(57) Abrégé/Abstract:
A process variable transmitter (12) for use in an industrial process control or monitoring system includes a transmitter housing and a process variable sensor (72) having a sensor output related to a process variable. An accelerometer (80) is coupled to the
(57) Abstract (continued):
transmitter and provides an accelerometer output related to acceleration. Diagnostic circuitry (82) provides a diagnostic output as a function of the sensor output and the accelerometer output.
Title: PROCESS VARIABLE TRANSMITTER WITH ACCELERATION SENSOR

Abstract: A process variable transmitter (12) for use in an industrial process control or monitoring system includes a transmitter housing and a process variable sensor (72) having a sensor output related to a process variable. An accelerometer (80) is coupled to the transmitter and provides an accelerometer output related to acceleration. Diagnostic circuitry (82) provides a diagnostic output as a function of the sensor output and the accelerometer output.
Published:
— with international search report

before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
-1-

PROCESS VARIABLE TRANSMITTER WITH
ACCELERATION SENSOR

BACKGROUND OF THE INVENTION

The present invention relates to process variable transmitters. More specifically, the present invention relates to transmitters of the type which are used to control or monitor industrial processes.

Industrial processes are used in industrial manufacturing. There are various types of field devices which are used to monitor the process. For example, process variables such as pressure, flow, temperature and others can be sensed. In addition to using this information for monitoring the process, the process variables can be used to control the process.

Process variables are sensed using field devices known generally as process variable transmitters. In many instances, it is desirable to diagnose operation of the industrial process and identify the condition of the process and associated equipment. For example, diagnostics can be used to identify a failure in the industrial process, for example, so that failed components can be replaced. Other uses of diagnostics include identifying impending failure prior to its occurrence. This allows the component to be replaced or repaired at a desired time without necessarily shutting down the process.

Sensing vibrations is one method used for diagnosing process control devices. For example, a vibration sensor, such as an accelerometer, can be placed directly on a control device and can be used to sense vibration noise signals generated by the device. For example, the noise generated by a pump motor can be monitored. Vibrations are isolated and evaluated by identifying those which exceed an amplitude threshold or which have an abnormal frequency. This can be indicative of an actual or impending failure. Specific examples include sensors placed on a pump or a motor housing, discharge valves, or flanges associated with the control device. Another known diagnostic

SUMMARY

A process variable transmitter for use in an industrial process control or monitoring system includes a transmitter housing and a process variable sensor having a sensor output related to a process variable. An accelerometer is associated with the transmitter, such as for example, the transmitter housing, process variable sensor, or other component and provides an accelerometer output related to acceleration. Diagnostic circuitry provides a diagnostic output as a function of the sensor output and the accelerometer output.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a diagram of an industrial process including a process transmitter coupled to process piping.

Figure 2 is a block diagram of circuitry and components in the process transmitter of Figure 1.

Figure 3 is a simplified block diagram of a process device for use in implementing the present invention.

Figure 4 is a block diagram showing simplified steps in accordance with one configuration of the present invention.
DETAILED DESCRIPTION

The present invention provides a diagnostic technique for detecting a failure, or predicting an impending failure or reduction in performance of a process device or a process component prior to the occurrence of the failure or reduced performance. With the present invention, vibrations in the process and/or process device are monitored. Vibrations are detected and used to predict a failure, an impending failure, or reduced performance of the process device or process component as a function of the sensed vibration signal and further as a function of a sensed process variable.

Figure 1 is a diagram of process control system 10 which includes a transmitter 12 connected to process pipe 16. Transmitter 12 is coupled to a two-wire process control loop 18 which operates in accordance with the Fieldbus, Profibus or HART® standard. However, the invention is not limited to these standards or a two-wire configuration. Two-wire process control loop 18 runs between transmitter 12 and the control room 20 and a portable configuration unit 226 is illustrated in an embodiment in which loop 18 operates in accordance with the HART® protocol loop 18 can carry a current I which is representative of a sensed process variable. Additionally, the HART® protocol allows a digital signal to be superimposed on the current through loop 18 such that digital information can be sent to or received from transmitter 12. When operating in accordance with the Fieldbus standard, loop 18 carries a digital signal and can be coupled to multiple field devices such as other transmitters. In one configuration, the loop 18 comprises a wireless loop and the transmitter 12 communicates without the need for additional wiring.

Process variables are typically the primary variables which are being controlled in a process. As used herein, process variable means any variable which describes the condition of the process such as, for example, pressure, flow, temperature, product level, pH, turbidity, vibration, position, motor current, any other characteristic of the process, etc. Control signal means
any signal (other than a process variable) which is used to control the process. For example, control signal means a desired process variable value (i.e. a setpoint) such as a desired temperature, pressure, flow, product level, pH or turbidity, etc., which is adjusted by a controller or used to control the process.

Additionally, a control signal means, calibration values, alarms, alarm conditions, the signal which is provided to a control element such as a valve position signal which is provided to a valve actuator, an energy level which is provided to a heating element, a solenoid on/off signal, etc., or any other signal which relates to control of the process. A diagnostic signal as used herein includes information related to operation of devices and elements in the process control loop, but does not include process variables or control signals. For example, diagnostic signals include valve stem position, applied torque or force, actuator pressure, pressure of a pressurized gas used to actuate a valve, electrical voltage, current, power, resistance, capacitance, inductance, device temperature, friction, full on and off positions, travel, frequency, amplitude, spectrum and spectral components, stiffness, electric or magnetic field strength, duration, intensity, motion, electric motor back emf, motor current, loop related parameters (such as control loop resistance, voltage, or current), or any other parameter which may be detected or measured in the system. Furthermore, process signal means any signal which is related to the process or element in the process such as, for example, a process variable, a control signal or a diagnostic signal. Process devices include any device which forms part of or couples to a process control loop and is used in the control or monitoring of a process.

It is understood that loop 18 is shown in one configuration and any appropriate process control loop may be used such as a 4-20 mA loop, 2, 3 or 4 wire loop, multi-drop loop and a loop operating in accordance with the HART®, Fieldbus or other digital or analog communication protocol including wireless communication protocols. In operation, transmitter 12 senses a process
variable such as flow using sensor 21 and transmits the sensed process variable over loop 18.

In accordance with one embodiment of the present invention, a process device, such as transmitter 12 includes a vibration sensor configured to sense vibrations. The vibration sensor can be any type of vibration sensor such as an accelerometer but the invention is not limited to such a sensor. Diagnostic circuitry in transmitter 12, or at a remote location, monitors the sensed vibrations and a sensed process variable and is capable of diagnosing a failure or an impending failure. An output can be provided by transmitter 12, for example to control room 20 or communicator 26 over two-wire process control loop 18, which provides an indication of the failure of impending failure of a process component. Using this information, an operator can repair or replace a failed component, or repair or replace a component prior to its ultimate failure. This allows any maintenance of the process 10 to occur at a scheduled time or as desired. This can be particularly advantageous if the repair or replacement of the component requires the process 10 to be shut down. Further, some components can fail either catastrophically or in a manner which causes other components to be damaged, or cause the release of unsafe product to the environment. By providing an indication that the component may fail in the future, or predicting a time of ultimate failure, the component can be repaired or replaced prior to that ultimate failure.

Figure 2 is a diagram showing process transmitter 12 coupled to process piping 16. Vibrations 70 are shown traveling through the industrial process. For example, the vibration 70 may be carried by process piping 16, process fluid within piping 16, or other physical couplings, to the transmitter 12.

Transmitter 12 includes a process variable sensor 72. Process variable sensor 72 can be configured to sense any type of process variable such as flow, pressure, temperature, or others. Process variable sensor 72 couples to measurement circuitry 74 which provides a process variable signal to I/O
circuitry 76. I/O circuitry 76 is configured to transmit information related to the sensed process variable over two-wire process control loop 18. In some embodiments, I/O circuitry 76 can also receive power through process control loop 18 which is used to completely power the circuitry and components of transmitter 12. Measurement circuitry 74 also couples to diagnostic circuitry 82 and provides a signal related to the sensed process variable to cavity 82.

A vibration sensor 80 in transmitter 12 is configured to sense vibrations 70 and provide a vibration sensor signal to diagnostic circuitry 82. Diagnostic circuitry 82 monitors the vibrations 70 sensed by vibration sensor 80 along with the sensed process variable from sensor 72 provided by measurement circuitry 74 and provides an output via I/O circuitry 76 which provides an indication of a failure or impending failure of a process component. Alternatively, I/O circuitry can provide a status output indicating that the transmitter is working properly.

In some embodiments, the vibration diagnostics of the present invention can be used to avoid or reduce plant downtime by predicting the impending loss of a measurement instrument or of a control instrument while there is still time to replace or repair the device. Vibration information can also be provided to other devices which are in communication with process control loop 18. Data compression algorithms can be used for such transmissions. A diagnostic indication can be provided on two-wire process control loop 18. For example, a HART status, Field Bus data, or other alerts can be transmitted over loop 18. Such an alert can be provided to the control room 20.

The vibration sensor 80 can be any type of vibration sensor. Many vibration sensors operate along a single axis and are capable of only sensing vibrations along that axis. However, in one embodiment additional sensors, or multi-axis sensors, are employed to sense vibrations along more than a single axis, or to profile vibration at various locations in the process device. Additional sensed vibrations can be used by the diagnostic circuitry 82 to
provide further diagnostics. Additionally, vibration sensors 80 can be placed in more than one location in the process transmitter 12. These additional sensors can also be used to provide additional vibration based process diagnostics, either along or in combination with a sensed process variable. The scope of the diagnostics can be expanded by comparing or analyzing vibration measurements, either alone or along with a sensed process variable, from more than one process device located in the process system. The additional measurements can be used to provide information related to the overall health of the process or plant. Vibration measurements made near the connection of a process device to the process can be used to detect specific process disruptions such as air hammer from abrupt valve closure, cavitation, aggressive chemical reactions or other process disturbances as well as actual or impending failure of pumps, rotating equipment or similar types of failures.

Although the I/O circuitry 76, measurement circuitry 74 and diagnostic circuitry 82 are shown as separate components in Figure 2, these circuit blocks can be implemented in shared circuitry and/or software. For example, many of these functions can be implemented in a digital processor. In addition to comparing sensed vibrations, or cumulative sensed vibrations, in conjunction with a process variable, to a fixed threshold, other diagnostic techniques can be employed by diagnostic circuitry 82. For example, an expert system can be implemented using if/then rules for use in diagnosing operation based upon vibrations and a sensed process variable. Diagnostics can be based upon the frequency spectrum of sensed vibrations and process variables, and more complex processing can be employed such as neural networks, fuzzy logic, etc.

Figure 3 is a block diagram of a process device 240 forming part of loop 18. Device 240 is shown generically and may comprise any process device used to implement the vibration diagnostics such as transmitter 12. Process device 240 includes I/O circuitry 242 coupled to loop 18 at terminals
244. Device 240 includes microprocessor 246, coupled to I/O circuitry 242, memory 248 coupled to microprocessor 246 and clock 250 coupled to microprocessor 246. Microprocessor 246 receives a process signal input 252. Process signal input block 252 signifies input of any process signal and the process signal input may be a process variable, or a control signal and may be received from loop 18 using I/O circuitry 242 or may be generated internally within process device 240.

Process device 240 includes a sensor input channel 254. Sensor input channel 254 includes sensor 21 which senses a process variable and provides a sensor output to amplifier 258 which has an output which is digitized by analog to digital converter 260. Channel 254 is typically used in transmitters such as transmitter 12. Compensation circuitry 262 compensates the digitized signal and provides a digitized process variable signal to microprocessor 246.

In one embodiment, I/O circuitry 242 provides a power output used to completely power some or all of the other circuitry in process device 240 using power received from loop 18. Typically, field devices such as transmitter 12, or controller 22 are powered from loop 18 while communicator 26 or control room 20 has a separate power source. As described above, process signal input 252 provides a process signal to microprocessor 246. The process signal may be a process variable from sensor 21, the control output provided to a control element, a diagnostic signal sensed by sensor 80, or a control signal, process variable or diagnostic signal received over loop 18, or a process signal received or generated by some other means, such as another I/O channel.

A user I/O circuit 276 is also connected to microprocessor 246 and provides communication between device 240 and a user. Typically, user I/O circuit 276 includes a display and/or audio for output, and a keypad or other interface for input. I/O circuit 276 can be used to allow a user to monitor or input process signals, such as process variables, control signals (setpoints, calibration values, alarms, alarm conditions, etc.).
Figure 3 also illustrates vibration sensor 80 which can be an individual sensor, or it can comprise multiple sensors or components. In one embodiment, sensor 80 couples to microprocessor 246, for example, through an analog to digital converter 290 and an amplifier 292. Microprocessor 246 can monitor the sensed vibrations, along with a process signal such as a sense process variable, and provide an indication of a failure or impending failure of a process component. For example, the microprocessor can compare the relationship between the sensed vibration along with the process variable to a baseline value or a nominal value. Similarly, the process variable output can be compared to the sensed vibration to identify a faulty process variable reading. This information can be stored in memory 248. The baseline and nominal values can change based upon the mode of operation of the process, or other factors. The baseline can be a particular frequency spectrum or signature and can be based upon observed history of process operation. Further, the diagnostics performed by microprocessor 246 can be based upon trends in the sensed vibrations and sensed process variable. For example, an increase, either gradual or suddenly over time, or periodic spikes or other anomalies in the sensed vibrations and sensed process variable, can be an indication of a failure or an impending failure of a process component. Similarly, if the relationship between the sensed vibrations and sensed process variable suddenly changes, the microprocessor 246 can provide a diagnostic output indicating that a process component may fail or has failed. These values, trends, or training profiles can also be stored in memory 248. The diagnostics can be based upon a comparison, or more complex mathematical techniques such as observing averages or rolling averages of measurements, fuzzy logic techniques, neural network techniques, or expert system techniques based upon a series of rules and/or threshold comparison. In various embodiments, the ability of the present invention to provide predictive diagnostics can be advantageous as it provides time for service personnel to service the process component prior to its ultimate failure.
Figure 3 also illustrates a striker 291 coupled to microprocessor 246. Striker 291 can be an optional component and can comprise any element which is configured to impart an acceleration to the transmitter 240. For example, a spring-loaded hammer can be activated by the microprocessor, a solenoid, a motor with an offset weight, etc. This can provide a known acceleration signal to the transmitter 240 and used for diagnostic or in configurations in which external acceleration sources are not available.

The diagnostic output of the present invention can be used to provide an output signal, provide a local indication to an operator, or provide a communication signal for transmission to a control room or other diagnostic annunciation.

As discussed above, the diagnostics are a function of techniques which employ a sensed vibration and a sensed process variable. For example, the diagnostics can utilize trends in the relations between the signals over a period of time. This information can be correlated, with respect to the process variable signal, with wear of bearings or pump components. Additionally, the diagnostics circuitry can be used to correlate vibration signals and sensed process variable with various procedures or occurrences which occur during operation of the industrial process. For example, an aggressive chemical reaction may have a particular vibration signature and a related change in the process variable. In some embodiments, the relationship between the sensed process variable and vibrations, for example a changing relationship between the two, can provide an indication of a diagnostic condition such as a component which is failing or otherwise changing in some manner.

In one aspect, the output from the vibration sensor is used to validate operation of the process variable sensor. For example, a vibration experienced by the pressure transmitter may be correlated to a change in the measured process variable. This relationship can be monitored over time and used to validate proper operation of the process variable sensor.
The vibration sensor 80 can be any appropriate vibration sensor. One known vibration detection and measurement sensor is an accelerometer. There are a number of different accelerometer technologies which are currently employed including capacitive, electrodynamic, piezoelectric, and others. The accelerometer produces an output signal that is related to the sensed vibration. The output signal can have a linear or other relationship to the strength of the vibration or the frequency of the vibration. Another example diagnostics sensor can be embodied in a MEMS configuration in which a cantilever is utilized to sense vibrations.

Piezoelectric accelerometers are relatively rugged and have a wide signal bandwidth, in the order of tens of kilohertz, covering much of the audio range. One example sensor is available from PCB Piezoelectronics and identified as the IMI Sensor Series 660, which is a family of low cost embeddable accelerometers. Various configurations are available including two wire with and without signal processing and three wire low power. For example, the low power configuration operates over an extended temperature range and can be mounted directly to processes which undergo a wide temperature variation. An excitation voltage is applied, for example between 3 and 5 volts DC and the current throughout the sensor is on the order of 750 microamperes.

Another example accelerometer is the MMA series available from Motorola. These accelerometers include various configurations such as surface mount integrated circuit packages, temperature compensation, integral signal conditioning and filtering, self testing and fault latch capabilities. These accelerometers use a capacitive sensing technique that can be modeled as two stationary plates with a movable plate placed therebetween. The center plate is deflected from its rest position when the system is subject to acceleration.

Any of appropriate type of accelerometer may be used with the present invention. For example, a capacitive accelerometer uses a metal beam or micromachine feature which produces a variable capacitance which changes
in response to acceleration. A piezoelectric electric sensor uses a piezoelectric monitor mounted to the device. Acceleration is related to a voltage output from the piezoelectric crystal. A piezo resistant sensor can, for example, use a beam or micromachine feature having a resistance which changes in response to acceleration. A hall defect sensor uses a configuration in which motion is converted to an electrical signal by sensing a change in magnetic fields. Various types of tri-access accelerometers can be used. For example, one such accelerometer is the Okidata ML8950. Another example device is available from analog devices as the AVXL330.

Using a tri-access accelerometer, a transmitter in accordance with the present invention can be configured to utilize two separate measurements for diagnostics. The transmitter can utilize the output from the accelerometer as well as the output from the process variable sensor, such as a pressure sensor. The signals from these two devices can be compared to generate unique system diagnostics. For example, in a pressure transmitter, an accelerometer can be incorporated. The accelerometer can be activated using a manual input, such as being struck with a hammer or other heavy object by an operator. The impact can be directed along an axis of a sensored diaphragm of a pressure sensor. This uncalibrated impact will cause both the accelerometer to measure acceleration and the pressure sensor to measure a pressure pulse. If both outputs are detected, diagnostics can confirm proper operation of the device.

As a further embodiment of the configurations described above, the waveforms or other aspects of the output of the process variable sensor and the accelerometer can be compared. For example, in some configurations, a linear relationship can be observed between the output from the pressure sensor and the output from the accelerometer in response to a strike or other impact on the transmitter. A variation of these responses can provide an indication of a failure, for example, a loss of oil fill fluid.
In one example, a spring-loaded punch is used to provide a calibrated strike to the device. However, any desired type of calibrated strike can be used. In such a configuration, the magnitude of the strike can be used in a diagnostic algorithm along with the outputs from the process variable sensor and the accelerometer. In a further configuration, multiple calibrated strikes are applied for use in the diagnostics. For example, strikes of differing magnitudes can be used and the resultant changes in the process variable and the output from the accelerometer can be compared.

In another example configuration, ambient energy is used as the source of the "strike". For example, a water hammer effect, pump pulsation or machinery vibrations can be used. For example, two different water hammers can result in two different comparisons that can used as a calibration check. It can also provide an indication that the transmitters are functioning in accordance with performance specifications.

In another example, a constant vibration causes an offset in the sensor process variable such as an offset in a sensed pressure. For example, a vibration in a wet leg which couples a pressure sensor to a process causes the pressure sensor to indicate an increased pressure. In some configurations, the pressure sensor acts as a low pass filter and rectifier such that the pulsation appears as a pressure offset. The process variable, along with the monitored acceleration, can be used to perform diagnostics. Further, the monitored acceleration can also be used to compensate the process variable such that the offset caused by the vibrations are removed from the process variable measurements using, for example, microprocessor 246 shown in Figure 3.

The accelerometer 80 can be mounted in any appropriate location. The accelerometer can be mounted to the housing of the transmitter, or, for example, directly to the process variable sensor such as directly to a pressure sensor. However, the pressure sensor is typically isolated in a pressure module and, in some configurations, may be isolated from vibrations such as
strikes applied to the transmitter. The housing and placement of the accelerometer can be designed to enhance the susceptibility to particular types of vibrations, or other considerations. High speed data capturing techniques can be utilized in order to obtain a detailed profile of acceleration sensed by the acceleration sensor.

Figure 4 is a simplified block diagram 300 of steps in accordance with one embodiment of the invention. Flow chart 300 is initiated at block 302 and the process variable is monitored at block 304. At block 306 acceleration is monitored. Blocks 304 and 306 can occur sequentially, in parallel, in reverse order or at any time including partially overlapping monitor periods. At block 308, diagnostics are performed as a function of the monitored process variable as well as monitored acceleration. These diagnostics can be performed in microprocessor 246 shown in Figure 3 based upon programming instructions stored in memory 248. Diagnostics can be in accordance with any appropriate technique in which the two monitored values are compared in order to determine a condition, or impending condition, of process components, operation of the process, operation of devices or elements within the process, etc. Examples include rule based techniques, fuzzy logic techniques, neural network techniques, artificial intelligence techniques or others. In one configuration, the monitored acceleration is used by microprocessor 246 to compensate for errors in the measured process variable which are introduced due to acceleration of the transmitter or components coupled to the transmitter. For example, a offset in the sensed process variable can be removed in some configurations by the use of monitored acceleration. At block 310, an optional output is provided related to the diagnostics. This output can be transmitted to a remote location as desired, for example, by communicating over two-wire process control loop 18, or using other communication techniques such as RF or wireless techniques. Additionally, the output can be provided locally to an operator or locally to nearby equipment such as test equipment either through a wired or a wireless
connection. At block 312, the procedure stops and is optionally repeated by returning to block 302. In one configuration, monitor acceleration block 306 includes activating a striker 391, or other acceleration source.

In one configuration, the steps illustrated in Figure 4 can be activated based upon user input. For example, an operator can initiate operation of block diagram 300 by providing an appropriate signal to transmitter 340 either through communication using two-wire process control loop 18 or other techniques. In such a configuration, the device can be configured to instruct the operator to apply acceleration to the transmitter 240 at block 306 while the acceleration is monitored. For example, an operator can be instructed to strike the transmitter at a particular location or along a particular axis.

The present invention provides a number of techniques for performing diagnostics or compensation in a process device of a process control monitoring system. For example, external influences, either artificial, such as a hammer strike, or ambient, such as a water hammer or machinery vibration, which causes acceleration of the device, can be measured using an accelerometer. The effect of this acceleration is measured using an accelerometer, for example, a single axis, a dual axis, or a tri-axis accelerometer and a process variable sensor such as a pressure sensor. These two measurements can be used to diagnose operation, for example, to verify proper operation of the transmitter. In other configurations, the two measured signals are manipulated, for example, the ratios of the two signals can be observed and compared with the magnitude of calibrated external influence in order to verify transmitter operation. Using a ratio of the two signals along with the magnitude of the two signals, and the magnitude of an external influence along with ratios of the magnitude of the external influence, further techniques can be used to verify operation of the transmitter. In addition to verification of operation, calibration and compensation can be performed in a real time using the acceleration signal. By monitoring and analyzing signals, the transmitter can
provide a notification or alert regarding status. The accelerometer can be positioned as desired, for example, fabricated adjacent the process variable sensor such as pressure sensor, or electronics associated with the sensor. For example, a capacitance based accelerometer can be integrated in an existing or modified analog to digital converter such as a capacitance to digital integrated circuit. The tri-axis accelerometer can be used to perform multiple functions including measurement of vibration as a diagnostic tool, measurement of inclination of the device as a means for automatically compensate head effects in pressure measurements, measurement of an influence on the device compared to its influence on the process variable sensor for use in transmitted verification, and/or measurement of acceleration to compensate for acceleration pressure offsets. A source of acceleration can be integrated into the device such as a spring-loaded punch mechanism or the like. The mechanism can be actuated by an operator, or it can be automatically actuated by electrical circuitry in the transmitter. In another configuration, a mechanical or pressure external influence integrated into the process connection which couples the transmitter to the industrial process. The accelerometer can be attached directly to the process variable sensor to create a more predictable relationship between the two signals.

In one configuration, the accelerometer can be configured to measure a time based periodicity of the acceleration input. If the acceleration affects process variable measurement, such as pressure measurement, accuracy, then measurements which are taken during “quiet” intervals can be considered as providing higher accuracy. Such a system could, for example, hold the most recent “good” value when the accelerometer measures a large acceleration input which may cause an error in the measurement. In another example, in some configurations, an increase in the measured process variable, for example, an increase in a flow rate, also corresponds to an increase in vibrations, for example, increased pump pulsations or higher magnitude pipe vibrations. The
signals from the process variable "pressure" sensor in the accelerometer can be compared as an additional diagnostic to provide more confidence in the measured process variable.

Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. In some embodiments, the invention can be embodied in any type of process device. Any type of processor can be used including capacitive based accelerometer using a metal beam or micro machine feature which produces a changed capacitance related to acceleration, piezoelectric sensors using a crystal mounted to a mass, piezoelectric sensors, for example, in which a beam has a resistance which changes based upon acceleration, Hall effect based sensors which are based upon changing magnetic fields, etc. The diagnostic circuitry of the present invention can be embodied in any appropriate component. For example, the circuitry can be embodied in a microprocessor and associated components along with programming instructions or can comprise other components or embodiments. Example acceleration sensors include capacitive, electrodynamic, piezoelectric and Micro-Electro-Mechanical Systems (MEMS).
WHAT IS CLAIMED IS:
1. A process variable transmitter for use in an industrial process control or monitoring system, comprising:
 a process variable sensor having a sensor output related to a process variable;
 an accelerometer coupled to the transmitter having an accelerometer output related to acceleration; and
diagnostic circuitry having a diagnostic output as a function of the sensor output and the accelerometer output.
2. The apparatus of claim 1 including a transmitter housing wherein the accelerometer is coupled to the transmitter housing.
3. The apparatus of claim 1 wherein the accelerometer is adjacent the process variable sensor.
4. The apparatus of claim 1 wherein the accelerometer comprises a tri-axis accelerometer.
5. The apparatus of claim 1 wherein the process variable sensor comprises a pressure sensor.
6. The apparatus of claim 1 including communication circuitry configured to couple to a process control loop.
7. The apparatus of claim 6 wherein the diagnostic output from the diagnostic circuitry is transmitted on the process control loop.
8. The apparatus of claim 6 wherein the diagnostic output is related to failure of a process component.
9. The apparatus of claim 6 wherein the diagnostic output is related to degradation in performance of a process component.
10. The apparatus of claim 6 wherein the diagnostic output is related to an impending failure of a process component.
11. The apparatus of claim 1 wherein the diagnostic output is used to compensate the process variable.
12. The apparatus of claim 1 wherein the diagnostic output is based upon rules.

13. The apparatus of claim 1 wherein the diagnostic circuitry implements a neural network, or fuzzy logic.

14. The apparatus of claim 1 wherein the acceleration sensor is selected from a group of acceleration sensors including of capacitive, electrodynamic, piezoelectric and Micro-Electro-Mechanical Systems (MEMS).

15. The apparatus of claim 1 wherein the diagnostic circuitry is configured to control an acceleration applied to the process control transmitter.

16. The apparatus of claim 15 including a striker configured to impact the transmitter.

17. The apparatus of claim 1 wherein the accelerometer is configured to sense an acceleration applied by an operator.

18. The apparatus of claim 1 wherein the accelerometer is configured to sense a calibrated acceleration applied to the transmitter.

19. The apparatus of claim 1 wherein the diagnostic circuitry is configured to compare acceleration from more than one calibrated accelerations applied to the transmitter.

20. The apparatus of claim 1 wherein the process variable transmitter is configured to control an output of the process variable based upon sensed acceleration.

21. The apparatus of claim 1 wherein the accelerometer is configured to sense an ambient acceleration.

22. The apparatus of claim 21 wherein the ambient acceleration is from at least one of a water hammer, pump pulsation and machinery acceleration.

23. The apparatus of claim 1 wherein the diagnostic circuitry is configured to compensate the output from the process variable based upon a sensed static acceleration.
24. The apparatus of claim 1 wherein the accelerometer provides an output for use in one of diagnostics, process variable compensation, or verification of operation.

25. The apparatus of claim 1 including a memory configured to store the process variable and wherein the process variable transmitter provides an output based upon the process variable stored in the memory as a function of sensed acceleration.

26. The apparatus of claim 1 wherein the diagnostic output is a function of a historical relationship between the sensory output and the accelerometer output.

27. A method of diagnosing operation of a transmitter in an industrial process control system, comprising:

 sensing accelerations applied to the transmitter using an accelerometer;
 measuring a process variable; and
 diagnosing operation of the transmitter or a process disturbance based upon the sensed accelerations.

28. The method of claim 27 wherein the accelerometer is coupled to a transmitter housing.

29. The method of claim 27 wherein the accelerometer is adjacent a process variable sensor.

30. The method of claim 27 wherein the accelerometer comprises a tri-axis accelerometer.

31. The method of claim 27 wherein the sensed process variable comprises pressure.

32. The method of claim 27 including transmitting diagnostic information on a process control loop.

33. The method of claim 27 wherein the diagnosed operation is related to an impending failure of a process component.
34. The method of claim 27 including compensating the process variable based upon the step of diagnosing.

35. The method of claim 27 wherein the diagnosing is based upon rules.

36. The method of claim 27 wherein the diagnosing is based upon a neural network, or fuzzy logic.

37. The method of claim 27 wherein the acceleration sensor is selected from a group of acceleration sensors including of capacitive, electrodynamic, piezoelectric and Micro-Electro-Mechanical Systems (MEMS).

38. The method of claim 27 including controlling an acceleration applied to the transmitter.

39. The method of claim 27 including sensing an acceleration applied by an operator.

40. The method of claim 27 including sensing a calibrated acceleration applied to the transmitter.

41. The method of claim 27 including storing the process variable and wherein providing an output based upon the stored process variable as a function of sensed acceleration.
Fig. 1
START

MONITOR PV

MONITOR ACCELERATION

PERFORM DIAGNOSTICS OF A FUNCTION OF MONITORED PV AND MONITORED ACCELERATION

OUTPUT

STOP

Fig. 4
Fig. 2