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(57) Abstract: A device for decoding video data is configured to determine for one or more blocks of the video data that adaptive 
color transform is enabled; determine a quantization parameter for the one or more blocks; in response to a value of the quantization 
parameter being below a threshold, modify the quantization parameter to determine a modified quantization parameter; and dequant - 
ize transform coefficients based on the modified quantization parameter.
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QP DERIVATION AND OFFSET FOR ADAPTIVE COLOR TRANSFORM IN 

VIDEO CODING

[0001] This application claims the benefit of

U.S. Provisional Patent Application 62/061,099 filed 07 October 2014, and

U.S. Provisional Patent Application 62/064,347 filed 15 October 2014, 

the entire content of which are incorporated herein in their entirety.

TECHNICAL FIELD

[0002] This disclosure relates to video coding, such as video encoding or video 

decoding.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices, 

including digital televisions, digital direct broadcast systems, wireless broadcast 

systems, personal digital assistants (PDAs), laptop or desktop computers, tablet 

computers, e-book readers, digital cameras, digital recording devices, digital media 

players, video gaming devices, video game consoles, cellular or satellite radio 

telephones, so-called “smart phones,” video teleconferencing devices, video streaming 

devices, and the like. Digital video devices implement video compression techniques, 

such as those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, 

ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency 

Video Coding (HEVC) standard presently under development, and extensions of such 

standards. The video devices may transmit, receive, encode, decode, and/or store digital 

video information more efficiently by implementing such video compression 

techniques.

[0004] Video compression techniques perform spatial (intra-picture) prediction and/or 

temporal (inter-picture) prediction to reduce or remove redundancy inherent in video 

sequences. For block-based video coding, a video slice (i.e., a video frame or a portion 

of a video frame) may be partitioned into video blocks, which may also be referred to as 

treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded (I) 

slice of a picture are encoded using spatial prediction with respect to reference samples 

in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice
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of a picture may use spatial prediction with respect to reference samples in neighboring 

blocks in the same picture or temporal prediction with respect to reference samples in 

other reference pictures. Pictures may be referred to as frames, and reference pictures 

may be referred to a reference frames.

[0005] Spatial or temporal prediction results in a predictive block for a block to be 

coded. Residual data represents pixel differences between the original block to be 

coded and the predictive block. An inter-coded block is encoded according to a motion 

vector that points to a block of reference samples forming the predictive block, and the 

residual data indicating the difference between the coded block and the predictive block. 

An intra-coded block is encoded according to an intra-coding mode and the residual 

data. For further compression, the residual data may be transformed from the pixel 

domain to a transform domain, resulting in residual transform coefficients, which then 

may be quantized. The quantized transform coefficients, initially arranged in a two­

dimensional array, may be scanned in order to produce a one-dimensional vector of 

transform coefficients, and entropy coding may be applied to achieve even more 

compression.

SUMMARY

[0006] This disclosure describes techniques related to determining quantization 

parameters when color-space conversion coding is used and, furthermore, this 

disclosure describes techniques for generating and parsing various syntax elements, in 

an encoded bitstream of video data, used for signaling quantization parameters when 

color-space conversion coding is used.

[0007] In one example, there is provided a method of decoding video data, the method 

comprising: receiving an offset value in the video data; determining for one or more 

blocks of the video data that adaptive color transform is enabled; determining a red, 

green, and blue (RGB)-color space quantization parameter for the one or more blocks, 

wherein determining the RGB-color space quantization parameter comprises adding the 

offset value to a luma-chroma (YCbCr)-color space quantization parameter; in response 

to a value of the RGB-color space quantization parameter being below a threshold, 

modifying the RGB-color space quantization parameter to determine a modified RGB- 

color space quantization parameter; and dequantizing transform coefficients of a block 

from the one or more blocks based on the modified RGB-color space quantization 

parameter.
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[0008] In another example, there is provided a device for decoding video data, the 

device comprising: a video data memory; one or more processors configured to: receive 

an offset value in the video data; determine for one or more blocks of the video data that 

adaptive color transform is enabled; determine a red, green, and blue (RGB)-color space 

quantization parameter for the one or more blocks, wherein determining the RGB-color 

space quantization parameter comprises adding the offset value to a luma-chroma 

(YCbCr)-color space quantization parameter; in response to a value of the RGB-color 

space quantization parameter being below a threshold, modify the RGB-color space 

quantization parameter to determine a modified RGB-color space quantization 

parameter; and dequantize transform coefficients of a block from the one or more blocks 

based on the modified RGB-color space quantization parameter.

[0009] In another example, there is provided an apparatus for decoding video data, the 

apparatus comprising: means for receiving an offset value in the video data; means for 

determining for one or more blocks of the video data that adaptive color transform is 

enabled; means for determining a red, green, and blue (RGB)-color space quantization 

parameter for the one or more blocks, wherein determining the RGB-color space 

quantization parameter comprises adding the offset value to a luma-chroma (YCbCr)- 

color space quantization parameter; means for modifying the RGB-color space 

quantization parameter to determine a modified RGB-color space quantization 

parameter in response to a value of the RGB-color space quantization parameter being 

below a threshold; and means for dequantizing transform coefficients of a block from 

the one or more blocks based on the modified RGB-color space quantization parameter. 

[0010] In another example, there is provided a non-transitory computer-readable storage 

medium storing instructions that when executed by one or more processors cause the 

one or more processors to: receive in the video data an offset value; determine for one 

or more blocks of the video data that adaptive color transform is enabled; determine a 

red, green, and blue (RGB)-color space quantization parameter for the one or more 

blocks, wherein determining the RGB-color space quantization parameter comprises 

adding the offset value to a luma-chroma (YCbCr)-color space quantization parameter; 

modify the RGB-color space quantization parameter to determine a modified RGB- 

color space quantization parameter in response to a value of the RGB-color space 

quantization parameter being below a threshold; and dequantize transform coefficients 

of a block from the one or more blocks based on the modified RGB-color space 

quantization parameter.
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[0011] The details of one or more examples of the disclosure are set forth in the 

accompanying drawings and the description below. Other features, objects, and 

advantages of the disclosure will be apparent from the description, drawings, and 

claims.

BRIEF DESCRIPTION OF DRAWINGS

[0012] FIG. 1 is a block diagram illustrating an example video encoding and decoding 

system that may utilize the techniques described in this disclosure.

[0013] FIGS. 2A-2C are conceptual diagrams illustrating different sample formats for 

video data.

[0014] FIG. 3 is a conceptual diagram illustrating a 16x16 coding unit formatted 

according to a 4:2:0 sample format.

[0015] FIG. 4 is a conceptual diagram illustrating a 16x16 coding unit formatted 

according to a 4:2:2 sample format.

[0016] FIG. 5 is a conceptual diagram illustrating an example of a target block and 

reference sample for an intra 8x8 block, according to one or more techniques of the
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[0017] FIG. 6 is a block diagram illustrating an example video encoder that may 

implement the techniques described in this disclosure.

[0018] FIG. 7 is a block diagram illustrating an example video decoder that may 

implement the techniques described in this disclosure.

[0019] FIG. 8 is a block diagram illustrating another example of a video encoder that 

may utilize techniques for transforming video data having an RGB color space to video 

data having a second color space using a color transform in accordance with one or 

more aspects of this disclosure.

[0020] FIG. 9 is a block diagram illustrating another example of a video decoder that 

may utilize techniques for inversely transforming a block of video data having a first 

color space to a block of video data video data having a second, RGB color space using 

an inverse color transform in accordance with one or more aspects of this disclosure;

[0021] FIG. 10 is a flowchart illustrating an example video decoding method according 

to the techniques of this disclosure.

[0022] FIG. 11 is a flowchart illustrating an example video encoding method according 

to the techniques of this disclosure.

[0023] FIG. 12 is a flowchart illustrating an example video decoding method according 

to the techniques of this disclosure.

[0024] FIG. 13 is a flowchart illustrating an example video encoding method according 

to the techniques of this disclosure.

[0025] FIG. 14 is a flowchart illustrating an example video decoding method according 

to the techniques of this disclosure.

DETAILED DESCRIPTION

[0026] This disclosure describes techniques related to adaptive color transform 

quantization parameter derivations. This disclosure identifies various issues related to 

how quantization parameter derivation when adaptive color transform is used and 

proposes solutions to address these issues. This disclosure describes video coding 

techniques, including techniques related to emerging screen content coding (SCC) 

extensions and range extensions (RExt) of the recently finalized high efficiency video 

coding (HEVC) standard. The SCC and range extensions are being designed to 

potentially support high bit depth (e.g. more than 8 bit) and/or different chroma 

sampling formats such as 4:4:4, 4:2:2, 4:2:0, 4:0:0, etc, and are therefore being designed 

to include new coding tools not included in the base HEVC standard.
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[0027] One such coding tool is color-space conversion coding. In color-space 

conversion coding, a video encoder may convert residual data from a first color space 

(e.g. YCbCr) to a second color space (e.g. RGB) in order to achieve better coding 

quality (e.g. a better rate-distortion tradeoff). Regardless of the color space of the 

residual data, a video encoder typically transforms the residual data into transform 

coefficients and quantizes the transform coefficients. A video decoder performs the 

reciprocal processes of dequantizing the transform coefficients and inverse transforming 

the transform coefficients to reconstruct the residual data. The video encoder generates, 

for inclusion in the encoded bitstream of video data, a quantization parameter indicating 

an amount of scaling used in quantizing the transform coefficient levels. The video 

decoder parses the bitstream to determine the quantization parameter used by the video 

encoder. The quantization parameter may also be used by other video coding processes, 

such as deblock filtering.

[0028] This disclosure describes techniques related to determining quantization 

parameters when color-space conversion coding is used and, furthermore, this 

disclosure describes techniques for signaling, from an encoder to a decoder as part of an 

encoded bitstream of video data, quantization parameters when color-space conversion 

coding is used.

[0029] FIG. 1 is a block diagram illustrating an example video encoding and decoding 

system 10 that may utilize the techniques described in this disclosure, including 

techniques for coding blocks in an IBC mode and techniques for parallel processing. As 

shown in FIG. 1, system 10 includes a source device 12 that generates encoded video 

data to be decoded at a later time by a destination device 14. Source device 12 and 

destination device 14 may comprise any of a wide range of devices, including desktop 

computers, notebook (i.e., laptop) computers, tablet computers, set-top boxes, telephone 

handsets such as so-called “smart” phones, so-called “smart” pads, televisions, cameras, 

display devices, digital media players, video gaming consoles, video streaming device, 

or the like. In some cases, source device 12 and destination device 14 may be equipped 

for wireless communication.

[0030] Destination device 14 may receive the encoded video data to be decoded via a 

link 16. Link 16 may comprise any type of medium or device capable of moving the 

encoded video data from source device 12 to destination device 14. In one example, 

link 16 may comprise a communication medium to enable source device 12 to transmit 

encoded video data directly to destination device 14 in real-time. The encoded video 
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data may be modulated according to a communication standard, such as a wireless 

communication protocol, and transmitted to destination device 14. The communication 

medium may comprise any wireless or wired communication medium, such as a radio 

frequency (RF) spectrum or one or more physical transmission lines. The 

communication medium may form part of a packet-based network, such as a local area 

network, a wide-area network, or a global network such as the Internet. The 

communication medium may include routers, switches, base stations, or any other 

equipment that may be useful to facilitate communication from source device 12 to 

destination device 14.

[0031] Alternatively, encoded data may be output from output interface 22 to a storage 

device 17. Similarly, encoded data may be accessed from storage device 17 by input 

interface. Storage device 17 may include any of a variety of distributed or locally 

accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs, 

flash memory, volatile or non-volatile memory, or any other suitable digital storage 

media for storing encoded video data. In a further example, storage device 17 may 

correspond to a file server or another intermediate storage device that may hold the 

encoded video generated by source device 12. Destination device 14 may access stored 

video data from storage device 17 via streaming or download. The file server may be 

any type of server capable of storing encoded video data and transmitting that encoded 

video data to the destination device 14. Example file servers include a web server (e.g., 

for a website), an FTP server, network attached storage (NAS) devices, or a local disk 

drive. Destination device 14 may access the encoded video data through any standard 

data connection, including an Internet connection. This may include a wireless channel 

(e.g., modulated according to a wireless standard such, including a wireless local area 

network standard such as Wi-Fi or a wireless telecommunication standard such as LTE 

or another cellular communication standard), a wired connection (e.g., DSL, cable 

modem, etc.), or a combination of both that is suitable for accessing encoded video data 

stored on a file server. The transmission of encoded video data from storage device 17 

may be a streaming transmission, a download transmission, or a combination of both.

[0032] The techniques of this disclosure are not necessarily limited to wireless 

applications or settings. The techniques may be applied to video coding in support of 

any of a variety of multimedia applications, such as over-the-air television broadcasts, 

cable television transmissions, satellite television transmissions, streaming video 

transmissions, e.g., via the Internet, encoding of digital video for storage on a data 



WO 2016/057665 PCT/US2015/054488
7

storage medium, decoding of digital video stored on a data storage medium, or other 

applications. In some examples, system 10 may be configured to support one-way or 

two-way video transmission to support applications such as video streaming, video 

playback, video broadcasting, and/or video telephony.

[0033] In the example of FIG. 1, source device 12 includes a video source 18, video 

encoder 20 and an output interface 22. In some cases, output interface 22 may include a 

modulator/demodulator (modem) and/or a transmitter. In source device 12, video 

source 18 may include a source such as a video capture device, e.g., a video camera, a 

video archive containing previously captured video, a video feed interface to receive 

video from a video content provider, and/or a computer graphics system for generating 

computer graphics data as the source video, or a combination of such sources. As one 

example, if video source 18 is a video camera, source device 12 and destination device 

14 may form so-called camera phones or video phones. However, the techniques 

described in this disclosure may be applicable to video coding in general, and may be 

applied to wireless and/or wired applications.

[0034] The captured, pre-captured, or computer-generated video may be encoded by 

video encoder 20. The encoded video data may be transmitted directly to destination 

device 14 via output interface 22 of source device 12. The encoded video data may also 

(or alternatively) be stored onto storage device 17 for later access by destination device 

14 or other devices, for decoding and/or playback.

[0035] Destination device 14 includes an input interface 28, a video decoder 30, and a 

display device 32. In some cases, input interface 28 may include a receiver and/or a 

modem. Input interface 28 of destination device 14 receives the encoded video data 

over link 16. The encoded video data communicated over link 16, or provided on 

storage device 17, may include a variety of syntax elements generated by video encoder 

20 for use by a video decoder, such as video decoder 30, in decoding the video data. 

Such syntax elements may be included with the encoded video data transmitted on a 

communication medium, stored on a storage medium, or stored a file server.

[0036] Display device 32 may be integrated with, or external to, destination device 14. 

In some examples, destination device 14 may include an integrated display device and 

also be configured to interface with an external display device. In other examples, 

destination device 14 may be a display device. In general, display device 32 displays 

the decoded video data to a user, and may comprise any of a variety of display devices 
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such as a liquid crystal display (LCD), a plasma display, an organic light emitting diode 

(OLED) display, or another type of display device.

[0037] Video encoder 20 and video decoder 30 may operate according to a video 

compression standard, such as HEVC, and may conform to the HE VC Test Model 

(HM). A working draft of the HEVC standard, referred to as “HEVC Working Draft 

10” or “HEVC WD10,” is described in Bross et al., “Editors’ proposed corrections to 

HEVC version 1,” Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T 

SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 13th Meeting, Incheon, KR, April 2013. 

Another HEVC draft specification is available from http://phenix.int- 

evry.fr/j ct/doc_end_user/documents/15_Geneva/wg 11 /JCTVC-01003-v2 .zip. The 

techniques described in this disclosure may also operate according to extensions of the 

HEVC standard that are currently in development.

[0038] Alternatively or additionally, video encoder 20 and video decoder 30 may 

operate according to other proprietary or industry standards, such as the ITU-T H.264 

standard, alternatively referred to as MPEG-4, Part 10, Advanced Video Coding (AVC), 

or extensions of such standards. The techniques of this disclosure, however, are not 

limited to any particular coding standard. Other examples of video compression 

standards include ITU-T H.261, ISO/IEC MPEG-1 Visual, ITU-T H.262 or ISO/IEC 

MPEG-2 Visual, ITU-T H.263, ISO/IEC MPEG-4 Visual and ITU-T H.264 (also 

known as ISO/IEC MPEG-4 AVC), including its Scalable Video Coding (SVC) and 

Multiview Video Coding (MVC) extensions.

[0039] The design of the HEVC has been recently finalized by the JCT-VC of ITU-T 

Video Coding Experts Group (VCEG) and ISO/IEC Motion Picture Experts Group 

(MPEG). The Range Extensions to HEVC, referred to as HEVC RExt, are also being 

developed by the JCT-VC. A recent Working Draft (WD) of Range extensions, referred 

to as RExt WD7 hereinafter, is available from http://phenix.int- 

evry .fr/j ct/doc_end_user/documents/17 _V alencia/wg 11 /JCT VC-Q1005 -v4 .zip.

[0040] This disclosure will generally refer to the recently finalized HEVC specification 

text as HEVC version 1 or base HEVC. The range extension specification may become 

the version 2 of the HEVC. With respect to many coding tools, such as motion vector 

prediction, HEVC version 1 and the range extension specification are technically 

similar. Therefore whenever this disclosure describes changes relative to HEVC 

version 1, the same changes may also apply to the range extension specification, which 

generally includes the base HEVC specification, plus some additional coding tools.

http://phenix.int-evry.fr/j
http://phenix.int-evry
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Furthermore, it can generally be assumed that HEVC version 1 modules may also be 

incorporated into a decoder implementing the HEVC range extension.

[0041] New coding tools for screen-content material such as text and graphics with 

motion are currently in development and being contemplated for inclusion in future 

video coding standards, including future version of HEVC. These new coding tools 

potentially improve coding efficiency for screen content. As there is evidence that 

significant improvements in coding efficiency may be obtained by exploiting the 

characteristics of screen content with novel dedicated coding tools, a Call for Proposals 

(CfP) has been issued with the target of possibly developing future extensions of the 

HEVC standard including specific tools for SCC). Companies and organizations have 

been invited to submit proposals in response to this Call. The use cases and 

requirements of this CfP are described in MPEG document N14174. During the 17th 

JCT-VC meeting, SCC test model (SCM) is established. A recent SCC working draft 

(WD) is JCTVC-U1005 and is available at http://phenix.int- 

evry.fr/jct/doc_end_user/documents/21_Warsaw/wgll/JCTVC-U1005-vl.zip .

[0042] This disclosure contemplates that video encoder 20 of source device 12 may be 

configured to encode video data according to any of these current or future standards. 

Similarly, this disclosure also contemplates that video decoder 30 of destination device 

14 may be configured to decode video data according to any of these current or future 

standards.

[0043] Although not shown in FIG. 1, in some aspects, video encoder 20 and video 

decoder 30 may each be integrated with an audio encoder and decoder, and may include 

appropriate MUX-DEMUX units, or other hardware and software, to handle encoding 

of both audio and video in a common data stream or separate data streams. If 

applicable, in some examples, MUX-DEMUX units may conform to the ITU H.223 

multiplexer protocol, or other protocols such as the user datagram protocol (UDP). 

[0044] Video encoder 20 and video decoder 30 each may be implemented as any of a 

variety of suitable encoder circuitry, such as one or more microprocessors, digital signal 

processors (DSPs), application specific integrated circuits (ASICs), field programmable 

gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations 

thereof. When the techniques are implemented partially in software, a device may store 

instructions for the software in a suitable, non-transitory computer-readable medium and 

execute the instructions in hardware using one or more processors to perform the 

techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be

http://phenix.int-evry.fr/jct/doc_end_user/documents/21_Warsaw/wgll/JCTVC-U1005-vl.zip
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included in one or more encoders or decoders, either of which may be integrated as part 

of a combined encoder/decoder (CODEC) in a respective device.

[0045] As introduced above, the JCT-VC has recently finalized development of the 

HE VC standard. The HE VC standardization efforts were based on an evolving model 

of a video coding device referred to as the HE VC Test Model (HM). The HM presumes 

several additional capabilities of video coding devices relative to existing devices 

according to, e.g., ITU-T H.264/AVC. For example, whereas H.264 provides nine intra­

prediction encoding modes, the HM may provide as many as thirty-five intra-prediction 

encoding modes.

[0046] In HEVC and other video coding specifications, a video sequence typically 

includes a series of pictures. Pictures may also be referred to as “frames.” A picture 

may include three sample arrays, denoted SL, Scb, and So SL is a two-dimensional 

array (i.e., a block) of luma samples. Scb is a two-dimensional array of Cb chrominance 

samples. Sq is a two-dimensional array of Cr chrominance samples. Chrominance 

samples may also be referred to herein as “chroma” samples. In other instances, a 

picture may be monochrome and may only include an array of luma samples.

[0047] In order to generate an encoded representation of a picture, video encoder 20 

may generate a set of coding tree units (CTUs). Each of the CTUs may comprise a 

coding tree block of luma samples, two corresponding coding tree blocks of chroma 

samples, and syntax structures used to code the samples of the coding tree blocks. In 

monochrome pictures or pictures having three separate color planes, a CTU may 

comprise a single coding tree block and syntax structures used to code the samples of 

the coding tree block. A coding tree block may be an NxN block of samples. A CTU 

may also be referred to as a “tree block” or a “largest coding unit” (LCU). The CTUs of 

HEVC may be broadly analogous to the macroblocks of other standards, such as 

H.264/AVC. However, a CTU is not necessarily limited to a particular size and may 

include one or more coding units (CUs). A slice may include an integer number of 

CTUs ordered consecutively in a raster scan order.

[0048] To generate a coded CTU, video encoder 20 may recursively perform quad-tree 

partitioning on the coding tree blocks of a CTU to divide the coding tree blocks into 

coding blocks, hence the name “coding tree units.” A coding block may be an NxN 

block of samples. A CU may comprise a coding block of luma samples and two 

corresponding coding blocks of chroma samples of a picture that has a luma sample 

array, a Cb sample array, and a Cr sample array, and syntax structures used to code the 
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samples of the coding blocks. In monochrome pictures or pictures having three separate 

color planes, a CU may comprise a single coding block and syntax structures used to 

code the samples of the coding block.

[0049] Video encoder 20 may partition a coding block of a CU into one or more 

prediction blocks. A prediction block is a rectangular (i.e., square or non-square) block 

of samples on which the same prediction is applied. A prediction unit (PU) of a CU 

may comprise a prediction block of luma samples, two corresponding prediction blocks 

of chroma samples, and syntax structures used to predict the prediction blocks. In 

monochrome pictures or pictures having three separate color planes, a PU may comprise 

a single prediction block and syntax structures used to predict the prediction block. 

Video encoder 20 may generate predictive luma, Cb, and Cr blocks for luma, Cb, and Cr 

prediction blocks of each PU of the CU.

[0050] Video encoder 20 may use intra prediction or inter prediction to generate the 

predictive blocks for a PU. If video encoder 20 uses intra prediction to generate the 

predictive blocks of a PU, video encoder 20 may generate the predictive blocks of the 

PU based on decoded samples of the picture associated with the PU. If video encoder 

20 uses inter prediction to generate the predictive blocks of a PU, video encoder 20 may 

generate the predictive blocks of the PU based on decoded samples of one or more 

pictures other than the picture associated with the PU.

[0051] After video encoder 20 generates predictive luma, Cb, and Cr blocks for one or 

more PUs of a CU, video encoder 20 may generate a luma residual block for the CU. 

Each sample in the CU’s luma residual block indicates a difference between a luma 

sample in one of the CU’s predictive luma blocks and a corresponding sample in the 

CU’s original luma coding block. In addition, video encoder 20 may generate a Cb 

residual block for the CU. Each sample in the CU’s Cb residual block may indicate a 

difference between a Cb sample in one of the CU’s predictive Cb blocks and a 

corresponding sample in the CU’s original Cb coding block. Video encoder 20 may 

also generate a Cr residual block for the CU. Each sample in the CU’s Cr residual block 

may indicate a difference between a Cr sample in one of the CU’s predictive Cr blocks 

and a corresponding sample in the CU’s original Cr coding block.

[0052] Furthermore, video encoder 20 may use quad-tree partitioning to decompose the 

luma, Cb, and Cr residual blocks of a CU into one or more luma, Cb, and Cr transform 

blocks. A transform block is a rectangular (e.g., square or non-square) block of samples 

on which the same transform is applied. A transform unit (TU) of a CU may comprise a 
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transform block of luma samples, two corresponding transform blocks of chroma 

samples, and syntax structures used to transform the transform block samples. Thus, 

each TU of a CU may be associated with a luma transform block, a Cb transform block, 

and a Cr transform block. The luma transform block associated with the TU may be a 

sub-block of the CU’s luma residual block. The Cb transform block may be a sub-block 

of the CU’s Cb residual block. The Cr transform block may be a sub-block of the CU’s 

Cr residual block. In monochrome pictures or pictures having three separate color 

planes, a TU may comprise a single transform block and syntax structures used to 

transform the samples of the transform block.

[0053] Video encoder 20 may apply one or more transforms to a luma transform block 

of a TU to generate a luma coefficient block for the TU. A coefficient block may be a 

two-dimensional array of transform coefficients. A transform coefficient may be a 

scalar quantity. Video encoder 20 may apply one or more transforms to a Cb transform 

block of a TU to generate a Cb coefficient block for the TU. Video encoder 20 may 

apply one or more transforms to a Cr transform block of a TU to generate a Cr 

coefficient block for the TU.

[0054] After generating a coefficient block (e.g., a luma coefficient block, a Cb 

coefficient block or a Cr coefficient block), video encoder 20 may quantize the 

coefficient block. Quantization generally refers to a process in which transform 

coefficients are quantized to possibly reduce the amount of data used to represent the 

transform coefficients, providing further compression. After video encoder 20 quantizes 

a coefficient block, video encoder 20 may entropy encode syntax elements indicating 

the quantized transform coefficients. For example, video encoder 20 may perform 

Context-Adaptive Binary Arithmetic Coding (CABAC) on the syntax elements 

indicating the quantized transform coefficients.

[0055] Video encoder 20 may output a bitstream that includes a sequence of bits that 

forms a representation of coded pictures and associated data. The bitstream may 

comprise a sequence of NAL units. A NAL unit is a syntax structure containing an 

indication of the type of data in the NAL unit and bytes containing that data in the form 

of a RBSP interspersed as necessary with emulation prevention bits. Each of the NAL 

units includes a NAL unit header and encapsulates a RBSP. The NAL unit header may 

include a syntax element that indicates a NAL unit type code. The NAL unit type code 

specified by the NAL unit header of a NAL unit indicates the type of the NAL unit. A 
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RBSP may be a syntax structure containing an integer number of bytes that is 

encapsulated within a NAL unit. In some instances, an RBSP includes zero bits.

[0056] Different types of NAL units may encapsulate different types of RBSPs. For 

example, a first type of NAL unit may encapsulate an RBSP for a PPS, a second type of 

NAL unit may encapsulate an RBSP for a coded slice, a third type of NAL unit may 

encapsulate an RBSP for SEI messages, and so on. NAL units that encapsulate RBSPs 

for video coding data (as opposed to RBSPs for parameter sets and SEI messages) may 

be referred to as VCL NAL units.

[0057] Video decoder 30 may receive a bitstream generated by video encoder 20. In 

addition, video decoder 30 may parse the bitstream to obtain syntax elements from the 

bitstream. Video decoder 30 may reconstruct the pictures of the video data based at 

least in part on the syntax elements obtained from the bitstream. The process to 

reconstruct the video data may be generally reciprocal to the process performed by 

video encoder 20. In addition, video decoder 30 may inverse quantize coefficient 

blocks associated with TUs of a current CU. Video decoder 30 may perform inverse 

transforms on the coefficient blocks to reconstruct transform blocks associated with the 

TUs of the current CU. Video decoder 30 may reconstruct the coding blocks of the 

current CU by adding the samples of the predictive blocks for PUs of the current CU to 

corresponding samples of the transform blocks of the TUs of the current CU. By 

reconstructing the coding blocks for each CU of a picture, video decoder 30 may 

reconstruct the picture.

[0058] A video sampling format, which may also be referred to as a chroma format, 

may define the number of chroma samples included in a CU with respect to the number 

of luma samples included in a CU. Depending on the video sampling format for the 

chroma components, the size, in terms of number of samples, of the U and V 

components may be the same as or different from the size of the Y component. In the 

HE VC standard, a value called chromaformatidc is defined to indicate different 

sampling formats of the chroma components, relative to the luma component. In 

HEVC, chroma format idc is signaled in the SPS. Table 1 illustrates the relationship 

between values of chroma format idc and associated chroma formats.
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chromaformatidc chroma format SubWidthC SubHeightC

0 monochrome - -

1 4:2:0 2 2

2 4:2:2 2 1

3 4:4:4 1 1

Table 1: different chroma formats defined in H EVC

[0059] In Table 1, the variables SubWidthC and SubHeightC can be used to indicate the 

horizontal and vertical sampling rate ratio between the number of samples for the luma 

component and the number of samples for each chroma component. In the chroma 

formats described in Table 1, the two chroma components have the same sampling rate. 

Thus, in 4:2:0 sampling, each of the two chroma arrays has half the height and half the 

width of the luma array, while in 4:2:2 sampling, each of the two chroma arrays has the 

same height and half the width of the luma array. In 4:4:4 sampling, each of the two 

chroma arrays, may have the same height and width as the luma array, or in some 

instances, the three color planes may all be separately processed as monochrome 

sampled pictures.

[0060] In the example of Table 1, for the 4:2:0 format, the sampling rate for the luma 

component is twice that of the chroma components for both the horizontal and vertical 

directions. As a result, for a coding unit formatted according to the 4:2:0 format, the 

width and height of an array of samples for the luma component are twice that of each 

array of samples for the chroma components. Similarly, for a coding unit formatted 

according to the 4:2:2 format, the width of an array of samples for the luma component 

is twice that of the width of an array of samples for each chroma component, but the 

height of the array of samples for the luma component is equal to the height of an array 

of samples for each chroma component. For a coding unit formatted according to the 

4:4:4 format, an array of samples for the luma component has the same width and height 

as an array of samples for each chroma component. It should be noted that in addition 

to the YUV color space, video data can be defined according to an RGB space color. In 

this manner, the chroma formats described herein may apply to either the YUV or RGB 

color space. RGB chroma formats are typically sampled such that the number of red 

samples, the number of green samples and the number of blue samples are equal. Thus, 

the term “4:4:4 chroma format” as used herein may refer to either a YUV color space or 

an RGB color space wherein the number of samples is equal for all color components.
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[0061] FIGS. 2A-2C are conceptual diagrams illustrating different sample formats for 

video data. FIG. 2A is a conceptual diagram illustrating the 4:2:0 sample format. As 

illustrated in FIG. 2A, for the 4:2:0 sample format, the chroma components are one 

quarter of the size of the luma component. Thus, for a CU formatted according to the 

4:2:0 sample format, there are four luma samples for every sample of a chroma 

component. FIG. 2B is a conceptual diagram illustrating the 4:2:2 sample format. As 

illustrated in FIG. 2B, for the 4:2:2 sample format, the chroma components are one half 

of the size of the luma component. Thus, for a CU formatted according to the 4:2:2 

sample format, there are two luma samples for every sample of a chroma component. 

FIG. 2C is a conceptual diagram illustrating the 4:4:4 sample format. As illustrated in 

FIG. 2C, for the 4:4:4 sample format, the chroma components are the same size of the 

luma component. Thus, for a CU formatted according to the 4:4:4 sample format, there 

is one luma sample for every sample of a chroma component.

[0062] FIG. 3 is a conceptual diagram illustrating an example of a 16x16 coding unit 

formatted according to a 4:2:0 sample format. FIG. 3 illustrates the relative position of 

chroma samples with respect to luma samples within a CU. As described above, a CU 

is typically defined according to the number of horizontal and vertical luma samples. 

Thus, as illustrated in FIG. 3, a 16x16 CU formatted according to the 4:2:0 sample 

format includes 16x16 samples of luma components and 8x8 samples for each chroma 

component. Further, as described above, a CU may be partitioned into smaller CUs. 

For example, the CU illustrated in FIG. 3 may be partitioned into four 8x8 CUs, where 

each 8x8 CU includes 8x8 samples for the luma component and 4x4 samples for each 

chroma component.

[0063] FIG. 4 is a conceptual diagram illustrating an example of a 16x16 coding unit 

formatted according to a 4:2:2 sample format. FIG.4 illustrates the relative position of 

chroma samples with respect to luma samples within a CU. As described above, a CU 

is typically defined according to the number of horizontal and vertical luma samples. 

Thus, as illustrated in FIG. 4, a 16x16 CU formatted according to the 4:2:2 sample 

format includes 16x16 samples of luma components and 8x16 samples for each chroma 

component. Further, as described above, a CU may be partitioned into smaller CUs. 

For example, the CU illustrated in FIG. 4 may be partitioned into four 8x8 CUs, where 

each CU includes 8x8 samples for the luma component and 4x8 samples for each 

chroma component.
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[0064] In accordance with the techniques described in this disclosure, an in-loop color­

space transform for residual signals (i.e., residual blocks) is proposed for sequences in 

4:4:4 chroma format; however, the techniques are not limited to the 4:4:4 format. The 

in-loop color-space transform process transforms prediction error signals (i.e., residual 

signals) in RGB/YUV chroma format into those in a sub-optimal color-space. The in­

loop color-space transform can further reduce the correlation among the color 

components. The transform matrix may be derived from pixel sample values for each 

CU by a singular-value-decomposition (SVD). The color-space transform may be 

applied to prediction error of both intra mode and inter mode.

[0065] When the color-space transform is applied to inter mode, the residual is firstly 

converted to a different domain with the derived transform matrix. After the color­

space conversion, the coding steps, such as DCT/DST, quantization, and entropy coding 

are performed, in order.

[0066] When the color-space transform is applied to a CU coded using an intra mode, 

the prediction and current block are firstly converted to a different domain with the 

derived transform matrix, respectively. After the color-space conversion, the residual 

between current block and a predictor for the current block is further transformed with 

DCT/DST, quantized, and entropy coded.

[0067] A video encoding device, such as video encoder 20, performs a forward 

operation, where a color-space transform matrix comprising conversion values a, b, c, d, 

e, f, g, h, and i is applied to three planes G, B, and R to derive values for color 

components P, Q, and S as follows:

a b c G P
d e f B — Q
-g h 1. R _s.

[0068] Resulting values may be clipped within the range of the HE VC specification, 

since values may be enlarged up to V3 times in the worst case. A video decoding 

device, such as video decoder 30, performs an inverse operation, where a color-space 

transform matrix comprising conversion values a1, bl, cl, dl, el, f*,  gl, hl, and il is applied 

to the three color components P’, Q’, and R’ to derive the three planes G’, B’ and R’ as 

follows,
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a b 
d e 
-g h

c]t ΓΡ< 
f Q' 
iJ Ls'.

G'
B'
R'.

[0069] FIG. 5 is a conceptual diagram illustrating an example of a target block and 

reference sample for an intra 8x8 block, according to one or more techniques of the 

current disclosure. A transform matrix may be derived using singular-value­

decomposition (SVD) from the reference sample values. A video coding device (e.g., 

video encoder 20 or video decoder 30) may use different reference samples for the intra 

case and inter case. For the case of an intra coded block, the target blocks and reference 

samples may be as shown in FIG. 5. In FIG. 5, the target block consists of 8x8 

crosshatched samples 94, and above reference samples 96 are shown as striped, and left 

references samples 98 are shown as dotted.

[0070] For the case of an inter coded block, reference samples for the matrix derivation 

may be the same as the reference samples for motion compensation. Reference samples 

in the advanced motion prediction (AMP) block may be sub-sampled such that the 

number of reference samples is reduced. For example, the number of reference samples 

in a 12x16 block is reduced by 2/3.

[0071] In some of the above examples, the color-space transform process may be 

always applied. Therefore, there may be no need to signal whether the color-space 

transform process is invoked or not. In addition, both video encoder 20 and video 

decoder 30 may use the same method to derive the transform matrix in order to avoid 

the overhead for signaling the transform matrix.

[0072] Video encoder 20 and video decoder 30 may use various color-space transform 

matrices. For example, video encoder 20 and video decoder 30 may apply different 

color-space transform matrices for different color spaces. For instance, video encoder 

20 and video decoder 30 may use a pair of YCbCr transform matrixes to convert sample 

values from the RGB color space to the YCbCr color space and back. The following 

equations show one example set of YCbCr transform matrixes:

Y 0.2126 0.7152 0.0722 R
Forward: Cb — -0.1172 -0.3942 0.5114 G

Cr. . 0.5114 -0.4645 -0.0469. B.
R Ί 0 1.5397 ' Y

Inverse : G — 1 -0.1831 -0.4577 Cb
B. .1 1.8142 0 . Cr.
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[0073] In another example, video encoder 20 and video decoder 30 may use a pair of 

YCoCg transform matrixes to convert sample values from the RGB color space to the 

YCoCg color space and back. The following equations show one example set of 

YCoCg transform matrixes:

Y - 1/4 1/2 1/4 ■ R
Forward: Co — 1/2 0 -1/2 G

Cg. -1/4 1/2 -1/4. B.

RI T 1 -1' Y
Inverse: G = 1 0 1 Co

bJ .1 -1 -1. -Cg.

Forward:

Inverse :

[0074] Another such matrix may be the YCoCg-R matrix, which is a revisable version 

of the YCoCg matrix that scales the Co and Cg components by a factor of two. By 

using a lifting technique, video encoder 20 and video decoder 30 may achieve the 

forward and inverse transform by the following equations:

Co = R - B
t = B + [Co/2]

Cg = G — t
Y = t + [Cg/2\ 

t = Y- [Cg/2\
G = Cg + t

B = t- [Co/2]
R = B + Co

[0075] In the above equations and matrices, the forward transformations may be 

performed before the encoding process (e.g., by a video encoder). Conversely, the 

inverse transformations may be performed after the decoding process (e.g., by a video 

decoder). It should also be noted that video encoder 20 includes a decoding loop to 

reconstruct the encoded date for use in predicting other video data. Accordingly, like 

video decoder 30, the decoding loop of video encoder 20 may also perform the inverse 

transformations.

[0076] The techniques of this disclosure potentially address one or more problems and 

more specifically, potential problems with the QP derivation when cu residual act flag 

is enabled. For example, according to existing solutions, when adaptive color transform 

is enabled, during the scaling and transformation process, a QP offset of -5 is added for 
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luma and Cb chroma component, and -3 is added for Cr chroma component. The 

resultant value of Qp, however, may underflow the allowed Qp range. For example, in 

the current test model it is possible that the resultant Qp may underflow to -5 when the 

range allowed by HEVC is between 0 and 51. This disclosure also describes techniques 

for signalling adaptive QP offsets when adaptive color transform is enabled.

[0077] A portion of the scaling and transformation process is set forth below.

8.6.2 Scaling and transformation process

The quantization parameter qP is derived as follows in the current test model,

If cldx is equal to 0,

qP = Qp γ + (cu_residual_act_flag[ xTbY ][ yTbY ] ? -5 : 0) (8-261)

- Otherwise, if cldx is equal to 1,

qP = Qp cb + (cu_residual_act_flag[ xTbY ][ yTbY ] ? -5 : 0) (8-262)

- Otherwise (cldx is equal to 2),

qP = Qp cr + (cu_residual_act_flag[ xTbY ][ yTbY ] ? -3 : 0) (8-263)

where cldx specifies the colour component of the current block and 

curesidualactflag specifies whether adaptive colour transform is applied to the 

residual samples of the current coding unit.

[0078] This disclosure describes various techniques that may address the problems 

introduced above. Each of the following techniques may be implemented separately or 

jointly with one or more of the others. According to one technique of this disclosure, 

video decoder 30 may clip the resultant Qp’s from section 8.6.2 equation 8-261,8-262, 

8-263 - scaling and transformation process (after offset is added when adaptive color 

transform is enabled) to HEVC Qp range that is 0, 51+ QpBdOffsety. According to 

another technique of this disclosure, video encoder 20 may signal to video decoder 30 

the Qp offset to be applied in section 8.6.2 (scaling and transformation process) when 

adaptive color transform is enabled. This signaling of Qp offset may be done at various 

granularity levels like VPS, SPS, PPS, slice header or its extension. The Qp offset may 

be signalled for all the components (luma + chroma) or only some of the components 

(e.g. chroma)

[0079] According to another technique of this disclosure, video encoder 20 may signal 

to video decoder 30 a flag indicating whether or not QP offset is to be applied in section

8.6.2 (scaling and transformation process) when adaptive color transform is enabled. 

This signaling of a flag can be done at various granularity levels like VPS, SPS, PPS, 
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slice header or its extension. The signaling of flag can be signalled for all the 

components (luma + chroma) or only some of the components (e.g. chroma). 

[0080] Example implementations of the techniques intoduce above will now be 

described in more detail. According to one technique of this disclosure, video encoder 

20 and video decoder 30 can be configured to clip the Qp’s to within the HEVC Qp’s 

range. In order to keep the allowed Qp range as same that is used in HEVC when 

adaptive color transform is used, this disclosure describes techniques for clipping the 

range of the Qp values to that of HEVC Qp range. The proposed changes to the test 

model are italicized below.

8.6.2 Scaling and transformation process

- If cldx is equal to 0,

qP = Clip3( 0, 51 + QpBdOffsety,

Qp'Y + (cu_residual_act_flag[ xTbY ][ yTbY ] ? -5 : 0))

When ChromaArrayType is not equal to 0,

- if cldx is equal to 1,

qP = Clip3 (0, 51 +

QpBdOffsetc, Qp cb + (cu_residual_act_flag[ xTbY ][ yTbY ] ? -5 : 0)) (8-262)

- Otherwise (cldx is equal to 2),

qP = Clip3( 0, 51 + QpBdOffsetc , Qp Cr

+ (cu_residual_act_flag[ xTbY ][ yTbY ] ? -3 : 0) (8-262)

Flexible signalling of QP offset for adaptive color transform

pps scc extension () { Descriptor
• · ·
if( residual adaptive colour-transform enahledJlag) {

ppssliceactqpoffsets presentJlag
pps act y qp offset se(v)
pps act cb qp offset
pps act cr qp offset

}

}
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slice segment header() { Descriptor
first slice segment in pic flag u(l)

.......................
sliceqpdelta se(v)
if( pps slice chroma qp offsets present flag ) {

slicecbqpoffset se(v)
slicecrqpoffset se(v)

}
if( chroma qp offset list enabled flag )

cu chroma qp offset enabled flag u(l)
iffpps slice act qp offsets pr esentfflag){

slice act y qp offset u(l)
slice act cb qp offset
slice act cr qp offset

}
.......

[0081] It is proposed to clip the range of the QP values for luma and chroma 

component.

If cldx is equal to 0,

qP = Clip3( 0, 51 + QpBdOffsety,

Qp'Y + (cu_residual_act_flag[ xTbY ][ yTbY ] ? pps_ act _J_qp_offset + 

slice_act_y_qp_offset: 0))

When ChromaArrayType is not equal to 0,

if cldx is equal to 1,

qP = ClipS ( 0, 51 +
QpBdOffsetc, Qp'cb + (cu_residual_act_flag[ xTbY ][ yTbY ] ? pps_act_ 
pps_cb_qp_offset + slice_act_cb_qp_offset: 0)) (8-262)
Otherwise (cldx is equal to 2),

qP = Clip3( 0, 51 + QpBdOffsetc , Qp Cr
+ (cu_residual_act_flag[ xTbY ][ yTbY ] ? pps_act_pps_cr_qp_offset + 

slice_act_cr_qp_offset: 0) (8-263)

pps_ act _y_qp_offset ,pps_act_cb_qp_offset and ppsactcrqpoffset specify 

offsets to the luma, cb and cr quantization parameter qP derived in section 8.6.2, 

respectively. The values of pps_ act y qp offset, pps cb qp offset and 

pps_cr_qp_offset shall be in the range of-12 to +12, inclusive. When
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ChromaArrayType is equal to 0, pps act cb qp offset and pps act cr qp offset are 

not used in the decoding process and decoders shall ignore their value.

pps slice act qp offsets present flag equal to 1 specifies that slice_ act 

yqpoffset, slice_ act cbqpoffset, slice_ act crqpoffset are present in the 

slice header. pps_slice_act_qp_offsets_present_flag equal to 0 specifies that slice_ 

act y qp offset, slice_ act cb qp offset, slice_ act cr qp offset are not present 

in the slice header. When not present, the value of 

cu chroma qp offset enabled flag is inferred to be equal to 0.

slice_ act _y_qp_offset ,slice_cb_qp_offset and slice cr qp offset specify offsets 

to the luma, cb and cr quantization parameter qP derived in section 8.6.2, 

respectively. The values of slice_ act y qp offset, slice cb qp offset and 

slice_cr_qp_offset shall be in the range of-12 to +12, inclusive. When 

ChromaArrayType is equal to 0, slice act cb qp offset and slice act cr qp offset 

are not used in the decoding process and decoders shall ignore their value.

[0082] Techniques for signalling the presence of QP offset for adaptive color transform 

will now be described. As discussed in technique (1) above, fixed negative QP offset 

when adaptive color transform is enabled narrows the Qp range at the higher Qp’s. For 

example, with the current definition when adaptive color transform is enabled it is 

impossible to reach QP’s over 46 + QpBdOffsety, which in some scenarios are 

necessary to meet target bitrate. In the below solution, it is proposed to signal a flag to 

indicate whether Qp offset shall be added or not. The proposed changes to the test 

model are highlighted in yellow text.
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slice_segment_header() { Descript 
or

first slice segment in pic flag u(l)
.......................

sliceqpdelta se(v)
if( pps slice chroma qp offsets present flag ) {

slicecbqpoffset se(v)
slicecrqpoffset se(v)

}
if( chroma qp offset list enabled flag )

cu chroma qp offset enabled flag u(l)
if( residual adaptive colour transform enabledJag)

slice act qp offset presentJag u(l)
.......

sliceactqpoffset_presentJag equal to 1 specifies that a Qp ojfiset is applied for the 

coding units with cu_residual_actJag equal to 1. slice _act_qp_offset_presentJag 

equal to 0 specifies that a Qp offset is not applied for the coding units with 

cu_residual_actJlag equal to 1. When not present, the value of 

cu_chroma_qp_offset_enabled Jag is inferred to be equal to 0.

If cldx is equal to 0,

qP = Clip3( 0, 51 + QpBdOffsety,

Qp'Y + (cu_residual_act_flag[ xTbY ][ yTbY ] && slice_act_qp_offset_present 

Jag? -5 : 0))

When ChromaArrayType is not equal to 0,

if cldx is equal to 1,

qP = Clip3 (0, 51 +

QpBdOffsetc, Qp cb + (cu_residual_act_flag[ xTbY ][ yTbY ] && slice_act_qp_o 

ffset_present Jag? -5: 0)) (8-262)

Otherwise (cldx is equal to 2), 

qP = Clip3( 0, 51 + QpBdOffsetc ,

Qp Cr + (cu_residual_act_flag[ xTbY ][ yTbY ] && slice_act_qp_offset_present J 

lag? -3 : 0) (8-263)
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[0083] Another example implementation of QP offset for adaptive color transform will 

now be described. This disclosure proposes the following:

a) Signal the adaptive color transform enabled flag in the picture parameter 

set instead of sequence parameter set. This potentially benefits from 

being able to adapt at picture level the usage of adaptive color transform.

b) A bitstream restriction is proposed to disable adaptive color transform 

when chroma format is not 4:4:4. In one example, this restriction is 

proposed to be applied on the adaptive color transform enable flag 

(residualadaptivecolourtransformenabledflag)

[0084] Below an example syntax and semantics are detailed.

pps scc extension () { Descriptor
...
re sidual adaptive colour trans form enabled flag u(l)
if(residual adaptive colour transform enabled flag){

pps slice act qp offsets present flag
pps act y qp offset se(v)
pps act cbqpoffset
pps act crqpoffset

}

}

slice segment header() { Descriptor
first slice segment in pic flag u(l)

.....................
sliceqpdelta se(v)
if( pps slice chroma qp offsets present flag ) {

slicecbqpoffset se(v)
slicecrqpoffset se(v)

}
if( chroma qp offset list enabled flag )

cu chroma qp offset enabled flag u(l)
if(pps slice act qp offsets present flag){

slice act y qp offset se(v)
slice act cb qp offset se(v)
slice act cr qp offset se(v)

}
.......

residual adaptive colour transform enabled flag equal to 1 specifies that

an adaptive colour transform may be applied to the residual in the decoding process for 
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the pictures referring to the PPS. residualadaptivecolourtransformenabledflag 

equal to 0 specifies that adaptive colour transform is not applied to the residual for the 

pictures referring to the PPS. When not present, the value of 

residualadaptivecolourtransformenabledflag is inferred to be equal to 0.

When chroma format idc is not equal to 3, 

residualadaptivecolourtransformenabledflag shall be equal to 0.

pps_ act _y_qp_offset ,pps_act_cb_qp_offset and ppsactcrqpoffset 

specify offsets to the luma, cb and cr quantization parameter qP derived in section 8.6.2, 

respectively. The values of pps_ act yqpoffset, ppscbqpoffset and 

pps_cr_qp_offset shall be in the range of -12 to +12, inclusive. When 

ChromaArrayType is equal to 0, pps act cb qp offset and pps act cr qp offset are 

not used in the decoding process and decoders shall ignore their value.

pps_slice_act_qp_offsets_present_flag equal to 1 specifies that slice_ act 

yqpoffset, slice_ act cbqpoffset, slice_ act crqpoffset are present in the slice 

header. pps_slice_act_qp_offsets_present_flag equal to 0 specifies that slice_ act 

yqpoffset , slice_ act cb qp offset, slice_ act cr qp offset are not present in the 

slice header. When not present, the value of cu chroma qp offset enabled flag is 

inferred to be equal to 0.

sliceactyqpoffset ,slice_cb_qp_offset and slicecrqpoffset specify 

offsets to the luma, cb and cr quantization parameter qP derived in section 8.6.2, 

respectively. The values of slice_ act y qp offset, slice cb qp offset and 

slice_cr_qp_offset shall be in the range of -12 to +12, inclusive. When 

ChromaArrayType is equal to 0, slice act cb qp offset and slice act cr qp offset are 

not used in the decoding process and decoders shall ignore their value.

[0085] FIG. 6 is a block diagram illustrating an example video encoder 20 that may 

implement the techniques described in this disclosure. Video encoder 20 may be 

configured to output video to post-processing entity 27. Post-processing entity 27 is 

intended to represent an example of a video entity, such as a media aware network 

element (MANE) or a splicing/editing device, that may process encoded video data 

from video encoder 20. In some instances, post-processing entity 27 may be an 

example of a network entity, such as a MANE, but in other instances post-processing 

entity 27 may be considered part of encoder 20. For example, in some video encoding 

systems, post-processing entity 27 and video encoder 20 may be parts of separate 

devices, while in other instances, the functionality described with respect to post­
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processing entity 27 may be performed by the same device that comprises video encoder 

20. In still other examples, post-processing entity 27 may be implemented as part of 

storage device 17 of FIG. 1

[0086] Video encoder 20 may perform intra-, inter-, and IMC coding of video blocks 

within video slices. Intra-coding relies on spatial prediction to reduce or remove spatial 

redundancy in video within a given video frame or picture. Inter-coding relies on 

temporal prediction to reduce or remove temporal redundancy in video within adjacent 

frames or pictures of a video sequence. Intra-mode (I mode) may refer to any of several 

spatial based compression modes. Inter-modes, such as uni-directional prediction (P 

mode) or bi-prediction (B mode), may refer to any of several temporal-based 

compression modes. IMC coding modes, as described above, may remove spatial 

redundancy from a frame of video data, but unlike tradition intra modes, IMC coding 

codes may be used to locate predictive blocks in a larger search area within the frame 

and refer to the predictive blocks with offset vectors, rather than relying on intra­

prediction coding modes.

[0087] In the example of FIG. 6, video encoder 20 includes video data memory 33, 

partitioning unit 35, prediction processing unit 41, filter unit 63, decoded picture buffer 

64, summer 50, transform processing unit 52, quantization unit 54, and entropy 

encoding unit 56. Prediction processing unit 41 includes motion estimation unit 42, 

motion compensation unit 44, and intra-prediction processing unit 46. For video block 

reconstruction, video encoder 20 also includes inverse quantization unit 58, inverse 

transform processing unit 60, and summer 62. Filter unit 63 is intended to represent one 

or more loop filters such as a deblocking filter, an adaptive loop filter (ALF), and a 

sample adaptive offset (SAO) filter. Although filter unit 63 is shown in FIG. 6 as being 

an in loop filter, in other configurations, filter unit 63 may be implemented as a post 

loop filter.

[0088] Video data memory 33 may store video data to be encoded by the components of 

video encoder 20. The video data stored in video data memory 33 may be obtained, for 

example, from video source 18. Decoded picture buffer 64 may be a reference picture 

memory that stores reference video data for use in encoding video data by video 

encoder 20, e.g., in intra-, inter-, or IMC coding modes. Video data memory 33 and 

decoded picture buffer 64 may be formed by any of a variety of memory devices, such 

as dynamic random access memory (DRAM), including synchronous DRAM 

(SDRAM), magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of 
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memory devices. Video data memory 33 and decoded picture buffer 64 may be 

provided by the same memory device or separate memory devices. In various 

examples, video data memory 33 may be on-chip with other components of video 

encoder 20, or off-chip relative to those components.

[0089] As shown in FIG. 6, video encoder 20 receives video data and stores the video 

data in video data memory 33. Partitioning unit 35 partitions the data into video blocks. 

This partitioning may also include partitioning into slices, tiles, or other larger units, as 

wells as video block partitioning, e.g., according to a quadtree structure of LCUs and 

CUs. Video encoder 20 generally illustrates the components that encode video blocks 

within a video slice to be encoded. The slice may be divided into multiple video blocks 

(and possibly into sets of video blocks referred to as tiles). Prediction processing unit 

41 may select one of a plurality of possible coding modes, such as one of a plurality of 

intra coding modes, one of a plurality of inter coding modes, or one of a plurality of 

IMC coding modes, for the current video block based on error results (e.g., coding rate 

and the level of distortion). Prediction processing unit 41 may provide the resulting 

intra-, inter-, or IMC coded block to summer 50 to generate residual block data and to 

summer 62 to reconstruct the encoded block for use as a reference picture.

[0090] Intra-prediction processing unit 46 within prediction processing unit 41 may 

perform intra-predictive coding of the current video block relative to one or more 

neighboring blocks in the same frame or slice as the current block to be coded to 

provide spatial compression. Motion estimation unit 42 and motion compensation unit 

44 within prediction processing unit 41 may perform inter-predictive coding of the 

current video block relative to one or more predictive blocks in one or more reference 

pictures to provide temporal compression. Motion estimation unit 42 and motion 

compensation unit 44 within prediction processing unit 41 may also perform IMC 

coding of the current video block relative to one or more predictive blocks in the same 

picture to provide spatial compression.

[0091] Motion estimation unit 42 may be configured to determine the inter-prediction 

mode or IMC mode for a video slice according to a predetermined pattern for a video 

sequence. The predetermined pattern may designate video slices in the sequence as P 

slices, B slices or GPB slices. Motion estimation unit 42 and motion compensation unit 

44 may be highly integrated, but are illustrated separately for conceptual purposes. 

Motion estimation, performed by motion estimation unit 42, is the process of generating 

motion vectors, which estimate motion for video blocks. A motion vector, for example, 
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may indicate the displacement of a PU of a video block within a current video frame or 

picture relative to a predictive block within a reference picture. In the case of IMC 

coding, a motion vector, which may be referred to as an offset vector in IMC, may 

indicate the displacement of a PU of a video block within a current video frame or 

picture relative to a predictive block within the current video frame.

[0092] A predictive block is a block that is found to closely match the PU of the video 

block to be coded in terms of pixel difference, which may be determined by sum of 

absolute difference (SAD), sum of square difference (SSD), or other difference metrics. 

In some examples, video encoder 20 may calculate values for sub-integer pixel positions 

of reference pictures stored in decoded picture buffer 64. For example, video encoder 

20 may interpolate values of one-quarter pixel positions, one-eighth pixel positions, or 

other fractional pixel positions of the reference picture. Therefore, motion estimation 

unit 42 may perform a motion search relative to the full pixel positions and fractional 

pixel positions and output a motion vector with fractional pixel precision.

[0093] Motion estimation unit 42 calculates a motion vector for a PU of a video block 

in an inter-coded slice by comparing the position of the PU to the position of a 

predictive block of a reference picture. The reference picture may be selected from a 

first reference picture list (List 0) or a second reference picture list (List 1), each of 

which identify one or more reference pictures stored in decoded picture buffer 64. 

Motion estimation unit 42 sends the calculated motion vector to entropy encoding unit 

56 and motion compensation unit 44.

[0094] According to some techniques of this disclosure, when coding a video block 

using an IMC mode, motion estimation unit 42 may determine a motion vector, or offset 

vector, for a luma component of the video block, and determine an offset vector for a 

chroma component of the video block based on the offset vector for the luma 

component. In another example, when coding a video block using an IMC mode, 

motion estimation unit 42 may determine a motion vector, or offset vector, for a chroma 

component of the video block, and determine an offset vector for a luma component of 

the video block based on the offset vector for the chroma component. Thus, video 

encoder 20 may signal in the bitstream only one offset vector, from which offset vectors 

for both chroma and luma components of the video block may be determined.

[0095] Motion compensation, performed by motion compensation unit 44, may involve 

fetching or generating the predictive block based on the motion vector determined by 

motion estimation, possibly performing interpolations to sub-pixel precision.
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Interpolation filtering may generate additional pixel samples from known pixel samples, 

thus potentially increasing the number of candidate predictive blocks that may be used 

to code a video block. Upon receiving the motion vector for the PU of the current video 

block, motion compensation unit 44 may locate the predictive block to which the 

motion vector points in one of the reference picture lists, or in the case of the IMC 

coding, within the picture being coded. Video encoder 20 forms a residual video block 

by subtracting pixel values of the predictive block from the pixel values of the current 

video block being coded, forming pixel difference values. The pixel difference values 

form residual data for the block, and may include both luma and chroma difference 

components. Summer 50 represents the component or components that perform this 

subtraction operation. Motion compensation unit 44 may also generate syntax elements 

associated with the video blocks and the video slice for use by video decoder 30 in 

decoding the video blocks of the video slice.

[0096] Intra-prediction processing unit 46 may intra-predict a current block, as an 

alternative to the inter-prediction and IMC performed by motion estimation unit 42 and 

motion compensation unit 44, as described above. In particular, intra-prediction 

processing unit 46 may determine an intra-prediction mode to use to encode a current 

block. In some examples, intra-prediction processing unit 46 may encode a current 

block using various intra-prediction modes, e.g., during separate encoding passes, and 

intra-prediction processing unit 46 (or mode select unit 40, in some examples) may 

select an appropriate intra-prediction mode to use from the tested modes. For example, 

intra-prediction processing unit 46 may calculate rate-distortion values using a rate­

distortion analysis for the various tested intra-prediction modes, and select the intra­

prediction mode having the best rate-distortion characteristics among the tested modes. 

Rate-distortion analysis generally determines an amount of distortion (or error) between 

an encoded block and an original, unencoded block that was encoded to produce the 

encoded block, as well as a bit rate (that is, a number of bits) used to produce the 

encoded block. Intra-prediction processing unit 46 may calculate ratios from the 

distortions and rates for the various encoded blocks to determine which intra-prediction 

mode exhibits the best rate-distortion value for the block.

[0097] In any case, after selecting an intra-prediction mode for a block, intra-prediction 

processing unit 46 may provide information indicative of the selected intra-prediction 

mode for the block to entropy encoding unit 56. Entropy encoding unit 56 may encode 

the information indicating the selected intra-prediction mode in accordance with the 
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techniques of this disclosure. Video encoder 20 may include in the transmitted 

bitstream configuration data, which may include a plurality of intra-prediction mode 

index tables and a plurality of modified intra-prediction mode index tables (also referred 

to as codeword mapping tables), definitions of encoding contexts for various blocks, 

and indications of a most probable intra-prediction mode, an intra-prediction mode 

index table, and a modified intra-prediction mode index table to use for each of the 

contexts.

[0098] After prediction processing unit 41 generates the predictive block for the current 

video block (e.g., via inter-prediction, intra-prediction, or IMC) video encoder 20 forms 

a residual video block by subtracting the predictive block from the current video block. 

The residual video data in the residual block may be included in one or more TUs and 

applied to transform processing unit 52. Transform processing unit 52 transforms the 

residual video data into residual transform coefficients using a transform, such as a 

discrete cosine transform (DCT) or a conceptually similar transform. Transform 

processing unit 52 may convert the residual video data from a pixel domain to a 

transform domain, such as a frequency domain.

[0099] Transform processing unit 52 may send the resulting transform coefficients to 

quantization unit 54. Quantization unit 54 quantizes the transform coefficients to 

further reduce bit rate. The quantization process may reduce the bit depth associated 

with some or all of the coefficients. The degree of quantization may be modified by 

adjusting a quantization parameter. In some examples, quantization unit 54 may then 

perform a scan of the matrix including the quantized transform coefficients. 

Alternatively, entropy encoding unit 56 may perform the scan.

[0100] Following quantization, entropy encoding unit 56 entropy encodes the quantized 

transform coefficients. For example, entropy encoding unit 56 may perform context 

adaptive variable length coding (CAVFC), context adaptive binary arithmetic coding 

(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability 

interval partitioning entropy (PIPE) coding or another entropy encoding methodology or 

technique. Following the entropy encoding by entropy encoding unit 56, the encoded 

bitstream may be transmitted to video decoder 30, or archived for later transmission or 

retrieval by video decoder 30. Entropy encoding unit 56 may also entropy encode the 

motion vectors and the other syntax elements for the current video slice being coded.

[0101] Inverse quantization unit 58 and inverse transform processing unit 60 apply 

inverse quantization and inverse transformation, respectively, to reconstruct the residual 



WO 2016/057665 PCT/US2015/054488
31

block in the pixel domain for later use as a reference block of a reference picture. 

Motion compensation unit 44 may calculate a reference block by adding the residual 

block to a predictive block of one of the reference pictures within one of the reference 

picture lists. Motion compensation unit 44 may also apply one or more interpolation 

filters to the reconstructed residual block to calculate sub-integer pixel values for use in 

motion estimation. Interpolation filtering may generate additional pixel samples from 

known pixel samples, thus potentially increasing the number of candidate predictive 

blocks that may be used to code a video block. Summer 62 adds the reconstructed 

residual block to the motion compensated prediction block produced by motion 

compensation unit 44 to produce a reference block for storage in decoded picture buffer 

64. The reference block may be used by motion estimation unit 42 and motion 

compensation unit 44 as a reference block to inter-predict a block in a subsequent video 

frame or picture.

[0102] FIG. 7 is a block diagram illustrating an example video decoder 30 that may 

implement the techniques described in this disclosure. In the example of FIG. 7, video 

decoder 30 includes a video data memory 78, entropy decoding unit 80, prediction 

processing unit 81, inverse quantization unit 86, inverse transform processing unit 88, 

summer 90, filter unit 91, and decoded picture buffer 92. Prediction processing unit 81 

includes motion compensation unit 82 and intra-prediction processing unit 84. Video 

decoder 30 may, in some examples, perform a decoding pass generally reciprocal to the 

encoding pass described with respect to video encoder 20 from FIG. 6.

[0103] During the decoding process, video decoder 30 receives video data, e.g. an 

encoded video bitstream that represents video blocks of an encoded video slice and 

associated syntax elements, from video encoder 20. Video decoder 30 may receive the 

video data from network entity 29 and store the video data in video data memory 78. 

Video data memory 78 may store video data, such as an encoded video bitstream, to be 

decoded by the components of video decoder 30. The video data stored in video data 

memory 78 may be obtained, for example, from storage device 17, e.g., from a local 

video source, such as a camera, via wired or wireless network communication of video 

data, or by accessing physical data storage media. Video data memory 78 may form a 

coded picture buffer that stores encoded video data from an encoded video bitstream. 

Thus, although shown separately in FIG. 7, video data memory 78 and decoded picture 

buffer 92 may be provided by the same memory device or separate memory devices. 

Video data memory 78 and decoded picture buffer 92 may be formed by any of a 
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variety of memory devices, such as dynamic random access memory (DRAM), 

including synchronous DRAM (SDRAM), magnetoresistive RAM (MRAM), resistive 

RAM (RRAM), or other types of memory devices. In various examples, video data 

memory 78 may be on-chip with other components of video decoder 30, or off-chip 

relative to those components.

[0104] Network entity 29, for example, may comprise a server, a MANE, a video 

editor/splicer, or other such device configured to implement one or more of the 

techniques described above. Network entity 29 may or may not include a video 

encoder, such as video encoder 20. Some of the techniques described in this disclosure 

may be implemented by network entity 29 prior to network entity 29 transmitting the 

encoded video bitstream to video decoder 30. In some video decoding systems, 

network entity 29 and video decoder 30 may be parts of separate devices, while in other 

instances, the functionality described with respect to network entity 29 may be 

performed by the same device that comprises video decoder 30. Network entity 29 may 

be an example of storage device 17 of FIG. 1 in some cases.

[0105] Entropy decoding unit 80 of video decoder 30 entropy decodes the bitstream to 

generate quantized coefficients, motion vectors, and other syntax elements. Entropy 

decoding unit 80 forwards the motion vectors and other syntax elements to prediction 

processing unit 81. Video decoder 30 may receive the syntax elements at the video slice 

level and/or the video block level.

[0106] When the video slice is coded as an intra-coded (I) slice, intra-prediction 

processing unit 84 of prediction processing unit 81 may generate prediction data for a 

video block of the current video slice based on a signaled intra prediction mode and data 

from previously decoded blocks of the current frame or picture. When the video frame 

is coded as an inter-coded (i.e., B, P or GPB) slice or when a block is IMC coded, 

motion compensation unit 82 of prediction processing unit 81 produces predictive 

blocks for a video block of the current video slice based on the motion vectors and other 

syntax elements received from entropy decoding unit 80. For inter prediction, the 

predictive blocks may be produced from one of the reference pictures within one of the 

reference picture lists. Video decoder 30 may construct the reference frame lists, List 0 

and List 1, using default construction techniques based on reference pictures stored in 

decoded picture buffer 92. For IMC coding, the predictive blocks may be produced 

from the same picture as the block being predicted.
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[0107] Motion compensation unit 82 determines prediction information for a video 

block of the current video slice by parsing the motion vectors and other syntax elements, 

and uses the prediction information to produce the predictive blocks for the current 

video block being decoded. For example, motion compensation unit 82 uses some of 

the received syntax elements to determine a prediction mode (e.g., intra- or inter­

prediction) used to code the video blocks of the video slice, an inter-prediction slice 

type (e.g., B slice, P slice, or GPB slice), construction information for one or more of 

the reference picture lists for the slice, motion vectors for each inter-encoded video 

block of the slice, inter-prediction status for each inter-coded video block of the slice, 

and other information to decode the video blocks in the current video slice.

[0108] Motion compensation unit 82 may also perform interpolation based on 

interpolation filters. Motion compensation unit 82 may use interpolation filters as used 

by video encoder 20 during encoding of the video blocks to calculate interpolated values 

for sub-integer pixels of reference blocks. In this case, motion compensation unit 82 

may determine the interpolation filters used by video encoder 20 from the received 

syntax elements and use the interpolation filters to produce predictive blocks.

[0109] According to some techniques of this disclosure, when coding a video block 

using an IMC mode, motion compensation unit 82 may determine a motion vector, or 

offset vector, for a luma component of the video block, and determine a motion vector 

for a chroma component of the video block based on the motion vector for the luma 

component. In another example, when coding a video block using an IMC mode, 

motion compensation unit 82 may determine a motion vector, or offset vector, for a 

chroma component of the video block, and determine a motion vector for a luma 

component of the video block based on the motion vector for the chroma component. 

Thus, video decoder 30 may receive in the bitstream only one offset vector, from which 

offset vectors for both chroma and luma components of the video block may be 

determined.

[0110] When decoding a video block using IMC mode, motion compensation unit 82 

may, for example, modify a motion vector, referred to as an offset vector for IMC mode, 

for a luma component to determine an offset vector for a chroma component. Motion 

compensation unit 82 may, for example, modify one or both of an x-component and y- 

component of the offset vector of the luma block based on a sampling format for the 

video block and based on a precision of a sub-pixel position to which the offset vector 

points. For example, if the video block is coded using the 4:2:2 sampling format, then 
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motion compensation unit 82 may only modify the x-component, not the y-component, 

of the luma offset vector to determine the offset vector for the chroma component. As 

can be seen from FIG. 4, in the 4:2:2 sampling format, chroma blocks and luma blocks 

have the same number of samples in the vertical direction, thus making modification of 

the y-component potentially unneeded. Motion compensation unit 82 may only modify 

the luma offset vector, if when used for locating a chroma predictive block, the luma 

offset vector points to a position without a chroma sample (e.g., at a sub-pixel position 

in the chroma sample of the current picture that includes the current block). If the luma 

offset vector, when used to locate a chroma predictive block, points to a position where 

a chroma sample is present, then motion compensation unit 82 may not modify the luma 

offset vector.

[0111] In other examples, if the video block is coded using the 4:2:0 sampling format, 

then motion compensation unit 82 may modify either or both of the x-component and 

the y-component of the luma offset vector to determine the offset vector for the chroma 

component. As can be seen from FIG. 3, in the 4:2:0 sampling format, chroma blocks 

and luma blocks have a different number of samples in both the vertical direction and 

the horizontal direction. Motion compensation unit 82 may only modify the luma offset 

vector, if when used for locating a chroma predictive block, the luma offset vector 

points to a position without a chroma sample (e.g., at a sub-pixel position in the chroma 

sample of the current picture that includes the current block). If the luma offset vector, 

when used to locate a chroma predictive block, points to a position where a chroma 

sample is present, then motion compensation unit 82 may not modify the luma offset 

vector.

[0112] Motion compensation unit 82 may modify a luma offset vector to generate a 

modified motion vector, also referred to as a modified offset vector. Motion 

compensation unit 82 may modify a luma offset vector that, when used to locate a 

chroma predictive block, points to a sub-pixel position such that the modified offset 

vector, used for the chroma block, points to a lower resolution sub-pixel position or to 

an integer pixel position. As one example, a luma offset vector that points to a 1/8 pixel 

position may be modified to point to a 1/4 pixel position, a luma offset vector that 

points to a 1/4 pixel position may be modified to point to a 1/2 pixel position, etc. In 

other examples, motion compensation unit 82 may modify the luma offset vector such 

that the modified offset vector always points to an integer pixel position for locating the 

chroma reference block. Modifying the luma offset vector to point to a lower resolution 
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sub-pixel position or to an integer pixel position may eliminate the need for some 

interpolation filtering and/or reduce the complexity of any needed interpolation filtering. 

[0113] Referring to FIGS. 3 and 4 and assuming the top left sample is located at 

position (0, 0), a video block has luma samples at both odd and even x positions and 

both odd and even y positions. In a 4:4:4 sampling format, a video block also has 

chroma samples at both odd and even x positions and both odd and even y positions. 

Thus, for a 4:4:4 sampling format, motion compensation unit may use the same offset 

vector for locating both a luma predictive block and a chroma predictive block. For a 

4:2:2 sampling format, as shown in FIG. 4, a video block has chroma samples at both 

odd and even y positions but only at even x positions. Thus, for the 4:2:2 sampling 

format, if a luma offset vector points to an odd x position, motion compensation unit 82 

may modify the x-component of the luma offset vector to generate a modified offset 

vector that points to an even x position so that the modified offset vector can be used for 

locating the reference chroma block for the chroma block of the current block without 

needing interpolation. Motion compensation unit 82 may modify the x-component, for 

example, by either rounding up or rounding down to the nearest even x position, i.e. 

changing the x-component such that it points to either the nearest left x position or 

nearest right x position. If the luma offset vector already points to an even x position, 

then no modification may be necessary.

[0114] For a 4:2:0 sampling format, as shown in FIG. 3, a video block has chroma 

samples only at even y positions and only at even x positions. Thus, for the 4:2:0 

sampling format, if a luma offset vector points to an odd x position or odd y position, 

motion compensation unit 82 may modify the x-component or y-component of the luma 

offset vector to generate a modified offset vector that points to an even x position so that 

the modified offset vector can be used for locating the reference chroma block for the 

chroma block of the current block without needing interpolation. Motion compensation 

unit 82 may modify the x-component, for example, by either rounding up or rounding 

down to the nearest even x position, i.e. changing the x-component such that it points to 

either the nearest left x position or nearest right x position. Motion compensation unit 

82 may modify the y-component, for example, by either rounding up or rounding down 

to the nearest even y position, i.e. changing the y-component such that it points to either 

the nearest above y position or nearest below y position. If the luma offset vector 

already points to an even x position and an even y position, then no modification may 

be necessary.
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[0115] Inverse quantization unit 86 inverse quantizes, i.e., de-quantizes, the quantized 

transform coefficients provided in the bitstream and decoded by entropy decoding unit 

80. The inverse quantization process may include use of a quantization parameter 

calculated by video encoder 20 for each video block in the video slice to determine a 

degree of quantization and, likewise, a degree of inverse quantization that should be 

applied. Inverse transform processing unit 88 applies an inverse transform, e.g., an 

inverse DCT, an inverse integer transform, or a conceptually similar inverse transform 

process, to the transform coefficients in order to produce residual blocks in the pixel 

domain.

[0116] After motion compensation unit 82 generates the predictive block for the current 

video block based on the motion vectors and other syntax elements, video decoder 30 

forms a decoded video block by summing the residual blocks from inverse transform 

processing unit 88 with the corresponding predictive blocks generated by motion 

compensation unit 82. Summer 90 represents the component or components that 

perform this summation operation. If desired, loop filters (either in the coding loop or 

after the coding loop) may also be used to smooth pixel transitions, or otherwise 

improve the video quality. Filter unit 91 is intended to represent one or more loop 

filters such as a deblocking filter, an adaptive loop filter (AFF), and a sample adaptive 

offset (SAO) filter. Although filter unit 91 is shown in FIG. 7 as being an in loop filter, 

in other configurations, filter unit 91 may be implemented as a post loop filter. The 

decoded video blocks in a given frame or picture are then stored in decoded picture 

buffer 92, which stores reference pictures used for subsequent motion compensation. 

Decoded picture buffer 92 may be part of a memory that also stores decoded video for 

later presentation on a display device, such as display device 32 of FIG. 1, or may be 

separate from such a memory.

[0117] FIG. 8 is a block diagram illustrating another example video encoder 21 that 

may utilize techniques for transforming video data having an RGB color space to blocks 

of video data having a second color space using a color transform in accordance with 

one or more aspects of this disclosure.

[0118] FIG. 8 illustrates a more detailed version of video encoder 20. Video encoder 21 

may be an example of video encoder 20 (FIG. 2) or video encoder 20 (FIG. 1). The 

example of FIG. 8 illustrates two possible examples for implementing the techniques of 

this disclosure. In the first implementation, video encoder 21 adaptively transforms a 

first block of an input video signal having a first color space to a second block having a 
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second color space using a color transform of one or more color transform. The second 

illustrated example performs the same techniques, but performs the color transformation 

on blocks of residual video data, rather than on an input signal.

[0119] In the example of FIG. 8, video encoder 21 is shown as performing color 

transforms on predictive and residual blocks of video data based on the states of 

switches 101, 105, 113, 121. If switches 101, 105, 113, and 121 are switched the 

alternative position, video encoder 21 is configured to perform color transforms on 

blocks of video data of an original signal having an RGB color space to blocks of video 

data having a second color space before performing motion estimation, and motion 

prediction, rather than transforming blocks of predictive and/or residual video data. 

[0120] One example process of performing color transforms on blocks of residual video 

data as illustrated in FIG. 8 is now described in greater detail. In the example of FIG. 8, 

an original signal 100 is passed to prediction processing unit 104 (following the path of 

switch 101). Prediction processing unit 104 may receive data from one or more 

reference pictures from reference picture memory 122. Prediction processing unit 104 

generates a predictive block of video data, and combines the predictive block of video 

data from the original signal 100 to generate residual signal 124. In this example, 

adaptive color transformer 106 transforms the predictive block and the residual block of 

video data from an RGB color space to a second predictive block and a second residual 

block of video having a second color space. In some examples, video encoder 21 may 

select the second color space and the color transform based on a cost function.

[0121] Transform/quantization unit 108 may perform a transform (e.g., a discrete cosine 

transformation (DCT) or another type of transform) on the second video block having 

the second color space. In addition, transform/quantization unit 108 may quantize the 

second video block (i.e., the transformed residual video block). Entropy encoder 110 

may entropy encode the quantized residual video block. Entropy encoder 110 may 

output a bitstream that includes the quantized residual video block for decoding by a 

video decoder, e.g. video decoder 30.

[0122] Dequantization / inverse transform unit 112 may also receive the quantized, 

transformed coefficient and/or residual video blocks, and may inversely transform and 

dequantize the transformed coefficient and residual video blocks. The dequantized, 

inversely transformed video blocks may still have the second color space at this point. 

The result of the dequantization / inverse transform is reconstructed residual signal 126. 

Inverse adaptive color transformer 114 may inversely color transform the reconstructed 
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residual signal based on the inverse color transform associated with the transform 

performed by adaptive color transformer 106. The resulting inversely adaptive color 

transformed coefficient and/or residual video blocks may have an RGB color space at 

this point.

[0123] Following application of an inverse color transformation to a residual video 

block, prediction compensator 116 may add back in a predictive block to the residual 

video block. Deblock filter 118 may deblock the resulting block. SAO filter 120 may 

perform SAO filtering. Reference picture memory 122 may then store the resulting 

reconstructed signal 128 for future use.

[0124] To color transform a video block of an input signal (i.e., unencoded video data), 

rather than a block of residual video data, switch 101 is flipped to the alternate position, 

and adaptive transformer 102 color transforms the input video block from a video block 

having an RGB color space to a second color space using a color transform of the one or 

more color transforms. Prediction with prediction processing unit 104 proceeds as 

described above, but the result may be fed to transform/quantization unit 108 directly 

because switch 105 is in the alternate position (as compared to the position illustrated in 

FIG. 8), rather than being color transformed by adaptive color transformer 106.

[0125] Transform/quantization unit 108, entropy encoder 110, and dequantization / 

inverse transform unit 112 may each operate as described above with respect to color 

transforming a residual video block, and reconstructed signal 126 is generated, and is 

also in the second color space. Reconstructed signal 126 is fed to prediction 

compensator 116 via switch 113. Switch 113 is in the alternate position to the position 

illustrated in FIG. 8, and inverse adaptive color transformer 114 is bypassed. Prediction 

compensator 116, deblock filter 118, and SAO filter 120 may operate as described 

above with respect to color transforming a residual video block to produce reconstructed 

signal 128. However, unlike reconstructed signal 128 described above, in this example, 

a block of reconstructed signal 128 may still have the second color space, rather than the 

RGB color space.

[0126] Reconstructed signal 128 may be fed to inverse adaptive color transformer 130 

via switch 121, which is in the alternate position to that illustrated in FIG. 8. Inverse 

adaptive color transformer 130 may inversely color transform blocks of reconstructed 

signal 128 to blocks having an RGB color space, and reference picture memory 122 

may store the blocks as blocks of a reference picture for future reference.
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[0127] As described above, video encoder 21 may select a transform of the one or more 

color spaces to transform a first block of the video data having an RGB color space, to a 

second color space. In some examples, video encoder 21 selects the color transform 

adaptively by calculating rate-distortion costs associated with each of the color 

transforms. For instance, video encoder 21 may select the color transform of the 

plurality of color transforms that has the lowest associated distortion cost for a CU or 

block of a CU. Video encoder 21 may signal an index syntax element or other syntax 

data that indicates the selected color transform that has the lowest associated distortion 

cost.

[0128] In some examples, video encoder 21 may utilize a Lagrangian cost function that 

accounts for the tradeoff between the bitrate (e.g. the compression achieved) by the 

color transform, as well as the distortion (e.g., the loss of fidelity) associated with the 

color transform. In some examples, the Lagrangian cost corresponds to L = D + λ R, 

where L is the Lagrangian cost, D is the distortion, λ is a Lagrange multiplier, and R is 

the bitrate. In some examples, video encoder 21 may signal an index syntax element 

that indicates the color transform of the plurality of color transforms that minimizes the 

Lagrangian cost.

[0129] In some high performance or high fidelity video coding applications or 

configurations, distortion should be minimized above minimizing bitrate. In such cases, 

when transforming video data from an RGB color space to a second color space, video 

encoder 21 may select the color transform, and the color space that results in the least 

distortion. Video encoder 21 may signal an index syntax element that indicates the 

selected color transform or color space that results in the least distortion.

[0130] In some other cases, video encoder 21 may calculate a cost of transforming 

blocks of an RGB color space to a second color space based on the correlation between 

each of the color components of the block of RGB video data and the color components 

of the block of the second color space. The color transform having the lowest 

associated cost may be the color transform that has color components that are most 

closely correlated with the RGB color components of the input signal. Video encoder 

21 may signal an index syntax element that indicates the selected color transform that 

has the highest correlation between its color components and RGB color components. 

[0131] It should be recognized that in some cases, video encoder 21 may select different 

color transforms for different CUs, LCUs, CTUs, or other units of video data. That is, 

for a single picture, video encoder 21 may select different color transforms associated 
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with different color spaces. Selecting multiple different color transforms may better 

optimize coding efficiency and reduce rate distortion. To indicate which transform of 

the multiple transforms that video encoder 21 has selected for the current block, video 

encoder 21 may signal an index value corresponding to the selected color transform. 

Video encoder 21 may signal the index value at one or more of the first block of video 

a CTU, CU, PU, and a TU.

[0132] However, in some cases, video encoder 21 may determine a single color 

transform that is to be applied to one or a plurality of blocks, or a sequence of coded 

pictures, referred to as a CVS. In the case that only one color transform is selected, for 

each block, video encoder 21 may signal a flag syntax element. One value of the flag 

syntax element may indicate that video encoder 21 has applied the single transform to 

the current block or to all of the pictures in the CVS. The other value of the flag syntax 

element indicates that no transform has been applied to the current block. Video 

encoder 21 may determine whether or not to apply the color transform to each of the 

blocks of the picture on an individual basis, e.g. using the cost-based criteria described 

above.

[0133] In some examples, video encoder 21 determine whether to apply a pre-defined 

color transform of the plurality of inverse color transforms to each one of the plurality 

of blocks. For example, video encoder 21 and video decoder 31 may utilize a default 

pre-defined color transform/inverse color transform. Responsive to determining to 

apply the pre-defined color transform to each one of the plurality of blocks, video 

encoder 21 may transform each of the plurality of blocks using the pre-defined color 

transform without decoding data indicating that the pre-defined color transform has 

been applied to each one of the plurality blocks of video data.

[0134] In a reciprocal manner, video decoder 31 may be configured to determine 

whether to apply a pre-defined inverse color transform of the plurality of inverse color 

transforms to each one of the plurality of blocks. Responsive to determining to apply 

the pre-defined inverse color transform to each one of the plurality of blocks, video 

decoder 31 may inversely transform each of the plurality of blocks using the pre-defined 

color transform without decoding data indicating that the pre-defined color transform 

has been applied to each one of the plurality blocks of video data

[0135] The color transforms of this disclosure may include, but are not necessarily 

limited to, an identity transform, a differential transform, a weighted differential 

transform, a DCT, a YCbCr transform, a YCgCo transform, and a YCgCo-R transform 
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to the block of video data. A video coder configured in accordance with the techniques 

of this disclosure, such as video encoder 21, may apply one or more of these transforms 

and/or their inverses as well as other transforms, such as transforms to/from Adobe 

RGB, sRGB, scRGB, Rec. 709, Rec. 2020, Adobe Wide Gamut RGB, ProPhoto RGB, 

CMYK, Pantone, YIQ, YDbDr, YPbPr, xvYCC, ITU BT.601, ITU BT.709, HSV, and 

other color spaces, color spaces, and/or chroma subsampling formats not specifically 

described herein.

[0136] To apply a color transform to a block of video data having an RGB color space, 

video encoder 21 may multiply a 3 x 1 matrix comprising the Red, Green, and Blue 

color components of an RGB pixel with a color transform matrix. The result of the 

multiplication is a pixel having a second color space. The video coder may apply the 

color transform matrix to each pixel of the video block to produce a second block of 

pixels in a second color space. Various color transforms are now described in greater 

detail.

[0137] In some examples, video encoder 21 may apply an identity transform matrix or 

inverse identity transform matrix. The identity transform matrix comprises:

1 0 0
0 1 0 ,
.0 0 1.

and the inverse transform matrix, which video decoder 30 may apply, comprises:

1 0 0
0 1 0 .
.0 0 1.

When a video coder applies the identity transform, the resulting pixel value is identical 

to the input pixel value, i.e. applying the identity transform is equivalent to not applying 

a color transform at all. Video encoder 21 may select the identity transform when 

maintaining the RGB color space of the video blocks is required.

[0138] In another example, video encoder 21 may apply a differential transform matrix. 

The differential transform matrix comprises:

0 1 0
0-11.
.1 -1 0.

Video decoder 30 may apply a reciprocal, inverse differential matrix, which comprises:

1 ο ι-
ιο 0 .

.1 1 0.
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[0139] In another example, video encoder 21 may be configured apply a weighted 

differential transform or inverse weighted differential transform. The weighted 

differential transform matrix comprises:

0 1 0
0 — a± 1 ,
.1 — a2 0.

and the inverse, weighted differential matrix, which video decoder 31 may apply,

comprises:

a2 0 Ι­
1 0 Ο

.«i 1 0.

[0140] In the weighted differential transforms, oqand a2arc parameters that a video 

coder may adjust. In some examples, video encoder 20 may calculate the parameters 

(Zj^and a2 according to the following equations:

σ.ι = cov(G, B) / var(G), and

a2 = cov(G, R) / var(G).

Video encoder 21 may signal the values of aY and a2 in the coded video bitstream in 

various examples.

[0141] In these equations, R corresponds to a red color channel, G corresponds to a 

green color channel, and B corresponds to a blue color channel of the RGB color space. 

In the differential transform equations, “cov()” is the covariance function, and “varQ” is 

the variance function.

[0142] To determine the values of R, G, and B, an encoder or decoder may utilize a set 

of reference pixels in order to ensure that the covariance and variance functions have the 

same result or weight when calculated by the encoder or by the decoder. In some 

examples, the particular reference pixels may be signaled in the coded video bitstream 

(e.g. as syntax elements in a coded video bitstream). In other examples, the encoder and 

decoder may be preprogrammed to use certain reference pixels.

[0143] In some examples, video encoder 21 may restrict or constrain the values of cci 

and a2 when transforming blocks using the differential transform. The video coder may 

constrain the values of cci and a2 to a set of integers or dyadic numbers, e.g. 1/2, %, 1/8, 

etc.... In other examples, a video coder may restrict cti and a2 to values of a fraction 

having a dyadic number, e.g. 1/8, 2/8, 3/8, ..., 8/8. A dyadic number or dyadic fraction 

is a rational number having a denominator that is a power of two, and where the 
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numerator is an integer. Restricting the values of aY anda2 may improve the bitstream 

efficiency of coding aY and <z2 ·

[0144] In other examples, video encoder 21 may be configured to transform a block 

having an RGB color space to generate a second block, using a DCT transform. The 

DCT transforms samples of a block to express the samples as a sum of sinusoids of 

different frequencies and amplitudes. A DCT transform or inverse transform may 

transform pixel to and from a finite sequence of data points in terms of a sum of cosine 

functions. The DCT transform matrix corresponds to:

Ό.5774 0.5774 0.5774 '
0.7071 0 -0.7071 .
.0.4082 -0.8156 0.4082 .

In a reciprocal manner, video decoder 31 may be configured to apply an inverse 

transform to blocks transformed using the DCT revert the blocks back to the original 

samples. The inverse DCT transform matrix corresponds to:

0.5774 0.7071 0.4082
0.5774 0 -0.8156 .
.0.5774 -0.7071 0.4082 .

[0145] Video encoder 21 may also apply a YCbCr transform to a block having an RGB 

color space to produce a block having a YCbCr color space. As described above, the 

YCbCr color space includes a luma (Y) component, as well as blue chrominance (Cb) 

and red chrominance (Cr) components. The YCbCr transform matrix may correspond 

to:

0.2126
-0.1172

. 0.5114

0.7152
-0.3942
-0.4645

0.0722
0.5114 

-0.0469.
[0146] Video decoder 31 may be configured to apply an inverse YCbCr transform to 

convert a block having a YCbCbr color space to a block having an RGB color space.

The inverse YCbCr transform matrix may correspond to:

[1 0 1.5397
1 -0.1831 -0.4577

11 1.8142 0
[0147] Video encoder 21 may also apply a YCgCo transform to a block having an RGB 

color space to produce a block having a YCgCo color space. A YCgCo color space 

includes a luma (Y) component, as well as green chrominance (Cg) and orange

chrominance (Co) components. The YCgCo transform matrix may correspond to:

0.2126
-0.1172

. 0.5114

0.7152
-0.3942
-0.4645

0.0722
0.5114

-0.0469.
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[0148] Video decoder 31 may be configured to apply an inverse YCgCo transform to 

convert a block having a YCgCo color space to a block having an RGB color space. 

The inverse YCgCo transform matrix may correspond to:

1 0 1.5397
1 -0.1831 -0.4577 .

.1 1.8142 0 .
[0149] Video encoder 21 may also be configured to apply a YCgCo-R transform to a 

block having an RGB color space to produce a block having a YCgCo-R color space. 

The YCgCo-R color space includes a luma (Y) component, as well as green 

chrominance (Cg) and orange chrominance (Co) components. Unlike the YCgCo 

transform described above, however, the YCgCg-R transform is reversible, e.g. the 

YCgCo-R transform may not produce any distortion, for example due to rounding 

errors.

[0150] The YCbCr transform matrix may correspond to:

Co = R - B
t = B + [Co/2]

Cg = G — t ’
Y = t + [Cg/2]

Video decoder 31 may be configured to apply an inverse YCgCo-R transform. The 

YCgCo-R inverse transform inversely transforms blocks having a YCgCo-R color space 

to blocks having an RGB color space. The inverse YCgCo-R transform matrix may 

correspond to:

t = Y- [Cg/2\
G = Cg + t

B = t- [Co/2]
R = B + Co

[0151] In order to apply any of the color transforms described herein, video encoder 21 

may implement a lifting scheme that has flexible parameters. A lifting scheme is a 

technique of decomposing a discrete wavelet transform into a finite sequence of simple 

filtering steps, referred to as lifting steps or as ladder structures. Video encoder 21 may 

signal the parameters in the coded video bitstream, or video encoder 21 may derive the 

parameters may be derive the parameters the same way. One example of a lifting 

scheme is as follows:

R' = R + [uB]
B' = B + [b/?'J
& = G + [cB'J ’

R" = R' + [dG'J
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where a, b, c, and d are parameters as described above. In this lifting scheme, R, G, and 

B are red, green, and blue color channels or samples, respectively. As with the a 

parameters described above with respect to the weighted differential transform, the 

values of a, b, c, and d may be restricted or limited, e.g. so the signs can only be 

positive or negative. In some cases, there may be additional steps in the lifting scheme, 

such as:

R"' = [eR" + /]
B" = [gB' + h\,
G" = [iG' + j'J

where/ g, h, i, and j are parameters. When using the lifting scheme, as well as in other 

examples, the video encoder 20 and video decoder 30 can normalize the output depth of 

the three components, R’”, B”, and G” can be normalized within a pre-determined bit 

depth, which may not necessarily be the same for each component.

[0152] FIG. 9 is a block diagram illustrating another example video decoder 31 that 

may utilize techniques for inversely transforming video data having a first color space to 

video data having a second, RGB color space using an inverse color transform in 

accordance with one or more aspects of this disclosure.

[0153] FIG. 9 illustrates a more detailed version of video decoder 31 relative to video 

decoder 30 of FIG. 1 and FIG. 7. Indeed, in some examples video decoder 31 may be 

considered a more specific example of video decoder 30 (FIG. 7) and/or video decoder 

30 (FIG. 1). The example of FIG. 9 illustrates two possible examples for implementing 

the techniques of this disclosure. In the first implementation, video decoder 31 

adaptively inversely transforms a block of an input video signal from a first color space 

(e.g., a non-RGB color space) to a second block having a second, RGB color space 

using an inverse color transform of a plurality of inverse color transforms. The second 

illustrated example performs the same techniques, but performs the inverse color 

transformation on blocks of residual video data, rather than on an input signal.

[0154] In the example of FIG. 9, video decoder 31 is shown as performing inverse color 

transforms on blocks of residual video data example because of the way switches 145, 

and 156 are currently switched. If switches 145 and 156 are switched the alternative 

position, video decoder 31 is configured to inversely color transform blocks of input 

video data having a first representation to a blocks of video data having a second, RGB 

color space, rather than inversely transforming blocks of residual video data.
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[0155] The process of performing inverse color transforms on blocks of residual video 

data as illustrated in FIG. 9 is now described in detail. In the example of FIG. 9, an 

encoded input bitstream 140 (also referred to as an input signal) is passed to entropy 

decoding unit 142. Entropy decoding unit 142 may entropy decode bitstream 140 to 

produce a quantized block of residual video data having a first color space. For 

instance, entropy decoding unit 142 may entropy decode particular syntax elements 

included in bitstream 140. Dequantization / inverse transform unit 144 may dequantize 

a transform coefficient block. Additionally, dequantization / inverse transform unit 144 

may apply an inverse transform to the transform coefficient block to determine a 

transform block comprising residual video data. Thus, dequantization / inverse 

transform unit 144 may dequantize and inversely transform blocks of entropy decoded 

video data of bitstream 140. When video decoder 31 is configured to inversely color 

transform blocks of residual data, switch 148 feeds a block of residual video data having 

a first color space to inverse adaptive color transformer 150. In this way, inverse 

adaptive color transformer 150 may receive a transform block of a TU.

[0156] Inverse adaptive color transformer 150 may adaptively inversely transform a 

block of video data having the first color space to a second block of video data having a 

second, RGB color space. For example, inverse adaptive color transformer 150 may 

select an inverse transform to apply to a transform block of a TU. In this example, 

inverse adaptive color transformer 150 may apply the selected inverse transform to the 

transform block in order to transform the transform block from the first color space to 

the RGB color space. Prediction compensation unit 152 may combine a reference 

picture from reference picture memory 154. For example, prediction compensation unit 

152 may receive a transform block of a TU of a CU. In this example, prediction 

compensation unit 152 may determine a coding block for the CU. In this example, each 

sample of the coding block of the CU may be equal to a sum of a sample in the 

transform block and a corresponding sample in a prediction block for a PU of the CU. 

Deblock filter 157 may deblock the combined, reconstructed image. SAO filter unit 158 

may perform additional SAO filtering if applicable.

[0157] The output of SAO filter unit 158 is reconstructed signal 160. If video decoder 

31 is configured to inversely color transform blocks of residual video data, switch 162 

feeds reconstructed signal 160 to reference picture memory 154 for future use as a 

reference picture. Video decoder 31 may also output reconstructed signal 160 as image 

/ video 164.
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[0158] In examples where video decoder 31 is configured to inversely color transform 

blocks of the original input signal as opposed to blocks of residual video data, entropy 

decoding unit 142 and dequantization / inverse transform unit 144 operate in the manner 

previously described. Switch 148 is in the alternate position and feeds reconstructed 

residual signal directly to prediction compensation unit 152. At this point, the residual 

block provided to prediction compensation unit 152 is still in the first color space, rather 

than the RGB color space.

[0159] Prediction compensation unit 152 may reconstruct a block of the original image 

and may combine the residual block with one or more blocks of pictures from reference 

picture memory 154. Deblock filter 157 and SAO filter unit 158 may operate as 

described above with respect to inversely transforming residual blocks of video data. 

The output of SAO filter unit 158 is reconstructed signal 160, the blocks of which are 

still in the first color space, and may not be have the RGB color space (e.g., the blocks 

may still have the RGB color space if the identity transform was used).

[0160] Reconstructed signal 160 may be fed to inverse adaptive color transformer 166 

via switch 162, which is in the alternate position as compared to the position illustrated 

in FIG. 9. Inverse adaptive color transformer 166 may inversely color transform a block 

of reconstructed signal having a first color space to a second block of video data having 

a second, RGB color space using an inverse color transform of one or more inverse 

color transforms. In some examples, the particular inverse transform that decoder 31 

uses may be signaled in bitstream 140. Inverse adaptive color transformer 166 may feed 

the second block having the second color space for output as image / video 164, as well 

as to reference picture memory 154 for future storage and usage as a reference picture. 

[0161] FIG. 10 shows an example of a method of decoding video data in accordance 

with the techniques of this disclosure. The techniques of FIG. 10 will be described with 

respect to a generic video decoder. The generic video decoder may, for example, 

correspond to video decoder 30 of FIG. 7 or video decoder 31 of FIG. 9, although the 

techniques of FIG. 10 are not limited to any particular type of video decoder. As video 

encoders typically perform video decoding as part of the encoding process, the 

techniques of FIG. 10 may also be performed by a video encoder, such as video encoder 

20 of FIG. 6 and video encoder 21 of FIG. 8. Video encoder 20, for example, includes 

inverse quantization unit 58 and inverse transform processing unit 60, which form part 

of a decoding loop, in which the techniques of FIG. 10 may be implemented. Thus, 
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while the techniques of FIG. 10 will be explained with reference to a video decoder, it 

should be understood that this video decoder may be part of a video encoder.

[0162] In the example of FIG. 10, the video decoder determines for one or more blocks 

of the video data that adaptive color transform is enabled (210). In some examples, the 

video decoder may determine for the one or more blocks of the video data that adaptive 

color transform is enabled by receiving a syntax element that indicates if adaptive color 

transform is enabled. The syntax element may, for example, be received in the PPS or 

at another level. By parsing the received syntax element, the video decoder can 

determine if adaptive color transform is enabled or disabled. In other examples, the 

video decoder may determine for the one or more blocks of the video data that adaptive 

color transform is enabled by determining a chroma format for the video data. For 

example, in response to determining a chroma format for the video data is 4:4:4, the 

video decoder may determine that adaptive color transform is enabled. In response to 

determining a chroma format for the video data is other than 4:4:4, the video decoder 

may determine that adaptive color transform is disabled.

[0163] For video data with adaptive color transform enabled, the video decoder may 

determine a quantization parameter for the one or more blocks (212). In response to a 

value of the quantization parameter being below a threshold, the video decoder may 

modify the quantization parameter to determine a modified quantization parameter 

(214). The threshold may, for example, be zero, and a value of the modified 

quantization parameter may be greater than or equal to zero. The modified quantization 

parameter may be less than or eqaul to 51 plus an offset value. To modify the 

quantization parameter, the video decoder may add an offset value to the quantization 

parameter. The video decoder may receive a flag to indicate if the offset value is to be 

added to the quantization parameter.

[0164] The video decoder may, for example, receive the offset value as a syntax 

element. The offset value may be an offset to the quantization parameter (when 

adaptive color transform is enabled for the block). The video decoder may dequantize 

transform coefficients based on the modified quantization parameter (216).
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[0165] FIG. 11 shows an example of a method of encoding video data in accordance 

with the techniques of this disclosure. The techniques of FIG. 11 will be described with 

respect to a generic video encoder. The generic video encoder may, for example, 

correspond to video encoder 20 of FIG. 6 or video encoder 21 of FIG. 8, although the 

techniques of FIG. 11 are not limited to any particular type of video encoder. The video 

encoder selects a chroma sampling format for the video data (220). In response to the 

chroma sampling format being a first chroma sampling format, the video encoder 

generates a syntax element to indicate if adaptive color transform is enabled (222). In 

response to the chroma sampling format being other than the first chroma sampling 

format, the video encoder encodes the video data without adaptive color transform 

(224). The first chroma sampling format may, for example, be a 4:4:4 chroma sampling 

format.

[0166] FIG. 12 shows an example of a method of decoding video data in accordance 

with the techniques of this disclosure. The techniques of FIG. 12 will be described with 

respect to a generic video decoder. The generic video decoder may, for example, 

correspond to video decoder 30 of FIG. 7 or video decoder 31 of FIG. 9, although the 

techniques of FIG. 12 are not limited to any particular type of video decoder. The 

generic video decoder may also correspond to a decoding loop of a video encoder, in 

some examples.

[0167] In the example of FIG. 12, the video decoder determines, based on a chroma 

sampling format for the video data, that adaptive color transform is enabled for one or 

more blocks of the video data (230). The video decoder may, for example, determine 

that adaptive color transform is enabled for one or more blocks of the video data by 

determining the chroma sampling format is a 4:4:4 sampling format. The video decoder 

may determine a quantization parameter for the one or more blocks based on 

determining that the adaptive color transform is enabled (232) and dequantize transform 

coefficients based on the determined quantization parameter (234).

[0168] The video decoder may also, for example, determine for one or more second 

blocks of the video data that a chroma sampling format for the video blocks is a chroma 

sampling format other than 4:4:4 and based on the chroma sampling format being other 

than 4:4:4, determining that adaptive color transform is disabled for the second one or 

more blocks. The video decoder may, for example, determine that adaptive color 

transform is disabled for the second one or more blocks without receiving a syntax 
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element other than the indication of the chroma sampling format, to indicate if adaptive 

color transform is disabled.

[0169] FIG. 13 shows an example of a method of encoding video data in accordance 

with the techniques of this disclosure. The techniques of FIG. 13 will be described with 

respect to a generic video encoder. The generic video encoder may, for example, 

correspond to video encoder 20 of FIG. 6 or video encoder 21 of FIG. 8, although the 

techniques of FIG. 13 are not limited to any particular type of video encoder. The video 

encoder determines for one or more blocks of the video data that adaptive color 

transform is used to encode the blocks (240). The video encoder determines a 

quantization parameter for a first color component of a first color space of the video 

data (242). The video encoder quantizes transform coefficients based on the 

quantization parameter (244). The video encoder generates for inclusion in a picture 

parameter set, one or more offset values that represent a difference between a 

quantization parameter for a first color component of a second color space of the video 

data and the quantization parameter for the first color component of the second color 

space of the video data (246).

[0170] FIG. 14 shows an example of a method of decoding video data in accordance 

with the techniques of this disclosure. The techniques of FIG. 14 will be described with 

respect to a generic video decoder. The generic video decoder may, for example, 

correspond to video decoder 30 of FIG. 7 or video decoder 31 of FIG. 9, although the 

techniques of FIG. 14 are not limited to any particular type of video decoder. In the 

example of FIG. 14, the video decoder determines for one or more blocks of the video 

data that adaptive color transform is enabled (250). In response to adaptive color 

transform being enabled, the video decoder receives in a picture parameter set, one or 

more offset values (252). The video decoder determines a quantization parameter for a 

first color component of a first color space based on a first of the one or more offset 

values (254) and dequantizes transform coefficients based on the modified quantization 

parameter (256). The one or more offset values may include an offset value for the first 

color component, an offset value for a second color component, and an offset value for a 

third color component.

[0171] The video decoder may determine a quantization parameter for a first color 

component of a second color space. To determine the quantization parameter for the 

first color component of the first color space based on the first of the one or more offset 

values, the video decoder may convert the quantization parameter for the first color 
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component of the second color space to the quantization parameter for the first color 

component of the first color space by adding the first of the one or more offset values to 

the quantization parameter for the first color component of the second color space. 

[0172] In one or more examples, the functions described may be implemented in 

hardware, software, firmware, or any combination thereof. If implemented in software, 

the functions may be stored on or transmitted over, as one or more instructions or code, 

a computer-readable medium and executed by a hardware-based processing unit. 

Computer-readable media may include computer-readable storage media, which 

corresponds to a tangible medium such as data storage media, or communication media 

including any medium that facilitates transfer of a computer program from one place to 

another, e.g., according to a communication protocol. In this manner, computer- 

readable media generally may correspond to (1) tangible computer-readable storage 

media which is non-transitory or (2) a communication medium such as a signal or 

carrier wave. Data storage media may be any available media that can be accessed by 

one or more computers or one or more processors to retrieve instructions, code and/or 

data structures for implementation of the techniques described in this disclosure. A 

computer program product may include a computer-readable medium.

[0173] By way of example, and not limitation, such computer-readable storage media 

can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic 

disk storage, or other magnetic storage devices, flash memory, or any other medium that 

can be used to store desired program code in the form of instructions or data structures 

and that can be accessed by a computer. Also, any connection is properly termed a 

computer-readable medium. For example, if instructions are transmitted from a 

website, server, or other remote source using a coaxial cable, fiber optic cable, twisted 

pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and 

microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless 

technologies such as infrared, radio, and microwave are included in the definition of 

medium. It should be understood, however, that computer-readable storage media and 

data storage media do not include connections, carrier waves, signals, or other transient 

media, but are instead directed to non-transient, tangible storage media. Disk and disc, 

as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc 

(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically, 

while discs reproduce data optically with lasers. Combinations of the above should also 

be included within the scope of computer-readable media.
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[0174] Instructions may be executed by one or more processors, such as one or more 

DSPs, general purpose microprocessors, ASICs, FPGAs, or other equivalent integrated 

or discrete logic circuitry. Accordingly, the term “processor,” as used herein may refer 

to any of the foregoing structure or any other structure suitable for implementation of 

the techniques described herein. In addition, in some aspects, the functionality 

described herein may be provided within dedicated hardware and/or software modules 

configured for encoding and decoding, or incorporated in a combined codec. Also, the 

techniques could be fully implemented in one or more circuits or logic elements.

[0175] The techniques of this disclosure may be implemented in a wide variety of 

devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of 

ICs (e.g., a chip set). Various components, modules, or units are described in this 

disclosure to emphasize functional aspects of devices configured to perform the 

disclosed techniques, but do not necessarily require realization by different hardware 

units. Rather, as described above, various units may be combined in a codec hardware 

unit or provided by a collection of interoperative hardware units, including one or more 

processors as described above, in conjunction with suitable software and/or firmware. 

[0176] Various examples have been described. These and other examples are within 

the scope of the following claims.

[0177] It will be understood that the term “comprise” and any of its derivatives (e.g., 

comprises, comprising) as used in this specification is to be taken to be inclusive of 

features to which it refers, and is not meant to exclude the presence of any additional 

features unless otherwise stated or implied.

[0178] The reference to any prior art in this specification is not, and should not be taken 

as, an acknowledgement or any form of suggestion that such prior art forms part of the 

common general knowledge.
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CLAIMS

1. A method of decoding video data, the method comprising:

receiving an offset value in the video data;

determining for one or more blocks of the video data that adaptive color 

transform is enabled;

determining a red, green, and blue (RGB)-color space quantization parameter for 

the one or more blocks, wherein determining the RGB-color space quantization 

parameter comprises adding the offset value to a luma-chroma (YCbCr)-color space 

quantization parameter;

in response to a value of the RGB-color space quantization parameter being 

below a threshold, modifying the RGB-color space quantization parameter to determine 

a modified RGB-color space quantization parameter; and

dequantizing transform coefficients of a block from the one or more blocks 

based on the modified RGB-color space quantization parameter.

2. The method of claim 1, wherein determining for the one or more blocks of the 

video data that adaptive color transform is enabled comprises determining a chroma 

format for the video data.

3. The method of claim 2, wherein determining for the one or more blocks of the 

video data that adaptive color transform is enabled comprises:

in response to determining a chroma format for the one or more blocks of the 

video data is 4:4:4, determining that adaptive color transform is enabled for the one or 

more blocks.

4. The method of claim 2, further comprising:

for one or more additional blocks, in response to determining a chroma format of 

the one or more additional blocks is other than 4:4:4, determining that adaptive color 

transform is disabled for the one or more additional blocks.

5. The method of claim 1, wherein determining for the one or more blocks of the 

video data that adaptive color transform is enabled comprises parsing a syntax element
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in the video data, wherein the syntax element indicates if adaptive color transform is 

enabled.

6. The method of claim 5 wherein the syntax element is signalled in a picture 

parameter set (PPS).

7. The method of claim 1, wherein the threshold is zero and wherein a value of the 

modified quantization parameter is greater than or equal to zero.

8. The method of claim 1, wherein the modified RGB-color space quantization 

parameter is less than or equal to 51 plus the offset value.

9. The method of claim 1, further comprising:

receiving the video data at a receiver of a wireless communication device; 

storing the video data in a memory of the wireless communication device; and 

processing the video data on one or more processors of the wireless 

communication device.

10. The method of claim 1, further comprising:

receiving a flag indicating the offset value is to be added to the quantization 

parameter.

11. The method of claim 1, further comprising:

based on the dequantized transform coefficients, determining a residual block 

for the video data;

determining a predictive block;

adding the residual block to a predictive block to determine a reconstructed 

block of video data.

12. The method of claim 1, wherein the method of decoding the video data is 

performed as part of a video encoding process.

13. A device for decoding video data, the device comprising:

a video data memory;
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one or more processors configured to perform a method according to any one of 

claims 1 to 12.

14. The device of claim 13, wherein the device comprises a wireless communication 

device, the device further comprising a receiver configured to receive the video data.

15. The device of claim 14, wherein the wireless communication device comprises a 

telephone handset and wherein the receiver is configured to demodulate, according to a 

wireless communication standard, a signal comprising the video data.

16. The device of claim 13, where the one or more processors are further configured 

to decode the video data, and wherein the device further comprises a display configured 

to display the decoded video data.

17. The device of claim 13, where the one or more processors are further configured 

to encode the video data, and wherein the device further comprises a camera configured 

to acquire the video data.

18. An apparatus for decoding video data, the apparatus comprising:

means for receiving an offset value in the video data;

means for determining for one or more blocks of the video data that adaptive 

color transform is enabled;

means for determining a red, green, and blue (RGB)-color space quantization 

parameter for the one or more blocks, wherein determining the RGB-color space 

quantization parameter comprises adding the offset value to a luma-chroma (YCbCr)- 

color space quantization parameter;

means for modifying the RGB-color space quantization parameter to determine a 

modified RGB-color space quantization parameter in response to a value of the RGB- 

color space quantization parameter being below a threshold; and

means for dequantizing transform coefficients of a block from the one or more 

blocks based on the modified RGB-color space quantization parameter.

19. A non-transitory computer-readable storage medium storing instructions that 

when executed by one or more processors cause the one or more processors to:
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receive in the video data an offset value;

determine for one or more blocks of the video data that adaptive color transform 

is enabled;

determine a red, green, and blue (RGB)-color space quantization parameter for 

the one or more blocks, wherein determining the RGB-color space quantization 

parameter comprises adding the offset value to a luma-chroma (YCbCr)-color space 

quantization parameter;

modify the RGB-color space quantization parameter to determine a modified 

RGB-color space quantization parameter in response to a value of the RGB-color space 

quantization parameter being below a threshold; and

dequantize transform coefficients of a block from the one or more blocks based 

on the modified RGB-color space quantization parameter.
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