDE BLOCK COPOLYMERS AND ARTICLES CONTAINING THE SAME

BACKGROUND

Adhesives, such as pressure sensitive adhesives, are known to be useful as components of articles, such as tapes. In use, many such articles require that the pressure sensitive adhesive be released from contact with another component of the article. Such release can be facilitated by the use of a release layer. In tapes, release layers are sometimes known as low adhesion backsizes. Other such articles require that the pressure sensitive adhesive be released from a removable component that covers the adhesive before application of the adhesive to an adherent. Such removable components are sometimes known as release liners.

Some materials that are useful as release layers are known in the art and are disclosed in, for example, US 2014/0138025. Silicone containing polyamides are disclosed, for example, in EP 925955, WO 2009/129206, and US 791537.

Dimer acids have been described, for example in "Dimer Acids," by Thomas Breuer, in Kirk-Othmer Encyclopedia of Chemical Technology, published by John-Wiley and Sons, and "Polyamide resins (nonnylon types)" by Elvira O. Camara Greiner, Thomas Kalin, Takashi Kumamoto, CEH Marketing Research Report, Aug. 2009, SRI Consulting (Menlo Park, CA).

SUMMARY

A segmented polyamide silicone block copolymer can have the structure of Formula I

In Formula I, each * represents a point of attachment at the end of a repeat unit; each R_i is independently selected from alkylene, alkenylene, areylene, substituted areylene, heteroarylene, or substituted heteroarylene; each R_2 is independently selected from dimer acid residue, alkene, alkylene, areylene, and heteroarylene, with the proviso that at least one R_2 is dimer acid residue; each R_3 is independently selected from covalent bond, alkylene,
substituted alkylene, arylene, and substituted arylene; each R₄ is N-R₆; each R₅ independently
selected from one or more silicone polymers or one or more polyethers, with the proviso that
silicone polymers constitute no less than 60% by weight of all of the R₅ moieties; each R₆ is
independently selected from H, alkyl, and aryl; each y is the independently from 1 to 1000;
each x is independently from 2 to 200; and n is independently from 2 to 1000. The letter "n"
represents the number of linear segments and the letter "m" represents the number of branched
segments. The sum of n and m is 2 to 1000, and m is no greater than (m+n)/10

An article comprising a first major surface can have a release layer on the first major
surface. The release layer can include a segmented polyamide silicone block copolymer of
Formula 1.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a profile view of an article as described herein.

Figure 2 is a profile view of another article as described herein.

Figure 3 is a profile view of still another article as described herein.

Figure 4 is a profile view of yet another article as described herein.

Figure 5 is a view of an article as described herein in the form of a wound tape with a
roller and cutting element.

DETAILED DESCRIPTION

Throughout this disclosure, singular forms such as "a," "an," and "the" are often used for
convenience; however, it should be understood that the singular forms are meant to include
the plural unless the singular alone is explicitly specified or is clearly indicated by the
context.

"Independently," when used in reference to the identify of one or more variable elements,
means that each occurrence of any of the variable elements may have the same or different
identity, within the specified limitations, regardless of the identity of any other occurrence of
the reference element. Thus, if there are two occurrences of element "E," and element E can
be independently selected from identity Y or identity Z, each of the two occurrences of E can
be either Y or Z, in any combination (e.g., YY, YZ, ZY, or ZZ).

"Alkyl" refers to an aliphatic hydrocarbon radical. Many alkyl groups are from C₁ to C₃₀.
Some alkyl groups can be C₁ or greater, such as C₂ or greater, C₄ or greater, C₆ or greater, or
C₈ or greater. Some alkyl groups can be C₂₂ or smaller, C₁₆ or smaller, C₁₂ or smaller, C₈ or
smaller, or C₄ or smaller. Unless otherwise indicated, any alkyl group can independently be linear, branched, cyclic, or a combination thereof (e.g., a cyclic alkyl can also have a linear or branched component.) Exemplary alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl, sec-butyl, isobutyl, 2-ethyl hexyl, /iso-octyl, n-octyl, dodecyl, hexadecyl, behenyl, and the like.

"Alkenyl" refers to a hydrocarbon radical having one or more ethylenically unsaturated group. Exemplary alkenyl radicals are from C₂ to C₃₀. Some alkenyl groups can be C₁ or greater, such as C₂ or greater, C₄ or greater, C₆ or greater, or C₈ or greater. Some alkenyl groups can be C₂₂ or smaller, C₁₆ or smaller, C₁₂ or smaller, C₈ or smaller, or C₄ or smaller.

Unless otherwise indicated, any alkenyl group can independently be linear, branched, cyclic, or a combination thereof (e.g., a cyclic alkenyl can also have a linear or branched component.) Exemplary alkenyl groups include vinyl, allyl, and the like.

"Oxyalkyl" refers to a radical having the formula O-alkyl. The alkyl portion of the oxyalkyl can be any alkyl, such as those discussed above with reference to the definition of the term alkyl. Oxyalkyl can be written using standard prefixes to indicate the number of carbon atoms in the alkyl portion of the oxyalkyl. For example, oxymethyl is an oxyalkyl wherein the alkyl portion has one carbon, oxyethyl is an oxyalkyl wherein the alkyl portion has two carbons, etc. Oxyoctyl is an exemplary oxyalkyl that is often used in the compounds described herein.

"Alkylene" refers to an aliphatic hydrocarbon diradical. Many alkylene diradicals are from C₁ to C₃₀. Alkylene diradicals can be C₁ or greater, C₂ or greater, C₃ or greater, C₄ or greater, C₆ or greater, or C₈ or greater. Alkylene diradicals can be C₂₂ or smaller, C₁₆ or smaller, C₁₂ or smaller, C₁₀ or smaller, or C₈ or smaller. Unless otherwise indicated, any alkylene can be linear, branched or cyclic or a combination thereof (e.g., having both a cyclic component and a linear component.) Exemplary alkylene groups include methylene, ethylene, propyl, isopropylene, /n/-butylene, t-butylene, sec-butylene, iso-butylene, 2-ethylhexylene, iso-octylene, dodecylene, hexadecylene, behenylene, and the like.

"Aryl" refers to a fully conjugated, cyclic, hydrocarbon mono radical. Examples of aryl radicals include phenyl, naphthyl, and the like.

"Substituted aryl" refers to an aryl mono radical wherein one or more of the hydrogen atoms are substituted with a substituent. Typical substituents include alkyl, alkenyl, oxyalkyl, hydroxyl, and the like. Exemplary substituted aryl groups include toluyl, xylyl, and the like.
"Arylene" refers to a fully-conjugated cyclic, hydrocarbon di radical. Examples of arylene radicals include phenylene, naphtylene, and the like. Each of the diradicals in a substituted aryl can be located on the conjugated ring or on the substituent.

"Heteroaryl" refers to a fully conjugated, cyclic radical or polyradical containing at least one atom other than carbon in a ring. Examples of heteroaryl radicals include furanyl, pyridinyl and the like.

"Substituted heteroaryl" refers to a heteroaryl radical wherein one or more of the hydrogen atoms are substituted with a substituent. Typical substituents include alkyl, alkenyl, oxalkyl, hydroxyl, and the like.

"Heteroarylene" refers to a fully conjugated, cyclic diradical containing at least one atom other than carbon in a ring. Examples of heteroarylene radicals include furanylene, pyridinylene, and the like.

"Substituted heteroarylene" refers to a heteroaryl radical wherein one or more of the hydrogen atoms are substituted with a substituent. Each of the diradicals in a substituted aryl can be located on the conjugated ring or on the substituent.

"PDMS" is an acronym for poly(di-methyl siloxane).
"DMF" is an acronym for dimethyl formamide.
"NMP" is an acronym for N-methyl pyrrolidone.
"IPA" is an acronym for iso-propylalcohol (2-methyl ethanol).
"PET" is an acronym for polyethylene terephthalate.

"Dimer acid" refers to the condensation product of two or more molecules of ethylenically unsaturated fatty acid. The condensation is typically by way of a chemical reaction at high temperature. The chemical reaction, which is usually conducted at high temperature, most commonly involves a radical reaction or a cycloaddition reaction, for example, a Diels-Alder reaction, or both, although other chemical reactions may also be implicated. Dimer acids can have ill-defined chemical structures because the chemical reaction that produces the dimer acid often yields more than one chemical entity as a product. Dimer acids are therefore most commonly mixtures of a plurality of condensation products. Commercially available dimer acids are often distilled to varying levels of purity. The dimer acids discussed herein are, in most cases, predominantly di-acids having two carboxylic acid functional groups, and typically at least 90%, at least 95%, at least 96%, at least 98%, or even at least 99% of the molecules in a dimer sample are di-acids. The remaining molecules are typically tri-acids, although very small amounts of higher functionality acids, such as tetra-
acids, may be present in some cases. However, in some cases dimer acids having less than
90% di-acid content, and correspondingly higher tri-acid content, can be used.

"Residue" refers to the remaining portion of a monomer after the monomer is
incorporated into a polymer. For example, when a diacid having the chemical formula
HOC(0)-R-C(0)OH, is incorporated into a polyamide, the acid protons are not present as
part of the polyamide. The residue of the diacid in the polyamide is -OC(0)-R-C(0)O-; in
cases where the -OC(O) groups are explicitly shown, then R can be considered the residue of
the diacid.

"D" is used as an abbreviation for "Dalton," a known unit of molecular weight. "D" may
be preceded by standard prefixes to indicate orders of magnitude, for example, "kD" for
kiloDalton, etc.

"Number average molecular weight" or "M_n" equals ΣNi/ΣNi, wherein Ni is the
number of moles of polymer chain "i" and Mi is the molar mass of the polymer chain "i."
Number average molecular weights as reported in this disclosure are those measured by gel
permeation chromatography (GPC) against narrow polystyrene standards and detected with a
refractive index detector.

"Weight average molecular weight" or "M_w" equals ΣMiNi/ΣMiNi, wherein Ni is the
number of moles of polymer chain "i" and Mi is the molar mass of the polymer chain "i."
Weight average molecular weights as reported in this disclosure are those measured by gel
permeation chromatography (GPC) against narrow polystyrene standards and detected with a
refractive index detector.

Silicone coatings can be useful as release liners because, in many cases, silicones are non-
adherent. In fact, many silicones do not adhere to adhesives such as pressure sensitive
adhesives. This lack of adhesiveness can pose a problem in forming coatings with some
silicones because many silicones can fail to laminate to substrates or can delaminate easily
after being applied to a substrate.

Polyamides can useful as polymer coatings because many polyamides adhere to a wide
variety of substrates. Polyamides can also be very durable. However, polyamides typically
do not provide release properties.

Polyamide and silicone polymers are highly incompatible. Table 1 shows the solubility
of a short chain (5,000 Dalton number average molecular weight) PDMS with two amine
end-groups (designated "PDMS-NH2" in Table 1) and a polyamide made according to
Preparative Example 1. Prior to the work described in the present disclosure, this
incompatibility made it difficult to conceive of, much less produce, materials that can contain both polyamides and silicones.

Table 1

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Solvent</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Soluble?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prep. Ex 1</td>
<td>PDMS-NH₂</td>
<td>DMF</td>
<td>NMP</td>
<td>Toluene</td>
<td>IPA</td>
<td></td>
</tr>
<tr>
<td>0.5 g</td>
<td>4.5 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>0.5 g</td>
<td>4.5 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>0.5 g</td>
<td>4.5 g</td>
<td>3.6 g</td>
<td>0.9 g</td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>0.5 g</td>
<td>4.5 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>0.5 g</td>
<td>4.5 g</td>
<td>3.6 g</td>
<td>0.9 g</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

Even if polyamide and silicone could have been combined, for example in a single material, it would still have been necessary to find a manner of combining so that the final material could, in at least most cases, maintain one or more of the desirable properties of both polyamide and silicones. Combinations of polyamide and silicone in a single material do not necessarily retain any of the desirable properties of either the polyamide or the silicone.

A silicone polymer and polyamide can be combined into a copolymer that is a segmented block copolymer. A segmented block copolymer does not have the same topography as a typical block copolymer. A typical block copolymer of monomers A and B has one or more blocks of polymerized monomer A ("A monomer blocks") and one or more blocks of polymerized monomer B ("B monomer blocks"). For example, an A-B diblock copolymer has the construction Aₓ-b-Bᵧ, and thus contains block having all A monomers and a block of all B monomers. The area where the A monomer block meets the B monomer block typically contains a mixture of A and B monomers.

It can be useful to think of a segmented block copolymer as a block copolymer of block copolymers. Thus, a segmented block copolymer of A and B can have the construction (Aₓ-b-Bᵧ)ᵦ. In this construction, each of the segments of the segmented block copolymer contains both an A monomer block and a B monomer block. Also in this construction, every A monomer block is adjacent to a B monomer block and separated from the other A monomer blocks.
In the silicone polymer and polyamide segmented block copolymers discussed herein, each segment contains a polyamide block and a silicone polymer block. That this topography can result in a polymer that retains the release properties of the silicone as well as the coatability and durability of a polyamide.

The compatibility issues discussed above is addressed by the use of polyamide blocks that containing one or more dimer acid residues. In most cases, the dimer acid residues in the polyamide blocks are at least 50% by weight of all of the diacid residues in the polyamide blocks.

Thus, a segmented polyamide silicone block copolymer can be a polymer of Formula 1.

\[
\begin{align*}
\text{Formula I}
\end{align*}
\]

In Formula 1, the asterisks (*) represent points of attachment for the segments, and indicate that the line terminus near them is not a methyl group.

\(R\) is typically a residue of a diamine component of a polyamide block, and can be independently selected from alkylene, alkenylene, arylene, substituted arylene, heteroarylene, or substituted heteroarylene. Common alkylene groups are \(C_i\) or greater, such as \(C_2\) or greater, \(C_4\) or greater, \(C_6\) or greater, or \(C_8\) or greater. Some alkyl groups can be \(C_{22}\) or smaller, \(C_{16}\) or smaller, \(C_{12}\) or smaller, \(C_8\) or smaller, or \(C_4\) or smaller. Any alkylene group can independently be linear, branched, cyclic, or a combination thereof (e.g., a cyclic alkyl can also have a linear or branched component.) Exemplary alkylene groups include methylene, ethylene, propylene, isopropylene, \(\alpha\)-butylene, \(t\)-butylene, sec-butylene, \(iso\)-butylene, 2-ethyl hexylene, \(iso\)-octylene, \(n\)-octylene, dodecylene, hexadecylene, behenylene, and the like. Common alkenylene groups are from \(C_2\) to \(C_{30}\). Some alkenylene groups can be \(C_1\) or greater, such as \(C_2\) or greater, \(C_4\) or greater, \(C_6\) or greater, or \(C_8\) or greater. Some alkenylene groups can be \(C_{22}\) or smaller, \(C_{16}\) or smaller, \(C_{12}\) or smaller, \(C_8\) or smaller, or \(C_4\) or smaller. Any alkenylene group can independently be linear, branched, cyclic, or a combination thereof (e.g., a cyclic alkenyl can also have a linear or branched component.) Common arylene groups include phenylene and napthylene and the like. Common
substituted arylene groups include bensylene, methyl phenylene, toluylene, and the like. Common heteroarylenes include furan diradical, pyrrolidene diradical, and piperdine diradical. Common substituted arylene include furan diradical substituted with alkyl, pyrrolidine diradical substituted with alkyl, particularly N-alkyl substituted, and piperidine diradical substituted with alkyl. Particular examples of R1 include ethylene, n-propylene, isopropylene, n-butylene, sec-butylene, iso-butylene, and the like. Ethylene is most common.

R2 is typically a residue of the diacid component of a polyamide block, and can be independently selected from dimer acid residue, alkene, alkylene, arylene, and heteroarylene, with the proviso that at least one R2 is a dimer acid residue. More typically, dimer acid residue is at least 50% by weight of R2 based on the total weight of all R2 groups, such as at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90% or even at least 95%, by weight of R2 based on the total weight of all R2 groups.

Suitable dimer acids are commercially available, for example, under the trade designation Pripol 1013 and Pripol 1009 (Croda, Inc. East Yorkshire, UK). In some cases, all of the R2 groups are dimer acid.

In the cases when some of the R2 groups are not dimer acid, suitable alkene groups for use as R2 include those that are C1 or greater, such as C2 or greater, C4 or greater, C6 or greater, or C8 or greater. Some alkylene groups can be C22 or smaller, C16 or smaller, C12 or smaller, C8 or smaller, or C6 or smaller. Many alklenes are C1 to C22. Any alkylene group can independently be linear, branched, cyclic, or a combination thereof (e.g., a cyclic alkyl can also have a linear or branched component.) Exemplary alkylene groups include methylene, ethylene, propylene, isopropylene, «-butylene, t-butylene, sec-butylene, iso-butylene, 2-ethyl hexylene, iso-octylene, n-octylene, dodecylene, hexadecylene, behenylenе, and the like. Some alkenylene groups can be C22 or smaller, C16 or smaller, C12 or smaller, C8 or smaller, or C6 or smaller. Any alkenylene group can independently be linear, branched, cyclic, or a combination thereof (e.g., a cyclic alkenyl can also have a linear or branched component.) Common arylene groups include phenylene and naphthylene and the like. Common substituted arylene groups include bensylene, methyl phenylene, toluylene, and the like. Common heteroarylenes include furan diradical, pyrrolidene diradical, and piperidine diradical. Common substituted arylene include furan diradical substituted with alkyl, pyrrolidine diradical substituted with alkyl, particularly N-alkyl substituted, and piperidine diradical substituted with alkyl.
R_3 is typically a residue of an acid or ester end cap, and can be independently selected from covalent bond, alkenylene, substituted alkylene, arylene, substituted arylene, heteroarylene and substituted heteroarylene. R_3 can be a covalent bond when it is the residue of oxalic acid or an ester or acid chloride thereof. When alkylene, any suitable alkylene can be used.

Typical alkylene groups include those that are C1 or greater, such as C2 or greater, C4 or greater, C6 or greater, or C8 or greater. Some alkylene groups can be C22 or smaller, C16 or smaller, C12 or smaller, C8 or smaller, or C4 or smaller. Any alkylene group can independently be linear, branched, cyclic, or a combination thereof (e.g., a cyclic alkyl can also have a linear or branched component.) Exemplary alkylene groups include methylene, ethylene, propylene, isopropylene, n-butylene, t-butylene, sec-butylene, iso-butylene, 2-ethylhexylene, iso-octylene, n-octylene, dodecylene, hexadecylene, behenylene, and the like.

When R_3 is arylene, phenylene is most common. When R_3 is substituted arylene, alkyl substituents are most common. Typical alkyl substitutes include those that are C1 or greater, such as C2 or greater, or C4 or greater. Alkyl substitutes can be C8 or smaller, or C4 or smaller. When R_3 is substituted arylene or substituted alkylene, another substituent is amine, such as ester amine. For example, R_3 can be xylylene diamine diester or a residue of xylylene diamine diester, such as xylylene diamine in particular the meta isomer thereof.

R_6 typically comes from a nitrogen bound radical in the diamine residue of a polyamide block, and can be independently selected from H and alkyl. Most commonly, at least one R_6 is H. In some cases, all R_6 are H. When R_6 is alkyl, C1 to C12 alkyl, such as methyl, ethyl, propyl, or butyl, are most common. When R_6 is aryl, phenyl is most common. While each R_6 is shown in Formula I as a distinct moiety, it is possible that two R_6 moieties can be chemically bonded to one another to form, in combination with an intervening -N-Ri-N-moiety, a ring or heteroaryl.

Each R_5 is independently selected from one or more silicone polymers or one or more polyethers, with the proviso that one or more silicone polymers constitute no less than 60% by weight of all of the R_5 moieties. In some cases, silicone polymers constitute no less than 65%, 70%, 75%, 80%, 85%, 90%, or even 95% by weight of all of the the R_5 moieties. The silicone polymers are typically one or more siloxanes, such as poly(diorgano siloxanes). The organic radicals in the poly(diorgano siloxanes) can be any suitable organic radicals, but are typically alkyl, aryl, or substituted aryl, and most commonly alkyl or aryl. When alkyl, the organic groups are usually C1 to C22. When aryl, the organic groups are usually phenyl. Other organic groups, such as alkenyl, for example allyl, and oxyalkyl, are possible. Most
commonly, the poly(diorgano siloxane) is PDMS. For example, R₅ can be a poly(diorgano siloxane), such as a PDMS, having a number average molecular weight no less than 1 kD, no less than 2.5 kD, no less than 5 kD, no less than 7.5 kD, no less than 10 kD, no less than 12.5 kD, no less than 15 kD, no less than 20 kD, no less than 25 kD, no less than 30 kD, no less than 40 kD, no less than 50 kD, no less than 75 kD, no less than 100 kD, or even no less than 125 kD. R₅ can also be a poly(diorgano siloxane), such as a PDMS, having a number average molecular weight no greater than 250 kD, no greater than 100 kD, no greater than 75 kD, no greater than 60 kD, no greater than 50 kD, no greater than 40 kD, no greater than 30 kD, no greater than 25 kD, no greater than 20 kD, no greater than 15 kD, no greater than 12.5 kD, no greater than 10 kD, or even no greater than 7.5 kD. Each R₅ can, in some cases, further comprise one or more polyethers. The polyether is not required; in many cases, each R₅ is silicone polymer. Typical polyethers are polyalkylene glycol polymers or copolymers, such as polyethylene oxide, polypropylene oxide, or copolymers of polyethylene oxide and polypropylene oxide. Suitable polyethers having amine terminal groups are commercially available, such as under the trade designation Jeffamine, and in particular Jeffamine ED-900, from Huntsman Corporation (Salt Lake City, UT, USA).

R₄ is typically a residue of an end-group for the silicone polymers, and can be N-Re, wherein R₆ is defined as above.

Each x independently represents the degree of polymerization of a polyamide block.

The value of x is typically 2 - 200, such as 2-100, 2-50, or 10-30.

Each y independently represents the degree of chain extension of a poly(diorgano siloxane) block. The value of y is typically 1 - 1050.

The sum m+n represents the number of segments in the segmented block copolymer. Each n independently represents the number of linear segments Formula 1. Each m independently represents the number of branched segments. Branched segments, if present, are typically due to a small portion of the dimer acid being tri-acid molecules. Typically, the branched segments represent small amounts of the segmented block copolymer, such that m is no more than (m+n)/10. In some cases, m is no more than (m+n)/20, no more than (m+n)/30, no more than (m+n)/50, no more than (n+m)/100, or even no more than (n+m)/200. In many cases, the amount of trimer in the dimer acid is so low that the segmented block copolymer is essentially linear. Regardless of the relative values of m+n, the sum of m+n can be, for example, 10 or greater 25 or greater, 50 or greater, 100 or greater, 200 or greater, 300 or greater, 400 or greater, 500 or greater, 600 or greater, 700 or greater, or
even 800 or greater. In some cases, sum of m+n is 1,000 or less, 900 or less, 800 or less, 700 or less, 600 or less, 500 or less, 300 or less, 200 or less, or even 100 or less. In many cases, sum of m+n is 100-200

The polymer of Formula I can be prepared in steps. In one step, an amine-terminated polyamide of Formula II is prepared. In Formula II, each of Ri, R2, and R6 have the same definition as discussed above with respect to Formula I.

\[
\begin{array}{c}
\text{Formula II} \\
H \left(\frac{N-R_1-N}{R_6} \right) \left(\frac{O}{R_6} \right) \left(\frac{O}{N-R_1-N-H} \right)
\end{array}
\]

The amine terminated polyamide of Formula II can be prepared by any suitable method for preparing amine-terminated polyamides. For example, a diamine can be admixed with a diacid or a synthetic equivalent thereof. Typical synthetic equivalents include diester, such as a dimethyl ester, and diacid halide, typically a diacid chloride. When a dimer acid is used for the diacid, one or both of the carboxylic functional groups can be first converted to a synthetic equivalent. Suitable synthetic equivalents include acid halide, most commonly acid chloride, or ester, most commonly methyl ester. Conversion to acid chloride can be accomplished by any suitable method, such as by reaction with thionyl chloride. Conversion to methyl ester can be accomplished by any suitable method, such as by reaction with methanol. Most commonly, the dimer acid is used as-is without conversion of the carboxylic acid groups to synthetic equivalents.

The reaction between the diacid or synthetic equivalent thereof and diamine can be conducted the presence of an organic liquid, which can be a solvent for the diacid or synthetic equivalent thereof, diamine, or both. When an organic liquid is used, it typically does not include molecules that have a functional group that chemically reacts with the acid or amine functional groups under the reaction conditions. Suitable organic liquids can include tetrahydrofuran, dichloromethane, chloroform, n-methyl pyrrolidone, dimethyl sulfoxide, toluene, xylene, and the like. Mixtures of more than one liquid can also be used. Most commonly, the reaction is conducted neat without any added liquid. The reaction is typically heated, especially when the diacid is in the form of a di carboxylic acid or a diester, such as a methyl ester. Any temperature sufficient to promote the reaction at a suitable rate can be used, but the temperature is often higher than the boiling point of the water or alcohol that is produced in the case of a dicarboxylic acid or diester, respectively. The reaction is often
performed in a vessel fitted with a distillation head or Dean-Stark trap to facilitate constant removal of the water or alcohol from the reaction vessel. Heat is often not needed when the diacid is in the form of a diacid halide, such as a diacid chloride. When heat is used, typical temperatures are from 80° C to 280° C, depending on the specific diamine and diacid that are selected. Other temperatures can also be used in some cases. While the reaction can be conducted under atmospheric conditions, it is often conducted under an atmosphere of inert gas, such as nitrogen or argon, in order to minimize unwanted side reactions. The degree of conversion can also be increased by applying vacuum to the reaction mixture for all or part of the duration of the reaction. Typically, when a vacuum is applied, pressure is reduced to 13 Pa to 13,332 Pa. In many cases, the pressure is reduced for only part of the reaction time, in which cases the pressure is typically reduced towards the end of the reaction. In some cases, the pressure is reduced to about 4,000 Pa for the last two hours of the reaction time.

While it is most common to use one diamine and one diacid to make the amine terminated polyamide of Formula II, it is also possible to use more than one diamine and more than one diacid. Regardless of how many different diamines and diacids are used, the relative amount of diamine and diacid is typically chosen such that the quotient of the number of acid functional groups and the number of amine functional groups is from 0.7 to 1.3. This quotient can be no less than 0.7, no less than 0.8, no less than 0.9, no less than 0.95, or even no less than 0.99. The quotient can be no greater than 1.3, no greater than 1.2, no greater than 1.1, no greater than 1.05, or even no greater than 1.01. A person of ordinary skill in the art can chose the suitable quotient in order to achieve a desired molecular weight; the Carothers equation can be used to relate the quotient chosen to the theoretical molecular weight of the resulting polymer.

Once the reaction has reached a suitable degree of conversion, for example, when sufficient starting materials are consumed or when the polymer average molecular weight is sufficiently high, the reaction can be quenched. In order to assure that the polymer is fully amine terminated, quenching can be effected by adding a large amount of excess diamine to the reaction vessel. Quenching can also limit the molecular weight of the resulting polymer by halting the polymerization reaction.

When the dimer acid used to make the amine-terminated polyamide of Formula II has some tri-acid content, then a branched amine-terminated polyamide will typically be formed in addition to the linear amine-terminated polyamide of Formula II. Typically, the branched and linear amine-terminated polyamides are not separated; rather, the mixture of branched
and linear amine-terminated polyamides are used together to make the segmented block copolymer of Formula I.

In another step, an ester- or acid-terminated silicone polymer of Formula III can be prepared separately from the amine-terminated polyamide of Formula II. The polymer of Formula III can be prepared by any known method of preparing ester- or acid-terminated silicones. In a typical preparation, an amine terminated poly(organosiloxane), such as an amine terminated PDMS, optionally together with an amine-terminated polyether, undergoes a chemical reaction with a diester. Any suitable diester can be used. Typical diesters are oxalates, tartrates, fumarates, adipates, sebacates (i.e., diesters of sebacic acid), and the like. Other diesters are diesters of amine substituted arylene or alkylene, such as xylylene diamine diester. The diester is often a dimethyl ester, but can also be a diethyl ester, dibenzyl ester, or a fluoralkyl ester such as a perfluoroethyl ester or a 2,2,2 trifluoro ethyl ester. Typical diacids that can be used are tartaric acid, fumaric acid, adipic acid, sebacic acid, and the like. It is also possible to prepare the polymer of Formula III by using a diacid chloride, such as a diacid chloride of any of the diacids mentioned above, however, this is not common. The diester or diacid typically does not have any chemically reactive groups that will interfere with the reaction between the amine.

\[
G\left(\begin{array}{c}
\begin{array}{c}
O \\
{-R_3-}
\end{array} \\
\begin{array}{c}
O \\
{-R_4-R_5-}
\end{array}
\end{array}\right)\begin{array}{c}
O \\
{-R_3-}
\end{array}G
\]

Formula III

In Formula III, G is OH or a leaving group, and represents part of the residue from the diacid or diester. Thus, when a diacid is used, G is typically OH, when a methyl ester is used, G is typically oxymethyl, when a perfluoroethyl ester is used, G is typically oxyperfluoroethyl, and the like. Each G can independently be any of the above, or other groups. For example, when a diacid chloride is used, G can be CI. As another example, G can be the residue of other esters, including tosylate, mesylate, besylate, and the like.

The chemical reaction that end-caps the poly(diorgano siloxane) with \(_{-R_3}-(C=0)-G \) groups also can chain-extend the poly(diorgano siloxane), because two or more poly(diorgano siloxane) polymers can covalently bond at their endgroups by way of a reaction between an acid or ester terminated poly(diorgano siloxane) and a poly(diorgano
siloxane) having an amine terminal group. The variable \(y \) in Formulas I and III represents the degree of chain extension of the poly(diorgano siloxane), and is typically from 1 - 1000.

The end capping and chain extending reaction can occur under any conditions suitable for the formation of amides. Typically, the reaction will take place in the presence of an organic liquid, which can be a solvent or dispersant for the poly(diorgano siloxane), such as PDMS. Organic liquids that can be used for this purpose include those that do not contain any functional groups that interfere with the end-capping and chain-extending reaction. Suitable organic liquids can include, for example, benzene, toluene, chloroform, dichloromethane, tetrahydrofuran, and the like. The reaction between the amine terminated poly(diorgano siloxane) and the acid or ester is often endothermic. In such cases, the reaction can occur at increased temperatures. Suitable temperatures can be from 0° C to 200° C, although other temperatures may also be used. The reaction can also be conducted at room temperature in some cases. While the reaction can be conducted under atmospheric conditions, it is more often conducted under an atmosphere of inert gas, such as nitrogen or argon, which can be useful in minimizing unwanted side reactions.

A segmented block copolymer of Formula I can be formed by the reaction of the amine terminated polyamide of Formula II (including any branched product that may have been formed with the amine-terminated polyamide of Formula II) and the chain-extended acid or ester end-capped poly(organo siloxane) of Formula III. The reaction can be conducted under any suitable conditions for reacting an amine with an acid or ester. For example, the reaction is often conducted at room temperature, but may be conducted elevated temperatures, particularly in cases where the reaction is endothermic. The reaction can continue for as long as necessary to reach completion. It is possible to determine whether the reaction is complete by taking an aliquot of the reaction mixture and analyzing the aliquot by FT-IR for the presence of the G moiety. The reaction can be deemed complete when no G moieties are detectable in the reaction mixture by FT-IR. The reaction between the polyamide of Formula II and the chain-extended acid or ester end-capped poly(organo siloxane) or Formula III often takes place in the presence of an organic liquid. Any suitable organic liquid can be used. Suitable organic liquids often include, for example, benzene, toluene, chloroform,
dichloromethane, tetrahydrofuran, or the like, most commonly in combination one or more sterically hindered short-chain alcohols such as isopropanol; \textit{sec}-butanol, or \textit{tert}-butanol. The lower alcohol can be selected to help solubilize the polyamides, without significantly interfering with the chemical reaction.
In some cases, the acid or ester end-capping reaction to form the end-capped poly(organo siloxane) of Formula III and the reaction of the poly(amide) of Formula II with the end-capped poly(organo siloxane) of Formula III can be carried out in the same operation. For example, after the end-capping and chain extension reaction that forms the end-capped poly(organo siloxane) of Formula III is complete, the poly(amide) of Formula II can be added to the reaction vessel, whereupon the reaction to form the segmented block copolymer of Formula I can occur.

The segmented block copolymer of Formula I has a variety of uses. For example, the segmented block copolymer of Formula I can be used as a coating on an article. In many cases, the segmented block copolymer of Formula I can be a release coating.

The article can comprise a substrate having a first major surface and optionally a second major surface. Any suitable substrate can be used. Many substrates are moldable thermoplastics. Most substrates are not foamed and are not porous.

Cellulosic substrates are useful for many applications, and are commonly used for tapes. Common cellulosic substrates include cellulose, paper, regenerated cellulose, wood fibers, and wood flour.

In many cases, the substrate is extrudable. Exemplary extrudable materials include homopolymers, copolymers, and blends of polymers. A variety of additives, such as additives that facilitate extrusion, pigments, dyes, and the like, can be added. Suitable polymers include, but are not limited to, polyolefins such as polypropylene or polyethylene; polystyrene, polycarbonate, polymethyl methacrylate, ethylene vinyl acetate copolymers, acrylate-modified ethylene vinyl acetate polymers, ethylene acrylic acid copolymers, nylon, polyvinylchloride, polyimide, and engineering polymers such as polyketones or polymethylpentanes. Mixtures of such polymers may also be used. In many cases, the substrate does not contain any vinyl-chloride-based polymers.

The substrate can contain a polyolefinic material, which is typically made up of at least 80 wt. % polyolefinic material, including any homopolymers, copolymers, blends, etc. thereof (not including the weight of any additives, if such are present). The substrate often comprises at least 90 wt. %, at least 95 wt. %, or at least 98 wt. %, polyolefinic material. In some cases, the substrate consists essentially of polyolefinic material, noting that this does not preclude the presence of additives such as extrusion aids, plasticizers, antioxidants, colorants, pigments, and the like, which can contain some small level of non-polyolefinic material.
Among other things, the polyolefinic material can be a polyethylenic material, meaning that the polyolefinic material contains at least 80 wt. % of polyethylene polymers (not including the weight of any additives, if present). The polyolefinic material can contain at least 90 wt. %, at least 95 wt. %, or at least 98 wt. % of polyethylene polymers, which are polymers that contain of at least 95 wt. % ethylene units. In many cases, the polyethylene polymers are polyethylene homopolymers. The substrate can consist essentially of polyethylene homopolymers, which does not preclude the presence of additives, such as those discussed above, which may contain some small level of non-polyethylene polymers.

Suitable polyethylene homopolymers include, for example, high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, ultra-low-density polyethylene, and the like. For some applications, polyethylene homopolymers consist essentially of a blend of low density polyethylene (LDPE, i.e. having a density of less than 0.93 g/cc) and high density polyethylene (HDPE, i.e. having a density of at least 0.94 g/cc). For some applications, the LDPE has a density of 0.92 g/cc or less. For some applications, the HDPE has a density of 0.96 or greater.

The LDPE and HDPE can be present at any suitable weight ratio. For example, the LDPE and HDPE may be present at a weight ratio of from about 10:90 LDPE:HDPE to about 90:10 LDPE:HDPE. In some cases, the weight ratio of LDPE to HDPE may be at most about 45:55, at most about 40:60, at most about 35:75, or at most about 30:70. In other cases embodiments, the weight ratio of LDPE to HDPE may be at least about 15:85, at least about 20:80, or at least about 25:75.

For some applications, the substrate comprises polyethylene terephthalate. Such substrates can contain at least 75 wt. %, 80 wt. %, 85 wt. %, 90 wt. %, or 95 wt. % of polyethylene terephthalate based on the total weight of the substrate (not including any primer layers which may be present).

For some applications, the substrate comprises polyimide. Such substrates can contain at least 75 wt. %, 80 wt. %, 85 wt. %, 90 wt. %, or 95 wt. % of polyimide based on the total weight of the substrate (not including any primer layers which may be present).

Suitable substrates can include one or more inorganic fillers, such as one or more of calcium carbonate, kaolin, talc, silica, titanium dioxide, glass fibers, glass bubbles, and the like. Such fillers can be present in any suitable amounts, typically from 0.05 wt. % to 20 wt. % based on the total weight of the substrate.
Depending on the application, one or more other additives, such as antioxidants, extrusion aids, plasticizers, pigments, and dyes, can also be included. Useful additives are known to the person of ordinary skill in the art, and disclosed in, for example, US 2014/0138025 (Bartusiak) and US 6632522 (Hyde).

The segmented block copolymer of Formula I can be a component of an article. For example, the segmented block copolymer of Formula I can be a coating on an article. While the segmented block copolymer of Formula I can be useful in many different coating applications, it can find particular utility as a component of a release layer.

The segmented block copolymer can be coated on an article by any suitable method. Suitable methods include solution coating methods, such as solvent casting, spin coating, knife coating, and drop coating. Other suitable methods include extruding a coating of the segmented block copolymer directly onto a substrate. Still other coating methods may be suitable.

In many cases, the article is an adhesive article, such as a tape. In such cases, the article typically has a first major surface upon which an adhesive, such as a pressure sensitive adhesive, is disposed and a second major surface upon which a release layer comprising the segmented block copolymer of Formula I is disposed.

The first major surface of the substrate, upon which the pressure sensitive adhesive is disposed, can optionally include a first primer layer. The first primer layer, when present, enhances bonding of the pressure sensitive adhesive to the first major surface of the substrate. Suitable first primer layers include chlorinated polyolefins, polyamides, modified acrylic polymers, and modified polymers, such as those disclosed in US 5677376 (Groves), WO 199815601 (Groves), and WO 1999003907 (Groves). The first primer layer can also be a plasma primer layer, whereby a plasma, such as oxygen or nitrogen, is applied to the surface in order to change the surface chemistry by either oxidizing or reducing the surface.

The second major surface of the substrate, upon which the release layer is disposed, can optionally include a second primer layer. The second primer layer, when present, enhances bonding of the release layer to the second major surface. Suitable second primer layers include chlorinated polyolefins, polyamides, modified acrylic polymers, and modified polymers, such as those disclosed in US 5677376 (Groves), WO 199815601 (Groves), and WO 1999003907 (Groves). The second primer layer can also be a plasma primer layer, whereby a plasma, such as oxygen or nitrogen, is applied to the surface in order to change the surface chemistry by either oxidizing or reducing the surface.
In many instances, the second primer layer is not necessary. This is because the segmented block copolymer of Formula I can, in many cases, laminate to a variety of substrates including cellulosic substrates and PET, without the need for an intervening second primer layer.

When used, the first primer layer, second primer layer, or both, can be affixed to the substrate material by any suitable method. Solvent coating is common. Typically, the content of the first or second primer layer is dispersed into a solvent at an appropriate concentration, which is often no greater than 5% solids. The solvent is then coated onto the substrate material followed by drying at ambient temperature or elevated temperature to produce a thin film of first primer layer, second primer layer, or both. Any solvent suitable for solvent coating can be used. Example solvents can include one or more of water, heptane, hexanes, toluene, acetone, ethyl acetate, isopropanol, and the like. Mixtures of more than one solvent can also be used. Another suitable method is exposure to plasma to form a plasma primer layer as discussed herein.

When the first primer layer, second primer layer, or both, is a plasma primer layer, the plasma primer layer can be created by treating the substrate with plasma, as discussed herein.

When the article is an adhesive article, one or more adhesives are typically disposed on the first major surface of the substrate. The one or more adhesives are most often one or more pressure sensitive adhesives.

Any suitable pressure sensitive adhesive can be used. Pressure sensitive adhesives are normally tacky at room temperature and can be adhered to a surface by application of light finger pressure. Thus, pressure sensitive adhesives can be distinguished from other types of adhesives that are not pressure sensitive. A general description of pressure sensitive adhesives can be found in the Encyclopedia of Polymer Science and Engineering, Vol. 13, Wiley-Interscience Publishers (New York, 1988). Additional description of pressure sensitive adhesives can be found in the Encyclopedia of Polymer Science and Technology, Vol. 1, Interscience Publishers (New York, 1964). Any suitable composition, material or ingredient can be used in the one or more pressure sensitive adhesives. Some suitable pressure sensitive adhesive compositions are disclosed in US 2003/0215628 (Ma). Typically, pressure sensitive adhesives include one or more elastomeric polymers, optionally in combination with one or more tackifying resins.

Elastomeric polymers that are useful in the one or more pressure sensitive adhesives include one or more (meth)acrylic polymers, natural or synthetic rubbers, block copolymers...
(typically of (meth)acrylates), silicones, and the like. Suitable materials include, without limitation, polyvinyl ethers, polyisoprenes, butyl rubbers, polyisobutylene, polychloroprenes, butadiene-acrylonitrile polymers, styrene-isoprene, styrene-butylene, and styrene-isoprene-styrene block copolymers, ethylene-propylene-diene polymers, styrene-butadiene polymers, styrene polymers, poly-alpha-olefins, amorphous polyolefins, polysiloxanes, ethylene vinyl acetates, polyurethanes, silicone-urea polymers, silicone-urethane polymers, polyvinylpyrrolidones, and any combination thereof. Examples of suitable (meth)acrylic polymers include polymers made from the polymerization of one or more (meth)acrylates. Commonly used (meth)acrylates include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, methyl acrylate, ethyl acrylate, n-butyl acrylate, iso-octyl acrylate, iso-nonyl acrylate, 2-ethyl-hexyl acrylate, decyl acrylate, dodecyl acrylate, n-butyl acrylate, hexyl acrylate, octadecyl acrylate, octadecyl methacrylate, acrylic acid, methacrylic acid, acrylonitrile, and combinations thereof. Examples of suitable commercially available block copolymers include those available under the trade designation KRATON from Kraton Polymers, Houston, TX. Any of these or other suitable materials may be used in any combination, depending on the performance requirements of the final material.

One or more tackifiers can be used as components of the one or more pressure sensitive adhesives. Suitable tackifiers include wood rosins, hydrogenated rosins, tall oil rosins, terpene resins, phenolic resins, polyaromatics, petroleum-based resins, such as aliphatic C5 olefin-derived resins, and the like. Those of ordinary skill in the art recognize that a variety of tackifiers are available, and the specific choice of whether to use one or more tackifiers, and which one or more tackifiers to use, will depend on the performance requirements of the final product. The one or more tackifiers are not required and are not used in all cases. For example, some pressure sensitive adhesives, such as those which include elastomers that are self-tacky, are often used without added tackifier.

The one or more pressure sensitive adhesives can also contain additives such as plasticizers, fillers, antioxidants, stabilizers, pigments, and the like. Such additives are well known the person of ordinary skill in the art, and are disclosed, for example, in US 6632522 (Hyde).

A variety of suitable substrates with suitable pressure sensitive adhesives disposed on a first major surface thereof are available commercially. Examples are available under the trade designations SCOTCH HIGH PERFORMANCE BOX SEALING TAPE 373, 3M 850...
CLEAR POLYESTER FILM TAPE, and 3M BLUE PLATINUM PAINTER'S TAPE 2098-36D, all of which are available from 3M Company, St. Paul, MN, USA.

Articles as described herein can be in many different forms, but often include a tape. When the article includes a tape, the article can further comprise a roller such that the tape is wound around the roller. In this configuration, the pressure sensitive adhesive is typically in contact with the release layer in order to facilitate easy unwinding of the wound tape.

Depending on the desired application, tapes can be hand-tearable such that they can easily be torn off a roll of tape by hand without the need for scissors, a knife, or another cutting device. Other tapes are not hand-tearable. When such tapes are used, it is often convenient to include a cutting element in the article. The cutting element can facilitate cutting the tape off the roll and into smaller pieces. Rollers and cutting elements for use with tapes are known in the art, and can be selected by a person of ordinary skill depending on the dimensions of the tape, the desired application, and other factors known in the art. A dispenser for the tape can also be included as part of the article. Any type of dispenser can be used, depending on the application. The dispenser can include one or more of a roller, cutting edge, dust cover, and the like.

The Figures depict particular arrangements of articles described herein. Figure 1 shows article 1000 comprising substrate 1100. Substrate 1100, which can be any substrate, for example those described herein, comprises first major surface 1110 and second major surface 1120.

Pressure sensitive adhesive 1200 is disposed on first major surface 1100. Pressure sensitive adhesive 1200 can be any pressure sensitive adhesive, for example those described herein.

Release layer 1300 is disposed on second major surface 1120. Release layer 1300 can be any release layer, for example those described herein, and can contain a segmented block copolymer of Formula I.

Figure 2 shows article 2000, which includes substrate 2100, which can be any substrate, for example those described herein, having first major surface 2110 and second major surface 2120. First major surface 2110 includes primer layer 2111, which can be any primer layer, for example those described herein. In Figure 2, there is no primer layer on second major surface 2120.
Pressure sensitive adhesive 2200 is disposed on first major surface 2110 so as to contact primer layer 2111. Pressure sensitive adhesive 2200 can be any pressure sensitive adhesive, such as those described herein.

Release layer 2300 is disposed on second major surface 2120. Release layer 2300 can be any release layer, such as those described herein, and can contain a segmented block copolymer of Formula 1.

Figure 3 shows article 3000, which includes substrate 3100, which can be any substrate, for example those described herein, having first major surface 3110 and second major surface 3120. Second major surface 3120 includes primer layer 3121, which can be any primer layer, for example those described herein. In Figure 3, there is no primer layer on first major surface 3110.

Pressure sensitive adhesive 3200 is disposed on first major surface 3110. Pressure sensitive adhesive 3200 can be any pressure sensitive adhesive, such as those described herein.

Release layer 3300 is disposed on second major surface 3120 so as to contact primer layer 3121. Release layer 3300 can be any release layer, such as those described herein, and can contain a segmented block copolymer of Formula 1.

Figure 4 shows article 4000, which includes substrate 4100, which can be any substrate, for example those described herein, having first major surface 4110 and second major surface 4120. First major surface 4110 includes first primer layer 4111, and second major surface 4120 includes second primer layer 4121.

Pressure sensitive adhesive 4200 is disposed on first major surface 4110 so as to contact first primer layer 4111. Pressure sensitive adhesive 4200 can be any pressure sensitive adhesive, such as those described herein.

Release layer 4300 is disposed on second major surface 4120 so as to contact second primer layer 4121. Release layer 4300 can be any release layer, such as those described herein, and can contain a segmented block copolymer of Formula 1.

Figure 5 depicts an article 10 comprising tape 5000. Tape 5000 comprises substrate 5100, which can be any substrate, for example those described herein, having first major surface 5110 and second major surface 5120. First major surface 5110 includes first primer layer 5111, which can be any primer layer such as those discussed herein. Second major surface 5120 includes second primer layer 5121, which can be any primer layer such as those discussed herein.
Pressure sensitive adhesive 5200 is disposed on first major surface 5110 so as to contact first primer layer 5111. Pressure sensitive adhesive 5200 can be any pressure sensitive adhesive, such as those described herein.

Release layer 5300 is disposed on second major surface 5210 so as to contact second primer layer 5211. Release layer 5300 can be any release layer, such as those described herein, and can contain a segmented block copolymer of Formula I.

The article 10 also includes roller 20 and dispenser 30. Tape 5000 is wound around roller 20 such that pressure sensitive adhesive 5200 releasably contacts release layer 5300. In this configuration, a user can easily unwind and use tape 5000. Article 10 also includes cutting element 40 to facilitate cutting tape 5000 into desired lengths. In Figure 5, cutting element 40 is attached to roller 20, but this is not required since other configurations of these elements are known to people of ordinary skill in the tape art.

In addition to finding use in a release layer of a tape, the segmented block copolymers described herein can find use in a release liner. A release liner is an article with a first major surface and a second major surface, wherein the first major surface is an adhesive-facing surface. The adhesive-facing surface is designed to be placed on an adhesive, such as a pressure sensitive adhesive. Thus, the release liner can keep the adhesive clean and free of debris before use. The adhesive-facing surface comprises a release layer that is designed to abut an adhesive. In use, the release liner is removed before the adhesive, such as the pressure sensitive, is applied to one or more adherents.

While the Figures, as well as a portion of the description, are directed to tapes, the articles as disclosed herein are not limited to tapes. Instead, tapes are merely one exemplary article that can be coated with a segmented block copolymer of Formula I. For a variety of articles can include the segmented block copolymer of Formula I as a component, or can be coated by the segmented block copolymer of Formula I.

List of Illustrative Embodiments
The following is a list of embodiments that illustrate particular aspects of the disclosure. This list is not intended to be comprehensive because other embodiments are also possible. The list is also not intended to be limiting.

Embodiment 1. A segmented polyamide silicone block copolymer of Formula I
wherein
each * represents a point of attachment at the end of a repeat unit;
each R\textsubscript{i} is independently selected from alkyene, alkenylene, arylene, substituted arylene, heteroarylene, or substituted heteroarylene;
each R\textsubscript{2} is independently selected from dimer acid residue, alkene, alkyene, arylene, and heteroarylene, with the proviso that at least one R\textsubscript{2} is dimer acid residue;
each R\textsubscript{3} is independently selected from covalent bond, alkyene, substituted alkyene, arylene, and substituted arylene;
each R\textsubscript{4} is independently selected N-R\textsubscript{6};
each R\textsubscript{5} is independently selected from one or more silicone polymers and one or more polyethers, with the proviso that at least the one or more silicone polymers constitute at least 60\% by weight of all R\textsubscript{5} moieties;
each R\textsubscript{6} is independently selected from H and alkyl;
each y is the independently from 1 to 1000;
each x is independently from 2 to 200;
n+m is from 2 to 1000; and
m is no more than (m+n)/10.

Embodiment 1a. The segmented polyamide silicone block copolymer of embodiment 1, wherein m is m is no more than (m+n)/20, no more than (m+n)/30, no more than (m+n)/50, or no more than (n+m)/100.

Embodiment 1b. The segmented polyamide silicone block copolymer of any of the preceding embodiments, wherein the silicone polymers constitute no less than 65\%, no less than 70\%, no less than 75\%, no less than 80\%, no less than 85\%, no less than 90\%, or no less than 95\% by weight of all R\textsubscript{5} moieties.

Embodiment 2. A segmented polyamide silicone block copolymer ay of the preceding embodiments, wherein at least 50\% by weight of R\textsubscript{2}, based on the total weight or all R\textsubscript{2} groups, is dimer acid.
Embodiment 3. A segmented polyamide silicone block copolymer of any of the preceding embodiments, wherein at least 55% by weight of R2, based on the total weight or all R2 groups, is dimer acid residue.

Embodiment 4. A segmented polyamide silicone block copolymer of any of the preceding embodiments, wherein at least 60% by weight of R2, based on the total weight or all R2 groups, is dimer acid residue.

Embodiment 5. A segmented polyamide silicone block copolymer of any of the preceding embodiments, wherein at least 65% by weight of R2, based on the total weight or all R2 groups, is dimer acid residue.

Embodiment 6. A segmented polyamide silicone block copolymer of any of the preceding embodiments, wherein at least 70% by weight of R2, based on the total weight or all R2 groups, is dimer acid residue.

Embodiment 7. A segmented polyamide silicone block copolymer of any of the preceding embodiments, wherein at least 75% by weight of R2, based on the total weight or all R2 groups, is dimer acid residue.

Embodiment 8. A segmented polyamide silicone block copolymer of any of the preceding embodiments, wherein at least 80% by weight of R2, based on the total weight or all R2 groups, is dimer acid residue.

Embodiment 9. A segmented polyamide silicone block copolymer of any of the preceding embodiments, wherein at least 90% by weight of R2, based on the total weight or all R2 groups, is dimer acid residue.

Embodiment 10. A segmented polyamide silicone block copolymer of any of the preceding embodiments, wherein at least 95% by weight of R2, based on the total weight or all R2 groups, is dimer acid residue.

Embodiment 11. A segmented polyamide silicone block copolymer of any of the preceding embodiments, wherein each R2 is a dimer acid residue.

Embodiment 12. A segmented polyamide silicone block copolymer of any of embodiments 1-10, wherein at least one R2 is selected from the group consisting of alkene, alkyne, arylene, substituted arylene, heteroarylene, and substituted heteroarylene.

Embodiment 13. A segmented polyamide silicone block copolymer of embodiment 12, wherein at least one R2 is alkylene.

Embodiment 14. A segmented polyamide silicone block copolymer of embodiment 13, wherein the alkyne is C1 to C22 alkyne.
Embodiment 15. A segmented polyamide silicone block copolymer of any of embodiments 1-10 or 12-14, wherein at least one R2 is alkylene.

Embodiment 16. A segmented polyamide silicone block copolymer of embodiment 15, wherein the alkylene is C2 to C22 alkylene.

Embodiment 17. A segmented polyamide silicone block copolymer of any of embodiments 1-10 or 12-16, wherein at least one R2 is arylene or substituted arylene.

Embodiment 18. A segmented polyamide silicone block copolymer of embodiment 17, wherein the arylene or substituted arylene is phenylene or substituted phenylene.

Embodiment 19. A segmented polyamide silicone block copolymer of any of embodiments 1-10 or 12-18, wherein at least one R2 is heteroarylene or substituted heteroarylene.

Embodiment 20. A segmented polyamide silicone block copolymer of any of the preceding embodiments, wherein at least one R3 is selected from the group consisting of arylene, substituted arylene, heteroarylene, and substituted heteroarylene.

Embodiment 21. A segmented block segmented polyamide silicone block copolymer of any of the preceding embodiments, wherein at least one R3 alkylene.

Embodiment 22. A segmented block copolymer of any of the preceding embodiments, wherein each R5 comprises one or more silicone polymers.

Embodiment 23. A segmented block copolymer of embodiment 22, wherein the one or more silicone polymers are independently selected from poly(diorgano siloxanes).

Embodiment 24. A segmented block copolymer of embodiment 23, wherein the organic radicals of the poly(diorgano siloxanes) are independently selected from alkyl, aryl, and substituted aryl.

Embodiment 25. A segmented block copolymer of embodiment 24, wherein the organic radicals of the poly(diorgano siloxanes) are independently selected from alkyl and aryl.

Embodiment 26. A segmented block copolymer of embodiment 25, wherein the organic radicals of the poly(diorgano siloxanes) are alkyl.

Embodiment 27. A segmented block copolymer of embodiment 26, wherein the alkyl is Ci to C22 alkyl.

Embodiment 28. A segmented block copolymer of embodiment 27, wherein the poly(diorgano siloxane) is PDMS.

Embodiment 29. A segmented block copolymer of any of the preceding embodiments, wherein at least one R5 comprises a polyether.
Embodiment 30. The segmented block copolymer of embodiment 29, wherein the polyether is a poly(alkylene glycol).

Embodiment 31. The segmented block copolymer of embodiment 30, wherein the polyether is a poly(ethylene glycol), poly(propylene glycol), or a copolymer of poly(ethylene glycol) and poly(propylene glycol).

Embodiment 32. The segmented block copolymer of any of embodiments 1-28, wherein each R₅ independently consists essentially of one or more silicone polymers.

Embodiment 33. The segmented block copolymer of any of the preceding embodiments, wherein the silicone polymer has a number average molecular weight no greater than 1 kD.

Embodiment 34. The segmented block copolymer of any of the preceding embodiments, wherein the silicone polymer has a number average molecular weight no less than 2.5 kD.

Embodiment 35. The segmented block copolymer of any of the preceding embodiments, wherein the silicone polymer has a number average molecular weight no less than 5 kD.

Embodiment 36. The segmented block copolymer of any of the preceding embodiments, wherein the silicone polymer has a number average molecular weight no less than 7.5 kD.

Embodiment 37. The segmented block copolymer of any of the preceding embodiments, wherein the silicone polymer has a number average molecular weight no less than 10 kD.

Embodiment 38. The segmented block copolymer of any of the preceding embodiments, wherein the silicone polymer has a number average molecular weight no less than 12.5 kD.

Embodiment 39. The segmented block copolymer of any of the preceding embodiments, wherein the silicone polymer has a number average molecular weight no less than 15 kD.

Embodiment 40. The segmented block copolymer of any of the preceding embodiments, wherein the silicone polymer has a number average molecular weight no less than 20 kD.

Embodiment 41. The segmented block copolymer of any of the preceding embodiments, wherein the silicone polymer has a number average molecular weight no less than 25 kD.

Embodiment 42. The segmented block copolymer of any of the preceding embodiments, wherein the silicone polymer has a number average molecular weight no less than 30 kD.

Embodiment 43. The segmented block copolymer of any of the preceding embodiments, wherein the silicone polymer has a number average molecular weight no less than 40 kD.

Embodiment 44. The segmented block copolymer of any of the preceding embodiments, wherein the silicone polymer has a number average molecular weight no less than 50 kD.

Embodiment 45. The segmented block copolymer of any of the preceding embodiments, wherein the silicone polymer has a number average molecular weight no greater than 100 kD.
Embodiment 46. The segmented block copolymer of any of the preceding embodiments, wherein the silicone polymer has a number average molecular weight no greater than 75 kD.

Embodiment 47. The segmented block copolymer of any of the preceding embodiments, wherein the silicone polymer has a number average molecular weight no greater than 60 kD.

Embodiment 48. The segmented block copolymer of any of the preceding embodiments, wherein the silicone polymer has a number average molecular weight no greater than 50 kD.

Embodiment 49. The segmented block copolymer of any of the preceding embodiments, wherein the silicone polymer has a number average molecular weight no greater than 40 kD.

Embodiment 50. The segmented block copolymer of any of the preceding embodiments, wherein the silicone polymer has a number average molecular weight no greater than 30 kD.

Embodiment 51. The segmented block copolymer of any of the preceding embodiments, wherein the silicone polymer has a number average molecular weight no greater than 25 kD.

Embodiment 52. The segmented block copolymer of any of the preceding embodiments, wherein the silicone polymer has a number average molecular weight no greater than 20 kD.

Embodiment 53. The segmented block copolymer of any of the preceding embodiments, wherein the silicone polymer has a number average molecular weight no greater than 15 kD.

Embodiment 54. The segmented block copolymer of any of the preceding embodiments, wherein the silicone polymer has a number average molecular weight no greater than 12.5 kD.

Embodiment 55. The segmented block copolymer of any of the preceding embodiments, wherein the silicone polymer has a number average molecular weight no greater than 10 kD.

Embodiment 56. The segmented block copolymer of any of the preceding embodiments, wherein the silicone polymer has a number average molecular weight no greater than 7.5 kD.

Embodiment 57. The segmented block copolymer of any of the preceding embodiments, wherein \(R_6 \) is selected from H and alkyl.

Embodiment 58. The segmented block copolymer of embodiment 57, wherein at least one \(R_e \) is H.

Embodiment 59. The segmented block copolymer of any of embodiments 57-58, wherein at least one \(R_6 \) is alkyl.

Embodiment 60. The segmented block copolymer of embodiment 59, wherein the alkyl is C\(_i\) to C\(_{12}\) alkyl.

Embodiment 61. The segmented block copolymer of embodiment 60, wherein the alkyl is methyl.
Embodiment 62. The segmented block copolymer of embodiment 58, wherein each \(R_6 \) is H.

Embodiment 63. The segmented block copolymer of any of embodiments 57 or 60-62, wherein each \(R_6 \) is alkyl.

Embodiment 64. The segmented block copolymer of any of the preceding embodiments, wherein \(x \) is 2 - 50.

Embodiment 65. The segmented block copolymer of any of the preceding embodiments, wherein \(x \) is 10-30.

Embodiment 66. The segmented block copolymer of any of the preceding embodiments, wherein \(y \) is 1-1000.

Embodiment 67. The segmented block copolymer of any of the preceding embodiments, wherein \(y \) is 2-500.

Embodiment 68. The segmented block copolymer of any of the preceding embodiments, wherein \(n \) is 2-500

Embodiment 69. The segmented block copolymer of any of the preceding embodiments, wherein \(n \) is 100-200.

Embodiment 70. An article comprising a substrate having at least a first major surface and a release layer comprising a segmented block copolymer of any of the preceding embodiments on the first major surface.

Embodiment 71. The article of embodiment 70, wherein the substrate is a tape backing.

Embodiment 72. The article of any of embodiments 70-71, wherein the substrate comprises at least one cellulosic material.

Embodiment 73. The article of any of embodiments 70-71, wherein the substrate comprises at least one non-cellulosic material.

Embodiment 74. The article of any of embodiments 70-73, wherein the article further comprises a second major surface and an adhesive disposed on the second major surface.

Embodiment 75. The article of embodiment 74, wherein the adhesive is a pressure sensitive adhesive.

Embodiment 76. The article of embodiment 75, wherein the pressure sensitive adhesive comprises at least one of (meth)acrylic polymers, natural rubbers, synthetic rubbers, and silicone elastomers.

Embodiment 77. The article of embodiment 75 or 76, wherein the pressure sensitive adhesive comprises a tackifier.
Embodiment 78. The article of any of embodiments 70-77, wherein the article is a repositionable article.

Embodiment 79. The article of any of embodiments 74-78, wherein the pressure sensitive adhesive is a repositionable adhesive.

Embodiment 80. The article of any of embodiments 70 or 72-77, wherein the article is a release liner.

EXAMPLES

All materials are commercially available, for example from Sigma-Aldrich Chemical Company, Milwaukee, WI, USA, or known to those skilled in the art, unless otherwise stated or apparent.

The following abbreviations are used in this section: mL=milliliters, g=grams, kg=kilograms, lb=pounds, cm=centimeters, mm=millimeters, µm=micrometers, mil=thousandths of an inch, wt% = percent by weight, min=minutes, h=hours, d=days, N=newtons, NMR=nuclear magnetic resonance, ppm=parts per million, eq=equivalent.

Abbreviations for materials used in this section, as well as descriptions of the materials, are provided in Table 2.

Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethyl adipate</td>
<td>Available from Sigma Aldrich, St. Louis, MO, USA</td>
</tr>
<tr>
<td>Hexamethylene diamine</td>
<td>Available from Alfa Aesar, Ward Hill, MA, USA</td>
</tr>
<tr>
<td>DFA</td>
<td>Distilled dimer acid, available under the trade designation PRIPOL 1013 from Croda, Inc.</td>
</tr>
<tr>
<td>Ethylene Diamine</td>
<td>Available from GFS Chemicals, Powell, OH, USA.</td>
</tr>
<tr>
<td>PDMS-NH2 5K</td>
<td>A poly(di-methyl siloxane) diamine of the following formula, with a number average molecular weight of about 5,000 g/mole can be prepared according to the procedure described in Example 2 of U.S. Pat. No. 5,214,119</td>
</tr>
</tbody>
</table>

\[
\text{H}_2\text{N} - \text{Si} - \text{O} - \text{Si} - \text{O} - \text{Si} - \text{NH}_2
\]
XDATFEE

m-Xylyl-bis-oxamic acid trifluoroethyl ester, which can be prepared according to the procedure described in Example 4 of U.S. Patent No. 8,765,881.

DMF

Dimethyl formamide, available from VWR, Radnor, PA, USA

NMP

N-Methyl pyrrolidone, available from Sigma Aldrich

tert-Butanol

Available from VWR

Toluene

Available from VWR

IPA

2-pro-Propyl alcohol, available from VWR

Ethyl acetate

Available from VWR

PET

Mitsubishi 3SAB polyethylene terephthalate film available from Mitsubishi Polyester Film, Inc., Greer, SC, USA

SW PROMAR

PROMAR 200 ZERO VOC Interior Latex Paint, available from The Sherwin-Williams Company, Cleveland, OH, USA.

SW EMERALD

EMERALD interior/exterior latex paint, available from The Sherwin-Williams Company.

VALSPAR HD

SIGNATURE interior latex paint available from The Valspar Corporation, Minneapolis, MN, USA

BEHR PPU

PREMIUM PLUS ULTRA interior latex paint, available from Behr Process Corporation, Santa Ana, CA, USA.

Characterization Methods

Peel Force and Readhesion

A 5% solids polymer solution in 90:10 toluene:IPA (by weight) of each example tested for peel force was coated onto 2 mil (508 µm) PET using a #3 Meyer wire wound rod. The coated substrates were dried in a 65 °C oven for 15 min and conditioned for 1 h at 22 °C and 50% relative humidity (CT/CH). Strips (2.54 cm by 15.24 cm) of test tape (SCOTCH High Performance Box Sealing Tape 373 and 3M 850 Clear Polyester Film Tape, both available from 3M Company, St. Paul, MN, USA) were adhered to the above coated sheets using a 2 lb (0.91 kg) roller. The resulting composites were aged for 3 d at CT/CH and 7 d at 50 °C. A 2.54 cm by 20.32 cm strip of each composite (in triplicate) was laminated to the stage of an Instrumentors, Inc. slip/peel tester (Model 3M90) with double coated tape. The peel force...
required to remove the test tape at a 180 degree angle and 228.6 cm/min peel rate was then measured and reported as peel force in units of N/10mm. To measure readhesion, the freshly peeled test tape was re-adhered to a clean glass plate using a 2 lb (0.91 kg) roller. The force required to remove the tape at a 180 degree angle and 228.6 cm/min was then measured and reported as readhesion to glass in units of N/10mm. The results of peel force and readhesion are provided in Table 3, below.

Paintability

A 5% solids polymer solution in 90:10 toluene:IPA (by weight) of each example tested for paintability was coated onto 2 mil PET using a #3 Meyer wire wound rod. Each of the liquid paints listed in Table 4 was brushed sparingly onto PET coated with examples as presented in Table 4. The painted samples were allowed to dry for at least 48 h under ambient conditions. After drying, a 4.5 kg soft-surface roller was used to adhere an aggressive masking tape (available under the trade designation "SCOTCH Masking Tape for Hard-to-Stick Surfaces 2060" from 3M Company) onto the top of the painted samples. The masking tape was allowed to remain attached to the dried paint for a dwell time of at least approximately 5 min. The masking tape was then manually peeled from each painted sample at a peel angle of approximately 135 degrees and the amount of dried paint that remained anchored on the coated sample was visually inspected. If approximately 90% of the paint remained on the coated sample, a result of "Pass" was recorded in Table 4. Otherwise, a "Fail" rating was recorded.

Preparative Example 1 (PE-1)

To a 1000 mL, 3 neck, round bottom flask fitted with overhead stirring, thermocouple, and a distillation head, was added 152.4 g dimethyl adipate and 203.4 g hexamethylene diamine. The reaction mixture was heated to 180 °C overnight with stirring under nitrogen. During this time, approximately 50 g of methanol by-product was collected in the receiver. The mixture was then cooled and collected as a waxy mass on cooling. This product was then dispersed into toluene at 30 wt% and stirred overnight. The toluene suspension was then filtered and the residue was further washed with copious amounts of toluene. The washed residue was air dried overnight and collected.

\[M_w \text{ of the collected residue was calculated as } M_n \times 2; M_n \text{ was determined by integration of proton NMR peaks.} \] A sample of PE-1 was dissolved to a concentration of approximately
1 wt% in a 83:17 mixture, by weight, of hexafluoroisopropanol, available from Alfa Aesar, and deuterated methanol, available from Cambridge Isotope Laboratories, Tewksbury, MA, USA. The solution was boiled gently to facilitate fast dissolution. Proton NMR spectra were collected on a Bruker 300 Ultrashield NMR instrument, available from Bruker, Billerica, MA, USA, and integrated using ACD/SpecManager NMR software, version 12.00, available from Advanced Chemistry Development, Inc., Toronto, CA. The methylene protons on the carbon alpha to the amine end groups (2.85 ppm, 4 per molecule) were integrated against the signals from the other methylene carbons (1.34, 1.47, 1.57, 2.17, 3.15 ppm). Based on the integration and formula IV below, assuming that for every 4 protons on carbons alpha to amine end groups in the structure presented in Formula IV there are 8 + (n * 20) methylene protons not alpha to amine end groups, Mn of PE-1 was determined to be 260 g/eq and Mw of PE-1 was determined to be 520 ± 10 g/mol.

![Formula IV](image-url)

Preparative Example 2 (PE-2)

To a 1000 mL, resin flask fitted with overhead stirring, thermocouple, and a distillation head, was added 762.4 g of DFA and 85.8 g of ethylene diamine. The reaction mixture was heated to 225 °C overnight. During this time, 49.5 g of water by-product was collected in the receiver. The next day, a 25 mmHg (3.3 kPa) vacuum was applied to the mixture at 225 °C for 2 h. The vacuum was broken with nitrogen gas and the contents of the flask were emptied on to a silicone release paper, formerly available under the trade designation "311A 42# Stick-Not, Grade 8354," from Release International, Iowa City, IA, USA, and allowed to cool to ambient temperature.

Example 1 (EX-1)

To a 1000 mL, 3 neck, round-bottom flask fitted with overhead stirring, nitrogen inlet, and an overhead condenser, was added 30.0 g PDMS-NH2 5K, 3.6 g XDATFEE, and 204 g ethyl acetate dried over 4A molecular sieves. The mixture was refluxed overnight. The batch was cooled below reflux and a solution consisting of 26.4 g amine terminated
polyamide prepared as described in PE-2, 102 g toluene, and 34 g \textit{tert}-butanol was added. The batch was heated again until a reflux was established. The mixture was stirred overnight. The following morning, the mixture was allowed to cool and was collected.

Example 2 (EX-2)

To a 2000 mL, 3 neck, round-bottom flask fitted with overhead stirring, nitrogen inlet, and an overhead condenser, was added 256 g PDMS-NH2 5K, 23.1 g XDATFEE, 1,024 g toluene, and 256 g \textit{tert}-butanol. This mixture was then heated until a reflux was established and stirred overnight. The mixture was cooled below reflux and 40.9 g of amine terminated polyamide prepared as described in PE-2 was added. The mixture was heated until a reflux was established. The mixture was stirred overnight. The following morning, the mixture was allowed to cool and was collected.

Table 3. Peel force and readhesion results

<table>
<thead>
<tr>
<th>Example</th>
<th>Tape</th>
<th>Peel Force (N/10mm)</th>
<th>Readhesion (N/10mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3 days</td>
<td>7 days</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CT/CH 50 °C</td>
<td>CT/CH 50 °C</td>
</tr>
<tr>
<td>EX-1</td>
<td>850</td>
<td>2.4</td>
<td>2.7</td>
</tr>
<tr>
<td>EX-1</td>
<td>373</td>
<td>2.0</td>
<td>2.7</td>
</tr>
<tr>
<td>EX-2</td>
<td>850</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>EX-2</td>
<td>373</td>
<td>0.2</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Table 4. Paint adhesion testing results.

<table>
<thead>
<tr>
<th>Example</th>
<th>SW PROMAR ZERO VOC</th>
<th>SW EMERALD</th>
<th>VALSPAR HD SIGNATURE</th>
<th>BEHR PPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX-1</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>EX-2</td>
<td>Pass</td>
<td>Fail</td>
<td>Pass</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Various modifications and alterations of this disclosure may be made by those skilled in the art without departing from the scope and spirit of the disclosure, and it should be
understood that this invention is not to be unduly limited to the illustrative embodiments set forth herein.
What is claimed is:

1. A segmented polyamide silicone block copolymer of Formula I

```
\[ \begin{align*}
N-R_i & \overset{\circ}{R}_2 \overset{\circ}{R}_3 \overset{\circ}{R}_4 \overset{\circ}{R}_5 \\
& \overset{\circ}{R}_6 \\
\end{align*} \]
```

wherein

- each * represents a point of attachment at the end of a repeat unit;
- each \(R_i \) is independently selected from alkylene, alkenylene, arylene, substituted arylene, heteroarylene, or substituted heteroarylene;
- each \(R_2 \) is independently selected from dimer acid residue, alkene, alkenylene, arylene, and heteroarylene, with the proviso that at least one \(R_2 \) is dimer acid residue;
- each \(R_3 \) is independently selected from covalent bond, alkylene, substituted alkylene, arylene, and substituted arylene;
- each \(R_4 \) is independently selected from \(\text{N-R}_6 \);
- each \(R_5 \) is independently selected from one or more silicone polymers and one or more polyethers, with the proviso that the one or more silicone polymers constitute at least 60\% by weight of all \(R_5 \) moieties;
- each \(R_6 \) is independently selected from \(\text{H} \) and alkyl;
- each \(y \) is the independently from 1 to 1000;
- each \(x \) is independently from 2 to 200;
- \(n+m \) is from 2 to 1000; and
- \(m \) is no more than \(n/10 \).

2. A segmented polyamide silicone block copolymer of embodiment 1, wherein at least 50\% by weight of \(R_2 \), based on the total weight or all \(R_2 \) groups, is dimer acid.

3. The segmented block copolymer of any of the preceding claims, wherein each \(R_5 \) comprises one or more silicone polymers that are independently selected from poly(diorgano siloxanes).
4. The segmented block copolymer of any of the preceding claims, wherein the poly(diorgano siloxane) is PDMS.

5. The segmented block copolymer of any of the preceding claims, wherein the silicone polymer has a number average molecular weight no less than 1 kD.

6. The segmented block copolymer of any of the preceding claims, wherein the silicone polymer has a number average molecular weight of no greater than 100 kD.

7. The segmented block copolymer of any of the preceding claims, wherein at least one R_3 comprises one or more polyethers.

8. The segmented block copolymer of claim 7, wherein the one or more polyethers are selected from poly(ethylene glycol), poly(propylene glycol), and copolymers of poly(ethylene glycol) and poly(propylene glycol).

9. The segmented block copolymer of any of the preceding claims, wherein at least one R_3 is alkylene substituted with one or more amines or arylene substituted with one or more amines.

10. The segmented block copolymer of claim 9, wherein the arylene substituted with one or more amines is w-xylylene diamine.

11. An article comprising a substrate having at least a first major surface and a release layer comprising a segmented block copolymer of any of the preceding claims on the first major surface.

12. An article of claim 11, wherein the article further comprises a second major surface and an adhesive disposed on the second major surface.

13. An article of claim 12, wherein the adhesive is a pressure sensitive adhesive.
14. The article of any of claims 11-13, wherein the article is a tape.

15. The article of any of claims 11-13, wherein the article is a release liner.
INTERNATIONAL SEARCH REPORT

International application No
PCT/US2017/043827

A. CLASSIFICATION OF SUBJECT MATTER
INV. C08G69/42 C08G77/26 C08G77/38 C08G77/382 C08G77/388
C08G77/42 C08G77/455 C09J183/10 C08L83/10
ADD.

According to International Patent Classification (IPC) and both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C08G C09J C08L C08J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

X Further documents are listed in the continuation of Box C.

X See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier publication or patent that was published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"Z" document member of the same patent family

Date of the actual completion of the international search
2 November 2017

Date of mailing of the international search report
14/11/2017

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer
Denis, Cecile
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2008318057 A1</td>
<td>25-12-2008</td>
<td>CN 101687997 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2162485 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5199346 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010530919 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20100050467 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 200906917 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008318057 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010163809 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011123798 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 20111263798 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012175566 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013225768 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Al 25-12-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101687998 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2162485 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5199346 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010530919 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20100050467 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 200906917 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008318057 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010163809 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011123798 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 20111263798 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012175566 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013225768 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Al 25-12-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101687997 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2162485 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5199346 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010530919 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20100050467 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 200906917 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008318057 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010163809 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011123798 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 20111263798 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012175566 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013225768 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Al 25-12-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101687997 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2162485 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5199346 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010530919 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20100050467 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 200906917 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008318057 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010163809 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011123798 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 20111263798 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012175566 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013225768 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Al 25-12-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101687997 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2162485 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5199346 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010530919 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20100050467 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 200906917 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008318057 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010163809 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011123798 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 20111263798 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012175566 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013225768 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Al 25-12-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101687997 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2162485 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5199346 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010530919 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20100050467 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 200906917 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008318057 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010163809 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011123798 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 20111263798 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012175566 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013225768 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Al 25-12-2008</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2008)