发明名称
用于精确的信道探测的分级调制

摘要
一种用于改进第一站与第二站之间的通信信道的信道估计时减少为导频量保留的宽带的量的方法和设备。将分级调整用于增加导频密度而不损失吞吐量。在第一站处，可以将数字信息划分成基础流和增强流，其中，基础流和增强流组合形成分级信号。在第二站处，可以首先恢复基础流，并且将恢复的基础流用作针对增强流的导频。因此，可以使得作为全部发送的信息的子集的基础流执行针对增强流的信道探测功能。
1. 一种方法，包括：
接收包括第一导频参考和分级信号的组合信号，所述分级信号包括已调制编码的基础流和已调制编码的增强流；
基于所述第一导频参考计算第一信道估计；
基于所述第一信道估计从所述组合信号恢复基础流；
基于作为第二导频参考的所述基础流计算第二信道估计；
将所述第一信道估计和所述第二信道估计组合以产生第三信道估计；以及
基于所述第三信道估计从所述组合信号恢复增强流。
2. 根据权利要求1所述的方法，还包括：
解调并解码来自所述组合信号的所述已调制编码的基础流；
再编码所述基础流以形成经再编码的基础流；以及
再调制所述经再编码的基础流以形成经再调制再编码的基础流。
其中，所述计算第二信道估计进一步包括基于作为第二导频参考的所述经再调制再编码的基础流来计算所述第二信道估计。
3. 根据权利要求2所述的方法，还包括：
从所述组合信号中移除所述经再调制再编码的基础流；以及
解调并解码来自所述组合信号的所述已调制编码的增强流。
4. 根据权利要求1所述的方法，其中，所述计算第一信道估计包括将频域内插法应用于所述第一导频参考以计算所述第一信道估计。
5. 根据权利要求2所述的方法，其中，所述计算第二信道估计包括将频域内插法应用于所述经再调制再编码的基础流以计算所述第二信道估计。
6. 根据权利要求1所述的方法，其中，使用下面的等式来组合所述第一信道估计和所述第二信道估计：
 \[\hat{c} = \beta \hat{c}_p + (1-\beta) \hat{c}_d \]
其中，\(\hat{c} \)是所述第三信道估计，\(\hat{c}_p \)是所述第一信道估计，\(\hat{c}_d \)是所述第二信道估计，并且，
\(\beta \)是取决于所述第一导频参考的密度和所述已调制编码的增强流的功率电平的参数。
7. 一种设备，包括：
至少一个被配置成接收组合信号的设备，所述组合信号包括第一导频参考和分级信号，所述分级信号包括已调制编码的基础流和已调制编码的增强流；以及
信道估计器，所述信道估计器被配置成：(a) 基于所述第一导频参考计算第一信道估计，(b) 基于作为第二导频参考的基础流计算第二信道估计，其中，基于所述第一信道估计从所述组合信号恢复所述基础流，以及 (c) 将所述第一信道估计和所述第二信道估计组合以产生第三信道估计，其中，基于所述第三信道估计从所述组合信号恢复所述增强流。
其中，所述设备被配置成接收无线电信号。
8. 根据权利要求7所述的设备，还包括：
基础解调器，所述基础解调器被配置成解调来自所述组合信号的所述已调制编码的基础流以形成已解调编码的基础流；
基础解码器，所述基础解码器被配置成解码所述已解调编码的基础流以形成已解调解码的基础流；
权利要求书

基线流再编码器，所述基线流再编码器被配置成再编码所述已解调编码的基础流以形成经再编码的基础流；以及

基线流再调制器，所述基线流再调制器被配置成再调制所述经再编码的基础流以形成经再调制再编码的基础流，

其中，所述信道估计器被配置成基于作为第二导频参考的所述经再调制再编码的基础流来计算所述第二信道。

9. 根据权利要求8所述的设备，还包括：
求和器，所述求和器被配置成从所述组合信号中减去所述经再调制再编码的基础流；
增强解调器，所述增强解调器被配置成解调来自所述组合信号的所述已调制编码的增强解调以形成已解调编码的增强流；以及

增强解码器，所述增强解码器被配置成解码所述已解调编码的增强流以形成已解调编码的增强流。

10. 根据权利要求7所述的设备，其中，所述信道估计器被配置成通过将频域内插法应用于所述第一导频参考来计算所述第二信道估计。

11. 根据权利要求7所述的设备，其中，所述信道估计器被配置成通过将频域内插法应用于所述经再调制再编码的基础流来计算所述第二信道估计。

12. 根据权利要求7所述的设备，其中，使用下面的等式来组合所述第一信道估计和所述第二信道估计：

\[\hat{c} = \beta \hat{c}_p + (1-\beta) \hat{c}_d \]

其中，\(\hat{c} \) 是所述第三信道估计，\(\hat{c}_p \) 是所述第一信道估计，\(\hat{c}_d \) 是所述第二信道估计，并且，\(\beta \) 是取决于所述第一导频参考的密度和所述已调制编码的增强流的功率电平的参数。

13. 一种计算机可读有形介质，包括计算机可执行指令，所述计算机可执行指令用于：
基于组合信号的第一导频参考计算第一信道估计，所述组合信号包括所述第一导频参考和分级信号，所述分级信号包括已调制编码的基础流和已调制编码的增强流；
基于所述第一信道估计从所述组合信号恢复基础流；
基于作为第二导频参考的所述基础流计算第二信道估计；
将所述第一信道估计和所述第二信道估计组合以产生第三信道估计；以及
基于所述第三信道估计从所述组合信号恢复增强流。

14. 根据权利要求13所述的计算机可读有形介质，其中，所述指令还包括用于进行以下操作的指令：
解调并解码来自所述组合信号的所述已调制编码的基础流；
再编码所述基础流以形成经再编码的基础流；以及
再调制所述经再编码的基础流以形成经再调制再编码的基础流，
其中，所述用于计算所述第二信道估计的指令进一步包括用于基于作为第二导频参考的所述经再调制再编码的基础流来计算所述第二信道估计的指令。

15. 根据权利要求14所述的计算机可读有形介质，其中，所述指令还包括用于进行以下操作的指令：
从所述组合信号中移除所述经再调制再编码的基础流；以及
解调并解码来自所述组合信号的所述已调制编码的增强流。
16. 根据权利要求 13 所述的计算机可读有形介质，其中，所述用于计算所述第一信道估计的指令进一步包括用于将频域内插法应用于所述第一导频参考以计算所述第一信道估计的指令。

17. 根据权利要求 14 所述的计算机可读有形介质，其中，所述用于计算所述第二信道估计的指令进一步包括用于将频域内插法应用于所述经再调制再编码的基础流以计算所述第二信道估计的指令。
用于精确的信道探测的分级调制

背景技术
[0001] 多输入多输出（“MIMO”）是一种从多个天线的阵列发送信息并且也由多个天线的阵列接收信息的技术。将到来或来自各个天线中的某些天线或者所有天线的信道进行组合以形成复合阵列响应。MIMO技术使用适的功率取得了高级别的可靠性。

发明内容
[0002] 实心例涉及一种包括如下步骤的方法：将数字信息流划分成基础流和增强流；分别编码基础流和增强流而形成已编码的基础流和已编码的增强流；以及，将已编码的基础流和已编码的增强流组合以形成分组信号。
[0003] 方法可以进一步包括：设置第一导频参考；将第一导频参考与分组信号组合以产生组合信号；以及，发送组合信号。
[0004] 方法可以进一步包括：分别调制已编码的基础流和已编码的增强流，以形成已调制编码的基础流和已调制编码的增强流。
[0005] 方法可以进一步包括：将已调制编码的增强流重叠以形成经增强的已调制编码的增强流，其中，经增强的已调制编码的增强流具有比已调制编码的基础流更低的功率；将已调制编码的基础流与经增强的已调制编码的增强流组合以产生分组信号；设置第一导频参考；将第一导频参考与分组信号组合以产生组合信号；以及，发送组合信号。
[0006] 另一实施例涉及一种包括如下步骤的方法：接收包包括第一导频参考和分组信号的组合信号，分组信号包括已调制编码的基础流和已调制编码的增强流；基于第一导频参考计算第一信道估计；基于第一信道估计和分组信号恢复基础流；基于作为第二导频参考的基础流计算第二信道估计；将第一信道估计与第二信道估计组合以产生第三信道估计；以及，基于第三信道估计从组合信号恢复增强流。
[0007] 方法可以进一步包括：解调并解码来自组合信号的已调制编码的基础流，再编码基础流以形成经再编码的基础流；以及，再调制经再编码的基础流以形成经再调制再编码的基础流，其中，计算第二信道估计进一步包括基于作为第二导频参考的经再调制再编码的基础流来计算第二信道估计。
[0008] 方法可以进一步包括：从组合信号中移除经再调制再编码的基础流，以及，解调并解码来自组合信号的已调制编码的增强流。
[0009] 计算第一信道估计可以包括将频域内插法应用于第一导频参考以计算第一信道估计。
[0010] 计算第二信道估计可以包括将频域内插法应用于经再调制再编码的基础流以计算第二信道估计。
[0011] 可以使用下面的等式来组合第一信道估计和第二信道估计：
\[\hat{c} = \beta \hat{c}_p + (1-\beta) \hat{c}_d, \]
其中，\(| \beta | < 1 \)，其中，\(\hat{c} \) 是第三信道估计，\(\hat{c}_p \) 是第一信道估计，\(\hat{c}_d \) 是第二信道估计，\(\beta \) 是取决于第一导频参考的密度和已调制编码的增强流的功率电平的参数。
[0012] 另一实施例涉及一种设备，该设备包括：开关，被配置成将数字信息流划分成基础
流和增强流；第一编码器，被配置成对基础流进行编码以形成已编码的基础流；第二编码器，被配置成对增强流进行编码以形成已编码的增强流的；以及，处理器，被配置成将已编码的基础流和已编码的增强流结合以形成复线信号，其中，该设备被配置成发送无线电信号。

[0013] 设备可以进一步包括；被配置成将第一导频参考与复线信号组合以产生组合信号的处理器；以及，至少一个被配置成发送组合信号的设备。

[0014] 设备可以进一步包括；第一调制器，被配置成调制已编码的基础流以形成已调制编码的基础流；以及，第二调制器，被配置成调制已编码的增强流以形成已调制编码的基础流。

[0015] 设备可以进一步包括；衰减器，被配置成衰减已经调制编码的增强流以形成经过衰减的已调制编码的增强流，其中，经衰减的已调制编码的增强流具有比已调制编码的基础流更低的功率；求和器，被配置成将已调制编码的基础流与经过衰减的已调制编码的增强流组合以产生复线信号；处理器，被配置成将第一导频参考与复线信号组合以产生组合信号；以及，至少一个被配置成发送组合信号的设备。

[0016] 另一实施例涉及一种设备，该设备包括，至少一个被配置成接收组合信号的设备，该组合信号包括第一导频参考和复线信号，复线信号包括已调制编码的基础流和已调制编码的增强流；信道估计器，该信道估计器被配置成，（a）基于第一导频参考计算第一信道估计，（b）基于作为第二导频参考的基础流计算第二信道估计，其中，基于第一信道估计从组合信号恢复基础流，以及（c）将第一信道估计与第二信道估计组合以产生第三信道估计，其中，基于第三信道估计从组合信号恢复增强流，其中，设备被配置成接收无线电信号。

[0017] 设备可以进一步包括，基础流解调器，该基础流解调器被配置成解调来自组合信号的已调制编码的基础流以形成已解调编码的基础流；基础流解码器，该基础流解码器被配置成解码已调制编码的基础流以形成已解调编码的基础流；基础流再编码器，该基础流再编码器被配置成再编码已解调编码的基础流以形成经再编码的基础流；以及，基础流再调制器，该基础流再调制器被配置成再调制经再编码的基础流以形成经再调制再编码的基础流，其中，信道估计器被配置成基于作为第二导频参考的经再调制再编码的基础流，计算第二信道。

[0018] 设备可以进一步包括，求和器，该求和器被配置成从组合信号中减去经再调制再编码的基础流；增强流解调器，该增强流解调器被配置成解调来自组合信号的已调制编码的增强流以形成已解调编码的增强流；以及，增强流解码器，该增强流解码器被配置成解码已解调编码的增强流以形成已解调编码的增强流。

[0019] 信道估计器可以被配置成通过将频域内插法应用于第一导频参考来计算第一信道估计。

[0020] 信道估计器可以被配置成通过将频域内插法应用于经再调制再编码的基础流来计算第二信道估计。

[0021] 可以使用下面的等式组合第一信道估计和第二信道估计，\(\hat{c} = \beta \hat{c}_p + (1-\beta) \hat{c}_d \)，其中，\(|\beta| < 1 \)，其中，\(\hat{c} \) 是第三信道估计，\(\hat{c}_p \) 是第一信道估计，\(\hat{c}_d \) 是第二信道估计，\(\beta \) 是取决于第一导频参考的密度和已调制编码的增强流的功率电平的参数。

[0022] 另一实施例涉及一种包括计算机可执行指令的计算机可读有形介质，该计算机可
执行指令用于：基于组合信号的第一导频参考计算第一信道估计，组合信号包括第一导频参考和分层信号，分层信号包括已调制编码的基础流和已调制编码的增强流。基于第一信道估计从组合信号恢复基础流；基于作为第二导频参考的基础流计算第二信道估计；将第一信道估计与第二信道估计组合以产生第三信道估计；以及，基于第三信道估计从组合信号恢复增强流。

[0023] 指令可以进一步包括用于进行如下操作的指令：解调并解码来自组合信号的已调制编码的基础流；再编码基础流以形成经再编码的基础流，以及，再调制经再编码的基础流以形成经再调制再编码的基础流，其中，用于计算第二信道估计的指令进一步包括用于基于作为第二导频参考的经再调制再编码的基础流计算第二信道估计的指令。

[0024] 指令可以进一步包括用于进行如下操作的指令：从组合信号中移除经再调制再编码的基础流，以及，解调并解码来自组合信号的已调制编码的增强流。

[0025] 用于计算第一信道估计的指令可以进一步包括用于将频域内插法应用于第一导频参考以计算第一信道估计的指令。

[0026] 用于计算第二信道估计的指令可以进一步包括用于将频域内插法应用于经再调制再编码的基础流以计算第二信道估计的指令。

[0027] 上述发明内容只是示例性的，并不意在以任何方式进行限制。除了上述示例性的方面、实施例和特征，通过参考附图和以下详细描述，另外的方面、实施例和特征也会变得明显。

附图说明
[0028] 在以下详细描述中，参考构成以下详细描述的一部分的附图。在附图中，除非上下文另有指示，否则，相似的符号通常标识相似的部件。在详细的说明书、附图和权利要求中描述的示例性实施例并不意在作为限制。在不背离在此呈现的主题的精神和范围的情况下，可以使用其他的实施例，并且可以进行其他变化。将容易理解，如本文中大体描述的以及附图中图示的，可以按照各种不同的配置来布置、替换、组合以及设计本公开内容的各方面，所有这些配置都被明确地设想并构成本公开内容的一部分。

[0029] 图 1A-1B 示出了示例 MIMO-OFDM 发送器和接收器的框图。

[0030] 图 2 示出了执行实施例的方法的流程图。

[0031] 图 3 示出了根据实施例的 MIMO-OFDM 发送器的框图。

[0032] 图 4 示出了根据实施例的 MIMO-OFDM 接收器的框图。

[0033] 图 5 示出了图示根据实施例的示例计算装置的框图。

具体实施方式
[0034] 在以下详细描述中，参考构成以下详细描述的一部分的附图。在附图中，除非上下文另有指示，否则，相似的符号通常标识相似的部件。详细的说明书、附图和权利要求中描述的示例性实施例并不意在作为限制。在不背离在此呈现的主题的精神和范围的情况下，可以使用其他的实施例，并且可以进行其他变化。将容易理解，如本文中大体描述的以及附图中图示的，可以按照各种不同的配置来布置、替换、组合以及设计本公开内容的各方面，所有这些配置都被明确地设想并构成本公开内容的一部分。
[0035] 实施例涉及与采用导频信号的通信系统的改进的频谱效率有关的方法、设备、计算机程序和/或系统。

[0036] 通常结合正交频分复用（“OFDM”）来部署MIMO。OFDM指的是天线阵列上的载波信号的调制方案和频分复用方案。OFDM是用作数字多载波调制方法的频分复用（FDM）方案。使用大量间隔很近的正交副载波来承载数据，从而跨越可用带宽的大部分。数据被分成若干平行的数据流或频道，每个副载波对应一个数据流或频道。用传统的调制方案（例如，QAM或PSK等）以低符号率调制每个副载波，同时保持总数据率类似于相同带宽中的传统的单载波调制方案。基于单载波方案的OFDM的优点是它的能够在没有复均衡滤波器的情况下应付恶劣的信道状况的能力。

[0037] 一种示例MIMO-OFDM系统的每个发送天线保留大约10%的可用带宽用于导频信号（pilot tone）。因此，具有多于大约四个发送天线的MIMO-OFDM系统会保留40%的带宽用于“导频开销”，从而使吞吐量减少了40%，并且无效率地使用了可用带宽。

[0038] 本文中的实施例在不损失吞吐量的情况下通过使用分级调制（hierarchical modulation）增大导频密度来减少保留带宽的量。导频密度指的是将导频副载波/音的数量除以副载波的总数（即，保留用于导频音的带宽的部分）。每个业务承载音承载两个业务流，“基础”流和“增强”流。因此，可以使用不同的前向纠错（“FEC”）编码器对每个流进行编码。可以在如以下参照图4描述的接收器处首先恢复基础流，并且，一旦恢复基础流，则将基础流用作针对增强流的导频。因此，可以将作为全部发送信息的子集的基础流用来执行针对增强流的信道探测（channel-sounding）功能。信道探测指的是信道的脉冲响应的测量（即，信道的传递函数的测量）。编码流也可以被称为基础流。

[0039] 即使发送天线的数量多到至少八个，伪导频的使用也使得能够将导频开销抑制为小于总的带宽的10%。该技术也可以应用于单输入单输出（“SISO”）天线系统，其中，导频开销是次要关心的问题。在SISO系统中使用伪导频使能够提高信道探测的精确性，这又使得能够在不显著地损失性能的情况下将发送功率减少大约50%（即，3dB的改进）。类似地，该系统也可应用于多输入单输出（“MISO”）天线系统以及单输入多输出（“SIMO”）天线系统。

[0040] 可以用前验的未知信道响应来表征MIMO系统的至少一些发送接收天线对。信道响应是复数，并且，信道响应表示发送接收天线对的符号所经历的幅度和相位偏移。通常在接收器能够恢复符号之前的估计 NXMIMO系统的NX个信道。此外，至少NX个信道中的某些信道可以表现出非平坦的频率响应，使得宽带信号至少在以一个相干带宽划分的频率处需要知道信道或估计信道。

[0041] 在以下描述中，发送天线的数量用a表示，接收天线的数量用b表示，副载波的数量用N表示。第m个副载波用b×a信道矩阵表示。表征。

[0042] 目前，参考图1A，图1A示出了典型的MIMO-OFDM发送器100的框图。在图1A中，数字信息流1被提供给FEC编码器2。数字信息流1可以进行编码或从模拟源（未示出）数字化得到。实施例的实现没有要求FEC编码器2，但是，实施例通常包括编码器如FEC编码器2以提高系统性能和/或减少获得可接受的系统性能所需要的发送RF功率的量。FEC编码器2之后是调制器3。调制器3对信息流进行调制以生成数据符号。调制器3的调
制方案没有限制，可以包括 m 相移键控 (m-PSK) 方案或 m 正交幅度调制 (m-QAM) 方案。

[0043] 经过编码和调制的符号进入 MIMO-OFDM 发射器块 4。串—并分路器 5 在 a 个路径
之间（即，在多个天线之间）划分符号，其中，在一经过分路器 5 之后，每个路径中的符号就
基本相同。

[0044] 可以在多个副载波上发送符号。每个副载波可以由多个 MIMO 处理块 6 处理，每个
MIMO 处理块 6 处理针对单个天线指定的符号。通常，作为 MIMO 算法的一部分，每个 MIMO 处
理块 6 为各个信道修改发送的符号的幅度和相位，以提供期望的发送模式。在一个实施例
中，每个 MIMO 处理块 6 由信道估计器 7 所提供的、可以基于来自接收器的反馈的控制信
号进行控制。可以根据用于该副载波的信道矩阵计算控制信号。例如，在第 m 个副载波处，发
送器 100 可以使第 n 个发送天线处的符号与信道矩阵 C(m) 的最左边的单个矢量的第 n 个
元素相乘。

[0045] 参考图 1A 和 1B，为了有利于这里呈现的数学，发送器 100 用“站 A”表示，而接收
器 150 用“站 B”表示。站 A 和 B 分别具有多个 a 和 b 天线元件 11 和 111。从发送器 100 发
送至接收器 150 的能量——总体示出为无线信道 12——在单独的 RF 信道（未示出）上
从 A 的发送天线 j 行进至 B 的接收天线 i，并且，在用于这些单独的 RF 信道中的每个信道的
第 m 个副载波处的信道用 c_{ij}^{m}(m) 表示，其中，“m”是副载波索引。在站 B 处，标量信道 c_{ij}^{m}(m)
被整理成 b×a 矩阵 C(m)，其中，矩阵 C(m) 的第 i,j^{th} 元素是 c_{ij}^{m}(m)。稍后，将在下面描述使
用信道矩阵 C(m) 调节 MIMO 处理块 6 中的每个块。

[0046] 在已经用 MIMO 处理块 6 调节每个发送副载波之后，基于信道矩阵，导频插入块 8
将导频信号插入在针对每个发送天线指定的信号上。导频信号可以是占用特定副载波时隙
(slot) 的已调制符号（例如，PSK 或 QAM）的序列。接收器可以已知包括导频和占用的副载
波时隙的符号的序列。由导频符号占用的副载波时隙也可以不被业务符号占用。承载用于
给定的发送天线的导频符号的副载波时隙可以与承载用于任何其他发送天线的导频符号
的副载波时隙不同。增加发送天线的数量引起导频开销增加，这是由于每个发送天线需要
多个副载波时隙，即带宽来承载发送天线的导频信号。在示例操作中，已调制业务符号可以
以矢量形式排列并且插入有导频（自身是已调制符号的矢量）。所述矢量中的每个已调制
符号的位置对应于特定副载波。例如，如果副载波间隔是 10kHz，则所述矢量的第一符号必
然在 0Hz 处发送，所述矢量的第二符号将在 10kHz 处发送，第三符号在 20kHz 处发送，等等。
因此，发送器处的符号的矢量跨越了整个可用带宽。

[0047] 在一个示例实施例中，在插入导频之后，对于每个副载波，可以使用逆快速傅里叶变
换（“IFFT”）操作 9 将每个信道的数字频域发送信号有效地转换成数字时域发送信号。
IFFT 操作 9 将已调制符号的矢量转换成时域发送信号。在一种配置中，可以使用依次对每
个天线使用 IFFT 的单个 IFFT 操作。在另一种配置中，使用的 IFFT 块的数量可以少于天线
的数量。同样，沿着图 1A 的平行臂的其他块（例如，“MIMO 发送处理”）可以被实现为多个
同时运行的实体或者依次用于所有天线的单个块。很清楚，同样的原理适用于图 1B 的平行
臂。

[0048] 然后，可以通过使用数字到模拟 (D/A) 转换器将数字时域发送信号转换为模拟信
号，并且，使用块 10 将其上变频 (upconvert) 成 RF 频率。然后，可以将 RF 信号传送至多个
发送天线元件 11 中的一个发送天线元件，以通过无线信道 12（未示出）将 RF 信号无线上传
多个发送天线单元 11 形成一个阵列，该阵列产生复核定向阵列传输响应。

[0049] 现在，参考图 1B，图 1B 显示了设计成与 MIMO-OFDM 发射器 100 兼容的 MIMO-OFDM 接收器 150 的框图。接收器 150 通常执行与发射器 100 执行的操作相反的操作。例如，可以通过将特定副载波处的接收符号与在该副载波处的信道矩阵的最右边的单个矢量相乘来执行针对每个接收到的副载波的 MIMO 处理 106。

[0050] 再次参考图 1B，下面将参考由单个接收天线单元 111 接收的单个 RF 信号来对接收的信号处理进行描述。在一定程度上，该描述也适用于由其他接收天线单元对其他 RF 信号的处理。多个接收天线单元 111 中的每个接收天线单元接收由多个发送天线 11 发送的复合信号，该复合信号表示发送天线阵列的相控阵列响应。块 110 操作以将 RF 信号下变频（downconvert）成中频 (IF) 信号并将下变频的 IF 信号从模拟信号转换成数字信号。可以将下变频的数字 IF 信号提供给 MIMO-OFDM 接收块 104，在 MIMO-OFDM 接收块 104 中，数字 IF 信号经过快速傅里叶变换 (FFT) 109。通过导频移除块 108 可以将导频从每个副载波中移除，并且，可以将移除的导频提供给信道估计器 107 以估计如下描述的信道响应矩阵 C(m)。

[0051] 可以经由反馈信道 112 将信道响应矩阵 C(m) 提供给发射器 100。反馈信道 112 可以是单独的通信信道，或者可以选择在与从站 B 到站 A 相反的方向（未示出）上的链路的开销部分中。也可以将信道响应矩阵 C(m) 提供给在 MIMO-OFDM 接收块 104 中的多个 MIMO 接收处理块 106，通常，每个接收副载波对应一个 MIMO 接收处理块 106。通常，发送器 100 和接收器 150 在由 m 获得的每个 N 1 值处使用信道矩阵 C(m)（或 C(m) 的估计）。换句话说，由于第 m 个副载波用信道矩阵 C(m) 表征，因此，在发送器和接收器处针对副载波 m = 19 的 MIMO 处理取决于矩阵 C(19)，通常，它与在接收器和发射器处针对副载波 m = 39（例如）进行的取决于 C(39) 的 MIMO 处理不同。

[0052] 多个 MIMO 接收处理块 106 操作以至少调节每个副载波的复权重（即，幅值和相位）。调节权重以至少从多个接收天线单元 111 形成期望的多个接收相阵列天线响应。可以将加权的副载波提供给执行每个副载波的矢量加法的求和块 113。可以在 b 个接收天线单元上执行矢量加法。因此，在副载波 1 处将在天线 1 到天线 b 处接收的符号相加；在副载波 2 处将在天线 1 到天线 b 处接收的符号相加。在副载波 3 处将在天线 1 到天线 b 处接收的符号相加，等等。求和块 113 的输出可以是为 N 1 的矢量，该矢量由并-串转换器 105 进行串行化。可以将串行数据数字流提供给解调器 103，该解调器 103 移除了在发射器 100 中由调制器 3 添加的调制，以产生解调的符号字符流。将解调的符号字符提供给 FEC 解码器 102，该 FEC 解码器 102 使用在发送器 100 中由 FED 编码器 2 添加的编码比特或符号进行解码（即，施加误差校正）。然后，可以经由接收的信息流 101 将解码的字符数字字提供给外部基带处理装置（未示出）。

[0053] 通常通过使每个发送天线在以信道的相干带宽分离的频率处发送导频副载波来获得信道估计。导频副载波是接收器已知的音（因此不承载信息）。每个发送天线使用导频副载波的不同的组。接收器使用接收的导频音来获得信道的估计。

[0054] 通常，用于普通无线技术（例如，蜂窝网、WiFi、WiMax 等）的无线信道的相干带宽和时间使得大约 12% - 15% 的副载波专用于导频信号。由于导频信号是非信息承载的，所以专用于导频信号的带宽是随着发送天线的数量线性增加的开销成本，并且，由此成比例地降低了 MIMO 系统可支持的比特率。可以通过 MIMO 系统中的精确的信道探测减少专用于
导频信号的带宽的百分比，从而减少使用的导频的数量。

一个实施例中通过重复应用被称为频域内插（“FDI”）的方法减少了用于信道估计的带宽的量。在接收器处，FDI 方法可以用于：(1) 获得初始宽带信道估计；以及 (2) 用一个或多个后来的迭代微调信道估计。

在一些实施例中，可以针对信道矩阵 C 的大部分或全部元素执行频域内插。以下描述的 FDI 方法用于信道矩阵的一个元素“c”，但是，应该理解该方法也可以应用于 C 的所有元素。本文中将使用符号 c (或 C)（不涉及副载波）来表示整个宽带信道。通过使用符号 c(m) （或 C(m)）涉及特定的副载波 m 处的信道。

在示例实施例中，基于预定布置，接收器知道用于每个发送天线的导频副载波的预定位置。导频副载波的位置可以有 m_1, m_2, ... , m_p 表示，其中 p 表示每个发送天线的导频副载波的总数。注意，对于每个发送天线，标记 m_1, m_2, ... , m_p 通常可以是不同的。例如，第一发送天线可以使用由 m_1 = 1, m_2 = 8, m_3 = 16, ... 标记的副载波，而第二发送天线可以使用由 m_1 = 2, m_2 = 9, m_3 = 17 标记的副载波，等等。

现在，参考图 2，图 2 示出了描述示例频域内插法的流程图。在步骤 201，接收器针对每个发送 - 接收天线对产生长度为 N 的矢量，该矢量除了位于标记 m_1, m_2, ..., m_p 处的元素以外的所有元素都是零。在标记 m_1, m_2, ..., m_p 处，矢量被赋予由对应的副载波接收的符号的值（例如，在标记 m_1 处，矢量被赋予符号 r_1）。该值 r_1 是在副载波 m_1 处接收的符号。在某些副载波位置处例如 m_1 接收的符号可以是在该位置处发送的导频符号与该位置处的信道响应 c(m) 的乘积并由附加的噪音破坏。特征性地，接收器形成由下式给定的矢量 r:

r = [0, ..., 0, r_1, 0, ..., 0, r_{n1}, ..., r_{ne}, 0, ..., 0]

其中，r_1, r_{n1}, ..., r_{ne} 是在副载波 m_1, m_2, ..., m_p 处接收的符号。接着，在步骤 202，可以对矢量 r 执行 IFFT，产生所得到的矢量 iFFT(r)。在步骤 203，矢量 iFFT(r) 的除了它的最低的 k 个元素以外的所有元素被赋予值 0（即，“被调零”），产生新的矢量“R”。k 的值是预定的恒定值，k 是与信道的预期的多通道扩展相关的称为循环前缀的设计参数。在步骤 204，信道估计 c 可以计算为 R 的 FFT:

\[\hat{c} = \text{FFT}(R) \]

下面描述经由分立调制获得精确的信道探测的示例操作。图 1A 中示出的发送器将单个已编码和调制的数据流提供给 MIMO-OFDM 发送器块 4。相比而言，图 3 中示出的发送器的实例如将进入的比特流划分成两个信号流，在本文中称为“基础流 (base stream)”和“增强流 (enhancement stream)” 的，并且，在将两个信号流提供给 MIMO-OFDM 发送器块 309 之前，分别对两个流进行编码和调制，该 MIMO-OFDM 发送器块 309 与图 1A 的发送器的 MIMO-OFDM 发送器块 4 基本类似。将在图 3 中描述实施例，但是，应该理解，本文发明不局限于这些实施例。

现在，参考图 3，图 3 示出了示例发送器 300 的框图。发送器 300 的各个部件可以被实施为单独的部件或者组合在发送器 300 的单个处理器中。将数字信息流 301 提供给发送器 300。发送器 300 中的开关 302 操作以将数字信息流 301 分割并切换成增强流 303 和基础流 304。可以以任意比例在提供增强流 303 和基础流 304 之间切换信息流 301。例如，可以将数据近似地分开，并且可以通过随机切换使得将低优先级数据或较高比特率数据被发送至增强流 303，等等。换句话说，可以在基础流上发送被认为不那么重要的信息，而将数据可以在增强流上发送被认为不那么重要的信息，例如，可以在基础流上发送图像的粗
稊的示意图，并且，可以在增强流上发送该图像的精细的细节。取决于应用，开关 302 可以逐位进行操作或者可以在每个位置延缓（linger）使得能够切换多个位。然后，通常将增强流 303 和基础流 304 二者分别施加给 FEC 编码器 305a 和 305b。FEC 编码器 305a 和 305b 可以使用不同的编码方案。在一些实施例中，编码器可以使用相同的编码方案。和传统发送器一样，对于实施例的实施没有要求 FEC 编码器 305a 和 305b，但是通常包括如 FEC 编码器 305a、305b 的编码器，以改进系统性能和/或减少取得可接受的系统性能所需要的发送 RF 功率的量。

[0063] 在对流 303、304 编码之后，可以将他们分别提供给调制器 306a、306b。每个调制器可以使用不同的调制方式或相同的调制方式。调制方式不受限制，可以包括 m 相移键控（m-PSK）方案或 m 正交幅度调制（m-QAM）方案。调制之后，可以向衰减块 307 施加一个数据流。图 3 的实施例示出了施加给增强流 303 的衰减块 307，但是，可替换地，可以改为将衰减施加给基础流 304。衰减块 307 也可以由增益代替。在另一配置中，可以在两个流上具有分离的但不同的衰减块和/或增益块，它们被配置成提供增强流 303 和基础流 304 之间的功率差。

[0064] 在一个实施例中，如图 3 中示出的增强流 303 上的衰减块 307 允许基础流 304 和增强流 303 之间的不同的功率。该不同的功率在本文中可以称为“E/B 比率”。可以使用在 1/2 到 1/3 的范围内的 E/B 比率（表示为线性比率），但是，在该范围以外的 E/B 比率也可以使用。1/2 到 1/3 的范围（线性）对应于对数标度上的大约 6db 到 9.5db 的功率差。随着 E/B 比率变小，增强流具有相对于基础流的功率较低的功率。这就需要在增强流上使用较强的数据。增强流的功率通常低于基础流的功率。在另一方面，小的 E/B 比率产生较好的信道估计，这可以有利于产生更好的整体性能。可以基于设计模拟来选择期望的 E/B 比率。例如，对于给定的情况（即，信道特性），可以选择满足目标发送率的 E/B 比率和对 FEC。可以检查获得期望的误差率所需要的发送功率。然后，可以改变 E/B 比率，这可能意味着一对新的 FEC。可以再次检查获得期望的误差率所需要的发送功率。在这样的模拟学习结束时，可以获得按照期望的误差率使发送功率最小化的 E/B 比率和对 FEC。优选的 E/B 比率在不同系统中可以不同，或者，可以由信道特性的变化而变化。如果 E/B 比率随着信道动态地变化，则可能需要由站 A 将 E/B 比率的当前值传送到站 B，

[0065] 接下来，在求和器 308 中组合增强流 303 和基础流 304。可以将求和器 308 的输出提供给 MIMO-OFDM 发送器块 309，该 MIMO-OFDM 发送器块 309 与图 1A 的发送器的 MIMO-OFDM 发送器块 4 基本类似。

[0066] MIMO-OFDM 发送器块 309 的输出包括多个类似于图 1A 中示出的子信道。可以将每个输出子信道提供给数字到模拟（D/A）转换器和 RF 上变频器 310a、310b。块 310a、310b 可以与图 1A 的块 10 基本类似。RF 上变频器 310a、310b 中的每个将由 D/A 产生的模拟 IF 信号转换成适于由发送天线 311a、311b 发送的 RF 信号。

[0067] 现在，参考图 4，图 4 显示出了被配置为接收并处理由发送器 300 产生的 RF 信号的接收器 400 的框图。接收器 400 的各个部件可以被实施为独立的部件或者组合在接收器 400 的单个处理器中。接收器 400 被设计成使用迭代设计恢复发送的增强流 303 和发送的基础流 304 二者。

[0068] 再次参考图 4，由多个接收天线 401 接收 RF 信号。可以将每个接收天线的输出提
供给RF下变频器和模拟到数字(A/D)转换器402,这样将接收到的RF信号转换成IF信号，然后再将IF信号数字化。

[0069] 可以将每个转换器402的输出提供给MIMO-OFDM接收器块403。接收器块403与图1B的MIMO-OFDM接收器块104基本类似。针对每个副载波，接收器块403以改进接收信号（例如，改进的信噪比）的方式对来自若干天线的接收信号进行组合。如之前所讨论的，这可以通过使用信道矩阵的帧分解来完成，其中，信道矩阵的估计由信道估计器408提供。

[0070] 信道估计器408可以使用下面的示例步骤产生信道矩阵的每个元素的宽带（即频率而言）估计：

[0071] (1) 将FDI应用于从MIMO-OFDM接收器块403（即，“真实导频（true pilot）”或“专用导频（dedicated pilot）”）产生的导频观测414的矢量，用以计算初始信道估计 \(\hat{c}_p \)。该粗略估计用来产生基础流的初始恢复。

[0072] (2) 将FDI应用于通过再编码和再调制基础流比特的初始恢复所生成的符号，以计算另一信道估计 \(\hat{c}_D \)。

[0073] (3) 将\(\hat{c}_p \)和\(\hat{c}_D \)线性组合以得到精确的信道估计 \(\hat{c} \),由以下关系给出：

\[
\hat{c} = \beta \hat{c}_p + (1-\beta) \hat{c}_D
\]

其中，\(\beta \approx 1 \)

[0075] 在实际实施中，因子 \(\beta \) 对于 \(\hat{c}_p \)和\(\hat{c}_D \)而言的相对贡献进行权加，并且，\(\beta \)是取决于真实导频的密度和增强流的功率电平的设计参数。在一个实际实施中，可以初始将因子 \(\beta \)设置为0.5，并且，如果每个发送天线的导频副载波的数量与副载波的总数的比率超过大约10%，则向上微调 \(\beta \)。在另一实施例中，如果E/B比率被设置为大约1/2或者更低，则可以将 \(\beta \)向下微调至低于0.5。

[0076] 可以将由信道估计器408产生的信道估计经由反射机构416反馈到发送器300,以用于MIMO-OFDM发送器块309中的发送符号的MIMO预编码。此外，也可以将信道估计经由接口415提供给MIMO-OFDM接收块403，并且，在MIMO-OFDM接收块403中使用信道估计，以产生针对接收信号的与使用非分级传输的系统所产生信噪比相比改进的信噪比（“SNR”）。这是由于信道估计 \(\hat{c} \)是比 \(\hat{c}_p \)或\(\hat{c}_D \)更精确的真实信道的估计。“传统的”即非分级的传输系统仅使用 \(\hat{c}_p \)也可以经由接口418提供由信道估计器408所产生的信道估计，并且将该信道估计用来从接收信号中移除基础流409，以有助于恢复增强流412。

[0077] 在实施例中，类似于图1B，MIMO-OFDM接收器块403也产生输出419。该输出419是每个接收和处理的副载波的串行化的矢量总和。可以将输出419提供给基础流解调器404。基础流解调器404使用由MIMO-OFDM块403产生的符号并产生针对基础流的比特的软判决，即，产生由基础流的符号所表示的每个比特是1或0的似然性。在计算基础流的似然性时，可对增强流看作具有与E/B比率成比例变化的嗓音。

[0078] 可以将基础流解调器404的输出提供给基础流解码器405。基础流解码器405可以是反转在发送器300中使用的基础流FEC编码器305b的动作为的FEC解码器。基础流解码器405的输出是恢复的基础流比特409。

[0079] 现在，详细描述接收器400的示例操作。首先，由基础流解调器404和基础流解码器405恢复基础流409。

[0080] 接下来，为了恢复增强流412，需要从接收信号中移除基础流409。在一个实施例中，可以用基础流再编码器406对基础流解码器405提供的基础符号进行再编码，并且用基
础流再调制器 407 对其进行再调制。基础流再编码器 406 和基础流再调制器 407 复制发送器 300 的基础流的编码器 305b 和调制器 306b 的动作，并且重新产生基础符号流，就像在发送器 300 中在求和器 308 处添加到增强流 303 之前存在的基础符号流一样。可以将这样重新产生的基础符号提供给信道估计器 408 作为伪调度流，以改进由（专用的）调度器形成的最初信道估计（在下文方面改进：通过使用真实导频和伪导频流二者所形成的信道估计）更接近实际信道，信道估计仅通过使用真实导频形成。

0081 可以通过使用乘法器 413 将由再调制器 407 提供的重新产生的基础流与由接口 412 提供的信道估计相乘来模拟信道对于重新产生的基础流的影响。“信道的影响”指的是发送的符号受到的幅值和相位的偏移。因此，它指的是衰减而不是干扰。幅值和相位的偏移通过用与发送的符号相乘的复数表示信道对给定的发送接收对与给定的副载波之间的信道来模拟。414 和 415 都表示信道的估计，415 比 414 是（更）好的估计。由于他们是信道的估计，415 与再调制的流 407 相乘 5 便模拟出基础流经过信道的影响。

0082 乘法器 413 使用信道估计进行处理的基础流然后可以通过使用求和器 417 从 MIMO-OFDM 接收器块 403 的输出中去除，来提供成为如下描述的增强流 412 的流。

0083 可以将求和器 417 的输出作为输入提供给增强解调器 410。增强解调器 410 产生针对增强流的软判决（即，比特似然），其中，假设仅有的噪音源是高斯热噪声。

0084 可以将增强解调器 410 的输出提供给增强解码器 411。增强解码器 411 是反转在发送器 300 的增强流的 FEC 编码器 305a 的动作的 FEC 解码器。增强解码器 411 的输出是恢复的增强流比特 412。

0085 至少上面呈现的一些实例在本文描述的被配置成发送 / 接收数据通信和 / 或执行计算 / 估计的计算装置中是可实现的。图 5 是示出根据本公开内容的被配置用于经由分组调制获得精确的信道探测的示例计算装置 900 的框图。在非常基础的配置 901 中，计算装置 900 通常包括一个或多个处理器 910 和存储器 920。存储器总线 930 可以用于处理器 910 与存储器 920 之间的通信。

0086 取决于期望的配置，处理器 910 可以是任意类型，包括但不限于微处理器（μ P）、微控制器（μ c）、数字信号处理器（DSP）或它们的任意组合。处理器 910 可以包括一个或多个高速缓存存储器（如一级高速缓冲存储器 911 和二级高速缓冲存储器 912）、处理器内核 913 和寄存器 914。示例的处理器内核 913 可以包括算术逻辑单元（ALU）、浮点运算单元（FPU）、数字信号处理内核（DSP 内核）或它们的任意组合。也可以将示例存储器控制器 915 与处理器 910 一起使用，或者，在一些实施中，存储器控制器 915 可以是处理器 910 的内部部件。

0087 取决于期望的配置，系统存储器 920 可以是任何类型，包括但不限于易失性存储器（如 RAM）、非易失性存储器（如 ROM、闪存等）或它们的任意组合。系统存储器 920 可以包括操作系统 921、一个或更多个应用程序 922 和程序数据 924。应用程序 922 可以包括被配置成执行如本文中所描述的包括那些关于图 2 的流程图所描述的功能（例如，MIMO 处理、信道估计等）的软件 923。程序数据 924 可以包括可以用于与软件 923 一起操作的软件数据 925。在一些实施例中，应用程序 922 可以被配置成使用操作系统 921 上的程序数据 924 进行操作，以获得精确的信道探测。该描述的基础配置用图 9 中的虚线 901 内的部件示出。

0088 计算装置 900 可以具有另外的特征或功能以及另外的接口，以有助于基础配置
901 和任意要求的装置与接口之间的通信。例如，总线/接口控制器 940 可以用来有助于基
础配置 901 与一个或多个数据存储器装置 950 之间经由存储器接口总线 941 的通信。数据
存储装置 950 可以是可拆除存储器装置 951、非可拆除存储器装置 952 或它们的任意组合。
可拆卸存储器装置和非可拆卸存储器装置的示例包括如软盘驱动器和硬盘驱动器 (HDD)
的磁盘装置、如光盘 (CD) 驱动器或数字化多功能光盘 (DVD) 驱动器的光盘驱动器、固态
驱动器 (SSD) 以及磁带驱动器等。示例计算机存储介质可以包括以任意方法或技术实施的易
失性的和非易失性的、可拆卸的和不可拆卸的介质以用于存储信息如计算机可读指令、数
据结构、程序模块或其它数据。
[0089] 系统存储器 920、可拆卸存储器 951 和非可拆卸存储器 952 都是计算机存储器介
质的示例。计算机存储器介质包括但不限于 RAM、ROM、EEPROM、闪存或其他存储器技术、
CD-ROM、数字化多功能光盘 (DVD) 或其他光存储器、磁带盒、磁带、磁盘存储器或其他磁存
储器装置或任何其它可以用来存储期望的信息并通过计算装置 900 来访问的介质。任何这
样的计算机存储介质都可以是装置 900 的一部分。
[0090] 计算装置 900 可以包括可以被配置成存储计算机可执行指令的一个或多个计算
机可读有形介质，当处理器 910 执行这些指令时，这些指令可以执行本文中描述的各种操
作 / 功能。
[0091] 计算装置 900 还可以包括接口总线 942，该接口总线 942 用于有助于经由总线 /
接口控制器 940 进行从各种接口装置（例如，输出接口、外围接口和通信接口）到基础配置
901 的通信。示例输出装置 960 包括图形处理单元 961 和音频处理单元 962，它们可以被配
置成由一个或更多个 A/V 端口 963 与如显示器或扬声器的各种外部装置通信。示例外围
接口 970 包括串行接口控制器 971 或并行接口控制器 972，它们可以被配置成由一个或多个
I/O 端口 973 与如输入装置（例如，键盘、鼠标、笔、声音输入装置、触摸输入装置等）或
其他外围装置（例如，打印机、扫描仪等）的外部装置通信。示例通信装置 980 包括网络控
制器 981，网络控制器 981 可以被配置成有助于经由一个或多个通信端口 982 进行与网络通
信链路上的一个或多个其他计算装置 990 的通信。
[0092] 网络通信链路可以是通信介质的一个示例。通信介质可以通常由计算机可读指
令、数据结构、程序模块或在已调制数据信号（如载波或其他传输机制）中的其他数据来实
施，并且，通信介质可以包括任意信息传送介质。“已调制数据信号”可以是具有其特征集
合中的一个或多个特征或者以对信号中的信息进行编码的方式而改变的信号。作为示例并
且是非限制性地，通信介质可以包括安装有线网络或无线连接的有线介质以及如声波、射频
(RF)、微波、红外线 (IR) 和其他无线介质的无线介质。本文中使用的术语计算机可读介质
可以包括存储介质和通信介质两者。
[0093] 计算装置 900 可以被实现为如手机、个人数字助理 (PDA)、个人媒体播放装置、无
线网络通信装置、个人通信装置、专用装置或包括任意以上功能的混合装置的小形状因子
便携式（或可移动）电子装置。计算装置 900 也可以被实现为包括膝上型计算机配置和非
膝上型计算机配置的个人计算机。
[0094] 本公开内容不局限于本申请中描述的具体实施例，这些具体实施例意在作为各个
方面的示意。本领域普通技术人员将会明白，在不背离本发明的精神和范围的情况下可以
进行许多修改和变化。除了本文中列举的方法和设备以外，根据以上描述，在本公开内容的
范围内的功能上等同的方法和设备对于本领域普通技术人员来说将是明显的。这些更改和变化意在落入所附权利要求的范围内。本公开内容仅由所附权利要求的项连同这些权利要求所授予的等效方案的整个范围限制。应该理解的是，本文中使用的术语仅仅是为了描述具体实施例，并不意在作为限制。

[0095] 关于本文中所使用的基本上任何复数术语和 / 或单数术语，本领域普通技术人员可以按照适合于上下文和 / 或应用的情况从复数转变成单数和 / 或从单数转变成复数。为了清楚，可以明白地阐明本文中的各种单数 / 复数置换。

[0096] 本领域普通技术人员将会理解，一般来说，本文中所使用的术语尤其是在所附权利要求（例如，所附权利要求的主体）中使用的术语通常作为“开放式”术语（例如，术语“包括”应该解释为“包括但不限于”，术语“具有”应该解释为“至少具有”，术语“包括”应该解释为“包括但不限于”等）。本领域普通技术人员还理解，如果引入的权利要求叙述的特定数目是预定的，则将在权利要求中明确地叙述这种意图，然而，在不存在这种叙述的情况下则是不存在这种意图的。例如，为了帮助理解，以下所附权利要求可以包含介绍性的短语“至少一个”以及“一个或多个”的使用，以介绍权利要求叙述。但是，即使在相同的权利要求包括介绍性短语“一个或多个”或“至少一个”以及如“一个(a)”或“一个(an)”的不定冠词（例如，“一个(a)”和 / 或“一个(an)”通常应该被解释为指“至少一个”或“一个或多个”）的情况下，使用这样的短语也不应该被认为是暗示由不定冠词“一个(a)”或“一个(an)”给出的权利要求叙述的介绍将包括这样介绍的权利要求叙述的任意特定权利要求限制在包括仅一个这样的叙述的发明，这同样适于用于介绍权利要求叙述的不定冠词的使用。此外，即使明确叙述了所介绍的权利要求叙述的具体数目，本领域的普通技术人员将会认识到，这样的叙述通常应该被解释为指至少所叙述的数目（例如，无其他修饰语的无修饰叙述“两个叙述”，通常指至少两个叙述，或两个或更多个叙述）。此外，在使用类似于“A、B和C等中的至少一个”的习惯的实例中，通常，这样的结构意在被理解为本领域普通技术人员将会理解该习惯的意思（例如，“具有A、B和C中的至少一个的系统”将包括但不限于仅具有A的系统、仅具有B的系统、仅具有C的系统、共同具有A和B的系统、共同具有A和B的系统、共同具有A和C的系统，共同具有B和C的系统以及 / 或共同具有A、B和C的系统等）。在使用类似于“A、B或C等中的至少一个”的习惯的实例中，通常，这样的结构意在被理解为本领域普通技术人员将会理解该习惯的意思（例如，“具有A、B或C中的至少一个的系统”将包括但不限于仅具有A的系统、仅具有B的系统、仅具有C的系统、共同具有A和B的系统、共同具有A和C的系统、共同具有B和C的系统以及 / 或共同具有A、B和C的系统等）。本领域普通技术人员还将理解，表示两个或更多个可替换的术语的任意单个单词和 / 或短语，不管在说明书、权利要求或附图中，实质上都应该被理解为预期内包括术语中的一个术语、术语中的任一个或两个术语的可能性。例如，短语“A或B”应该被理解为包括“A”或“B”或“A和B”的可能性。

[0097] 此外，按照马库什组描述了本公开内容的特征和方面，本领域的普通技术人员将会认识到，本公开内容因此也按照马库什组的任意单独的部分或部分的子集进行描述。

[0098] 本领域普通技术人员将会明白，对于任意或者所有目的，如就提供书面描述而言，本文中公开的所有范围将包括任意和所有可能的子范围和子范围的组合。任意列举的范围可以被容易的识别为充分地描述并实现了被分解成至少两等份、三等份、四等份、五等份、
十等分等的相同的范围。作为非限制性示例，可以容易地将本文中讨论的每个范围分解成下三分之一、中间三分之一和上三分之一等。本领域普通技术人员也会明白，所有如“达到”、“至少”、“大于”、“小于”等的语言包括叙述的数量并且指代之后分解成如上面所讨论的子范围的范围。最后，本领域普通技术人员将会明白，范围包括每个单独的部分。因此，例如，具有 1-3 个单元的组指代具有 1 个、2 个或 3 个单元的组。同样的，具有 1-5 个单元的组指代具有 1 个、2 个、3 个、4 个或 5 个单元的组，等等。

【0099】 虽然本文中已经公开了各个方面和各种实施例，但是本领域普通技术人员将会明白其他方面和实施例。本文中公开的各个方面和各种实施例是示例性的并不是意在限制，真实的范围和精神由以下权利要求说明。
产生包括在副载波处的接收符号的矢量r，
\[r = [0, ..., 0, r_{1}, 0, ..., 0, r_{2}, ..., r_{m}, 0, ..., 0] \]

获得\(\text{ifft}(r) \)

通过对除了\(\text{ifft}(r) \)的最低的k项以外的所有项进行调零来获得矢量R

信道估计为
\[\hat{c} = \text{fft}(R) \]