(51) International Patent Classification:
A61N 5/06 (2006.01) G02C 11/04 (2006.01)

(21) International Application Number:
PCT/NL20 17/050211

(22) International Filing Date:
4 April 2017 (04.04.2017)

(25) Filing Language:
Dutch

(26) Publication Language:
English

(30) Priority Data:
2016539 4 April 2016 (04.04.2016) NL

(71) Applicant: CHRONO EYEWEAR B.V. [NL/NL]; Saal van Zwanenbergweg 11, 5026 RM Tilburg (NL).

(72) Inventors: SCHOUTENS, Antonius Maria Cornellis; Zouavenlaan 33, 5037 MT Tilburg (NL). VAN BERKEL, Hubertus Adrianus Josephus Nicolaas; Zouavenlaan 33, 5037 MT Tilburg (NL).

(74) Agent: NEDERLANDSCH OCTROOIBUREAU; P.O. Box 29720, 2502 LS The Hague (NL).

Published:
— with international search report (Art. 21(3))
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: GLASSES PROVIDED WITH A LIGHT SOURCE, SYSTEM COMPRISING SUCH GLASSES AND A GLASSES CASE FOR SUCH GLASSES

(57) Abstract: The invention relates to glasses provided with two transparent spectacle glasses enclosed in a frame. Each spectacle glass is positioned in front of a person's eye with the aid of a frame to be positioned on the ears and nose of said person. The glasses are further provided with at least one light source integrated in the frame for directly and / or indirectly delivering light to the eyes substantially from above. A nose frame part of the frame reflects at, at least, a nose frame side portion facing the eye, to the eye at least partially the direct or indirect incident light thereon originating from the light source.
GLASSES PROVIDED WITH A LIGHT SOURCE, SYSTEM COMPRISING SUCH GLASSES AND A GLASSES CASE FOR SUCH GLASSES

DESCRIPTION

The invention relates to a glasses provided with a light source for illuminating at least a portion of the eye of a subject wearing the glasses and relates to a system comprising such a glasses. The invention also relates to a glasses case.

WO2014/162271 shows and describes a light therapy device provided with a frame and a number of light sources. The frame comprises two earpieces, a light emitting panel, a light guiding plate and a nose attachment means for positioning the device onto the nose of the user. Figure 6 of WO2014/162271 shows an embodiment of the light guiding plate of the light therapy device. This light guiding plate is roughened locally or coated with white paint in order to reflect the light from the light emitting panel to the eyes of the user. During a light treatment the light guiding plate is not transparent, which means that the user of the light therapy device is not able to look through the glass unimpeded due to the reflected light on the coating and/or on the roughness.

It is an aim of the current invention to provide a designer glasses for exposing the eyes to artificial light in a beneficial manner related to energy-consumption and which glasses can be worn continuously without hampering the sight of the wearer during a light treatment.

This aim is achieved with a glasses comprising the aspects as defined in claim 1.

With such a glasses an effective light treatment can be executed, wherein the spectacle glasses are transparent continuously, which means that during the execution of a light treatment with the glasses the wearer can look through the spectacle glasses unhindered and the wearer is capable to perform daily routine tasks. With the artificial light emitted by a light source in the glasses it is possible to influence the circadian rhythm of a wearer of the glasses such that for example discomfort of a jetlag and working in shifts/night shifts can be decreased and/or even be prevented. In order for making the layout of the glasses attractive from the viewpoint of design as less components as possible are assembled in the glasses. Therefore, for example the number of light sources is preferably kept to a minimum, for example at maximum four light sources positioned at a distance from each other which are preferably configured as energy-
efficient light-emitting diodes. A minimum number of components in the glasses not only results in a saving of space, though also for a reduction of the energy consumption of the glasses. Herewith the volume and mass of the battery can be kept minimally, which contributes in an enhanced manner to a more compact glasses for the execution of artificial-light treatment. By providing a compact glasses the glasses appears as a regular glasses without light source with regard to design. Herewith the glasses can be worn continuously in the public without standing out that a light treatment can be executed with the glasses. Furthermore the light treatment can be started and terminated automatically at a predetermined time-point without the necessity for the wearer of the glasses to perform an act. In order to guarantee the effective performance of the artificial light in the glasses without being at the expense of the vision through the transparent spectacle glasses or an increased energy consumption, the light originating from the light source is delivered to the eyes directly or indirectly from above, which means that the light is delivered above the spectacle glasses to the eye of the subject wearing the glasses. A wearer of the glasses will experience no hindrance from the artificial light delivered from above to the eyes during a light treatment. The light source will for the purpose be integrated in the portions of the frame positioned above the eyes or in the frame legs, wherein in case of a light source in a frame leg the artificial light is guided to the portions of the frame positioned above the eyes by light guides and subsequently delivered to the eyes in an indirect manner. The delivery of light to the eyes in an indirect manner provides more comfort to the user of the glasses than when the light is guided to the eyes directly via the light source. In order to optimize in the glasses in an energy-beneficial manner the amount of artificial light to the eyes, the lower part of the frame at least comprising the nose frame part is configured such that a nose frame side portion which is at least facing the eye of the wearer reflects at least in part the directly or indirectly incident light originating from the light source. This reflection of the nose frame side portion which is facing the eye of the wearer is at least 50%, preferably more than 85%. This way, artificial light that is lost otherwise during a light treatment is yet reflected to the eyes of the user.

An additional optional feature for the frame of the glasses is that at least portions of the surface of the nose frame side portion which is facing the eye of the wearer reflect the light diffusely. This way the comfort for a user can be increased during a light treatment. Another optional feature is to configure at least portions of the nose frame side portion which is facing the eye of the wearer curved to direct the reflected light specifically to the eye or to a desired location in
the eye in order to enhance the effect of the artificial light such that the duration of the light treatment can be shortened, allowing a decrease in the energy consumption of the glasses.

With such a configured glasses a maximum result is achieved in an energy beneficial way with the artificial light emitted by a light source. Lowering the number of components and the total energy consumption of the glasses when in use results in an increased freedom of design for the glasses or sunglasses for executing a treatment with artificial light, such that with regard to the appearance it is possible to establish an attractive designer glasses for the execution of a light treatment.

For example, by using the glasses with artificial light treatment during winter day with relatively short periods of day light, it is possible for the wearer of the glasses' body to artificially lengthen the period of day light during winter, such that the wearer's condition can be improved with the glasses or the energy level of the wearer can be enlarged. In addition, the glasses can be used to optimize the moment at which a performance has to be delivered. For an athlete it is for example not unthinkable that the performance to be delivered takes place for commercial reasons at a time of the day that is less beneficial for the body of the athlete such as for example late in the evening. By using the glasses with the light source therein blue light can be emitted to the eyes of the wearer whereby the production of melatonin is inhibited and the production of Cortisol is stimulated at a moment at which presumably the reverse natural effect would occur without glasses. This way, the day-night effects on a human being that regularly hinder a top performance are minimized.

The spectacle glasses can be made of glass or plastic. The spectacle glasses can be connected with each other as one piece.

The use of whitening agents, also referred to as optical brighteners, can enhance the percentage of reflectance of visible light even to above 100 percent. The whitening agents converse invisible ultraviolet light that is harmful to the eye to visible blue light, such that the perceived reflection is higher than the initial amount of light originating from the light source. The whitening agent establishes that radiation is added to the reflection of the visible light.

For simulating a dark environment the glasses can be provided with filter lenses that filter the blue spectrum of the (day) light and the UV light. Transparent red spectacle glasses are for example suitable for simulating a dark environment. This way, the biological production of the
hormone melatonin is not suppressed, such that the body receives an endogenous signal to reduce the day time activities and to prepare for the night.

For delivery of light originating from a light source in an indirect way to the eyes a light guiding element can be used. By applying a light guiding element in the glasses the glasses becomes more user friendly during a light treatment because this way direct emission of light originating from the light source is minimized. The light guiding element can be integrated in the frame. The light guiding element comprises notches in an upper surface thereof for reflecting the light originating from the light source when in use to a desired position. When the glasses are worn the light guiding element is located above the eyes. The notches preferably extend transversely to a longitudinal direction of the elongated light guiding element, wherein the notches in the direction of the nose frame part deepen uniformly for reflecting the light originating from the light source to the desired position in the eye. The notches have a triangular cross-section wherein the distance between the centers of the notches is almost constant. This ensures an even distribution of light.

The frame of the glasses can be provided with a support frame for supporting the spectacle glasses. The support frame comprises a support-frame upper portion which is positioned above the eyes when the glasses are worn correctly, and which extends between the frame legs of the glasses. The center of the support-frame upper portion can be connected to the nose frame part. The support-frame upper portion of the glasses can be provided with the above mentioned light guiding element in order to indirectly guide the artificial light from above from the at least one light source to the eyes. Moreover, indirect emission allows for more freedom in design since the position of the light source is optimizable. The light source is for example positioned further away from the eye such that the eye experiences no or just minimal hinder from the warmth produced by the light source.

The support frame of the frame encloses at least half of the perimeter of the spectacle glasses wherein at least the portion of the support frame at eye level when the glasses are worn and/or the portion of the support frame that is located lower than the eye when the glasses are worn reflects the directly or indirectly emitted light from the light source at the side of the support frame that is facing the eye of the wearer. The reflection is at least 50%, preferably more than 85%.

The invention also relates to a system comprising the glasses described in this document with a communication unit and an external device provided with a processor, and in addition a
computer program which, when in use, effectuates the processor to control the at least one light source in the glasses according to a predetermined program, wherein preferably the desired program can be selected by the wearer of the glasses. The external device is preferably a portable apparatus such as a smartphone / tablet or the like, wherein the computer program can be an app that is installable on the telephone which app can communicate wirelessly with the glasses via Bluetooth technology, for example to periodically start or to end a light treatment according to a predetermined or selected program.

The invention also relates to a glasses case for a glasses described in this application, wherein the glasses case and the glasses are provided with for example Qi technology such that the battery of the glasses placed in the glasses case is wirelessly chargeable by magnetic induction. Preferably, the glasses case comprises its own battery such that the portable glasses case can be used for charging the glasses without cables.

Other additional aspects of the glasses are described in the dependent claims.

The glasses is now explained by an embodiment as shown in the incorporated figures, wherein:

Figure 1 shows a front perspective view of a glasses;

Figure 2 shows a rear perspective view of a glasses;

Figure 3 shows an exploded rear view of the glasses shown in Figure 1 and 2;

Figure 4 shows an exploded front view of the glasses shown in Figure 1 and 2;

Figure 5 shows an exploded side view of the glasses shown in Figure 1 and 2;

Figures 6a and 6b show a light guiding element for another embodiment of the glasses;

Figure 7 shows a perspective rear view of a glasses; and

Figure 8 shows an embodiment of a nose frame part and light guiding elements being a single part.

In the figures, corresponding parts have the same reference number.
The figures 1-5 show a glasses 1 comprising two transparent spectacle glasses 3a, 3b contained by a frame 5. The spectacle glasses 3a, 3b comprise the shape of conventional spectacle glasses. The spectacle glasses 3a, 3b can be made as colored spectacle glasses. Optionally, the spectacle glasses are filter lenses for filtering of blue light and/or UV light, or the spectacle glasses are filter lenses for filtering of red light. The spectacle glasses can be releasably connected to the frame 5, such that the user can exchange the filter lenses for filtering blue light and/or UV light for filter lenses for filtering red light, or, when desired, for conventional spectacle glasses.

The frame 5 further comprises two frame legs 7a, 7b. In the figures 1 and 2 the glasses 1 is shown in use position in which the glasses 1 can be worn by an individual. Each spectacle glass 3a, 3b is positioned in front of one of the two eyes of an individual by frame 5 positioned at the ears and the nose of said individual. The glasses shown in the figures can be provided as sun glasses with spectacle glasses 3a, 3b for sun glasses.

The frame 5 further comprises a support frame 9 for supporting spectacle glasses 3a, 3b. The support frame 9 is connected at a first extremity 11 (left extremity in Figure 1) with a first frame side part 12 and connected at a second extremity 13 (right extremity in Figure 1) with a second frame side part 14. The frame side parts 12, 14 are connected to frame legs 7a, 7b at an extremity distal from support frame 9.

The glasses 1 is provided with two light sources (not shown), wherein the first light source in the first frame side part 12 is incorporated into an extremity thereof located near the spectacle glass 3a, whereas the second light source in the second frame side part 14 is incorporated into an extremity thereof located near the spectacle glass 3b.

The light sources are light-emitting diodes (LEDs), which LEDs can emit red and/or blue light. The blue light has a wavelength of 480-500 nanometer. The red light has a wavelength of 660-700 nanometer. It is possible to provide the glasses 1 with blue-light emitting LEDs, only. With the LEDs a light treatment can be performed with the glasses 1, for inhibiting or stimulating the wearer's production of melatonin / Cortisol.

The support frame 9 comprises a nose frame part 15. The nose frame part 15 is that portion of the frame 5 which is located around the nose when the glasses 1 is worn by a user. The nose frame part 15 comprises a nose contact surface, a nose frame front side portion 19 directed away from the wearer, an inner surface 16 for supporting a part of the spectacle glass as well
as a nose frame side portion 17 facing the eye when the glasses 1 is worn. In the presented
glasses 1 the nose contact surface and the nose frame front side portion 19 seamlessly form one
piece. The support frame 9 comprises also a support frame upper part 23 which is positioned
above the eyes of the wearer when the glasses 1 is worn correctly, and which extents in between
frame legs 7a, 7b of the glasses 1. At its center, the support frame upper part 23 is connected
with the nose frame part 15.

As shown in Figures 3-5, the support frame upper part 23 of the glasses 1 is provided with two
plate-shaped elongated light guiding elements 25, 26 integrated therein. The light emitted by
the LEDs is guided indirectly to the eyes with the light guiding elements 25, 26. An extremity
27, 29 of each light guiding element 25, 26, that is directed away from the nose frame part 15,
is in connection with the LEDs in the frame side parts 12, 14 such that the artificial light of the
LEDs is emitted indirectly to the eyes from above via the plate-shaped light guiding elements
25, 26 integrated in the support frame upper part 23. It is possible that in the glasses 1 no
artificial light is emitted directly from a LED to the eyes of a user, such that the light treatment
executed with the glasses 1 is only using indirect light. This way, for the wearer the comfort of
the glasses 1 during a light treatment is enhanced.

Figure 7 shows an embodiment of the glasses of the invention, wherein the nose frame part 15
and the light guiding elements 25 and 26 form a unit 28 with a nose frame part and two light
guiding elements. Figure 8 shows such a unit 28 with a nose frame part and two light guiding
elements, according to the invention, wherein the separate parts building up unit 28, namely the
nose frame part 15 and the light guiding elements 25 and 26, are indicated. In unit 28 with a
nose frame part and two light guiding elements the nose frame part 15 connects the light guiding
elements 25 and 26 such that a single part is formed. The application of the unit 28 with a nose
frame part and two light guiding elements in a glasses of the invention alternative to a nose
frame part 15 and light guiding elements 25 and 26, is optional according to the invention.

The sides of the support frame 9 that are facing the eyes of the wearer and that are positioned
below the light guiding elements 25, 26, such as for example the nose frame side portion 17,
reflect the artificial light that is coming indirectly from the light guiding elements 25, 26, to the
eye of the user. The other sides of the support frame 9 located below the light guiding elements
25, 26, that are facing the eye when in use, can be provided in the same manner as the nose
frame side portion 17, such that the amount of light emitted to the eyes is increased. These sides
of support frame 9 comprise support frame sides 35, 36 facing the eyes, which extents in the
glasses 1 between the nose frame side portion 17 and the support frame upper part 23. The reflecting sides of the support frame 9 can comprise inner surfaces that surround the spectacle glass 3a, 3b, such as the inner surface 16 of the nose frame part and the other inner surfaces 38, 39 of the support frame 9 located below the light guiding elements 25, 26.

In addition, the glasses 1 is provided with a soft lining 40 for enhancing the comfort of the wearer of the glasses 1. Then, it is possible to provide at least the sides of the lining that are facing the eyes as reflecting lining in order to reflect the incident indirect light from the light guiding elements 25, 26 on said sides of the lining, when in use, to the eyes.

The light reflecting parts of the glasses 1, such as the sides of the support frame 9 and/or the lining, reflect the incident light for at least 50%, preferably for more than 85%.

With the glasses of the invention it is possible to project 4 lux at minimum and 6 lux at maximum at the level of the retina, and 36 lux at minimum and 50 lux at maximum at the level of the eye. Said light intensity is essential for executing an effective artificial light treatment.

The Figures 6A, 6B show another embodiment of the light guiding element 50. This light guiding element 50 can be assembled in the support frame upper part 23 of the glasses 1 shown in Figures 1-5 at the same position as the light guiding element 25, 26.

The elongated light guiding element 50 is provided with a first LED 51, as well as with a second LED 53. For executing a light treatment, with the light guiding element 50 no further light sources are required in the glasses (not shown). The elongated light guiding element 50 is provided with an upper side 57 partly provided with notches 55, as well as a portion 59 protruding at the bottom side 61.

The portions of upper side 57 located nearby the LEDs 51, 53 are flat without notches 55. The notches 55 are provided between the flat portions of the upper side. The portion with notches 55 is larger than the two flat end-portions together. The notches 55 extend transversely to the longitudinal direction of the elongated light guiding element 50. The cross-section of each notch 55 is triangular. The notches 55 become evenly deeper toward the second LED 53, while the distance between the centers 63 of the consecutive notches remains constant.

The LEDs 51, 53 emit the artificial light substantially laterally in the light guiding element 50 in the direction indicated by the arrows P1 and P2 to the notches 55. The artificial light is reflected by the notches 55 in the direction indicated by arrows P3 and P4 to the eye of a user.
The light guiding element 50 is preferably made of polycarbonate (e.g., ALCOM pwl 10 / 1.1 WT1302-05LB). It is possible to add colored or light reflective pigments to the material so that the light can be reflected to the eyes diffusely.

The frame 5 is provided with a control unit such as a circuit board (PCB) and a battery. Optionally, the frame 5 may be provided with a memory storage. These components may be located in the frame side portions 12, 14 or in the frame legs 7a, 7b. Further, the frame may include a communication device (not shown) such as, for example, a USB port for providing a wired connection and / or, for example, a Bluetooth chip for providing a wireless connection.

The glasses 1 may be part of a system further comprising an external device comprising a processor as well as a computer program which, in use, causes the processor to control the LEDs in the glasses in accordance with a predetermined program.

It is possible that the glasses is designed so that the support frame of the frame only partially encloses the perimeter of the spectacle glasses.

It is also possible that at least portions of the surface of the support frame side facing the wearer's eye are designed such that the light to be reflected is diffused. Also, portions of the support frame facing the wearer's eye can be curved such that the light to be reflected is directed to a position in the eye. Further, the side of the support frame facing the wearer's eye may be provided with whitening agents.

The LEDs for emitting the blue light and UV light may be provided with filters for filtering the eye-damaging part of the light spectrum of the light emitted by the light source, such as, for example, UV radiation having a wavelength between 10 and 400 nanometer. These filters can also be provided elsewhere in the glasses to prevent a malicious part of the light emitted with the light source from reaching the eye.

It is further possible to provide the glasses with at least a light source integrated centrally in the frame, for direct and / or indirect delivering light to the eyes substantially from above.

The frame 5 can be provided with two hinging frame legs. In the position of use of the glasses 1 with unfolded hinging frame legs, the glasses 1 can be worn by a person, such that each spectacle glass 3a, 3b is positioned in front of one of the two eyes of a person aided by frame 5 for positioning on the ears and nose of the person. By hinging the frame legs towards each other
in the direction of the spectacle glasses 3a, 3b, the glasses 1 is brought from the unfolded state to a compact folded state, such that it is stored, for example, in a glasses case (not shown).

The glasses case and the glasses can be provided with Qi technology such that the battery of the glasses is wirelessly chargeable. Furthermore, the glasses case itself can be provided with a battery such that the glasses case without cables can wirelessly charge the battery of the glasses by using the battery of the glasses case.

An alternative glasses can be provided with two transparent spectacle glasses enclosed in a frame, wherein each spectacle glass is positioned in front of an eye of a person by a frame for positioning on the ears and the nose of said person, the glasses further provided with at least one light source integrated in the frame, wherein above the spectacle glass the frame is provided with at least a light guiding element for indirect delivery of light substantially from above the spectacle glass to the eyes, the light originating from at least one light source. The alternative glasses comprises a light guiding element with notches as herein described and as shown in the Figures. Optionally, the alternative glasses may comprise a frame with a nose frame part, which nose frame part at, at least, a nose frame side portion facing the eye, reflects to the eye at least partially the direct or indirect incident light thereon originating from the light source.
1. Glasses provided with two transparent spectacle glasses enclosed in a frame, wherein each spectacle glass is positioned in front of an eye of a person by a frame for positioning on the ears and the nose of said person, the glasses further provided with at least one light source integrated in the frame for direct and/or indirect delivery of light substantially from above the spectacle glass to the eyes, wherein a nose frame part of the frame at, at least, a nose frame side portion facing the eye, reflects to the eye at least partially the direct or indirect incident light thereon originating from the light source.

2. Glasses according to claim 1, wherein the nose frame side portion facing the eye reflects to the eye at least partially the direct or indirect incident light thereon originating from the light source, for at least 50%, preferably for more than 85%.

3. Glasses according to any one of the preceding claims, wherein the frame above the spectacle glass is provided with at least one light guiding element for indirect delivery of light originating from the at least one light source substantially from above the spectacle glass to the eyes.

4. Glasses according to claim 3, wherein the light guiding element is provided with an upper side having notches, wherein preferably each notch extends transversely to the longitudinal direction of the light guiding element.

5. Glasses according to claim 4, wherein the notches in the direction of the nose frame part become deeper.

6. Glasses according to claim 5, wherein the notches in the direction of the nose frame part become evenly deeper.

7. Glasses according to any one of claims 4-6, wherein the distances between centers of the notches are constant.

8. Glasses according to any one of the preceding claims, wherein the transparent spectacle glasses are colored.
9. Glasses according to any one of the preceding claims, wherein the spectacle glasses are connected to one another in one piece.

10. Glasses according to any one of the preceding claims, wherein the spectacle glasses are filter lenses for filtering blue light and / or UV light, or the spectacle glasses are filter lenses for filtering red light.

11. Glasses according to any one of the preceding claims, wherein the glasses is a sunglasses provided with spectacle glasses for a sunglasses.

12. Glasses according to any one of the preceding claims, wherein the spectacle glasses are releasably connected to the frame.

13. Glasses according to any one of the preceding claims, wherein the light source is at least one light-emitting diode, which light-emitting diode can emit red and / or blue light.

14. Glasses according to claim 13, wherein the red light has a wavelength of 660-700 nanometer.

15. Glasses according to claim 13 or 14, wherein the blue light has a wavelength of 464-480 nanometer.

16. Glasses according to any one of the preceding claims, wherein 36-50 lux is deliverable at retinal level with the aid of the at least one light source.

17. Glasses according to any one of the preceding claims, wherein the frame of the glasses is provided with a support frame for supporting the spectacle glasses.

18. Glasses according to claim 17, wherein the nose frame part is a part of the support frame.

19. Glasses according to claim 17 or 18, wherein the support frame comprises a support frame upper portion positioned in a correctly worn glasses above the eyes and extending between frame legs of the glasses.
20. Glasses according to claim 19, wherein the support frame upper portion of the glasses is provided with the at least one light source.

21. Glasses according to claim 3 in combination with claim 19 or 20, wherein the support frame upper portion is provided with the light guiding element.

22. Glasses according to any one of claims 19-21, wherein the support frame of the frame encloses at least half the perimeter of the spectacle glasses, wherein with a worn glasses the portion of the support frame positioned lower than the support frame upper portion at, at least, a side of the support frame that is facing the eye, at least partly reflects to the eye the incident light thereon directly or indirectly originating from the light source.

23. Glasses according to claim 22, wherein the eye-facing side of the support frame at least partially reflects the incident light originating directly or indirectly from the light source by at least 50%, preferably reflects more than 85%.

24. Glasses according to any one of the preceding claims, wherein the surface of at least the eye-facing nose frame side portion is at least partially configured to reflect the light to be reflected diffusely to the eye.

25. Glasses according to any one of the preceding claims, wherein at least a part of the eye-facing nose frame side portion is curved to direct to the eye the light to be reflected.

26. Glasses according to any one of the preceding claims, wherein at least the eye-facing nose frame side portion is at least partly provided with whitening agents.

27. Glasses according to claim 24, 25 or 26, wherein the nose frame side portion and the side of the support frame are made in the same manner.

28. Glasses according to any one of the preceding claims, wherein each frame leg of the frame is provided with a light source.

29. Glasses according to claim 17, wherein the support frame is connected on both sides to frame side portions, wherein a light source is provided in each frame side portion.
30. Glasses according to claims 3 and 28 or 3 and 29, wherein the light from the light sources is guided to the eyes by means of the light guiding element.

31. Glasses according to any one of the preceding claims, wherein the frame is provided with a communication device such as, for example, a USB port for a wired connection and/or, for example, a Bluetooth chip for a wireless connection.

32. Glasses according to any one of the preceding claims, wherein the frame is provided with an actuator such as a circuit board (PCB), as well as a battery and optionally a memory storage.

33. A system comprising a glasses according to claim 31, wherein the system further comprises an external device provided with a processor as well as a computer program which, in use, causes the processor to control the at least one light source in the glasses in accordance with a predetermined program, wherein preferably the desired program is chosen by a wearer of the glasses.

34. System according to claim 33, characterized in that the computer program based on parameters to be entered and/or parameters to be determined automatically, starts a program or offers a number of programs from which a person can choose.

35. Glasses case for a glasses according to claim 32, wherein the battery of the glasses disposed in the glasses case is wirelessly charged by magnetic induction.

36. Glasses case according to claim 35, wherein the glasses case is provided with a further battery.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) with both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61N G02C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>abstract; figures 5-9</td>
<td>8-36</td>
</tr>
<tr>
<td>A</td>
<td>paragraphs [0030] - [0036], [0048] - [0049]</td>
<td>4-7</td>
</tr>
<tr>
<td>X</td>
<td>US 2006/176442 A1 (LEE CHING-HUI [TW]) 10 August 2006 (2006-08-10)</td>
<td>1-3</td>
</tr>
<tr>
<td>Y</td>
<td>abstract; figures 1-5</td>
<td>8-36</td>
</tr>
<tr>
<td>A</td>
<td>paragraphs [0021] - [0027]</td>
<td>4-7</td>
</tr>
<tr>
<td>Y</td>
<td>abstract; figures 1-2</td>
<td>8-36</td>
</tr>
<tr>
<td>A</td>
<td>column 3, line 18 - column 4, line 63</td>
<td>4-7</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special category of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "A" document member of the same patent family

Date of the actual completion of the international search: 3 August 2017

Date of mailing of the international search report: 14/08/2017

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer:

Lahorte, Philippe
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CN 201 543 118 U (MINGYUN HU; JUNHAI LIN) 11 August 2010 (2010-08-11) abstract; figures 1-2</td>
<td>1-3, 8-36</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>4-7</td>
</tr>
<tr>
<td>Y</td>
<td>CN 101 819 334 A (XIANG XIA) 1 September 2010 (2010-09-01) abstract; figures 1b, 7, 12</td>
<td>8-36</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2012215291 Al</td>
<td>23-08-2012</td>
<td>AR 085135 Al</td>
</tr>
<tr>
<td>CA 2826247 Al</td>
<td></td>
<td>CN 103338817 A</td>
</tr>
<tr>
<td>CN 1191886 Al</td>
<td></td>
<td>EP 2670482 Al</td>
</tr>
<tr>
<td>RU 2013140682 A</td>
<td></td>
<td>SG 191983 Al</td>
</tr>
<tr>
<td>TW 201240694 A</td>
<td></td>
<td>US 2012215291 Al</td>
</tr>
<tr>
<td>US 2016144149 Al</td>
<td></td>
<td>US 2016106542 Al</td>
</tr>
<tr>
<td>CN 201543118 U</td>
<td>11-08-2010</td>
<td>CN 101819334 A</td>
</tr>
<tr>
<td>US 2016016004 Al</td>
<td>21-01-2016</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2005)