
(19) United States
US 2005O286.065A1

(12) Patent Application Publication (10) Pub. No.: US 2005/0286065 A1
Gauthier et al. (43) Pub. Date: Dec. 29, 2005

(54) METHOD AND SYSTEM FOR FLOWING
DATA TO AN ARBITRARY PATH DEFINED
BY A PAGE DESCRIPTION LANGUAGE

(76) Inventors: Forrest P. Gauthier, Maineville, OH
(US); James R. Walker, Maineville,
OH (US)

Correspondence Address:
MACMILLAN SOBANSKI & TODD, LLC
ONE MARITIME PLAZA FOURTH FLOOR
720 WATER STREET
TOLEDO, OH 43604-1619 (US)

(21) Appl. No.: 11/153,256

(22) Filed: Jun. 15, 2005

Related U.S. Application Data

(63) Continuation of application No. 10/629,338, filed on
Jul. 29, 2003, now abandoned, which is a continua

tion of application No. 09/818,665, filed on Mar. 27,
2001, now Pat. No. 6,487,568, which is a continua
tion-in-part of application No. 08/897,467, filed on
Jul. 18, 1997, now Pat. No. 6,209,010.

Publication Classification

(51) Int. Cl." ... G06F 15/00
(52) U.S. Cl. .. 358/1.13

(57) ABSTRACT

A method for wrapping data to an arbitrary path defined by
a page description language, including the Steps of: (a)
processing a page description language specification; (b)
while performing step (a), identifying a data wrapping
boundary; (c) associating a data block external to the page
description language Specification with the data wrapping
boundary; and (d) generating printable image representa
tions of the data block according to the data wrapping
boundary and a pre-defined flow rule.

Pagedescription LanguageFile)
ACCeSSMethod=FTP

32 S FilePath=C:\forms\wierd.pd

12--
4OS

Wrap-1

Shape-1

v. - m na. - . .

--- MergeFile
AccessMethod=FTP
FilePath=C:\data\info.txt

44

Shape - S - 42
4-6

48 N-FillRuler EvenOddRule
5O -Drawpath=True

US 2005/0286065 A1

(o)
-65 QS)

NC)

edwus

orse era.) 8-8-G

Patent Application Publication Dec. 29, 2005 Sheet 1 of 8

Patent Application Publication Dec. 29, 2005 Sheet 2 of 8 US 2005/0286065 A1

PagedescriptionlanguageFile)
AccessMethod=FTP

32 S FilePath=C:\formswierd.pdf
MergeFile)

48 N-FillRuler EvenOddRule

40s - FilePath=C\data\info.txt

Drawpath=True -na 5O

12-y
ACCeSSMethodEFTP

44 Wrap-1
Shape - S - 2

(Shape)-6

FG. 2
16

--
52 54 greeting 1

In a world of interactive media and virtual reality Variable On-Demand
digital printing holds a competitive advantage over traditional and less
flexible technologies. /

Varis' products meet customized printing demands
on the tightest deadlines with breakthrough electronics, industry standard
software and a philosophy that customer needs drive printing solotions,
not the other way around.

Patent Application Publication Dec. 29, 2005 Sheet 3 of 8 US 2005/0286.065 A1

62

9w 3-64
6O * 56

F.G. 4

F.G. 5

Patent Application Publication Dec. 29, 2005 Sheet 4 of 8 US 2005/0286065 A1

58

F.G. (3

Patent Application Publication Dec. 29, 2005 Sheet 5 of 8 US 2005/0286065 A1

58

<<peeezap22 apaa-FSaae

Patent Application Publication Dec. 29, 2005 Sheet 6 of 8 US 2005/0286.065 A1

84

Patent Application Publication Dec. 29, 2005 Sheet 7 of 8 US 2005/0286065 A1

AEN PA-N-1OO

ALIGN COORDINATESYSTEM WITHATTRIBUTESTRING-- 102

ROTATE BOUNDARY INTO COORDINATESYSTEM OF ATTRIBUTESTRING--104

APPLY GRAPHICS STATE TO TEST DATA TO CALCULATEDMENSIONS OF WORD BITMAPS 1O6

LOCATEHIGHEST POINT OF PATHBOUNDARY AND APPLY TOPMARGIN-- 108

DEFINE RECTANGULAR INSERTONAREA 11O

OVERLAY INSERTIONAREAONTO PATH BOUNDARY-N-112

APPLYFLOWRUE TO DETERMINEBETWEEN WHICHADJACENT 114
INTERSECTION POINTS TO RECEVE WORD BTMAPS

APPLY LEFT/RIGHTMARGINS TODETERMNETEXT PLACEMENT AREAN-116
118

INSERT WORLD BITMAPSINTOTEXT PLACEMENT AREA (BY CREATINGRENDERINGCOMMANDS THAT ARE
ADDED TO THE DISPLAY LIST) UNTIL CALCULATED AVAILABLE WIDTHISSMALLERTHAN WIDTH OF NEXT WORLD

BMAP TO INSERT

APPLYLINE SPACING CREATENEXTRECTANGULAR INSERTION AREA AND OVERLAYNEXT INSERTION
AREA ONTO PATHBOUNDARY

122 12O
BEOWBOTTOM Y

MARGINOR FINISHED END
WITH WORD
BTMAPS2

124

FIG. 11

Patent Application Publication Dec. 29, 2005 Sheet 8 of 8 US 2005/0286065 A1

88

7s datavae.
24es 7ame (242ata-2,
ad one. Ma yog Cae dee, (e

92

FIG. 12

88 90

7 datavae.

24e 7zone of 2auta=2. aeae (eve A444 4ve beated
ad one. M. god cars dea, (e at Asad 4ode444 dolodd
tead owedanie4 4.e4A ae caudated area. 742
Away a tea cos?ade4 4s6d ade Aaza da Aed or aa te

aaeedad avae data a ceded, coeeze conced
Azat. 74 to ove4a a dated, te Aso

ada aeg to move zoom a

F.G. 135

US 2005/0286065 A1

METHOD AND SYSTEM FOR FLOWING DATA TO
AN ARBTRARY PATH DEFINED BY A PAGE

DESCRIPTION LANGUAGE

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 10/629,338 filed on Jul. 29, 2003, now
U.S. Pat No. , which was a continuation of U.S.
patent application Ser. No. 09/818,665 filed on Mar. 27,
2001, now U.S. Pat. No. 6,487,568, which was a continu
ation-in-part of U.S. patent application Ser. No. 08/897,467,
filed on Jul. 18, 1997, now, U.S. Pat. No. 6,209,010. The
disclosure of each of these applications and patents is hereby
incorporated by reference.

BACKGROUND

0002 The present invention relates to the high speed
printing industry, and more particularly a System and method
for flowing variable data into a page description language
file in a high Speed printing environment.
0003) Application programs, Such as word processors,
illustrators, and computer-aided design Systems are Software
packages used to create a document (text and graphics) on
a computer Screen and to Simultaneously generate a page
description language (“PDL) specification, which is to be
transferred to the printer or to any other type of raster or
output device for creating a hard copy or copies of the
document. Alternatively, a PDL Specification can be gener
ated by a programmer without the assistance of an applica
tion program.
0004. The printer executes the PDL specification to gen
erate a bitmap of the document, or a raster-data representa
tion of a document, and eventually transferS the bitmap or
raster-data to the physical medium. A typical PDIJ language,
Such as PostScript (a registered trademark of Adobe Corpo
ration) defines a page of the document as containing a
number of data areas, where each data area contains either
graphic or alpha-numeric data. Each data area is defined by
a "graphic State,” which is a collection of parameters for
controlling the representation and appearance of text and
graphics. For example, the graphic State can include a Set of
text attributes Such as Scale-factor, type-font, etc. In Post
Script, an example of a PDL command used to build a
graphic State can be: “twenty rotate,” and "/TimeS-Roman
find font 14 scalefont setfont.” Examples of PDL commands
used to define the graphic or alpha-numeric data that is
displayed in the data area include: 00 moveto and (ABC)
show. The entire group of PDL commands used to define a
document is hereinafter referred to as the “PDL specifica
tion.”

0005. In variable data printing each printed document
shares a common template and there is at least one area in
the template that changes for each printing of the template.
Typical PDL languages are not designed for high-speed
variable data printing because, with PDL languages and PDL
interpreters, even if a Single item of data in the document
changes, an entirely new PDL Specification must be created
and interpreted. For example, if one-hundred thousand cop
ies of a mass-mailing advertisement were to printed (i.e.,
each copy of which is identical except for the mailing
address), it is typically necessary to generate a new PDL

Dec. 29, 2005

Specification for each copy to printed. Hence, to generate
one-hundred thousand advertisements, it would be necessary
to generate one-hundred thousand PDTJ Specifications, even
though each advertisement is virtually the same except for
the variable data area. The processing time required to
interpret and render one-hundred thousand PDL specifica
tions is enormous, Significantly slowing the entire printing
System.

0006 Furthermore, typical PDL languages do not include
any text or data flowing capabilities. These features are
usually implemented by the application program, and when
Such an application program flows data (Such as text) into a
PDL document, the calculations to determine where to place
the data are completed prior to the generation to the PDL
Specification. Accordingly, variable data cannot be flowed
into a template document without creating a new PDL
Specification for each document. Accordingly, there is a need
for a high-speed printing operation having the ability to
merge variable data into a template defined by a PDL
Specification; and in particular, having the ability to flow
variable data into a template path defined by PDL specifi
cation in a high-Speed printing operation.

SUMMARY

0007. It is an object of the present invention to provide a
System and method for flowing variable data (Such as text
data, image data, bar code data and the like) into a path of
a template defined by a PDL Specification in a high-speed
printing operation. It is a further object of the present
invention to provide the ability to generate a plurality of
merged bitmaps, which are each essentially a copy of a
template, except for at least one portion of the template that
contains an arbitrary path. In that path, each merged bitmap
can contain a different Set of variable data merged into it.
The template is defined by a page description language, and
the page description language only needs to be processed or
interpreted once before creating all of the merged bitmaps,
thus providing an extremely high-speed variable data print
ing operation.
0008. The computer implemented method for flowing
data into an arbitrary path defined by a page description
language specification (“PDL Specification”) generally com
prises the steps of processing (interpreting) the PDL Speci
fication to produce a template, designating a path defined in
the PDL Specification as a wrapping path; associating a
block of variable data with the wrapping path; and merging
variable data, according to the path boundary and according
to a predefined flow rule, into a copy of the template.
0009. The method of the present invention is accom
plished by executing a control task in conjunction with a
PDL interpreter program. The control task generates a
template display list based upon the PIDL commands in the
PDL specification. The display list includes a plurality of
rendering commands, where each rendering command des
ignates a particular data area or object to be rendered, the
graphics State to be applied to the data area and the offset
address at which the rendered object, if any, in the data area
is to be overwritten onto the final bit map. The graphic States
for each data area are Set forth in the PDL Specification, and
pertain to the print attributes that describe how particular
graphic or alpha-numeric data is to appear on the printed
page. These attributes can include the size, font, position,
orientation, location, and the like.

US 2005/0286065 A1

0.010 The control task, during the PDL interpretation
procedure, monitors the data areas defined by the PDI.J
specification to watch for variable data paths defined by the
PDL code. If the control task identifies a path as being a
variable data path, it reserves the graphic-States associated
with that variable data path in a cache or memory, and then
moves on to the next data area defined in the PDL specifi
cation, preferably without allowing the path data to be added
to the template display list.
0.011) Once the interpreter program completes its inter
pretation of the PDL specification, the control task saves the
template display list in memory without dispatching a bit
map of the template to the printer. Subsequently, a merge
task is initiated which accesses a variable data record from
a merge file; associates the variable data record to a par
ticular variable data path; creates representations of the
variable data, Such as rendering commands according to the
reserved graphic States pertaining to that particular variable
data path, according. to the boundary of the particular
variable data path and according to a predefined flow rule;
and then generates a merged bitmap by processing the
template display list and the variable data rendering com
mands. The final merged bitmap that may then be dispatched
to the printer. This merge task is repeated for each variable
data record in the merge file associated with that particular
variable data path to create a plurality of the merged
bitmaps. Thus, the PDL specification of the template need
only be interpreted once, Saving Significant processing time
for the variable printing operation, because the reserved
graphic States may be utilized over and over again to create
the flowed data bitmap for each variable data record con
tained in the merge file.
0012 How the control task identifies a particular PDL
path defined in the PDL Specification as being unique, i.e.,
as being identified as a wrapping path, is an important Step
in the above process. This is accomplished by providing a
text command in the PDL specification that defines one or
more characters that are recognized by the control task as
being Special characters, as opposed to merely being char
acters that are to be included on the printed page. The control
task monitors all text strings defined by the PDL specifica
tion for Such special characters, and responsive to a detec
tion of the Special character in the text String defined by the
text command, the control task identifies the path command
that has a predetermined relationship with the text command
in the PDL specification. This predetermined relationship
can be satisfied by the first path command to follow the text
command in the PDL specification or by the path command
that is “grouped” with the text command in the PDTJ
Specification.

0013 In the preferred embodiment of the present inven
tion, the characters "zz” and ">>' are used as part of a
Special text String to define an area as a variable data area.
And if that Special text String also includes the String wrap
then the control task will recognize that the very next path
command appearing in the PDL Specification will be a
unique path, in this case a path for flowing variable text
bitmaps into.

BRIEF DESCRIPTION OF THE DRAWINGS

0.014 FIG. 1 is a is a schematic, block-diagram repre
Sentation of a high-speed printing System according to the
present invention;

Dec. 29, 2005

0.015 FIG.2 is an example of a job ticket file for use with
the present invention;
0016 FIG. 3 is an example of a merge file for use with
the present invention;
0017 FIG. 4 is a graphical representation of data con
tained in a PDL specification for use with the present
invention;
0018 FIG. 5 is a graphical representation of a process
Step of the present invention operating on data contained in
the PDL specification of FIG. 4;
0019 FIG. 6 is a graphical representation of a process
Step of the present invention following the process Step of
FIG. 5;
0020 FIG. 7 is a graphical representation of a process
Step of the present invention following the proceSS Steps of
FIGS. 5 and 6;
0021 FIG. 8 is a graphical representation of a process
Step of the present invention following the proceSS Steps of
FIGS. 5, and 6;
0022 FIG. 9 is an example of a merged document
created by the process and System of the present invention;
0023 FIG. 10 is an example of a merged document
created by the process and System of the present invention;
0024 FIG. 11 is a flow chart representation of a process
of the present invention;
0025 FIG. 12 is an example of a merged document
created by the process and System of the present invention;
and

0026 FIG. 13 is an example of a merged document
created by the process and System of the present invention.

DETAILED DESCRIPTION

0027. As shown in FIG. 1, a system for performing the
method of the present invention includes a printer controller
10 having access to a job ticket file 12, a page description
language (“PDU”) file 14, a source of variable data such as
a merge file 16, and an optional printer configuration file 18.
The System also contains an operator control terminal 20 for
providing operator controls Such as indicating the name and
location (file-path) of the job ticket file 12 for the specific
print job.

0028. The job ticket file 12 contains the guidelines for the
print job which can include the names and locations of the
PDL file(s) 14, the merge file(s) 16, the configuration file(s)
18, etc.; and may also include Special instructions pertaining
to features such as data wrapping, described below. The PDL
file 14 is preferably a PostScript specification created by an
application program, Such as a word processor, illustrator, or
computer-aided design System. The merge file 16 contains
platform independent data, Such as text data, image data,
bar-code data and the like, which is to be merged into a
template bitmap defined by the PDL file during the merging
task, as will be described in detail below. The configuration
file 18 defines the print engines and post processing equip
ment and other options to be executed.
0029. Initially, the location and name of the job ticket file
12 is specified by the operator using the operator control

US 2005/0286065 A1

terminal 20. The printer controller 10 retrieves the job ticket
file. 12 and then retrieves the PDL files 14 and merge files
16 that are specified in the job ticket file. Next the controller
10 initiates a control task 22 in conjunction with a page
description code interpreter program.

0030 The control task interprets the PDL specification
from the PDL file 14 and monitors data areas defined in the
PDL specification to watch for areas to become variable data
areas defined by the Specification. If the control task iden
tifies a data area as being a variable data area, it reserves the
graphic States 23 of that variable data area in memory 24 and
then moves on to the next data area defined by the PDL
Specification, usually without allowing any data defined by
the variable data area to be added to the template bitmap.
Preferably, the control task 22 will also create a font cache
(an entire set of character bitmaps generated according to the
reserved graphic states) for the reserved graphic States,
which will be linked to the reserved graphic states in
memory 24. Once the control task completes its processing
of the PDL specification, the control task saves the template
bitmap in memory 26.

0031. The control task 22 may also create a template
display list 25 of static data defined by the PDL file 14. The
display list 25 will include a plurality of rendering com
mands, where each rendering command designates a par
ticular Static data area or object to be rendered, the graphics
State to be applied to the Static data area and the offset
address at which the rendered object, if any, in the Static data
area is to be overwritten onto the final bit map. AS mentioned
above, the graphic States for each data area are Set forth in
the PDL specification, and pertain to the print attributes that
describe how particular graphic or alpha-numeric data is to
appear on the printed page. Once the control task completes
its processing of the PDL Specification, the control task may
save the template display list 25 in memory 26. If the
PDL-file 14 does not include code for any static data, the
control task may generate an empty template display list 25
or may decide not to create a template display list at all.

0032. Next, a merge task 28, having access to the variable
data records 17 from the merge file 16, is executed to apply
the reserved graphics States 23 and associated font cache, to
the variable data records 17, creating rendering commands
for that variable data record as defined by the graphic States.
The merge task 28 retrieves a copy 25' of the template
display list 25 from the memory 26 and merges the variable
data rendering commands with the template display list to
create a merged display list 30. Finally, the controller 10
performs a rendering task 32 to render the merged display
list 30 into a plurality of bitmap bands 34 for dispatching to
at least one print engine 36.

0033. A method-for performing the above control task
and merge task is described in U.S. patent application Ser.
No. 08\373,582 filed Jan. 17; 1995 and entitled “Method of
Utilizing Variable Data Fields with a Page Description
Language,” the disclosure of which is incorporated herein
by reference. A method and a System architecture for per
forming the above merging, banding and dispatching opera
tions are respectively described in U.S. Pat. No. 5,594,860
and U.S. patent application Ser. No. 08\558,007, filed Nov.
13, 1995, and entitled “System Architecture for Processing
and Transporting a Pagemap or Bitmap Data to a Raster
Print Engine,” the disclosures of which are also incorporated

Dec. 29, 2005

herein by reference. A preferred embodiment of the present
invention is illustrated by way of example in FIGS. 2-10. As
illustrated in FIG. 2, the job ticket file 12 can contain a file
location Statement 38 for determining the location and name
of the PDL file, and can contain a file location statement 40
for determining the location and name of the merge file. The
job ticket file 12 can also contain a descriptive name of a
wrapping path 42, in this case, named "Shape,” for identi
fying a name of a wrapping path in the PDL file that is to
have variable data flowed into it during the merge task. The
variable data to be flowed into the wrapping path, text data
in this case, will be taken from the file designated by the file
location statement 40 of the merge file. In this case the
merge file is named “info.text.” The group header 44"
Wrap' indicates that the group is defining a wrapping path.
After the wrapping path “Shape” has been defined in the job
ticket file, a second group header 46"Shape” can be
thereafter defined in the job ticket file to provide information
about the wrap path; such as defining the fill rule 48 to be
used in the wrapping operation, and Such as defining a path
drawing rule 50, i.e., whether the path is to be drawn in the
final rendered image. Other definable wrapping commands
for the particular path "Shape' can include defining the top,
bottom or Side margins, defining the justification, Setting the
number of paths to flow the data into, defining an overflow
path, etc. A complete description of the different elements
that can be defined for the wrapping path in the job ticket file
is described in detail in the Appendix, below.

0034). As illustrated in FIG. 3, the merge file 16 is a
platform-independent data file that contains the “variable”
data to be merged into the path defined in the PDL speci
fication. The merge file can contain a field name 52, corre
sponding to a field name that will be defined in the PDL
Specification, which is associated with a particular variable
data path. The merge file will also contain a number of
variable data blockS 54, text blocks in this case, correspond
ing to the field name 52. One variable data block 54 will be
merged into the variable data path, defined in the PDL
Specification, at a time.

0035. As illustrated in FIG. 4, the designer will utilize an
application program to create a document containing a path
56 and attribute data, such as an attribute string 58, to be
asSociated with the path 56. The application program will
then be directed to create a PDL specification of the docu
ment by the designer. The attribute string 58 contains a field
name 60 surrounded by special characters, “C-” and “a”,
a wrap attribute command String 62, and a path identifier 63.
The PDL Specification generated by the application program
will include the graphic states of the attribute string 58.
These graphic States can include the font size (i.e., 10 point),
the type-font (i.e., Script) the orientation (i.e., angled
upwardly at 500) and the like.
0036) As discussed above, and referring again to FIGS.
1-4, the control task 22 will execute a PDL interpreter
program to interpret the PDL Specification created by the
application program to generate a template display list 25 of
the document, and to also monitor for any variable data
paths defined in the PDL specification.

0037. In the preferred embodiment, the control task 22
monitors for variable data areas defined by the PDL speci
fication by monitoring for Special characters in the text
strings defined by text commands in the PDL specification.

US 2005/0286065 A1

As shown in FIG. 4, the special characters “Cz” and “Cz”
surround the field name 60. The control task, upon identi
fying the Special characters in the text command for the
attribute string will thus know that the attribute string 58 is
defining a variable data area, and is not merely defining a
text String to appear on the printed page (the attribute String
will not appear on the final printed page unless the control
task is directed to by the job ticket file). The field name 60
Surrounded by the Special characters identifies the associated
field name 52 present in the merge file 16. During the
processing of the text command for the attribute String 58,
the control task will also monitor for the wrap string 62
within the attribute String, which also includes the path
identifier string 64 associated therewith. If found, the control
task will know that a path defined in the PDL specification
that has a predetermined relationship with the text command
for the attribute String will be a wrapping path, where the
wrapping path has the wrapping attributes defined in the job
ticket file 12 for the particular group header 44 and descrip
tive name of a path 42 matching the path identifier String 63
set forth in the attribute string 58.
0.038 Preferably, the predetermined relationship is satis
fied by the first path command to follow the text command
for the attribute string in the PDL specification. This can be
accomplished by using the application program to Sequen
tially type the attribute string 58 and then draw the path 56,
Such that the path command will be the first path command
to follow the text command in the PDL specification created
by the application program. Alternatively the predetermined
relationship can be Satisfied by the path command that is
“grouped” with the text command for the attribute string in
the PDL Specification. This can be accomplished by using a
“GROUP tool as provided by many application programs
to group the attribute string 58 and path 56 together. It will
be apparent to one of ordinary skill in the art that there are
many similar predetermined relationships available between
the text command for the attribute String and the path
command for the wrapping path that can be established in
the PDL specification, all of which fall within the scope of
the present invention.
0039 Thus, during the execution of the PDL interpreter
program, the control task 22 will match the wrap attribute
command String 62 and path identifier 64 with the group
header 44 and descriptive name of the path 42 defined in the
job ticket file 12. Once the attribute string 58 is identified as
defining a variable data path by the control task 22, the
control task will save the graphic states 23 of the attribute
String 58 in memory. The control task may also create a font
cache according to the graphic States 23, and Store the font
cache along with the graphic States in memory 24. The
control task will also save the field name 60 along with the
graphic States 23 in memory So that the particular graphic
States can be matched to the blocks of text data in the merge
file 16 under the matching field name 52, as will be
described below. The merge task 28 will apply these graphic
states 23 and associated font cache to the variable data 54
prior to merging and flowing the variable data into the path
56.

0040. Once the control task 22 has identified the path as
being a variable data path, and has reserved the graphic
states 23 of the attribute string 58 associated with the path
in memory 24, the control task 22 advances to the next data
area in the PDL specification, preferably without allowing

Dec. 29, 2005

the attribute string data or the path to be added to the
template display list 25 stored in memory 26. And once the
PDL interpreter program has completed interpreting the
PDL Specification, the control task 22 then passes authority
to the merge task 28.
0041. The merge task 28 first accesses a set of the saved
graphic states 23 and identifies the field name 60 associated
with these graphic States. The merge task 28 then accesses
the merge file 16 and Searches the merge file for a field name
52 matching the field name 60 associated with the graphic
States. The merge task then accesses a variable data block 54
asSociated with the field name 52 and then generates ren
dering commands for the variable data block according to
the graphic states 23, the predefined flow rule 48 and the
boundary of the path 56. The predefined flow rule 48, may
or may not be defined by the job ticket file 12. Accordingly,
when the rendering command is executed the bit map data
defined by the rendering command will flow within the path
56 according to a predefined flow rule.
0042. As shown in FIG. 11, and as illustrated in FIGS.
5-10, a method for merging and flowing the variable text
data into the path 56 is as follows: as indicated in step 100
and illustrated in FIG. 5, preferably the control task will first
“flatten” the path, which involves breaking the complex path
56 (which may contain ellipses and curves) into a series of
Simple straight lines 64 (i.e., converting the path into a Series
of “move to” and “line to” commands). Each straight line 64
will comprise a particular portion of a boundary 65, into
which the variable data is to be positioned. Alternatively, it
is within the Scope of the present invention to have the path
56 itself define the boundary into which the variable data is
to be positioned. As will be described below, the extent of
the boundary may also be defined, in part, by the designation
of margins, or the creation of additional paths, etc. AS
indicated in step 102 and as also illustrated in FIG. 5, a
horizontal axis 67 of a coordinate system 69 will be aligned
with the attribute string 58. As indicated in step 104 and as
illustrated in FIG. 6, a new equivalent boundary 65" is
created, whose coordinates are those of the original bound
ary 65, but rotated into the same coordinate system 69 as the
attribute string 58 (for example, as shown in FIG. 5, the
attribute string 58 is rotated a negative 50 in the document,
and therefore, in FIG. 6 the boundary 65" is rotated by a
positive 50).
0043 AS indicated in step 106, the stored graphic states
23 (e.g., font-type and point size) are applied to a variable
data block 54 to be merged into the boundary 65' So as to
calculate the dimensions of a plurality of word bitmaps, the
word bitmaps being defined by a collection of characters
Separated from the rest of the data by-white Space characters
(e.g., a space, tab, new line, etc.). The dimensions of
paragraphs can be calculated by defining a paragraph as a
collection of word bitmaps Separated from other paragraphs
by “new line” characters. Assuming that the text flow
direction will be from top to bottom and left to right, as
indicated in step 108 and as illustrated in FIGS. 7 and 8, the
“top” or highest point 66 of the path 65" is determined and
a top margin 68 is applied to the boundary 65' by measuring
a distance downward from the highest point 66 of the
boundary. The top margin 68 can be pre-defined, defined in
the job ticket file 12, or by any other sufficient means.
0044 As indicated in step 110 and illustrated in FIGS. 7
and 8, a rectangular insertion area 70 is defined, having a

US 2005/0286065 A1

Vertical height corresponding to the calculated vertical
height of the bitmap representation of the first word (the
point size of the text) to be flowed into the boundary 65", and
having a top horizontal border 72 abutting the top margin 68.
As indicated in step 112, this insertion area 70 will be
overlaid onto the entire boundary 65' at that present vertical
level to establish at least one intersection point 74. As
indicated in Step 114, only those areas between adjacent
intersection points 74 will be considered valid candidates for
receiving the bitmap representations of the text data. If there
are more than two interSection points present within inser
tion area, then the particular flow rule being utilized will
determine between which of the intersection points that the
bitmap representations of the text data will be inserted. AS
illustrated in FIGS. 7 and 8, when only two intersection
points are established, the bitmap representations of the text
data will typically be inserted therebetween.
0.045 Once two adjacent intersection points 74 are deter
mined to be candidates for receiving bitmap representations
of the text data, as indicated in Step 116 and illustrated in
FIG. 8, left and right margins will then be measured
inwardly from each of the intersection points 74 to define
left and right borders 77 within the insertion area 70.
Between the left and right borders 77, therefore, is defined
a text placement area 78 for merging the bitmap represen
tations of the text data therein. The left and right margins 76
can be pre-defined, defined in the job ticket file 12, or
determined by any other Sufficient means.

0.046 AS indicated in step 118, the rendering commands
to create the bitmap representations of a word of the text data
as merged into the text placement area are created and added
to the display list 25, depending upon whether the calculated
width of the bitmap is equal to or less than the available
width calculated to remain in the text placement area. The
rendering commands will define the proper orientation of the
bitmap representation of the word rotated back into the
original orientation of the attribute string 58.

0047. As illustrated in FIG. 8, in the first text placement
area 78, bitmap representations of the words “in” and “a”
were able to fit therewithin, however, the bitmap represen
tation of the word “world” was too wide for the remaining
width. Accordingly, in the final merged bitmap only the
bitmaps representing the words “in” and “a” will be ren
dered into the first text placement area 78. If no word
bitmaps are capable of fitting within the text placement area,
then the area is left blank.

0048. As indicated in step 120 and illustrated in FIG. 8,
a line-spacing 79 is measured below the present insertion
area and then the next rectangular insertion area 80 is created
and overlaid onto the boundary 65" below the line-spacing
79 in the same manner as defined above for the first
rectangular insertion area 70. AS indicated in Step 122, if the
new insertion area extends below the lowest point of the
boundary 65' (or below the bottom margin) or if there are no
more words to insert, then the merging proceSS for this
particular boundary and text block is finished as shown in
step 124. If the insertion area does not extend below the
lowest point of the boundary and there are more bitmaps
representing words to insert, then the process return ms to
step 114, described above. Essentially, steps 114-122 will be
repeated thereafter until Step 124 is reached. AS illustrated in
FIG. 8, bitmaps representing the words “world” and “of”

Dec. 29, 2005

were able to be rendered into the Second rectangular inser
tion area 80 and bitmaps representing the words “interactive,
"media” and “and” were able to rendered into third rect
angular insertion area 82. Subsequent to Step 122, the merge
task will then Search for additional variable data areas or
variable data paths in which to merge variable data blockS.
If no more of Such variable data areas or variable data paths
exist for the particular document, then the merged display
list 30 is transferred to the rendering task 32, as described
above, to generate the bitmap bands 34 for printing. FIG. 9
illustrates the entire block of text 54 from the merge file 16
formatted according to the above process and merged into
the path 56 to create a first finished document 84. FIG. 10
illustrates the appearance of the next block of text 54 from
the merge file 16 formatted according to the above process
and merged into the path 56 to create a Second finished
document 86.

0049 Preferably, in the above step 118, the height of the
rectangular insertion area is determined by the dimensions
calculated for the first word bitmap. And if, for whatever
reason, a next word bitmap is calculated to be higher than the
first or previous word bitmap, and higher than all other word
bitmaps inserted thus far into a particular text placement
area, then the entire rectangular insertion area is thrown out,
and StepS 116 and 118 are repeated again for the higher
rectangular insertion area generated according to this higher
word bitmap. AS discussed above, a number fill rules are
available for flowing the word bitmaps into the boundary.
Accordingly, the merge task can mark the path interSections
74 as “positive,”“negative” or “neutral” based upon whether
the path enters and 14aves from the top or the bottom of the
insertion area, or whether it enters and exits the insertion
area from the same direction. All of the available fill rules
will be apparent to one of ordinary skill in the art, and are
thus within the Scope of the present invention.
0050 AS discussed above, text flowing into the boundary
65" will continue until it is determined that there are no more
word bitmaps to flow into the boundary or until it is
determined that there is no more text areas available to flow
the word bitmaps into. In the case of the latter, it is within
the scope of the invention to define a path as an “overflow”
path for continuing the flowing of the text therein, until this
overflow path nuns out of room. This overflowing process
can continue until once again it is determined that there are
no more text areas to flow text into. Text can also flowed into
more than one path at a time.
0051) For illustration, as shown in FIG. 12, if the job
ticket file defines the number of flow paths as two, and the
two flow paths are the circle and Square paths, designated as
numerals 88 and 90, respectively; then the two paths essen
tially comprise one boundary, and text will flow directly
from the circle path 88 into the square path 90. Note that the
2nd through 8th lines of text flow from the circle path 88
directly into the square path 90. But when the text reaches
the end of the square path 90, the flowing operation stops
because the area within the two flow paths have been used
up. Accordingly, as illustrated in FIG. 13, if an “overflow
path’ is designated in the job ticket file to be the triangle path
92, the text flowing will continue into the triangle path 92
until there is no more text to be merged or until the path runs
out of additional room. Accordingly, the present invention
provides capability of identifying particular paths defined in
a page description language as data flowing paths, and

US 2005/0286065 A1

provides the capability for flowing data within Such paths. In
addition, the present invention allows the user to Specify
margin, paragraph formatting, fill rules, and justification
parameters on a path by path basis.
0.052 Having described the invention in detail and by
reference to the drawings, it will be apparent to one of
ordinary skill in the art that variations and modifications are
possible without departing from the Scope of the invention
as defined on the following claims.
0053. The following appendix provides a preferred com
pilation of text wrapping commands and parameter defini
tions that can be specified in the job ticket file 12. Each entry
provides the particular command header, the Syntax for the
command, any relevant remarks for the use of the command,
examples, etc. AS will be apparent to one of ordinary skill in
the art, it is within the Scope of the present invention to
include the means to provide for any of the attributes, or
Similar attributes, as defined in the Appendix.

APPENDIX

0054 Command Header=Wrap
0.055 A group that provides a list of tags which you
create to describe the text flowing (wrap) path(s) to be used
in the print job. Each tag will become a user-defined group
of additional information about the wrap path.
0056 Syntax Wrap

0057) <Path Tag X->
0.058 <Path Tag Ye
0059) <Path Tag ZZ

0060 Remarks Optional. Each tag that appears under this
Wrap group will optionally become a new group name in
a Succeeding Section of the Job Ticket.
0061 Explanation <Path Tax Xs
0.062 Create a descriptive name for a wrap path used in
the print job.
0063 00551 Note: Fields on a template that you wish to
be flowed into a particular path will use a field attribute of
the format:

0064 C<fieldname>>wrap=<name>
0065. The <name> argument of the wrap attribute must
match a path tag listed in the Wrap group.
0.066 Example Wrap

0067. Circle
0068 Square
0069 Triangle

0070 Command Header=<Path Tag
0071. A user-defined tag name for a group that provides
information about the wrap path and corresponds to the
descriptive tag that you create under the initial Wrap
grOup.

0072 Syntax <Path Tag
0073 Baseline Adjust=
0074 Bottom Margin=

Dec. 29, 2005

0075) Clobber Path=
0076) Draw Path=
0077 Enforce paragraph Spacing=
0078 Fill Rule=
0079 Fit Last Name=
0080) Justify=
0081 Left Margin
0082 Margins=
0.083 Mm Paragraph Lines=
0084) Number Of Paths=
0085. Overflow =
0.086 Paragraph Adjust=
0.087 Reverse Flow=
0088 Reverse Path=
0089 Right Margin=
0090 Top Margin=

0091 Remarks. A separate <Patha group defines path
information for each descriptive tag listed under the initial
Wrap group.
0092. If a <Path Tage group is not defined for a path
listed under the Wrap group, that path will receive the
default values for all of the <Path Tage elements.
0093 Explanation <Path Tag
0094) Take the descriptive tag under the initial Wrap
group and write it here as a group name within the brackets

0.095 Baseline Adjust=
0096 (See the Baseline Adjust element description)
0097. Bottom Margin=
0098 (See the Bottom Margin element description)
0099) Clobber Path=
0100 (See the Clobber Path element description)
01.01 Draw Path=
0102 (See the Draw Path element description)
0.103 Enforce Paragraph Spacing=
0104 (See the Enforce Paragraph Spacing element
description)

01.05 Fill Rule=
0106 (See the Fill Rule element description)
0107 Fit Last Line=
0108 (See the Fit Last Line element description)
0109) Justify=
0110 (See the Justify element description)
0111 Left Margin=
0112 (See the Left Margin element description)

US 2005/0286065 A1

0113 Margins=
0114) (See the Margins element description)
0115 MinParagraph Lines=
0116 (See the MinParagraph Lines element descrip
tion)

0117 Number Of Paths=
0118 (See the Number Of Paths element descrip
tion)

0119). Overflow
0120 (See the Overflow element description)
0121 Paragraph Adjust=
0122 (See the Paragraph Adjust element descrip
tion)

0123 Paragraph Indent=
0124 (See the Paragraph Indent element descrip
tion)

0125 Reverse Flow=
0126 (See the Reverse Flow element description)
O127 Reverse Path=
0128 (See the Reverse Path element description)
0129 Right Margin=

0130 (See the Right Margin element description)
0131 Top Margin=

0132 (See the Top Margin element description)
0133) Examples

Circle

ill Rule = Even Odd Rule
rawpath = False
Overflow = Square

Square

FIRule = WindingRule
Drawpath = True
Overflow = Triangle

Triangle

FIRule = Even Odd Rule
Drawpath = False
Overflow = Square

Square

FIRule = WindingRule
Drawpath = True
Overflow = Triangle

Triangle

FIRule = Even Odd Rule
Drawpath = False

0134) Parameter Baseline Adjust
0135 An element that determines the adjustments made
to each baseline of text drawn within the path.

Dec. 29, 2005

Syntax Baseline Adjust = <BaseAdjustNums<Unit Types

See Also
Remarks

Paragraph Adjust, Enforce Paragraph Spacing.
Optional.

0.136. By default, the process will space successive text
lines at 120% of the font size. For example, a 12-point font
will have the next baseline set at 14.4 points (120%x12)
from the previous baseline.

0.137 The Baseline Adjust element defines an offset from
this default value.

0.138 A positive Baseline Adjust value increases the
Space between each baseline of text (essentially, moving the
next line of text down). A negative value decreases the Space
between each baseline of text (essentially, moving the next
line of text up).

013:9) The default value for Baseline Adjust is 0.
0140 Explanation <Base AdjustNum>

0141 Enter the number of units.

0142 <Unit Types

0.143 Optional. Enter the abbreviation to identify the unit
type if the unit type for Baseline Adjust is different from the
default unit type defined in the Units element. Possible
values are:

Cl for centimeters
dots for dots
ft for feet
in for inch (default value)

for millimeter
pts for points

0144. Example Baseline Adjust=1 pt

0145 Parameter=Bottom Margin

0146 An element that specifies the distance from the
bottom of the path at which to stop flowing text.

Syntax Bottom Margin = <Bottom Margin Nums<Unit Types

See Also
Remarks

Margins, Overflow.
Options.

0147 NOTE: A non-zero value for the BottomMargin
element overrides (for the bottom margin only) the value set
in the Margins elements.

0.148. For example, if Margins=1 in and Bottom Mar
gin=2 in, the path will have 0.1-inch margins on the top, left,
and right Sides but will have a 2-inch margin on the bottom
Side.

US 2005/0286065 A1

0149 The default value for Bottom Margin is 0.
0150 Explanation <Bottom MarginNumid

0151 Enter the number of units.
0152 <UnitTypes

0153. Optional. Enter the abbreviation to identify the unit
type if the unit type for Bottom Margin is different from the
default unit type defined in the Units element. Possible
values are:

Cl for centimeters
dots for dots
ft for feet
in for inch (default value)

for millimeter
pts for points

0154) Example BottomMargin=3 mm

O155 PARAMETER=Clobber Path

0156 An element that specifies if two adjacent ON areas
Separated by a path Segment are treated as one area when
determining text flow.

Syntax ClobberPath = True/False
See Also
Remarks

FIRule
Optional

O157 This element affects the way in which text is flowed
in adjacent ON areas. It applies only to paths defined with
FillRule=WindingRule.

0158 If ClobberPath is set to True, text is flowed across
the two adjacent ON areas as if they were one area. In this
case, only the “outer margins of the combined areas would
be recognized. Text flow would be continuous across the
"inner margins where the path Segment intersects the
adjacent areas.

0159). If ClobberPath is set to False, text is flowed sepa
rately into each Area.

0160 The default value of ClobberPath is True.

0161 False.
0162 Explanation (True/False)

0163) If two adjacent ON areas are to be treated as
one area, type True.

0164. If two adjacent ON areas are to be maintained
Separately, type False.

0165) Example ClobberPath=False

0166 Parameter=DrawPath
0167. An element that determines if the wrap path is
actually drawn on the template.

Dec. 29, 2005

Syntax DrawPath = {True/False
Remarks Optional.

The default value for Drawpath is True.

0168 If the wrap path is to be drawn on the tem
plate, type True.

0169. If the wrap path is NOT to be drawn on the
template, type False.

0170 Example DrawPath=False
0171 Parameter=Enforce ParagraphSpacing
0172 An element that determines if the next paragraph
will always Start at a distance of the Paragraph Adjust value
from any previous paragraphs that were Set.

Syntax EnforceParagraphSpacing = {True/False

See Also Baseline Adjust, Paragraph Adjust.,
Remarks Optional.

0.173) If the text flowed into your path contains blank
paragraphs, this element determines how the blank para
graphs are to be handled.
0.174. If you want your next paragraph to start at a
distance of the Paragraph Adjust value from your previous
text paragraph (thereby, "skipping any blank paragraphs
and permitting text to continue to flow), set the Enforce
ParagraphSpacing value to True.
0.175. If you want the blank paragraphs to be allotted the
appropriate Space defined in Paragraph Adjust, Set the Enfor
ceParagraphSpacing value to False.
0176) The default value for EnforceParagraphSpacing is
False.

0177 Explanation {True/False
0.178 If the next non-blank paragraph should start at a
distance of the Paragraph Adjust value from any previous
paragraphs that were Set, type True
0179 If blank paragraphs are to be allocated their appro
priate paragraph Space, type False.
0180 Example Enforce ParagraphSpacing=True
0181 Parameter=FillRule
0182 An element that provides the rules used to deter
mine which areas of the path should have text flowed into
them and which areas should be blank.

Syntax FillRule = WindingRule/EvenOddRule)

See Also
Remarks

ClobberPath, ReversePath.
Optional.

0183 Text is flowed into an area enclosed by (“inside')
the current path. If a path is simple, it is clear which areas

US 2005/0286065 A1

are inside the path. However, if a path is complex (for
example, interSecting itself or having one Subpath that
encloses another), it is not as apparent which areas are
inside. One of two fill rules will be used to determine which
areas lie inside a path.
0184 The FillRule element defines if the non-zero wind
ing rule (WindingRule) or the even-odd rule (EvenOddRule)
will be used for the current path.
0185. The non-zero winding rule determines whether a
given area along the proposed flow line is inside the path
(and thus receives text) by examining the places where a
path Segment crosses the flow line. Path Segments that croSS
(intersect) the flow line from top to bottom are given a
direction of 1. Path segments that cross (intersect) the flow
line from bottom to top are given a direction of -1. Path
Segments that do not fully cross the flow line (for example,
entering and exiting the top of the flow line) are given a
direction of Zero.

0186. An on-going Sum of all crossings is calculated from
left to right. If the Sum of all crossings to that point is Zero,
the area (immediately to the right) is outside the path. If the
Sum is non-Zero, the area is inside the path and will receive
teXt.

0187. The even-odd rule determines whether a given area
long the proposed flow line is inside the path (and thus
receives text) by counting the number of times a path
Segment crosses the flow line. Path Segments that fully croSS
(intersect) the flow line are given a score of 1. Path segments
that do not fully croSS the flow line are given a Score of Zero.
0188 An on-going sum of all crossings is calculated from
left to right. If the Sum of all crossings to that point is even,
the area (immediately to the right) is outside the path. If the
Sum is odd, the area is inside the path and will receive text.
0189 The default value for FillRule is WindingRule.
0190. Explanation Winding Rule/EvenOdd Rule
0191) If the winding rule will determine which areas lie
inside a path, type WindingRule.

0.192 If the even-odd rule will determine which areas lie
inside a path, type EvenOddRule.
0193 Example FillRule=EvenOddRule
0194 Parameter=FitLastLine
0.195 An element that determines if the Fit justification
rule is applied to the last line of every paragraph.

Syntax itLastLine = {True/False,
See Also
Remarks

Justify
Optional.

0196. The FitLastLine element applies only to paths
defined with Justify=Fit.

0197) If FitLastLine is set to True, the text on the last line
will be forced to fit flush on the left and the right. Since the
last line of a paragraph may often contain less text than the
other lines in a paragraph, this justification will often result
in more white Space between text on the last line.

Dec. 29, 2005

0198 The default value for FitLastLine is False.
0199 Explanation (True/False)
0200. If the last line of every paragraph should be aligned
at both the left side and the right side of the path, type True.
0201 If the last line of every paragraph should not be
forced to fit flush left and flush right, type False.
0202) Example FitLastLine=False
0203 Parameter=Justify
0204 An element that specifies the type of justification
(horizontal alignment) to be applied to each line of text
drawn in the path.

Syntax Justify = <JustifyRules

See Also
Remarks

FitIastLine
Optional
The default value for Justify is Left.

0205 Explanation <JustifyRule>
0206 Enter the type of justification (horizontal align
ment) to be applied to each line of text drawn in the path.
Possible values are:

0207 Left (Default value) Text is aligned from the
left side of the path.

0208 Right Text is aligned from from the right side
of the path.

0209 Center Text is centered between the left side
and right Side of the path.

0210 Fit Text is aligned at both the left side and
right Side of the path.

0211 Example Justify=Center
0212 Parameter=LeftMargin
0213 An element that specifies the distance from the left
side of the path at which to start flowing text.

Syntax LeftMargin = <LeftMarginNums<UnitTypes

See Also
Remarks

Margins
Optional

0214) NOTE: A non-zero value for the LeftMargin ele
ment overrides (for the left margin only) the value set in the
Margins elements.
0215 For example, if Margins=1 in and LeftMargin=2 in,
the path will have 1-inch margins on the bottom, top, and
right Sides but will have a 2-inch margin on the left Side.
0216 A default value for LeftMargin is 0.
0217 Explanation <LeftMarginNum>

0218 Enter the number of units.
0219 <UnitTypes

US 2005/0286065 A1

0220 Optional. Enter the abbreviation to identify the unit
type if the unit type for LeftMargin is different from the
default unit type defined in the Units element. Possible
values are:

Cl for centimeters
dots for dots
ft for feet

in for inch (default value)
for millimeters

pts for points

0221 Example LeftMargin=5 mm

0222 Parameter=Margins

0223) An element that specifies the same text margins for
all four sides of the path (top, bottom, left, and right).

Syntax Margins = <MarginsNums<Unit Types

See Also Bottom Margin, LeftMargin, RightMargin, TopMargin
Remarks Optional.

0224 Note: The value for the Margins element will be
overridden on an individual margin basis by any non-Zero
value defined for the other specific margin attributes (Bot
tomMar LeftMargin, RightMargin, and TopMargin).

0225. For example, if Margins=1 in and TopMargin=2 in,
the path will have 1-inch margins on the bottom, left, and
right Sides but will have a 2-inch margin on the top.

0226. The default value for Margins is 0.

0227 Explanation <MarginsNum>

0228 Enter the number of units.
0229) <UnitTypes

0230 Optional. Enter the abbreviation to identify the unit
type if the unit type for Margins is different from the default
unit type defined in the Units e-element. Possible values are:

Cl for centimeters
dots for dots
ft for feet
in for inch (default value)

for millimeter
pts for points

0231 Example Margins=6 mm

0232 Parameter=MinParagraph Lines

0233. An element that specifies the minimum number of
lines of a paragraph to be set before the paragraph is allowed
to be split between path areas.

Dec. 29, 2005

Syntax MinParagraphLines = <MinLinesNums

See Also
Remarks

NumberOfPaths, Overflow.
Optional.

0234. If the minimum number of lines of a paragraph
defined here cannot be set consecutively in a path area, the
entire paragraph will be moved down to the next Scanline
that allows the Specified number of lines to be set consecu
tively.
0235. The default value for MinParagraphLines is 1.
0236 Explanation <MinLinesNum>
0237 Enter the integer representing the minimum num
ber of lines of a paragraph to beset before splitting between
path areas is permitted.
0238 Example Min Paragraph Lines=2
0239) Parameter=NumberOfPaths
0240 An element that determines how many postscript
paths on the template are concatenated and treated as one
path.

Syntax NumberOfPaths = <PathsNums
See Also
Remarks

MinParagraphLines, Overflow.
Optional.

0241 This element is used to combine multiple paths
drawn on the template, and to.treat them as a Single path.
The path to be combined will be determined by the order
in which they were drawn.
0242. The default value for NumberOfPaths is 1.
0243 Explanation <PathsNumd
0244 Enter the integer representing the number of paths
to be combined.

0245 Example NumberOfPaths=2
0246 Illustration See FIG. 12 and corresponding
description above.

0247 Parameter=Overflow
0248 An element that specifies the name (tag) of the
wrap path that will receive overflow text from the current
wrap path being described.

Syntax Overflow = <PathTage

See Also
Remarks

MinParagraph Lines, NunberOfPaths.
Optional.

0249. This element defines the use of an overflow feature.
When overflow is available, if the current path has no more
space into which text can flow, the text will continue to flow
into the path named in this element.

US 2005/0286065 A1

0250) NOTE: If the Overflow element references a wrap
path that is not named under the Wrap group, the print job
will be aborted.

0251) If the Overflow element is not defined, the system
will assume that no overflow will occur for the current path
being described. Therefore, text will flow into the current
path until it is filled. No overflow text will be printed.

0252 Explanation <Path Tage

0253 Enter the descriptive tag of the path into which
overflow text from the current path will flow. This value
should correspond to a descriptive tag that you created under
the initial (Wrap group.
0254 Example Overflow-Square

0255 Illustration See FIG. 13 and the corresponding
description above.

0256 Parameter=Paragraph Adjust

0257 An element that determines the distance to adjust
the baseline for the Start of the next paragraph within the
path.

Syntax Paragraph Adjust = <ParagraphadjustNums<Unit Types

See Also
Remarks

Baseline Adjust, Enforce Paragraph Spacing
Optional.

0258. The Paragraph Adjust value overrides the Baseline
Adjust value only for the first baseline of text in each
paragraph.

0259. A position Paragraph Adjust value increases the
Vertical Space between the last baseline of text in each
paragraph and the start of the next paragraph (essentially,
moving the start of the next paragraph down). A negative
value decreases the vertical Space between the last baseline
of text in each paragraph and the Start of the next paragraph
(essentially, moving the start of the next paragraph up).

0260 The default value for Paragraph Adjust is 0.
0261 Explanation <ParagraphadjustNumid

0262 Enter the number of units.
0263) <Unit Types

0264. Optional. Enter the abbreviation to identify the unit
type if the unit type for Paragraph Adjust is different from the
default unit type defined in the Units element. Possible
values are:

Cl for centimeters
dots for dots
ft for feet
in for inch (default value)

for millimeter
pts for points

Dec. 29, 2005

0265 Example Paragraph Adjust=6 pts
0266 Parameter=ParagraphIndent
0267 An element that specifies the indentation from the
left margin for the first line of every paragraph in the path.

Syntax Paragraph.Indent = <Paragraph.IndentNums<UnitTypes

See Also
Remarks

Paragraph Adjust
Optional.
The default value for Paragraph Indent is 0.

0268 Explanation <ParagraphIndentNumid
0269 Enter the number of units.
0270 <UnitTypes

0271 Optional. Enter the abbreviation to identify the unit
type if the unit type for ParagraphIndent is different from the
default unit type defined in the Units element. Possible
values are:

Cl for centimeters
dots for dots
ft for feet
in for inch (default value)

for millimeter
pts for points

0272 Example ParagraphIndent 0.5 in
0273 Parameter=ReverseFlow
0274. An element that determines if the text will be
flowed from bottom to top in the current path.

Syntax ReverseFlow = (True/False
See Also
Remarks

FIRule
Optional.

0275. The default value for ReverseFlow is False.
0276 Explanation {True/False

0277) If the text will be flowed from bottom to top,
type True.

0278 If the text will be flowed from top to bottom,
type False.

0279. Example ReverseFlow=True
0280 Parameter=ReversePath
0281 An element that determines if the ON/OFF desig
nations for areas in the path will be reversed.

Syntax ReversePath = {True/False
See Also
Remarks

Fill Rule
Optional.

US 2005/0286065 A1

0282. The ReversePath element applies only to paths
defined with FillRule=Even Odd Rule.

0283) If ReversePath is set for True, the areas originally
marked as ON based on the EvenOdd Rule calculation will
be set to OFF and the areas originally marked as OFF based
on the EvenOddRule calculation will be set to ON.

0284. If ReversePath is set to False, the EvenOdd Rule
calculations will be retained.

0285) The default value for ReversePath is False.
0286 Explanation (True/False)
0287) If the ON/OFF designations for areas in the path
will be reversed, type True.
0288). If the ON/OFF designations for areas in the path
will be retained, type False.
0289 Example ReversePath=True
0290 Parameter=RightMargin

0291 An element that specifies the distance from the side
of the path at which to Stop flowing test.

Syntax RightMargin = <RightMarginNums<UnitTypes

See Also
Remarks

Margins
Optional.

0292) NOTE: A non-zero value for the RightMargin
element overrides (for the right margin only) the value Set in
the Margins element.
0293 For example, if Margins=1 in and RightMargin=2
in, the path will have 1-inch margins on the bottom, top, and
left Sides but will have a 2-inch margin on the right Side.

0294 The default value for RightMargin is 0.
0295 Explanation <RightMarginNumid

0296 Enter the number of units.
0297) <Unit Types

0298. Optional. Enter the abbreviation to identify the unit
type if the unit type for RightMargin is different from the
default unit type defined in the Units element. Possible
values are:

Cl for centimeters
dots for dots
ft for feet
in for inch (default value)

for millimeter
pts for points

0299| Example RightMargin 5 mm
0300 Parameter=TopMargin

0301 An element that specifies the distance from the top
of the path at which to start flowing text.

Dec. 29, 2005

Syntax TopMargin = <TopMarginNums<UnitTypes

See Also
Remarks

Margins
Optional.

0302) NOTE: A non-zero value for the TopMargin ele
ment overrides (for the top margin only) the value Set in the
Margins element.
0303 For example, if Margins=1 in and TopMargin=2 in,
the path will have 1-inch margins on the bottom, left, and
right Sides but will have a 2-inch margin on the top Side.
0304) The default value for TopMargin is 0.
0305 Explanation <TopMarginNumid

0306 Enter the number of units.
0307) <Unit Types

0308 Optional. Enter the abbreviation to identify the unit
type if the unit type for TopMargin is different from the
default unit type defined in the Units element. Possible
values are:

Cl for centimeters
dots for dots
ft for feet
in for inch (default value)

for millimeter
pts for points

0309 Example TopMargin=0.25 in

What is claimed is:
1. A method for wrapping data to an arbitrary path defined

by a page description language, comprising the Steps of:
(a) processing a page description language specification

defining a Static data area and at least one data wrap
ping boundary to generate a printable image represen
tation of at least the Static data area;

(b) associating a data block external to the page descrip
tion language specification with the data wrapping
boundary; and

(c) generating and flowing printable image representa
tions of the data block according to the data wrapping
boundary.

2. The method of claim 1, further including the step of:
(d) merging the printable image representation of the data

block with the printable image representation of the
Static data area.

3. The method of claim 1, wherein steps (b) through (d)
are repeated for multiple external data blockS.

4. The method of claim 2, wherein the method further
includes the Step of caching the printable image represen
tation of at least the static data area and step (d) includes a
Step of retrieving a copy of the printable image representa
tion from the cache and merging the printable image repre
sentation of the data block with the copy of the printable
image representation of the Static data area.

US 2005/0286065 A1

5. The method of claim 1, further comprising the step of:
asSociating a graphics State with the data wrapping bound

ary,

wherein Step (c) includes the step of applying the graphics
State to the data block during the generation of the
printable image representation of the data block.

6. The method of claim 5, wherein the graphics state is
defined in the page description language specification.

7. The method of claim 5, wherein the graphics state is
defined in a file external to the page description language
Specification.

8. A computer-implemented method for generating a
document, comprising the Steps of:

(a) accessing a data area defined in a template document
representation;

(b) monitoring a text String defined in the data area for a
first Special character or first String of characters, the
first character or first String of characters being indica
tive of a wrapping command;

(c) responsive to a detection of the special character or
String of characters in the text String, identifying a
boundary within the template document representation
and having a predetermined relationship with the data
area as being a data wrapping boundary;

(d) associating a block of data external to the template
document representation with the data wrapping
boundary; and

(e) generating a bitmap representation of the block of data
according to the data wrapping boundary and according
to a flow rule.

9. The method of claim 8, further comprising the step of:
asSociating a graphics State with the data wrapping bound

ary, wherein the generating step (e) includes a step of
applying the graphic State to the block of data.

10. The method of claim 9, wherein
the graphics State includes at least one printable attribute

that controls the printable image representation of the
data block.

11. A method for wrapping data to an arbitrary path
defined by a page description language, comprising the Steps
of:

(a) accessing a data area defined in a page description
language specification, the Specification further defin
ing a graphics State corresponding to the data area, the
graphics State including at least one print attribute
which controls the appearance of data in the data area;

(b) monitoring a text String defined in the data area for a
first Special character or first String of characters, the
first character or first String of characters being indica
tive of a wrapping command;

(c) responsive to a detection of the special character or
String of characters in the text string, (i) identifying a
path defined by the page description language Specifi
cation and having a predetermined relationship with the

Dec. 29, 2005

data area as being associated with the wrapping com
mand, the path having a boundary, and (ii) Storing the
graphics State corresponding to the data area in
memory;

(d) associating a block of text with the wrapping com
mand;

(e) applying the Stored graphics state to the block of text
to generate bitmap representations of the block of text;
and

(f) arranging the bitmap representations of the block of
text, according to the boundary and according to a
predefined flow rule.

12. A computer-implemented method for wrapping text to
a path defined in a print Specification, comprising the Steps
of:

(a) accessing a data area defined in a print specification;
(b) monitoring a text string defined in the data area for a

first Special character or first String of characters, the
first character or first String of characters being indica
tive of a wrapping command;

(c) responsive to a detection of the special character or
String of characters in the text String, identifying a path
defined by the print Specification and having a prede
termined relationship with the data area as being a
text-wrapping path asSociated with the wrapping com
mand;

(d) associating a block of text with the text-wrapping
path; and

(e) generating a bitmap representation of the block of text
according to a pre-defined flow rule to be imposed on
the text-wrapping path.

13. A computer-implemented method for wrapping text to
a path defined in a page description language, comprising
the Steps of:

(a) accessing a data area defined in a page description
language Specification;

(b) monitoring a text string defined in the data area for a
first Special character or first String of characters, the
first character or first String of characters being indica
tive of a wrapping command;

(c) responsive to a detection of the special character or
String of characters in the text String, identifying a path
defined by the print Specification and having a prede
termined relationship with the data area as being a text
boundary associated with the wrapping command;

(d) associating a coordinate System with the text bound
ary,

(e) associating a block of text with the textboundary; and
(f) generating a bitmap representation of the block of text

according to the coordinate System and according to a
flow rule.

