
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0040609 A1

Filali-Adib et al.

US 20140040609A1

(43) Pub. Date: Feb. 6, 2014

(54)

(71)

(72)

(73)

(21)

(22)

(63)

TRACKING LOADING AND UNLOADING OF
KERNEL EXTENSIONS IN SOLATED
VIRTUAL SPACE

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Khalid Filali-Adib, Austin, TX (US);
Kevin L. Fought, Round Rock, TX
(US); David W. Sheffield, Austin, TX
(US); Nathaniel S. Tomsic, Austin, TX
(US); Sungjin Yook, Austin, TX (US)

Inventors:

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Appl. No.: 13/959,529

Filed: Aug. 5, 2013

Related U.S. Application Data
Continuation of application No. 12/834,479, filed on
Jul. 12, 2010, now Pat. No. 8,527,989.

REQUEST TOOAD KERNELEXTENSION
102

WIRTUAL
OPERATING
SYSTEM
INSTANCE

("VIRTUALOS)

WRITEEN
TRACKINGLIS

EXTENSION

KERNELEXTENSION

PERFORMELECTRONIC R'
IDENTIFICATIONWALIDITY
CHECK FORKERNEL

EXTENSION RECQUESTAND
LOADF CHECKWALID

RY IN LOAD
THATVIRTUAL 's

OS 102 REQUESTED THE s\, -
KERNELEXTENSIONLOAD -.

USEFUNCTIONALITY
ASSOCIATED WITHKERNEL

RECUEST TO UNLOAD

Publication Classification

(51) Int. Cl.
G06F 9/445 (2006.01)

(52) U.S. Cl.
CPC G06F 9/44505 (2013.01)
USPC .. 713/100

(57) ABSTRACT

Some embodiments of the inventive subject matter are
directed to receiving a request from a first instance of an
operating system (e.g., a virtual operating system) to load a
kernel extension that extends functionality of a kernel, where
the kernel extension may be shared by a second instance of
the operating system. An indicator accessible only to the
second instance of the operating system records an indication
that the first instance of the operating system requested to load
the kernel extension. The kernel extension is loaded. A
request is received by the first instance of the operating sys
tem to remove the functionality from the kernel. The func
tionality is removed from the kernel in response to determin
ing, based on the indicator, that the first instance of the
operating system had previously requested to load the kernel
extension.

101

MANAGING
OPERATING
SYSTEM
INSTANCE

("GLOBAL OS")

C,
121

VIRTUAL
OPERATING
SYSTEM
MANAGER

KERNEL

(F

WIRTUAL OS

ALLOW UNLOAD ONLY FENTRY
- 105 NLOADTRCKINGLIST THAT Y

WIRTUAL OS 102 REQUESTED TO
LOAD THE KERNELEXTENSION

WIRTUAL OS

CHECK WHETHER ANY OTHER G
WIRTUAL OSHAS REQUESTED
LOAD OF KERNELEXTENSION
AND HAS MOT REQUESTED
KERNELEXTENSION UNLOAD

COMMUNICATIONS
NETWORK

Patent Application Publication

(A)

Feb. 6, 2014 Sheet 1 of 6

REQUEST TO LOAD KERNELEXTENSION
--> ------

PERFORMELECTRONIC
IDENTIFICATION VALIDITY
CHECK FORKERNEL

EXTENSION REOUEST AND
LOAD IF CHECKVALID

VIRTUAL
OPERATING
SYSTEM
INSTANCE

("VIRTUAL OS")

(B)

WRITE ENTRY IN LOAD

OS 102 REQUESTED THE
KERNELEXTENSION LOAD

TRACKING LIST THAT VIRTUAL S

USE FUNCTIONALITY
ASSOCATED WITHKERNEL

EXTENSION

- (E)
REQUEST TO UNLOAD
KERNELEXTENSION

VIRTUAL OS

- 106

(F)
ALLOW UNLOAD ONLYIF ENTRY
INLOAD TRCKINGLIST THAT N

VIRTUAL OS 102 REQUESTED TO
LOAD THE KERNELEXTENSION N

US 2014/0040609 A1

MANAGING
OPERATING
SYSTEM

INSTANCE
("GLOBAL OS")

121

VIRTUAL
OPERATING
SYSTEM
MANAGER

KERNEL

CHECK WHETHER ANY OTHER
VIRTUAL OSHAS REQUESTED
LOAD OF KERNELEXTENSION
AND HAS NOT REQUESTED
KERNELEXTENSION UNLOAD

-

VIRTUAL OS

NETWORK

FIG. 1

COMMUNICATIONS

G)

Patent Application Publication Feb. 6, 2014 Sheet 2 of 6 US 2014/0040609 A1

- -
^ y

BEGIN)
\, M

CREATE VIRTUALOPERATING SYSTEM.INSTANCE (VIRTUALOS) AND
DETECTAKERNELEXTENSION FILE THAT THE VIRTUAL OS MAY

REQUEST TO LOAD

y
GENERATE A UNIQUEELECTRONIC IDENTIFIER BASED ON THE KERNEL

204 u EXTENSIONFILE, AND STORE UNIQUEELECTRONIC IDENTIFIERIN
KERNEL MEMORY

W
DETECT THAT VIRTUAL OSSTARTS AND PROVIDE A COPY OF THE

206 - KERNELEXTENSION FILE TO THE VIRTUAL OS

y
208 - DETECT AREQUEST TOLOAD THE COPY OF THE KERNELEXTENSION

's- FILE AND VERIFY UNIQUEELECTRONIC IDENTIFIER FOR THE COPY OF
THE KERNELEXTENSION FILE

202

t 210 212
- ie C - IS Nt)

- UNIQUE N. N DENY LOAD
ELECTRONIC -NO > ES IDENTIFIER VALID

YES / END)

y
WRITE ENTRY IN ALOADTRACKING LIST THAT INDICATES THAT THE

VIRTUAL OS REQUESTS THE KERNELEXTENSION LOAD

216 nu LOAD KERNELEXTENSION

(END)

A

-

214 n

FIG. 2

Patent Application Publication Feb. 6, 2014 Sheet 3 of 6 US 2014/0040609 A1

302 - DETECT AREQUEST FROMVIRTUAL OSTOLOADAKERNEL EXTENSION

304
KERNEL

- EXTENSION
GLOBAL OR
NLOCAL -

GLOBAL LOCAL

w
INCREMENT A COUNT TO TRACKANUMBER OF VIRTUAL OS

306 nu INSTANCES THAT HAVE REQUESTED TO LOAD OR UNLOAD THE
KERNELEXTENSION

^^.
^ ^

-

308 KERNEL
EXTENSION NO
ALREADY

NLOADED? - 310
f

N - --

LOADKERNEL
EXTENSION

YES

INDICATE TO VIRTUAL
312 ru OS THAT KERNEL

EXTENSION LOADED

FIG. 3

Patent Application Publication Feb. 6, 2014 Sheet 4 of 6 US 2014/0040609 A1

402 - DETECT AREQUEST FROMVIRTUAL OS TO UNLOAD KERNELEXTENSION

404 406 - N - N C
'- - KERNELN

> Y

^ - EXTENSION N.
DECREMENT THE COUNT -—GLOBAL- GLOBAL OR -

LOCAL? -
408 -> x^ Y- -

COUNT
NZERO? -
N -

T. -
410 s --

KERNEL MEMORY
< IDENTIFIER
N

NO

Y. NO

412 -- - -
u-1 ---

--- s

u-LOADTRACKINGLISTINDICATES
< THAT THE VIRTUAL OS REQUESTED THE D
is KERNELEXTENSION LOAD? u

- -->

NO

INDICATE TO VIRTUAL vis
416 nu OS THAT KERNEL V

EXTENSION UNLOADED 414 UNLOAD KERNEL
M EXTENSION

FIG. 4

Patent Application Publication Feb. 6, 2014 Sheet 5 of 6 US 2014/0040609 A1

CREATE VIRTUALOPERATING SYSTEM.INSTANCE (VIRTUALOS), DETECT A
KERNELEXTENSION FILE THAT THE VIRTUAL OS MAY REQUEST TO LOAD

PERFORMA CRYPTOGRAPHIC HASH FUNCTION ON THE KERNELEXTENSION
504 ru FILE, AND STORE HASHVALUE IN KERNEL MEMORY

DETECTAUSER STARTS THE VIRTUAL OS, AND PROVIDEA COPY OF THE
506 ru KERNELEXTENSION FILE TO VIRTUAL OS

508 ru BEFORE A PROCESS IN VIRTUAL OS REOUESTS TO LOAD THE KERNEL
EXTENSION, UPDATE THE KERNELEXTENSION FILE ON THE GLOBAL OS

PERFORM CRYPTOGRAPHIC HASH FUNCTION ON UPDATED KERNEL
EXTENSION FILE

502 ru

510

PROVIDEA COPY OF UPDATED KERNELEXTENSION FILE TO WIRTUAL
OS

(END)
^ ^

512 nu

FIG. 5

Patent Application Publication Feb. 6, 2014 Sheet 6 of 6 US 2014/0040609 A1

601 - is 605
C - s C
/ /

Processor Unit y a Network
x ^ w | Interfaces

621
C

BuS
603 Virtual Operating System

Manager

() Kernel
607 622 - Extension

Management
A Module

Memory / w
& /

(Storage Device
A.

s u- e
-- 609

FIG. 6

US 2014/0040609 A1

TRACKING LOADING AND UNLOADING OF
KERNEL EXTENSIONS IN SOLATED

VIRTUAL SPACE

RELATED APPLICATION

0001. This application claims the priority benefit of U.S.
application Ser. No. 12/834,479 filed on Jul. 12, 2010.

BACKGROUND

0002 Embodiments of the inventive subject matter gener
ally relate to the field of virtual operating systems, and, more
particularly, to securely managing kernel extensions in virtual
operating systems.
0003 Operating system virtualization is a technology that
can divide a single host, Such as a server, into multiple parts,
or partitions, each running a separate instance, or image, of an
operating system (OS). The instances of the operating sys
tems are separate, or isolated, from each other in some ways.
For example, the instances of the operating systems have
separate file systems, separate users, separate applications,
and separate processes. In other ways, however, the instances
of the operating systems are not separate and can share some
resources of the host. For example, the instances of the oper
ating systems can share the memory, the kernel, the proces
sors, the network cards, the hard drives, and/or other software,
firmware, and/or hardware of the host. Thus, each instance of
the operating system can look and feel like a separate server
or machine from the point of view of its users. However,
because the instances of the operating system share resources
of the host, the instances of the operating systems are not
actually separate devices. The instances of the operating sys
tem are commonly referred to as “virtual or “virtualized
operating systems (virtual OS’s). In similar contexts, virtual
ized operating systems are also referred to as virtual parti
tions, virtual machines, virtual environments, or virtual Serv
CS.

0004 Virtual OS's can be implemented in different ways.
One way is for an administrative user to create a logical
partition (LPAR) on a host and install an instance of an
operating system on the LPAR. The administrative user can
create a logical partition (LPAR) by dividing a portion, or
Subset, of the hosts hardware resources, such as processors,
memory, and storage. The administrative user can isolate the
LPAR from other LPARs running on the same device or
machine. Specifically, the administrative user isolates the
subset of the hosts hardware resources from other subsets, so
that multiple LPARs can run on the host, with each LPAR
operating independently of each other, as if each LPAR was a
separate machine. The administrative user can install an
instance of the operating system on an LPAR. The instance of
the operating system can run its own applications in a way that
is separate and isolated from any other LPAR. The number of
LPARs that can be created on a host, however, depends on the
number of the host’s resources available. For example, to
create an LPAR, an administrative user must physically par
tition a portion of the hosts memory and assign the portion of
the hosts memory to the LPAR. Because LPARs have sepa
ration at the hardware level, LPARs are very stable, can run
different versions of an operating system, and provide a very
high degree of isolation from other LPARs.
0005. A different way to create a virtual OS is to form a
workload partition (WPAR). WPARs were introduced in the
IBMR, AIX(R) 6.1 operating system. WPARs are a software

Feb. 6, 2014

implementation of operating system virtualization. More spe
cifically, WPARs are software partitions that are created from,
run under, and share the resources of a managing instance of
the operating system (OS). The WPARs and the managing
instance share an identical operating system (e.g., identical
version, identical patches, identical tuning options, etc.). The
managing instance of the OS may be referred to as a global
environment or a global OS. Multiple WPARs can run on a
single managing resource (e.g., on a single machine or on a
single LPAR), which can all be managed by the global OS. An
administrative user does not need to physically divide up
portions of the hosts hardware to create a WPAR. Rather, the
administrative user runs a command to generate a WPAR and
the global OS creates and manages the WPAR as a software
partition. Because WPARs are software implementations,
WPARS can easily be migrated from one managing resource
to another (e.g., from one LPAR to another or from one
machine to another).
0006 WPARs can be two types, a system WPAR and an
application WPAR. System WPARS are virtual system envi
ronments that have their own separate file systems, users and
groups, login, network space, and administrative domain. All
system WPARs managed by the global OS share the same
kernel, the same memory, and some other resources that the
global OS uses. Application WPARs are lightweight environ
ments used for isolating and executing one or many applica
tion processes.

SUMMARY

0007 Some embodiments include a method directed to
receiving a request to load a kernel extension in a kernel,
where the request to load the kernel extension is sent by a first
of a plurality of instances of an operating system, where the
plurality of instances of the operating system are managed by
a second of the plurality of the instances of the operating
system, and where the plurality of the instances of the oper
ating system share a kernel. In some embodiments, the
method is further directed to recording an indicator that indi
cates that the first of the plurality of the instances of the
operating system requested to load the kernel extension,
where the indicator is accessible only to the second of the
plurality of the instances of the operating system. In some
embodiments, the method is further directed to loading the
kernel extension, where loading the kernel extension extends
functionality of the kernel. In some embodiments, the method
is further directed to receiving a request by the first of the
plurality of the instances of the operating system to remove
the functionality from the kernel and determining, based on
the indicator, that the first of the plurality of the instances of
the operating system requested to load the kernel extension.
In some embodiments, the method is further directed to
removing the functionality from the kernel in response to the
determining, based on the indicator, that the first of the plu
rality of the instances of the operating system requested to
load the kernel extension.
0008. Some embodiments include a computer program
product for managing kernel extensions for one or more Vir
tual operating systems. The computer program product can
include a computer readable storage medium having com
puter readable program code embodied therewith. The com
puter readable program code can be configured to receive a
request to load a kernel extension in a kernel, where the
request to load the kernel extension is sent by a first of a
plurality of instances of an operating system, where the plu

US 2014/0040609 A1

rality of instances of the operating system are managed by a
second of the plurality of the instances of the operating sys
tem, where the plurality of the instances of the operating
system share a kernel, and where the kernel extension extends
functionality of the kernel. In some embodiments, the com
puter readable program code can further be configured to
access a list maintained by the second of the plurality of
instances of the operating system, and make an entry in the list
that indicates that the first of the plurality of the instances of
the operating system requested to load the kernel extension,
In some embodiments, the computer readable program code
can further be configured to load the kernel extension in the
kernel. In some embodiments, the computer readable pro
gram code can further be configured to receive a request to
unload the kernel extension from the kernel, where the
request to unload the kernel extension is sent by the first of the
plurality of instances of the operating system. In some
embodiments, the computer readable program code can fur
ther be configured to search the list, find the entry in the list,
in response to searching the list, where the entry indicates that
the first the plurality of instances of the operating system
previously requested to load the kernel extension, and unload
the kernel extension based at least in part on finding the entry
in the list.

0009. Some embodiments are directed to an apparatus
with a processing unit, a network interface, and a virtual
operating system manager. In some embodiments, the virtual
operating system manager is operable to, via the processing
unit, receive a request to unload a kernel extension from a
kernel, where the request is sent by a first of a plurality of
instances of an operating system, where the plurality of
instances of the operating system are managed by a second of
the plurality of the instances of the operating system, where
the plurality of the instances of the operating system share a
kernel, and where the kernel extension extends functionality
of the kernel. In some embodiments, the virtual operating
system manager is further operable to access a list maintained
by the second of the plurality of instances of the operating
system, and search the list. In some embodiments, the virtual
operating system manager is further operable to find an entry
in the list, in response to searching the list, where the entry
indicates that the first the plurality of instances of the operat
ing system previously requested to load the kernel extension,
and unload the kernel extension based at least in part on
finding the entry in the list.

BRIEF DESCRIPTION OF THE DRAWINGS

0010. The present embodiments may be better under
stood, and numerous objects, features, and advantages made
apparent to those skilled in the art by referencing the accom
panying drawings.
0.011 FIG. 1 is an example conceptual diagram of manag
ing kernel extensions requested by virtual operating systems.
0012 FIG. 2 is a flowchart depicting example operations
for securely loading a kernel extension for a virtual operating
system.
0013 FIG. 3 is a flowchart depicting example operations
for securely loading a kernel extension for a virtual operating
system.
0014 FIG. 4 is a flowchart depicting example operations
for securely unloading a kernel extension for a virtual oper
ating System.

Feb. 6, 2014

0015 FIG. 5 is a flowchart depicting example operations
for updating kernel extension files for a virtual operating
system.
0016 FIG. 6 depicts an example computer system.

DESCRIPTION OF EMBODIMENT(S)
0017. The description that follows includes exemplary
systems, methods, techniques, instruction sequences, and
computer program products that embody techniques of the
present inventive subject matter. However, it is understood
that the described embodiments may be practiced without
these specific details. For instance, although examples refer to
virtual operating systems that are managed by a global oper
ating system, other instances may include virtual operating
systems managed by hypervisors, virtual machine monitors,
LPARs, other virtual operating systems, some combinations
therefore, etc. In other instances, well-known instruction
instances, protocols, structures, and techniques have not been
shown in detail in order not to obfuscate the description.
0018. In some embodiments, a virtual OS shares a kernel
with all other virtual OS's managed on a host. A global OS
can provide kernel services and system calls for all the virtual
OS's running on the host. To extend the functionality of a
kernel, a kernel can receive kernel modules, or kernel exten
sions, that are not originally programmed into, or provided
with, a default, or “base' kernel. A kernel extension is an
object file that contains code to extend the base kernel of an
operating system. Kernel extensions may also be known as
Loadable Kernel Modules (LKMs), Kernel Loadable Mod
ules (KLM) or Kernel Modules (KMOD). Kernel extensions
are typically used to add support for new hardware and/or file
systems, for extending a base kernels services (e.g., device
driver management), for extending device drivers, for extend
ing file systems, for adding system calls, etc. When the func
tionality provided by a kernel extension is no longer required,
it can be unloaded in order to free memory. Without kernel
extensions, an operating system would have to have all pos
sible anticipated functionality already compiled directly into
the base kernel. Much of that functionality would reside in
memory without being used, wasting memory, and would
require that users rebuild and reboot the base kernel every
time new functionality is desired.
0019. To date, however, only a global OS (i.e., a root user
of the global OS) has had privileges to load any kernel exten
sions. Virtual OSs, or rather, root users of virtual OSs (e.g.,
WPARs) have not had privileges to load their own kernel
extensions.
0020. One of the reasons why virtual OS's have not had
privileges to load their own kernel extensions is that because
multiple virtual OS's exist on one global OS, and if one
virtual OS loads a kernel extension, that kernel extension
could conflict with other kernel extensions loaded by, or
being used by, the other virtual OSs.
0021 For example, if one virtual OS were granted privi
leges to load a kernel extension, the virtual OS administrator
with privileges could potentially perform other activities in
the kernel space that could interfere with the global OS, thus
affecting all other virtual OS's running on the global OS.
Even if the administrative user for the virtual OS were only
granted privileges to load and unload kernel extensions, the
administrative user could potentially load non-authorized
kernel extensions or unload kernel extensions that were being
shared by multiple virtual OSs, thus causing tremendous
problems on the global OS.

US 2014/0040609 A1

0022. Some embodiments of the inventive subject matter
provide rights to a virtual OS to dynamically load and unload
kernel extensions while enacting restrictions and security
mechanisms that ensure that virtual OS only loads and
unloads kernel extensions that are permitted or that are non
detrimental.

0023 FIG. 1 is an example conceptual diagram of manag
ing kernel extensions requested for virtual operating systems.
In FIG. 1, a virtual OS management system (“system’’) 100
includes one or more devices that are connected to each other,
such as computers 150 and 160 that are connected by a com
munications network 122. Other embodiments, however,
may include logical partitions instead of and/or in addition to,
computers 150 and 160. Each of the connected devices may
have one or more instances of operating systems installed on
the devices. For example, computer 150 may have installed a
first instance of an operating system 101. The first instance of
the operating system 101 may also be referred to as a man
aging operating system instance, or 'global OS' in some
embodiments. The global OS 101 may include a virtual oper
ating system manager 121 that manages multiple instances of
virtual OS's that are installed on the devices (e.g., that are
installed on one or more of the computers 150 and 160, that
are installed on an LPAR, etc.). The global OS 101, for
example, may manage a second instance of the operation
system 102. The second instance of the operating system 102
is a virtual OS that is installed on one of the devices (e.g., on
the computer 150), but that also shares resources of the device
(e.g., shares resources of the computer 150 with other virtual
OS's that may be running on the computer 150). The virtual
operating system manager 121 is a module that can manage
communications, activities, etc. for shared resources of the
virtual OS's. For example, the virtual operating system man
ager 121 can control and manage use of a kernel 125 shared
between multiple instances of operating systems (e.g., shared
between the global OS 101, the virtual OS 102, and other
virtual OS's 105 and 106 running on the computer 150).
0024. In some embodiments, the virtual OS 102 has privi
leges to load kernel extensions to the kernel 125. At stage “A.”
for example, the virtual OS 102 requests to load a kernel
extension (e.g., a kernel extension object file). The global OS
101 receives the request and, at stage “B,” and the virtual
operating system manager 121 can perform an electronic
identification validity check for the kernel extension request
made by the virtual OS 102. The virtual operating system
manager 121 can, also at stage “B,” determine that if the
electronic identification validity check passes, or provides a
valid or expected result. Then the virtual operating system
manager 121 can permit the virtual OS 102 to continue load
ing the kernel extension, which may include providing the
kernel extension file to one or more components of the kernel
125 to load the kernel extension into kernel memory. At stage
“C” the virtual operating system manager 121 can write an
entry into a list (a "kernel extension load tracking list” or
more succinctly, a “load tracking list'). The entry in the load
tracking list indicates that the virtual OS 102 requested to load
the kernel extension. At stage “D. the virtual OS 102 uses the
functionality associated with the kernel extension, such as via
one or more processes that request the extended services of
the kernel 125 and/or that make system calls associated with
the extended services of the kernel 125. At stage “E.” when
the virtual OS 102 has completed use of the kernel extension,
the virtual OS 102 may request to unload the kernel extension.
The virtual operating system manager 121 can receive the

Feb. 6, 2014

request by the virtual OS 102 to unload the kernel extension,
and at stage “F” the virtual operating system manager 121 can
check the load tracking list to ensure that the virtual OS 102
has previously requested to load the kernel extension. If the
load tracking list indicates that the virtual OS 102 previously
requested to load the kernel extension (e.g., if the load track
ing list includes the entry written at stage “C”), the virtual
operating system manager 121 will permit the virtual OS 102
to unload the kernel extension. In some embodiments, the
virtual operating system manager 121 can further check, at
stage “G” whether any other virtual OS (e.g., virtual OS's
105 or 106) had also requested to load the kernel extension
independently of virtual OS 102, and that may still need the
kernel extension. For example, virtual OS 105 may have
requested to load the same kernel extension that virtual OS
102 loaded, and the virtual OS 105 may also be indicated in
the load tracking list (e.g., via a separate entry in the load
tracking list, via a counting mechanism in the load tracking
list, etc). The kernel extension, therefore, may be a shared
kernel extension between virtual OS 102 and virtual OS 105.
As a result, if virtual OS 102 is done using the kernel exten
sion and wants to unload it, if virtual OS 105 has not requested
to unload the same kernel extension, and therefore stills needs
to request services associated with the kernel extension, then
the virtual operating system manager 121 can prevent the
virtual OS 102 from unloading the kernel extension even if
the load tracking list indicates that the virtual OS 102 had
previously requested to load the kernel extension. Thus, the
virtual operating system manager 121 can perform multiple
checks and provide validation measures to ensure that kernel
extensions are securely and properly managed on the system
1OO.

0025 FIG. 2 is a flowchart depicting example operations
for securely loading a kernel extension for a virtual operating
system. For exemplary purposes, operations associated with
the blocks in FIG. 2 will be described as being performed by
a virtual OS management system (“system'), which may, for
example, include any or all of the elements described in FIG.
1 and/or FIG. 6. FIG. 2 illustrates a flow that the system can
perform.
0026 Referring to FIG. 2, the system creates a virtual
operating system instance (a virtual OS) and detects a kernel
extension file that the virtual OS may request to load at some
future point (202). The system can indicate a file name of the
kernel extension in a first list (i.e., a potential kernel extension
list) that specifies all kernel extensions that the virtual OS
may want to Subsequently load. The system can detect the
kernel extension file by Scanning and/or analyzing the virtual
OS, when the virtual OS is created, to find any applications
that may need the kernel extension if the virtual OS were to
load and use the application at Some future time. Because the
system knows, or expects, that the virtual OS may Subse
quently need the kernel extensions, the system can also pro
vide limited rights to a virtual OS user to subsequently load
only the kernel extension.
0027. Further, the system generates a unique electronic
identifier based on the kernel extension file, and stores the
unique electronic identifier in kernel memory (204). The
unique electronic identifier is a set of attributes that identify
the kernel extension file uniquely. The system can generate
the unique identifier in different ways. For example, the sys
tem can generate the unique electronic identifier via an elec
tronic fingerprint algorithm/function, via a cryptographic
hash function, via a checksum, via a digital signature proce

US 2014/0040609 A1

dure, via a randomization function, etc. Some embodiments
may refer to the unique electronic identifier as a fingerprint,
an electronic signature, a hash value, etc. The system stores
the unique electronic identifier in the protected memory of the
kernel. Such as in a second list, (e.g., a load tracking list), or in
Some other list, data structure, memory location, file, folder,
table, array, database, etc. that is not accessible to the virtual
OS. In some embodiments, the unique electronic identifier is
a hash value, or key, that is generated by performing a hash
function on the kernel extension file using a cryptographic
hash algorithm (e.g., MD5, SHA-1, etc.). The system can
store the hash value to compare at a future point, such as when
the virtual OS requests to load the kernel extension file. The
hash value identifies a configuration of the content in the
kernel extension file. If the configuration of the content of the
file were to be modified even slightly, and if another hash
function procedure were to be performed on the modified
kernel extension file, using the same hashalgorithm as before,
resulting in an additional hash value, then the additional hash
value would be different from the original, or key, hash value.
0028. Further, the system detects that the virtual OS starts,
and then the system provides a copy of the kernel extension
file to the virtual OS (206). A virtual OS user, for example, can
start the virtual OS. The copy of the kernel extension file is an
exact copy of the kernel extension file for which the system
generated the unique electronic identifier (e.g., a copy of the
kernel extension file on which the system performed a hash
function). In some embodiments, because multiple virtual OS
can be managed by the system (e.g., one global OS can
manage multiple virtual OSs) the system can provide a copy
to each virtual OS that may need a copy of the kernel exten
sion file. The virtual OS that receives the copy of the kernel
extension file can store the copy on memory allocated to the
virtual OS. In some embodiments, the global OS can store the
copy on protected memory allocated to the virtual OS that
only an administrator of the virtual OS can access when
loading the kernel extension. The virtual OS keeps its copy of
the kernel extension file shielded from any other virtual OS.
In some embodiments, as an added security measure, the
system can encrypt the copy of the kernel extension file (e.g.,
the global OS and/or the virtual OS can encrypt the copy
when sent and/or when received) to prevent tampering. In
some embodiments, a global OS and a virtual OS can share
keys to decrypt versions of the file.
0029. The system detects a request to load the copy of the
kernel extension file, and verifies the unique electronic iden
tifier for the copy of the kernel extension file (208). A virtual
OS user can request to load the copy of the kernel extension
file and can provide the copy of the kernel extension file to
check and load. The system can check the user's rights to
determine that the user had received the rights to request the
load. The system can also check that a file name for the copy
of kernel extension file name is listed in a first list (i.e., in the
potential kernel extension list) as a check that the system had
previously verified that the virtual OS may potentially need
the kernel extension. The system can verify the unique elec
tronic identifier for the copy of the kernel extension file by, for
example, re-computing a second hash value using the same
hash function that was used compute the first hash value that
was generated before providing the copy of the kernel exten
sion file to the virtual OS. The system can then compare the
second hash value to the first hash value that was stored in
kernel memory. If both hash values match, then the copy of

Feb. 6, 2014

the kernel extension file provided by the virtual OS is equiva
lent to the kernel extension file on which the first hash func
tion was performed.
0030. In some embodiments, the virtual OS may not be the
thing that requests to load the copy of the kernel extension
file. In some embodiments, a global OS may instead need to
load a kernel extension. For example, a global OS may
receive a request from the virtual OS to perform an activity
associated with the kernel (e.g., request access to a storage
device). The global OS may need to provide a kernel exten
sion that the virtual OS did not specifically request but that is
required for the activity to perform properly. For example, the
global OS may need to provide a device driver to the virtual
OS for the storage device. As a result, the global OS, instead
of requiring the virtual OS to request the kernel extension for
the device driver, the global OS can just provide the device
driver(s) to the virtual OS without the virtual OS needing to
go through a validation process (e.g., without having to Vali
date a unique electronic identifier).
0031. The system verifies that the unique electronic iden

tifier is valid (210). The system can verify that the unique
electronic identifier is authorized, secure, or expected. For
example, the system determines that the first hash value and
the second hash value, described in the paragraph above, are
equal in value. If the first hash value and the second hash value
are equal in value, then the system can ensure that the copy of
the kernel extension file had not been modified after it was
provided to the virtual OS.
0032. If the system determines that the unique electronic
identifier is not valid, the system can deny the virtual OS's
request to load the kernel extension (212). If, however, the
system determines that the unique electronic identifier is
valid, the system can write an entry in a load tracking list that
indicates that the virtual OS requests the kernel extension to
load (214). In some embodiments, the load tracking list is
stored in the kernel space. The load tracking list can track a
virtual OS identifier (e.g., a WPARID), a name of the kernel
extension file, a mode (e.g., global versus local), a unique
electronic identifier (e.g., a hash), a global load count (see
FIG.3 below), a kernel memory identifier for a loaded kernel
extension, etc. The load tracking list can be separate from the
list referred to above for 202.

0033. The system can further load the kernel extension
(216). When the system loads the kernel extension, the sys
temperforms operations that extend functionality of the ker
nel by providing additional code that the kernel did not pre
viously have and that the kernel did not have loaded into
kernel memory. The system makes the functionality acces
sible to the virtual OS. When the system loads the kernel
extension, the system can provide the virtual OS with a kernel
memory identifier for the loaded kernel extension. The virtual
OS can use the kernel memory identifier to request services
associated with the kernel extension and/or to request to
unload the kernel extension without having to refer to the
kernel extension by file name. In some embodiments, as
indicated previously, the global OS can manage multiple
virtual OSs. The multiple virtual OS's can share the extended
kernel extension functionality. In other embodiments, how
ever, the global OS may only allow one virtual OS to access
the extended functionality and not any other virtual OS. In
some embodiments, each of the virtual OS's may request to
load the kernel extension as a local kernel extension, even if
the kernel extension could be shared. Thus, in some embodi
ments, the system can have multiple, but isolated, versions of

US 2014/0040609 A1

the same kernel extension loaded in kernel memory. Further,
in some embodiments, multiple global OS's may be installed
on one machine. For example, an LPAR can have a global, or
managing, OS that may manage multiple virtual OSS on the
LPAR. One machine may have multiple LPARs each with
separate kernels. Thus, several copies of a kernel extension
may be loaded in each of the kernels on each of the LPARs.
0034 FIG. 3 is a flowchart depicting example operations
for securely loading a kernel extension for a virtual operating
system. For exemplary purposes, operations associated with
the blocks in FIG. 3 will be described as being performed by
a virtual OS management system (“system'), which may, for
example, include any or all of the elements described in FIG.
1 and/or FIG. 6. FIG. 3 illustrates a flow that the system can
perform. In some embodiments, the flow can continue from
FIG. 2 to FIG.3, or can be performed in parallel with the flow
of FIG. 2. In other embodiments, however, some or all of the
flow of FIG. 3 may be performed separately and indepen
dently from the flow of FIG. 2.
0035 Referring to FIG. 3, the system detects a request
from the virtual OS to load a kernel extension (302).
0036. The system determines whether the kernel exten
sion is global or local (304). A global kernel extension is a
kernel extension that can be shared by more than one virtual
OS. For example, a kernel extension may include a device
driver for hardware that multiple virtual OS's may need
access. A local kernel extension is a kernel extension that will
be specific to, or used only by, the virtual OS. A virtual OS can
request that the kernel extension be global (shared) or local
(non-shared), depending on the virtual OS's needs and/or the
needs of other virtual OSs, as determined by the system. If
the system determines that the kernel extension is local, the
system can load the kernel extension (310) directly. The ker
nel extension will be specific only to the virtual OS and will
not be shared with other virtual OSs. If, however, the system
determines that the kernel extension should be loaded glo
bally, the system increments a count that tracks a number of
virtual OS instances that have requested to load and/or unload
the same kernel extension (306). The count can be associated
with value or a variable stored in the load tracking list or in
Some other location in kernel memory.
0037. The system can further determine whether the ker
nel extension requested by the virtual OS is already loaded in
the kernel (308). If the system determines that the kernel
extension is not already loaded, the system will load the
kernel extension (310) as a shared kernel extension. If, how
ever, the system determines that the kernel extension is
already loaded, the system indicates to the virtual OS that the
kernel extension is loaded (312). In some embodiments, the
system can indicate to the virtual OS that the kernel extension
is loaded in a way that convinces the virtual OS that it loaded
the kernel extension even if the virtual OS did not load the
kernel extension.

0038. Further, the flow of FIG. 3 can also be used to
request loading of any kernel service or specific services, and
not just for loading entire kernel extensions. Further, some
embodiments can track a count in other ways, such as decre
menting a count when a virtual OS requests to load a kernel
extension and incrementing the count when the virtual OS
requests to unload the kernel extension. Other embodiments
may track requests for loading and unloading of a global
kernel extension by modifying symbols or values of types
other than numbers, such as text values or tally mark indica
tors. For example, in Some embodiments, the system may

Feb. 6, 2014

write, into a file, textual names or other unique identifiers of
all virtual OS's that request a global kernel extension. When
a virtual OS requests to remove a global kernel extension, the
system can remove the name or identifier for the virtual OS.
To determine whether a virtual OS still requires use or access
to the global kernel extension, the system can check the file to
determine whether any text remains in the list or whether
specific text remains in the list. For example, in some embodi
ments, after a first virtual OS requests to load a kernel exten
sion globally, the system can the write a name or identifier for
the first virtual OS (“virtual OS identifier”) into a list (e.g., a
load tracking list). The system can also specify a first instance
of a name or identifier for the global kernel extension (“kernel
extension identifier”) and associate the virtual OS identifier
with the kernel extension identifier to indicate that the first
virtual OS has loaded the kernel extension. When one or more
other virtual OSs (e.g., a second virtual OS) also requests to
load the same kernel extension globally, the system can write
other entries in the list for the one or more other virtual OS's
that include additional instances of the kernel extension iden
tifier. When the first virtual OS requests to unload the specific
kernel extension, the system can remove from the list the first
instance of the kernel extension identifier associated with the
first virtual OS. To determine whether any of the one or more
other virtual OS's still require use or access to the kernel
extension, the system can search the list and determine
whether any entries indicate the other instances of the kernel
extension identifier associated with any of the one or more
other virtual OS's. In some embodiments, the kernel exten
sion identifier may be a unique kernel extension identifier,
Such as an address in kernel memory where the kernel exten
sion is loaded, and the system can verify whether any other
entries in the list, for any other virtual OS, also include the
unique kernel extension identifier. In some embodiments, the
system can also set a type indicator in the list (e.g., set the type
indicator to “global versus “local') to indicate whether the
kernel extension is loaded globally or locally for any given
virtual OS.

0039 FIG. 4 is a flowchart depicting example operations
for securely unloading a kernel extension for a virtual oper
ating system. For exemplary purposes, operations associated
with the blocks in FIG. 4 will be described as being performed
by a virtual OS management system (“system'), which may,
for example, include any or all of the elements described in
FIG. 1 and/or FIG. 6. FIG. 4 illustrates a flow that the system
can perform. In some embodiments, the flow can continue
from FIG. 2 or 3 to FIG. 4. In other embodiments, however,
some or all of the flow of FIG.4 may be performed separately
and independently from the flows of FIG. 2 or 3.
0040. Referring to FIG. 4, the system detects a request
from a virtual OS to unload a kernel extension (402).
0041. The system can determine whether the kernel exten
sion is global or local (404). The system can determine
whether the kernel extension is global or local similarly as
described for 304 in the flow of FIG.3 above. If the system
determines that the kernel extension is global, the system can
decrement a count (406) that was previously incremented
(e.g., see 306 of FIG. 3). If the count is Zero (408), or some
other expected value that indicates no other virtual OS needs
the global kernel extension, the system can determine
whether a memory identifier provided by the virtual OS
matches (410) an entry in the load tracking list for the kernel
extension. For example, in Some embodiments, when the
virtual OS previously requested to load the kernel extension,

US 2014/0040609 A1

the system may have provided a kernel memory identifier and
may have stored the kernel memory identifier in the load
tracking list. If the system determines that the kernel memory
identifier matches, the system determines whether the load
tracking list indicates that the virtual OS had previously
requested the kernel extension to load (412). For example, in
FIG. 2 at 214, the system previously indicated that the virtual
OS had requested to load the kernel extension and made an
indication in the load tracking list. Referring back to FIG. 4.
if the system determines that the load tracking list indicates
that the virtual OS had previously requested to kernel exten
sion to load, and then the system can unload the kernel exten
sion (414) and indicate to the virtual OS that the kernel
extension is unloaded. If the system, however, determines
that the kernel memory identifier does not match (at 410) or
that the load tracking list does not indicate that the virtual OS
had previously requested to load the kernel extension (at 412),
then the system can deny, or refrain from, unloading the
kernel extension.

0042. Further, if, at 408, the system determines that the
global count is not at Zero, or some other expected value. In
other words, if the global count indicates that another virtual
OS may still need to keep the kernel extension loaded, the
system can indicate to the virtual OS that the kernel extension
is unloaded eventhough the system does not unload the kernel
extension. The system, therefore, can provide to the virtual
OS a message, or otheran indication, that the kernel extension
is unloaded so that the virtual OS can perform any clean-up
procedures when closing an application or terminating one or
more processes that were utilizing the kernel extension and
that expect the kernel extension to be unloaded before com
pleting the clean-up process.
0043 FIG. 4 thus shows three potential security checks
that the system can perform (i.e., checking the count (408),
checking the kernel memory identifier (410) and checking the
load tracking list (412)) before unloading a kernel extension
to prevent kernel extension conflicts, errors, attacks, etc.
0044 FIG. 5 is a flowchart depicting example operations
for updating kernel extension files for a virtual operating
system. For exemplary purposes, operations associated with
the blocks in FIG. 5 will be described as being performed by
a virtual OS management system (“system'), which may, for
example, include any or all of the elements described in FIG.
1 and/or FIG. 6.
0045 Referring to FIG. 5, the system creates a virtual OS
and detects a kernel extension file that the virtual OS may
request to load (502) similarly as described above in FIG. 2.
0046. The system can perform a cryptographic hash func
tion on the kernel extension file and store the hash value in
kernel memory (504). Then, system can detect that an admin
istrative user of the virtual OS starts the virtual OS and the
system can then provide a copy of the kernel extension file to
the virtual OS.
0047. Before the virtual OS requests to load the first copy
of the kernel extension file, the system may update one or
more files from the base kernel (506) including the kernel
extension file on which the cryptographic hash function was
performed at 504. The system must thereafter provide a copy
of the updated kernel extension to the virtual OS. However,
before providing the copy of the updated kernel extension file,
the system performs the cryptographic hash function on the
updated kernel extension file (510) generating a new hash
value. The system can store the new hash value in the kernel
memory and use it a later time to validate the kernel extension

Feb. 6, 2014

when loaded by the virtual OS. The system can then provide
a copy of the updated kernel extension file to the virtual OS
(512), which the virtual OS can use subsequently request to
load.
0048. As will be appreciated by one skilled in the art,
aspects of the present inventive Subject matter may be embod
ied as a system, method or computer program product.
Accordingly, aspects of the present inventive subject matter
may take the form of an entirely hardware embodiment, an
entirely software embodiment (including firmware, resident
Software, micro-code, etc.) or an embodiment combining
Software and hardware aspects that may all generally be
referred to herein as a “circuit.” “module' or “system.” Fur
thermore, aspects of the present inventive subject matter may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read
able program code embodied thereon.
0049 Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi
conductor System, apparatus, or device, or any suitable com
bination of the foregoing. More specific examples (a non
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.
0050. A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.
0051 Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any Suitable combination of the foregoing.
0.052 Computer program code for carrying out operations
for aspects of the present inventive subject matter may be
written in any combination of one or more programming
languages, including an object oriented programming lan
guage such as Java, Smalltalk, C++ or the like and conven
tional procedural programming languages, such as the “C”
programming language or similar programming languages.
The program code may execute entirely on the user's com
puter, partly on the user's computer, as a stand-alone software
package, partly on the user's computer and partly on a remote
computer or entirely on the remote computer or server. In the

US 2014/0040609 A1

latter scenario, the remote computer may be connected to the
user's computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service Pro
vider).
0053 Aspects of the present inventive subject matter are
described with reference to flowchart illustrations and/or
block diagrams of methods, apparatus (systems) and com
puter program products according to embodiments of the
inventive subject matter. It will be understood that each block
of the flowchart illustrations and/or block diagrams, and com
binations of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer program instruc
tions. These computer program instructions may be provided
to a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program
mable data processing apparatus, create means for imple
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.
0054 These computer program instructions may also be
stored in a computer readable medium that can direct a com
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, Such that the
instructions stored in the computer readable medium produce
an article of manufacture including instructions which imple
ment the function/act specified in the flowchart and/or block
diagram block or blocks.
0055. The computer program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple
mented process Such that the instructions which execute on
the computer or other programmable apparatus provide pro
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.
0056 FIG. 6 depicts an example computer system 600.
The computer system 600 includes a processor unit 601 (pos
sibly including multiple processors, multiple cores, multiple
nodes, and/or implementing multi-threading, etc.). The com
puter system 600 includes memory 607. The memory 607
may be system memory (e.g., one or more of cache, SRAM,
DRAM, Zero capacitor RAM, Twin Transistor RAM,
eDRAM, EDO RAM, DDR RAM, EEPROM, NRAM,
RRAM, SONOS, PRAM, etc.) or any one or more of the
above already described possible realizations of machine
readable or computer readable media. The computer system
600 also includes a bus 603 (e.g., PCI bus, ISA, PCI-Express
bus, HyperTransport(R) bus, InfiniBandR, bus. NuBus bus,
etc.), a network interface 605 (e.g., an ATM interface, an
Ethernet interface, a Frame Relay interface, SONET inter
face, wireless interface, etc.), and a storage device(s) 609
(e.g., optical storage, magnetic storage, etc.). The computer
system 600 also includes a virtual operating system manager
621. The virtual operating system manager 621 can manage
resources of the computer system 600 that are shared between
one or more instances of operating systems (i.e., virtual oper
ating systems) that may run on, or that are controlled by, the
computer system 600. The virtual operating system manager
621 can include individual components or parts that manage
different aspects or parts of the virtual operating system and

Feb. 6, 2014

shared resources. For example, the virtual operating system
manager 621 can include a kernel extension management
module 622 that can securely manage loading and unloading
of kernel extensions/modules by virtual operating systems.
Any one of these functionalities may be partially (or entirely)
implemented in hardware and/or on the processing unit 601.
For example, the functionality may be implemented with an
application specific integrated circuit, in logic implemented
in the processing unit 601, in a co-processor on a peripheral
device or card, etc. Further, realizations may include fewer or
additional components not illustrated in FIG. 6 (e.g., video
cards, audio cards, additional network interfaces, peripheral
devices, etc.). The processor unit 601, the storage device(s)
609, and the network interface 605 are coupled to the bus 603.
Although illustrated as being coupled to the bus 603, the
memory 607 may be coupled to the processor unit 601.
0057 While the embodiments are described with refer
ence to various implementations and exploitations, it will be
understood that these embodiments are illustrative and that
the scope of the inventive subject matter is not limited to
them. In general, techniques for debugging workflows as
described herein may be implemented with facilities consis
tent with any hardware system or hardware systems. Many
variations, modifications, additions, and improvements are
possible.
0.058 Plural instances may be provided for components,
operations, or structures described hereinas a single instance.
Finally, boundaries between various components, operations,
and data stores are somewhat arbitrary, and particular opera
tions are illustrated in the context of specific illustrative con
figurations. Other allocations of functionality are envisioned
and may fall within the scope of the inventive subject matter.
In general, structures and functionality presented as separate
components in the exemplary configurations may be imple
mented as a combined structure or component. Similarly,
structures and functionality presented as a single component
may be implemented as separate components. These and
other variations, modifications, additions, and improvements
may fall within the scope of the inventive subject matter.
What is claimed is:
1. A method comprising:
receiving a request to load a kernel extension in a kernel,

wherein the request to load the kernel extension is sent
by a first of a plurality of instances of an operating
system, wherein the plurality of instances of the operat
ing system are managed by a second of the plurality of
the instances of the operating system, wherein the plu
rality of the instances of the operating system share a
kernel;

recording an indicator that indicates that the first of the
plurality of the instances of the operating system
requested to load the kernel extension, wherein the indi
cator is accessible only to the second of the plurality of
the instances of the operating system;

loading the kernel extension, wherein loading the kernel
extension extends functionality of the kernel;

receiving a request by the first of the plurality of the
instances of the operating system to remove the func
tionality from the kernel;

determining, based on the indicator, that the first of the
plurality of the instances of the operating system
requested to load the kernel extension; and

removing the functionality from the kernel in response to
the determining, based on the indicator, that the first of

US 2014/0040609 A1

the plurality of the instances of the operating system
requested to load the kernel extension.

2. The method of claim 1, wherein the indicator is stored in
one or more of a list, a file, a data structure, a memory
location, a folder, a table, an array and a database associated
with the kernel.

3. The method of claim 1, wherein the indicator indicates a
memory address in the kernel memory for the kernel exten
Sion.

4. The method of claim 1, wherein before receiving the
request to load the kernel extension in the kernel, further
comprising:

determining that the first of the plurality of instances of the
operating system includes a kernel extension file asso
ciated with the kernel extension;

storing a file name of the kernel extension file in a list;
determining that the file name for the kernel extension is in

the list after receiving the request to load the kernel
extension in the kernel; and

loading the kernel extension in the kernel at least in part
because the file name is in the list.

5. The method of claim 1, wherein said first of the plurality
of the instances of the operating system is installed on a
software partition and the second of the plurality of the
instances of the operating system is installed on one or more
of a logical partition and a server.

6. A computer program product for managing kernel exten
sions for one or more virtual operating systems, the computer
program product comprising:

a computer readable storage medium having computer
readable program code embodied therewith, the com
puter readable program code comprising:

computer readable program code configured to,
receive a request to load a kernel extension in a kernel,

wherein the request to load the kernel extension is sent
by a first of a plurality of instances of an operating
system, wherein the plurality of instances of the oper
ating system are managed by a second of the plurality
of the instances of the operating system, wherein the
plurality of the instances of the operating system
share a kernel, and wherein the kernel extension
extends functionality of the kernel,

access a list maintained by the second of the plurality of
instances of the operating system, wherein the list is
stored in kernel memory and is accessible only to the
second of the plurality of the instances of the operat
ing System,

make an entry in the list that indicates that the first of the
plurality of the instances of the operating system
requested to load the kernel extension,

load the kernel extension in the kernel,
receive a request to unload the kernel extension from the

kernel, wherein the request to unload the kernel exten
sion is sent by the first of the plurality of instances of
the operating system,

search the list,
find the entry in the list, in response to searching the list,

wherein the entry indicates that the first the plurality
of instances of the operating system previously
requested to load the kernel extension, and

unload the kernel extension based at least in part on
finding the entry in the list.

7. The computer program product of claim 6, said com
puter readable program code being further configured to,

Feb. 6, 2014

store in the list a first identifier that indicates a memory
address in the kernel memory for the kernel extension,
wherein the list associates the first identifier with a sec
ond identifier that identifies the first of the plurality of
instances of the operating system.

8. The computer program product of claim 7, said com
puter readable program code being further configured to,

determine, from the list, that the first identifier is associated
with the second identifier, and

unload the kernel extension based in part on determining
that the first identifier is associated with the second
identifier.

9. The computer program product of claim 6, said com
puter readable program code being further configured to,

generate a unique identifier when the first of the plurality of
instances of the operating system requests to load the
kernel extension, wherein the unique identifier identifies
the kernel extension,

store the unique identifier in the list,
use the unique identifier to determine that the kernel exten

sion is globally shared by a third of the plurality of
instances of the operating system, and

wait until the third of the plurality of instances of the
operating system requests to unload the kernel extension
before unloading the kernel extension.

10. The computer program product of claim 6, said com
puter readable program code being further configured to,

store a count in the list associated with a number of the
plurality of instances of the operating system that have
requested to load the kernel extension, and

before unloading the kernel extension, determine that the
count indicates that the plurality of the instances of the
operating system no longer require the kernel extension.

11. The computer program product of claim 6, said com
puter readable program code being further configured to,

before receiving the request to load the kernel extension in
the kernel,

determine that the first of the plurality of instances of the
operating system stores a kernel extension file associ
ated with an application installed on the first of the
plurality of the instances of the operating system,
wherein the application requires the kernel extension file
to be loaded, and

store a file name of the kernel extension file in the list.
12. The computer program product of claim 11, said com

puter readable program code being further configured to,
after receiving the request to load the kernel extension in

the kernel
determine that the file name for the kernel extension is in

the list, and
load the kernel extension in the kernel, based at least in

part because the file name is in the list.
13. The computer program product of claim 11, said com

puter readable program code being configured to determine
that the first of the plurality of instances of the operating
system stores the kernel extension file associated with the
application installed on the first of the plurality of the
instances of the operating system being configured to,

scan the first of the plurality of instances of the operating
system, when the first of the plurality of instances of the
operating system is created, to find the application that
requires the kernel extension file.

US 2014/0040609 A1

14. An apparatus comprising:
a processing unit;
a network interface; and
a virtual operating system manager operable to, via the

processing unit,
receive a request to unload a kernel extension from a

kernel, wherein the request is sent by a first of a
plurality of instances of an operating system, wherein
the plurality of instances of the operating system are
managed by a second of the plurality of the instances
of the operating system, wherein the plurality of the
instances of the operating system share a kernel, and
wherein the kernel extension extends functionality of
the kernel,

access a list maintained by the second of the plurality of
instances of the operating system, wherein the list is
stored in kernel memory and is accessible only to the
second of the plurality of the instances of the operat
ing System,

search the list,
find an entry in the list, in response to searching the list,

wherein the entry indicates that the first the plurality
of instances of the operating system previously
requested to load the kernel extension, and

unload the kernel extension based at least in part on
finding the entry in the list.

15. The apparatus of claim 14, wherein the list indicates a
first identifier that indicates a memory address in the kernel
memory for the kernel extension, wherein the list associates
the first identifier with a second identifier that identifies the

Feb. 6, 2014

first of the plurality of instances of the operating system, and
wherein the virtual operating system manager is further oper
able to

determine, from the list, that the first identifier is associated
with the second identifier, and

unload the kernel extension based in part on determining
that the first identifier is associated with the second
identifier.

16. The apparatus of claim 14, wherein the first of the
plurality of instances of the operating system is installed on a
software partition and wherein the second of the plurality of
instances of the operating system is installed on one or more
of a logical partition and a computer.

17. The apparatus of claim 14, wherein the virtual operat
ing system manager is further operable to

receive a request by the first of the plurality of instances of
the operating system to load the kernel extension before
receiving the request to unload the kernel extension from
the kernel,

generate a unique identifier when the first of the plurality of
instances of the operating system requests to load the
kernel extension, wherein the unique identifier identifies
the kernel extension,

store the unique identifier in the list,
use the unique identifier to determine that the kernel exten

sion is globally shared by a third of the plurality of
instances of the operating system, and

wait until the third of the plurality of instances of the
operating system requests to unload the kernel extension
before unloading the kernel extension.

k k k k k

