wo 2014/186057 A 1[I NI NPFV0 000 0O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/186057 Al

(51

eay)

20 November 2014 (20.11.2014) WIPO I PCT
International Patent Classification: (81)
GO6F 19/00 (2011.01)

International Application Number:
PCT/US2014/031919

(22)

(25)
(26)
(30)

1

(72

74

International Filing Date:
26 March 2014 (26.03.2014)

Filing Language: English
Publication Language: English
Priority Data:

61/824,544 17 May 2013 (17.05.2013) US
61/843,203 5 July 2013 (05.07.2013) US
14/044,429 2 October 2013 (02.10.2013) US

Applicant: ORACLE INTERNATIONAL CORPORA-
TION [US/US]; 500 Oracle Parkway, Redwood Shores,
California 94065 (US).

Inventors: ALLAN, David; 1112 Blackfield Way, Moun-
tain View, California 94040 (US). LAU, Kwok-hung
(Thomas); 1070 Mercedes Avenue, #25, Los Altos, Cali-
fornia 94022 (US). GONG, Yu (Jeff); 4 Muirfield Road,
Half Moon Bay, California 94065 (US).

Agents: PARMENTER, Sean et al.; Kilpatrick Townsend
& Stockton LLP, Eighth Floor, Two Embarcadero Center,
San Francisco, California 94111 (US).

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: SUPPORTING COMBINATION OF FLOW BASED ETL AND ENTITY RELATIONSHIP BASED ETL

/ 1600
SRC_EMP
1610
J TGT_EMPDEPT
SRC_DEPT 1640 1830
1620 1820\ ATTR1
ATTR2
ATTE3
1810 ATTE4
ya ATTE5
ATTR1
ATTR2 1830
ATTR3 AN
ATTRA1
ATTR2
1840 FIG. 18

(57) Abstract: A data integration system is disclosed that incorporates one or more techniques for eases the design and maintenance
of a mapping. As components are added to an existing design, the data integration system removes the need to specify all input and
output attributes. In one aspect, components types are implement that allow entity relationships to be added and/or edited in a flow
view of a logical design. Therefore, attributes of components representing datasets can be added and propagated to downstream com -
ponents with minimal effort on the part of a map designer.

10

15

20

WO 2014/186057 PCT/US2014/031919

SUPPORTING COMBINATION OF FLOW BASED ETL AND ENTITY
RELATIONSHIP BASED ETL

BACKGROUND OF THE INVENTION
[0001] In today's increasingly fast-paced business environment, organizations need to use
more specialized software applications. Additionally, organizations need to ensure the
coexistence of these applications on heterogencous hardware platforms and systems and

guarantee the ability to share data between applications and systems.

[0002] Accordingly, what is desired is to solve problems relating to developing data
integration scenarios, some of which may be discussed herein. Additionally, what is desired is to
reduce drawbacks relating to developing data integration scenarios, some of which may be

discussed herein.

BRIEF SUMMARY OF THE INVENTION

[0003] The following portion of this disclosure presents a simplified summary of one or more
innovations, embodiments, and/or examples found within this disclosure for at least the purpose
of providing a basic understanding of the subject matter. This summary does not attempt to
provide an extensive overview of any particular embodiment or example. Additionally, this
summary is not intended to identify key/critical elements of an embodiment or example or to
delineate the scope of the subject matter of this disclosure. Accordingly, one purpose of this
summary may be to present some innovations, embodiments, and/or examples found within this

disclosure in a simplified form as a prelude to a more detailed description presented later.

[0004] In various embodiments, a data integration system enables users to create a logical
design which is platform and technology independent. The user can create a logical design that
defines, at a high level, how a user wants data to flow between sources and targets. The tool can
analyze the logical design, in view of the user’s infrastructure, and create a physical design. The

logical design can include a plurality of components corresponding to each source and target in

WO 2014/186057 PCT/US2014/031919

the design, as well as operations such as joins or filters, and access points. Each component
when transferred to the physical design generates code to perform operations on the data.
Depending on the underlying technology (e.g., SQL Server, Oracle, Hadoop, etc.) and the
language used (SQL, pig, etc.) the code generated by each component may be different.

[0005] In one aspect, a user of data integration system is not required to specify all data
attributes at ecach component in the logical design, from start to end. The data integration system
provides a plurality of component types, such as projector and selector types, that avoid the need
to fully declare the information that flows through the logical design. The data integration
system is able to decide what attributes are needed at operations represented by predetermined
component types. This simplifies both the design and maintenance. In various aspects, data
transformation and migration is provided that leverages existing RDBMS resources and
capabilities to avoid the need for a separate proprictary ETL server to achieve improved

performance.

[0006] In one embodiment, a method facilitating generation of a data mapping includes
receiving information specifying a set of entity relationships as a component of the logical
design. An equivalent data flow model is determined based on the set of entity relationships.
Information is then generated indicative of the equivalent data flow model in the logical flow
design. One or more attributes of a dataset representing the set of entity relationships may be

derived based on information declaring relationships between attributes of data sources.

[0007] In further embodiments, information may be received specifying one or more
components of the logical design that includes information indicative of an operation that
changes shape of the information flowing through the logical design. Information may be
received specifying one or more components of the logical design that includes information
indicative of an operation that controls the flow of information flowing through the logical
design but does not change shape of the information flowing through the logical design.
Information may be received specifying one or more components of the logical design that
includes information indicative of a target component having one or more attributes of data to be
stored in a target datastore.

[0008] In one aspect, generating the information indicative of the equivalent data flow model

in the logical flow design may include exporting a list of attributes to a downstream component.

10

15

20

25

WO 2014/186057 PCT/US2014/031919

In another, a change in the logical design may be received through the introduction of one or

more relationships. An updated equivalent data flow model may then be determined.

[0009] In one embodiment, a non-transitory computer-readable medium storing computer-
executable code for facilitating generation of a data mapping includes code for receiving
information specifying a set of entity relationships as a component of the logical design, code for
determining an equivalent data flow model based on the set of entity relationships, and code for

generating information indicative of the equivalent data flow model in the logical flow design.

[0010] In a further embodiment, a system facilitating generation of a data mapping includes a
processor and a memory storing instructions which when executed by the processor configure
the processor to receive information specifying a set of entity relationships as a component of the
logical design, determine an equivalent data flow model based on the set of entity relationships,

and generate information indicative of the equivalent data flow model in the logical flow design.

[0011] In one embodiment, a system facilitating generation of a data mapping includes a
receiving unit configured to receive information specifying a set of entity relationships as a
component of the logical design; a determining unit configured to determine an equivalent data
flow model based on the set of entity relationships; and a generating unit configured to generate

information indicative of the equivalent data flow model in the logical flow design.

[0012] In one aspect, the system further may include a deriving unit configured to derive one
or more attributes of a dataset representing the set of entity relationships based on information
declaring relationships between attributes of data sources. In one aspect, the receiving unit is
further configured to receive information specifying one or more components of the logical
design that includes information indicative of an operation that changes shape of the information
flowing through the logical design. In one aspect, the receiving unit is further configured to
receive information specifying one or more components of the logical design that includes
information indicative of an operation that controls the flow of information flowing through the

logical design but does not change shape of the information flowing through the logical design.

[0013] In one aspect, the receiving unit is further configured to receive information specifying
one or more components of the logical design that includes information indicative of a target

component having one or more attributes of data to be stored in a target data store. In one

10

15

20

25

30

WO 2014/186057 PCT/US2014/031919

aspect, the generating unit comprises an exporting unit configured to export a list of attributes to
a downstream component. In one aspect, the receiving unit is further configured to receive a
change in the logical design through the introduction of one or more relationships; and the

determining unit is further configured to determine an updated equivalent data flow model.

[0014] In one embodiment, a system facilitating generation of a data mapping includes means
for receiving information specifying a set of entity relationships as a component of the logical
design; means for determining an equivalent data flow model based on the set of entity
relationships; and means for generating information indicative of the equivalent data flow model
in the logical flow design. In one aspect, the system further comprises means for deriving one or
more attributes of a dataset representing the set of entity relationships based on information

declaring relationships between attributes of data sources.

[0015] In another aspect, the system further comprises means for receiving information
specifying one or more components of the logical design that includes information indicative of
an operation that changes shape of the information flowing through the logical design. In
another aspect, the system further comprises means for receiving information specifying one or
more components of the logical design that includes information indicative of an operation that
controls the flow of information flowing through the logical design but does not change shape of

the information flowing through the logical design.

[0016] In another aspect, the system further comprises means for receiving information
specifying one or more components of the logical design that includes information indicative of a
target component having one or more attributes of data to be stored in a target datastore. In
another aspect, means for generating the information indicative of the equivalent data flow
model in the logical flow design comprises means for exporting a list of attributes to a
downstream component. In another aspect, the system further comprises means for receiving a
change in the logical design through the introduction of one or more relationships; and means for

determining an updated equivalent data flow model.

[0017] A further understanding of the nature of and equivalents to the subject matter of this
disclosure (as well as any inherent or express advantages and improvements provided) should be
realized in addition to the above section by reference to the remaining portions of this disclosure,

any accompanying drawings, and the claims.

10

15

20

25

WO 2014/186057 PCT/US2014/031919

BRIEF DESCRIPTION OF THE DRAWINGS
[0018] In order to reasonably describe and illustrate those innovations, embodiments, and/or
examples found within this disclosure, reference may be made to one or more accompanying
drawings. The additional details or examples used to describe the one or more accompanying
drawings should not be considered as limitations to the scope of any of the claimed inventions,
any of the presently described embodiments and/or examples, or the presently understood best

mode of any innovations presented within this disclosure.

[0019] FIG. 1 is a simplified illustration of a system that may incorporate an embodiment of

the present invention.

[0020] FIG. 2 is a block diagram of a data integration system according to an embodiment of

the present invention.

[0021] FIG. 3 is a simplified block diagram of a hardware/software stack that may be used to

implement a data integration system according to an embodiment of the present invention.

[0022] FIG. 4 is a block diagram of an environment having various heterogencous data sources
for which data integration scenarios may be created in various embodiments of the present

invention.

[0023] FIGS. 5A and 5B depict simplified data flows in conventional data integration

processing that may be performed by the data integration system.

[0024] FIGS. 6A and 6B depict simplified data flows in next generation data integration
processing that may be performed by the data integration system, in accordance with an

embodiment of the present invention.

[0025] FIG. 7 is a simplified block diagram of interactions between an ODI Studio and a

repository of the data integration system in one embodiment according to the present invention.

[0026] FIG. 8 depicts a flowchart of a method for creating a data integration scenario in

accordance with an embodiment of the present invention.

[0027] FIG. 9 are a screenshot of a user interface for creating data integration scenarios in

accordance with an embodiment of the present invention.

10

15

20

25

WO 2014/186057 PCT/US2014/031919

[0028] FIG. 10 depicts a flowchart of a method for creating a mapping in accordance with an

embodiment of the present invention.

[0029] FIG. 11 is a screenshot of a user interface for providing mapping information in data

integration scenarios in accordance with an embodiment of the present invention.

[0030] FIG. 12 is a screenshot of a user interface for providing flow information in data

integration scenarios in accordance with an embodiment of the present invention.

[0031] FIG. 13 depicts a flowchart of a method for creating a package in accordance with an

embodiment of the present invention.

[0032] FIG. 14 is a screenshot of a user interface for providing package sequence information

in a data integration scenario in accordance with an embodiment of the present invention.

[0033] FIG. 15 depicts a flowchart of a method for deploying a data integration scenario in

accordance with an embodiment of the present invention.

[0034] FIG. 16 is a simplified block diagram of a combined flow-based and entity-based

mapping in one embodiment according to the present invention.

[0035] FIG. 17 depicts a flowchart of a method for generating a combined flow-based and

entity-based mapping in accordance with an embodiment of the present invention.

[0036] FIG. 18 is a simplified block diagram of the mapping of FIG. 16 with a dataset view in

one embodiment according to the present invention.

[0037] FIGS. 19A and 19B are simplified block diagrams of logical and physical designs for a
combined flow-based and entity-based mapping in one embodiment according to the present

invention.

[0038] FIG. 20 depicts a flowchart of a method for generating a physical design of a combined
flow-based and entity-based mapping in accordance with an embodiment of the present

invention.

[0039] FIG. 21 is an illustration depicting relationships between static E-R and dynamic ETL

models.

10

15

20

25

WO 2014/186057 PCT/US2014/031919

[0040] FIG. 22 is an illustration providing a top-level design chart of an automatic conversion

system in one embodiment.
[0041] FIGS. 23A and 23B illustrate three-way relationships in two popular E-R notations.

[0042] FIGS. 24A and 24B illustrate an equivalent to the three-way relationships in two

popular E-R notations.

[0043] FIG. 25 illustrates an equivalent to the three-way relationship using a series of binary

relationships.
[0044] FIG. 26 illustrates three-way relationships using the standard E-R notation.
[0045] FIG. 27 depicts the rows in each table created for the entities in FIG. 26.

[0046] FIGS. 28A and 28B illustrate a three-way relationship in E-R notation and a data flow

with data originating from the three entities in one embodiment.

[0047] FIG. 29 depicts a diagram that lays out relationships among various database modeling

methods and their semantic contents.

[0048] FIG. 30 is a simplified block diagram of a computer system that may be used to

practice embodiments of the present invention.

[0049] FIG. 31 is a simplified block diagram of a system for facilitating generation of a data

mapping in accordance with an embodiment of the present invention

DETAILED DESCRIPTION OF THE INVENTION
[0050] Introduction

[0051] In various embodiments, a data integration system enables users to create a logical
design which is platform and technology independent. The user can create a logical design that
defines, at a high level, how a user wants data to flow between sources and targets. The tool can
analyze the logical design, in view of the user’s infrastructure, and create a physical design. The
logical design can include a plurality of components corresponding to each source and target in
the design, as well as operations such as joins or filters, and access points. Each component

when transferred to the physical design generates code to perform operations on the data.

10

15

20

25

WO 2014/186057 PCT/US2014/031919

Depending on the underlying technology (e.g., SQL Server, Oracle, Hadoop, etc.) and the
language used (SQL, pig, etc.) the code generated by each component may be different.

[0052] In one aspect, a user of data integration system is not required to specify all data
attributes at ecach component in the logical design, from start to end. The data integration system
provides a plurality of component types, such as projector and selector types, that avoid the need
to fully declare the information that flows through the logical design. The data integration
system is able to decide what attributes are needed at operations represented by predetermined

component types. This simplifies both the design and maintenance.

[0053] FIG. 1 is a simplified illustration of system 100 that may incorporate an embodiment or
be incorporated into an embodiment of any of the innovations, embodiments, and/or examples
found within this disclosure. FIG. 1 is merely illustrative of an embodiment incorporating the
present invention and does not limit the scope of the invention as recited in the claims. One of

ordinary skill in the art would recognize other variations, modifications, and alternatives.

[0054] In one embodiment, system 100 includes one or more user computers 110 (e.g.,
computers 110A, 110B, and 110C). User computers 110 can be general purpose personal
computers (including, merely by way of example, personal computers and/or laptop computers
running any appropriate flavor of Microsoft Corp.’s WindowsTM and/or Apple Corp.’s
MacintoshTM operating systems) and/or workstation computers running any of a variety of
commercially-available UNIXTM or UNIX-like operating systems. These user computers 110
can also have any of a variety of applications, including one or more applications configured to
perform methods of the invention, as well as one or more office applications, database client

and/or server applications, and web browser applications.

[0055] Alternatively, user computers 110 can be any other electronic device, such as a thin-
client computer, Internet-enabled mobile telephone, and/or personal digital assistant, capable of
communicating via a network (e.g., communications network 120 described below) and/or
displaying and navigating web pages or other types of electronic documents. Although the
exemplary system 100 is shown with three user computers, any number of user computers or

devices can be supported.

10

15

20

25

30

WO 2014/186057 PCT/US2014/031919

[0056] Certain embodiments of the invention operate in a networked environment, which can
include communications network 120. Communications network 120 can be any type of
network familiar to those skilled in the art that can support data communications using any of a
variety of commercially-available protocols, including without limitation TCP/IP, SNA, IPX,
AppleTalk, and the like. Merely by way of example, communications network 120 can be a
local area network (“LAN”), including without limitation an Ethernet network, a Token-Ring
network and/or the like; a wide-area network; a virtual network, including without limitation a
virtual private network (“VPN”); the Internet; an intranet; an extranet; a public switched
telephone network (“PSTN”); an infra-red network; a wireless network, including without
limitation a network operating under any of the IEEE 802.11 suite of protocols, the BluetoothTM
protocol known in the art, and/or any other wireless protocol; and/or any combination of these

and/or other networks.

[0057] Embodiments of the invention can include one or more server computers 130 (e.g.,
computers 130A and 130B). Each of server computers 130 may be configured with an operating
system including without limitation any of those discussed above, as well as any commercially-
available server operating systems. Each of server computers 130 may also be running one or
more applications, which can be configured to provide services to one or more clients (e.g., user

computers 110) and/or other servers (e.g., server computers 130).

[0058] Merely by way of example, one of server computers 130 may be a web server, which
can be used, merely by way of example, to process requests for web pages or other electronic
documents from user computers 110. The web server can also run a variety of server
applications, including HTTP servers, FTP servers, CGI servers, database servers, Java servers,
and the like. In some embodiments of the invention, the web server may be configured to serve
web pages that can be operated within a web browser on one or more of the user computers 110

to perform methods of the invention.

[0059] Server computers 130, in some embodiments, might include one or more file and
or/application servers, which can include one or more applications accessible by a client running
on one or more of user computers 110 and/or other server computers 130. Merely by way of
example, one or more of server computers 130 can be one or more general purpose computers

capable of executing programs or scripts in response to user computers 110 and/or other server

10

15

20

25

30

WO 2014/186057 PCT/US2014/031919

computers 130, including without limitation web applications (which might, in some cases, be

configured to perform methods of the invention).

[0060] Merely by way of example, a web application can be implemented as one or more
scripts or programs written in any programming language, such as Java, C, or C++, and/or any
scripting language, such as Perl, Python, or TCL, as well as combinations of any
programming/scripting languages. The application server(s) can also include database servers,
including without limitation those commercially available from Oracle, Microsoft, IBM and the
like, which can process requests from database clients running on one of user computers 110

and/or another of server computers 130.

[0061] In some embodiments, an application server can create web pages dynamically for
displaying the information in accordance with embodiments of the invention. Data provided by
an application server may be formatted as web pages (comprising HTML, XML, Javascript,
AJAX, etc., for example) and/or may be forwarded to one of user computers 110 via a web
server (as described above, for example). Similarly, a web server might receive web page
requests and/or input data from one of user computers 110 and/or forward the web page requests

and/or input data to an application server.

[0062] In accordance with further embodiments, one or more of server computers 130 can
function as a file server and/or can include one or more of the files necessary to implement
methods of the invention incorporated by an application running on one of user computers 110
and/or another of server computers 130. Alternatively, as those skilled in the art will appreciate,
a file server can include all necessary files, allowing such an application to be invoked remotely
by one or more of user computers 110 and/or server computers 130. It should be noted that the
functions described with respect to various servers herein (e.g., application server, database
server, web server, file server, etc.) can be performed by a single server and/or a plurality of

specialized servers, depending on implementation-specific needs and parameters.

[0063] In certain embodiments, system 100 can include one or more databases 140 (e.g.,
databases 140A and 140B). The location of the database(s) 140 is discretionary: merely by way
of example, database 140A might reside on a storage medium local to (and/or resident in) server
computer 130A (and/or one or more of user computers 110). Alternatively, database 140B can

be remote from any or all of user computers 110 and server computers 130, so long as it can be

10

10

15

20

25

WO 2014/186057 PCT/US2014/031919

in communication (e.g., via communications network 120) with one or more of these. In a
particular set of embodiments, databases 140 can reside in a storage-area network (“SAN”)
familiar to those skilled in the art. (Likewise, any necessary files for performing the functions
attributed to user computers 110 and server computers 130 can be stored locally on the
respective computer and/or remotely, as appropriate). In one set of embodiments, one or more of
databases 140 can be a relational database that is adapted to store, update, and retrieve data in
response to SQL-formatted commands. Databases 140 might be controlled and/or maintained by

a database server, as described above, for example.
[0064] Data Integration Overview

[0065] FIG. 2 is a simplified block diagram of data integration system 200 according to an
embodiment of the present invention. FIG. 2 is a simplified illustration of data integration
system 200 that may incorporate various embodiments or implementations of the one or more
inventions presented within this disclosure. FIG. 2 is merely illustrative of an embodiment or
implementation of an invention disclosed herein should not limit the scope of any invention as
recited in the claims. One of ordinary skill in the art may recognize through this disclosure and
the teachings presented herein other variations, modifications, and/or alternatives to those

embodiments or implementations illustrated in the figures.

[0066] In this embodiment, data integration system 200 includes information sources 202,
information integration 204, and information destinations 206. In general, information flows
from information sources 202 to information integration 204 whereby the information may be
consumed, made available, or otherwise used by information destinations 206. Data flows may
be unidirectional or bidirectional. In some embodiments, one or more data flows may be present

in data integration system 200.

[0067] Information sources 202 are representative of one or more hardware and/or software
elements configured to source data. Information sources 202 may provide direct or indirect
access to the data. In this embodiment, information sources 202 include one or more

applications 208 and one or more repositories 210.

[0068] Applications 208 are representative of traditional applications, such as desktop, hosted,

web-based, or cloud-based applications. Applications 208 may be configured to receive,

11

10

15

20

25

30

WO 2014/186057 PCT/US2014/031919

process, and maintain data for one or more predetermined purposes. Some examples of
applications 208 include customer relationship management (CRM) applications, financial
services applications, government and risk compliance applications, human capital management
(HCM), procurement applications, supply chain management applications, project or portfolio
management applications, or the like. Applications 208 may include functionality configured for
manipulating and exporting application data in a variety of human-readable and machine-
readable formats, as is known in the art. Applications 208 may further access and store data in

repositories 210.

[0069] Repositories 210 are representative of hardware and/or software elements configured to
provide access to data. Repositories 210 may provide logical and/or physical partitioning of
data. Repositories 210 may further provide for reporting and data analysis. Some examples of
repositories 210 include databases, data warchouses, cloud storage, or the like. A repository may
include a central repository created by integrating data from one or more applications 208. Data
stored in repositories 210 may be uploaded from an operational system. The data may pass

through additional operations before being made available in a source.

[0070] Information integration 204 is representative of one or more hardware and/or software
elements configured to provide data integration services. Direct or indirect data integration
services can be provided in information integration 204. In this embodiment, information
integration 204 includes data migration 212, data warchousing 214, master data management
216, data synchronization 218, federation 220, and real-time messaging 222. It will be
understood that information integration 204 can include one or more modules, services, or other

additional elements than those shown in here that provide data integration functionality.

[0071] Data migration 212 is representative of one or more hardware and/or software elements
configured to provide data migration. In general, data migration 212 provides one or more
processes for transferring data between storage types, formats, or systems. Data migration 212
usually provides for manual or programmatic options to achieve a migration. In a data migration
procedure, data on or provided by one system is mapped to another system providing a design
for data extraction and data loading. A data migration may involve one or more phases, such a
design phase where one or more designs are created that relate data formats of a first system to

formats and requirements of a second system, a data extraction phase where data is read from the

12

10

15

20

25

30

WO 2014/186057 PCT/US2014/031919

first system, a data cleansing phase, and a data loading phase where data is written to the second
system. In some embodiments, a data migration may include a data verification phases to

determine whether data is accurately processed in any of the above phases.

[0072] Data warchousing 214 is representative of one or more hardware and/or software
elements configured to provide databases used for reporting and data analysis. A data warchouse
is typically viewed as a central repository of data which is created by integrating data from one
or more disparate sources. Data warchousing 214 may include the current storage of data as well
as storage of historical data. Data warchousing 214 may include typical extract, transform, load
(ETL)-based data warchouse whereby staging, data integration, and access layers house key
functions. In one example, a staging layer or staging database stores raw data extracted from
cach of one or more disparate source data systems. An integration layer integrates disparate data
sets by transforming the data from the staging layer often storing this transformed data in an
operational data store (ODS) database. The integrated data is then moved to yet another
database, often called the data warehouse database. The data can be arranged into hierarchical
groups (often called dimensions) and into facts and aggregate facts. An access layer may be
provided to help users or other systems retrieve data. Data warchouses can be subdivided into
data marts whereby each data mart stores subsets of data from a warechouse. In some
embodiments, data warchousing 214 may include business intelligence tools, tools to extract,

transform and load data into the repository, and tools to manage and retrieve metadata.

[0073] Master data management 216 is representative of one or more hardware and/or software
elements configured to manage a master copy of data. Master data management 216 may
include a set of processes, governance, policies, standards and tools that consistently define and
manage master data. Master data management 216 may include functionality for removing
duplicates, standardizing data, and incorporating rules to eliminate incorrect data from entering a
system in order to create an authoritative source of master data. Master data management 216
may provide processes for collecting, aggregating, matching, consolidating, quality-assuring,
persisting and distributing data throughout an organization to ensure consistency and control in

the ongoing maintenance and application use of information.

[0074] Data synchronization 218 is representative of one or more hardware and/or software

elements configured to synchronize data. Data synchronization 218 may provide for establishing

13

10

15

20

25

WO 2014/186057 PCT/US2014/031919

consistency among data from a source to a target and vice versa. Data synchronization 218 may

further provide for the continuous harmonization of the data over time.

[0075] Federation 220 is representative of one or more hardware and/or software elements
configured to consolidate a view of data from constituent sources. Federation 220 may
transparently map multiple autonomous database systems into a single federated database. The
constituent databases maybe interconnected via a computer network and may be geographically
decentralized. Federation 220 provides an alternative to merging several disparate databases. A
federated database, or virtual database, for example, may provide a composite of all constituent
databases. Federation 220 may not provide actual data integration in the constituent disparate

databases but only in the view.

[0076] Federation 220 may include functionality that provides a uniform user interface,
enabling users and clients to store and retrieve data in multiple noncontiguous databases with a
single query -- even if the constituent databases are heterogencous. Federation 220 may include
functionality to decompose a query into subqueries for submission to relevant constituent data
sources and composite the result sets of the subqueries. Federation 220 can include one or more
wrappers to the subqueries to translate them into appropriate query languages. In some
embodiments, federation 220 is a collection of autonomous components that make their data
available to other members of the federation through the publication of an export schema and

access operations.

[0077] Real-time messaging 222 is representative of one or more hardware and/or software
elements configured to provide messaging services subject to a real-time constraint (e.g.,
operational deadlines from event to system response). Real-time messaging 222 may include
functionality that guarantees an action or response within strict time constraints. In one example,
real-time messaging 222 may be tasked with taking some orders and customer data from one
database, combining it with some employee data held in a file, and then loading the integrated
data into a Microsoft SQL Server 2000 database. Because orders need to be analyzed as they
arrive, real-time messaging 222 may pass the orders through to a target database in as close to
real time as possible and extract only the new and changed data to keep the workload as small as

possible.

14

10

15

20

25

30

WO 2014/186057 PCT/US2014/031919

[0078] Information destinations 206 are representative of one or more hardware and/or
software elements configured to store or consume data. In this embodiment, information
destinations 206 may provide direct or indirect access to the data. In this embodiment,
information destinations 206 include one or more applications 224 and one or more repositories

226.

[0079] Applications 224 are representative of traditional applications, such as desktop, hosted,
web-based, or cloud-based applications. Applications 224 may be configured to receive,
process, and maintain data for one or more predetermined purposes. Some examples of
applications 224 include customer relationship management (CRM) applications, financial
services applications, government and risk compliance applications, human capital management
(HCM), procurement applications, supply chain management applications, project or portfolio
management applications, or the like. Applications 224 may include functionality configured for
manipulating and importing application data in a variety of human-readable and machine-
readable formats, as is known in the art. Applications 224 may further access and store data in

repositories 226.

[0080] Repositories 226 are representative of hardware and/or software elements configured to
provide access to data. Repositories 226 may provide logical and/or physical partitioning of
data. Repositories 226 may further provide for reporting and data analysis. Some examples of
repositories 226 include databases, data warchouses, cloud storage, or the like. A repository may
include a central repository created by integrating data from one or more applications 226. Data
stored in repositories 226 may be uploaded or imported through information integration 204.

The data may pass through additional operations before being made available at a destination.
[0081] Data Integration System

[0082] FIG. 3 is a simplified block diagram of a hardware/software stack that may be used to
implement data integration system 200 according to an embodiment of the present invention.
FIG. 3 is merely illustrative of an embodiment or implementation of an invention disclosed
herein should not limit the scope of any invention as recited in the claims. One of ordinary skill
in the art may recognize through this disclosure and the teachings presented herein other
variations, modifications, and/or alternatives to those embodiments or implementations

illustrated in the figures. One example of components found within data integration system 200

15

10

15

20

25

WO 2014/186057 PCT/US2014/031919

according to this embodiment may include ORACLE DATA INTEGRATOR, a member of the
ORACLE FUSION Middleware family of products provided by Oracle of Redwood Shores,
California. ORACLE DATA INTEGRATOR is a Java-based application that uses one or more
databases to perform set-based data integration tasks. In addition, ORACLE DATA
INTEGRATOR can extract data, provide transformed data through Web services and messages,
and create integration processes that respond to and create events in service-oriented
architectures. ORACLE DATA INTEGRATOR is based on an ELT [extract-Load and
Transform] architecture rather than conventional ETL [extract-transform-load] architectures. A
copy of a user manual for ORACLE DATA INTEGRATOR is attached to this disclosure and

incorporated herein by reference for all purposes.

[0083] In various embodiments, data integration system 200 provides a new declarative design
approach to defining data transformation and integration processes, resulting in faster and
simpler development and maintenance. Data integration system 200 thus separates declarative
rules from the implementation details. Data integration system 200 further provides a unique E-
LT architecture (Extract - Load Transform) for the execution of data transformation and
validation processes. This architecture in embodiments eliminates the need for a standalone ETL
server and proprietary engine. In some embodiments, data integration system 200 instead

leverages the inherent power of RDBMS engines.

[0084] In some embodiments, data integration system 200 integrates in one or more
middleware software packages, such as the ORACLE FUSION MIDDLEWARE platform and
becomes a component of the middleware stack. As depicted in FIG. 3 data integration system

200 may provide run-time components as Java EE applications.

[0085] In this example, one component of data integration system 200 is repositories 302.
Repositories 302 are representative of hardware and/or software elements configured to store
configuration information about an IT infrastructure, metadata of all applications, projects,
scenarios, and execution logs. In some aspects, multiple instances of repositories 302 can
coexist in an IT infrastructure, for example Development, QA, User, Acceptance, and
Production. Repositories 302 are configured to allow several separated environments that

exchange metadata and scenarios (for example: Development, Test, Maintenance and Production

16

10

15

20

25

30

WO 2014/186057 PCT/US2014/031919

environments). Repositories 302 further are configured to act as a version control system where

objects are archived and assigned a version number.

[0086] In this example, repositories 302 are composed of at least one master repository 304
and one or more work repositories 306. Objects developed or configured for use within data
integration system 200 may be stored in one of these repository types. In general, master
repository 304 stores the following information: security information including users, profiles
and rights, topology information including technologies, server definitions, schemas, contexts,
languages and so forth, and versioned and archived objects. The one or more work repositories

306 may contain actual developed objects.

[0087] Several work repositories may coexist in data integration system 200 (for example, to
have separate environments or to match a particular versioning life cycle). The one or more
work repositories 306 store information for models, including schema definition, data stores
structures and metadata, fields and columns definitions, data quality constraints, cross references,
data lineage, and so forth. The one or more work repositories 306 may further store projects,
including business rules, packages, procedures, folders, knowledge modules, variables and so
forth, and scenario execution, including scenarios, scheduling information and logs. In some
aspects, the one or more work repositories 306 may contain only execution information

(typically for production purposes), and be designated as an execution repository.

[0088] In various embodiments, repositories 302 store one or more ETL projects. An ETL
project defines or otherwise specifies one or more data models that model data attributes of data
in a source or target. An ETL project further provides for data quality control as well as defining
mappings to move and transform data. Data integrity control ensures the overall consistency of
the data. Application data is not always valid for the constraints and declarative rules imposed
by a particular source or target. For example, orders may be found with no customer, or order
lines with no product, and so forth. Data integration system 200 provides a working
environment to detect these constraint violations and to store them for recycling or reporting

purposes.

[0089] In some embodiments of data integration system 200, there are two different types of
controls: Static Control and Flow Control. Static Control implies the existence of rules that are

used to verify the integrity of application data. Some of these rules (referred to as constraints)

17

10

15

20

25

WO 2014/186057 PCT/US2014/031919

may already be implemented in data servers (using primary keys, reference constraints, etc.).
Data integration system 200 allows for the definition and checking of additional constraints,
without declaring them directly in a source. Flow Control relates to targets of transformation and
integration processes that implement their own declarative rules. Flow Control verifies an
application’s incoming data according to these constraints before loading the data into a target.

Flow control procedures are general referred to as mappings.

[0090] An ETL project can be automated into a package that can be deployed for execution in
a runtime environment. Accordingly, the automation of data integration flows is achieved by
sequencing the execution of the different steps (mappings, procedures, and so forth) in a package
and by producing a production scenario containing ready-to-use code for each of these steps. A
package is typically made up of a sequence of steps organized into an execution diagram.
Packages are the main objects used to generate scenarios for production. They represent the data
integration workflow and can perform jobs, such as for example: start a reverse-engineering
process on a datastore or a model, send an email to an administrator, download a file and unzip
it, define the order in which mappings must be executed, and define loops to iterate over

execution commands with changing parameters.

[0091] A scenario is designed to put a source component (mapping, package, procedure,
variable) into production. A scenario results from the generation of code (SQL, shell, and so
forth) for this component. Once generated, the code of the source component is frozen and the
scenario is stored inside repositories 302, such as one or more of work repositories 306. A

scenario can be exported and then imported into different production environments.

[0092] In various embodiments, data integration system 200 is organized around repositories
302 in a modular fashion accessed by Java graphical modules and scheduling agents. Graphical
modules can be used to design and build one or more integration processes stored in repositories
302. Administrators, Developers and Operators may use a development studio to access
repositories 302. Agents can be used to schedule and coordinate a set of integration tasks
associated with an integration process stored in repositories 302. For example, at runtime, an
agent deployed on a desktop, web services, or otherwise in communication with a source

coordinates the execution of one or more integration processes. The agent may retrieve code

18

10

15

20

25

30

WO 2014/186057 PCT/US2014/031919

stored in master repository 304, connect to various source and target systems, and orchestrate an

overall data integration process or scenario.

[0093] In this embodiment, data integration system 200 includes desktop 308 that may include
one or more of the above discussed graphical modules and/or agents. Desktop 308 is
representative of one or more desktop or workstation computing devices, such as personal
computers, laptops, netbooks, tablets, and the like. Desktop 308 includes a Java virtual machine
(JVM) 310 and Oracle Data Integrator (ODI) Studio 312. Java virtual machine JVM) 310 is a
virtual machine that can execute Java bytecode. JVM 310 is most often implemented to run on
an existing operating system, but can also be implemented to run directly on hardware. JVM 310
provides a run-time environment in which Java bytecode can be executed, enabling features such
as runtime web service (WS) 314 and agent 316. JVM 310 may include a Java Class Library, a
set of standard class libraries (in Java bytecode) that implement the Java application

programming interface (API), and other elements that form a Java Runtime Environment (JRE).

[0094] Agent 316 is configured to schedule and coordinate a set of integration tasks associated
with one or more integration processes stored in repositories 302. For example, at runtime, an
agent coordinates the execution of integration processes. The agent may retrieve code stored in
master repository 304, connect to various source and target systems, and orchestrate an overall

data integration process or scenario.

[0095] Referring again to FIG. 3, ODI Studio 312 includes hardware and/or software elements
configured to design data integration projects. In this example, ODI Studio 312 includes four
graphical modules or navigators that are used to create and manage data integration projects,
namely, designer module 318, operator module 320, topology module 322, and security module
324. Designer module 318 is a module configured to define data stores (tables, files, Web
services, and so on), data mappings, and packages (sets of integration steps, including
mappings). In various embodiments, designer module 318 defines declarative rules for data
transformation and data integrity. Accordingly, project development takes place in designer
module 318. Additionally, in designer module 318, is where database and application metadata
are imported and defined. Designer module 318, in one embodiment, uses metadata and rules to
generate data integration scenarios or load plans for production. In general, designer module 318

is used to design data integrity checks and to build transformations such as for example:

19

10

15

20

25

30

WO 2014/186057 PCT/US2014/031919

automatic reverse-engineering of existing applications or databases, graphical development and
maintenance of transformation and integration mappings, visualization of data flows in the

mappings, automatic documentation generation, and customization of generated code.

[0096] Operator module 320 is a module configured to view and manage production
integration jobs. Operator module 320, thus, manages and monitors data integration processes in
production and may show execution logs with error counts, the number of rows processed,
execution statistics, the actual code that is executed, and so on. At design time, developers can

also use operator module 320 for debugging purposes in connection with designer module 318.

[0097] Topology module 322 is a module configured to create and manage connections to
datasources and agents. Topology module 322 defines the physical and logical architecture of
the infrastructure. Infrastructure or projects administrators may register servers, database
schemas and catalogs, and agents in a master repository through topology module 322. Security

module 324 is a module configured to manage users and their repository privileges.

[0098] In general, a user or process interacts with designer module 318 to create a data
integration project having one or more data integration processes for sources and targets 326.
Each data integration process includes at least one data integration task. In some embodiments, a
data integration task is defined by a set of business rules indicative of what bit of data is to be
transformed and combined with other bits as well as technical specifics of how the data is
actually extracted, loaded, and so on. In preferred embodiments, a data integration task is
specified using a declarative approach to build data mappings. A mapping is an object that
populates one datastore, called the target, which data coming from one or more other datastores,
known as sources. In general, columns in the source datastore are linked to the columns in the
target datastore through mapping. A mapping can be added into a package as a package step. As
discussed above, a package defines a data integration job. A package is created under a project
and is made up of an organized sequence of steps, each of which can be a mapping or a

procedure. A package can have one entry point and multiple exit points.

[0099] In some embodiments, when creating a new mapping, a developer or technical business
user interacts with designer 318 to first define which data is integrated and which business rules
should be used. For example, the developer may specify what tables are to be joined, filters to

be applied, and SQL expressions to be used to transform data. The particular dialect of SQL that

20

10

15

20

25

WO 2014/186057 PCT/US2014/031919

is used is determined by the database platform on which the code is to be executed. Then, in a
separate step, technical staff can interact with designer 318 to choose the most efficient way to
extract, combine, and then integrate this data. For example, the technical staff may use database-
specific tools and design techniques such as incremental loads, bulk-loading utilities, slowly

changing dimensions, and changed-data capture.

[0100] In this embodiment, mappings can be created for sources and targets 326. Sources and
targets 326 may include one or more legacy applications 328, one or more files/XML documents
330, one or more applications 332, one or more data warchouses (DW), business intelligence
(BI) tools and applications, and enterprise process management (EPM) tools and applications

334, and one or more JVMs 336 (including runtime web service 340 and agent 342).

[0101] FIG. 4 is a block diagram of environment 400 having various heterogeneous data
sources for which data integration scenarios may be created in various embodiments of the
present invention. In this example, environment 400 includes ODI Studio 312 and repositories
302. Repositories 302 contain all of the metadata required to generate integration scenarios 400.
A user or process interacts with ODI Studio 312 to create integration scenarios 400 using data

integrity controls 402 and declarative rules 404.

[0102] Orders application 406 is representative of an application for tracking customer orders.
An “Orders Application” data model is created to represent data stored in Orders application 406
as well as any data integrity controls or conditions. For example, the “Orders Application” data
model may be based on a Hyper Structured Query Language (HSQL) interface and include five
datastores, SRC_CITY, SRC_CUSTOMER, SRC_ORDERS, SRC_ORDER_LINES,

SRC _PRODUCT, and SRC_REGION.

[0103] Parameter file 408 is representative of a flat file (e.g., ASCII) issued from a production
system containing a list of sales representatives and the segmentation of ages into age ranges. In
this example, a “Parameter” data model is created to represent the data in the flat file. For
example, the “Parameter” data model may be based on a file interface and include two

datastores, SRC_SALES PERSON and SRC_AGE_GROUP.

[0104] Sales administration application 410 is representative of an application for tracking

sales. The sales administration application 410 may be a data warchouse populated with

21

10

15

20

25

30

WO 2014/186057 PCT/US2014/031919

transformations of data from orders application 406 and parameter file 408. A “Sales
Administration” data model is created to represent data stored in sales administration application
410 as well as any data integrity controls or conditions or transformations. For example, the
“Sales Administration” data model may be based on a Hyper Structured Query Language
(HSQL) interface and include six datastores, TRG_CITY, TRG_COUNTRY,
TRG_CUSTOMER, TRG PRODUCT, TRG_PROD_FAMILY, TRG_REGION, and
TRG_SALE.

[0105] FIGS. 5A and 5B depict simplified data flows in conventional data integration
processing that may be performed by data integration system 200. In this example, data from
orders application 406, parameter file 408, and one or more other optional or additional sources
flow through a tradition ETL process targeted to sales administration application 410. Data
transforms occur in a separate ETL server 500. The scenario requires dedicated or proprictary

resources, results in poorer performance, and incurs high costs.

[0106] FIGS. 6A and 6B depict simplified data flows in next generation data integration
processing that may be performed by data integration system 200, in accordance with an
embodiment of the present invention. In this example, data from orders application 406,
parameter file 408, and one or more other optional or additional sources flow through E-L'T
process targeted to sales administration application 410. Data transforms leverage existing
resources resulting in higher performance and efficiency. As described above, prior ETL
systems required dedicated and/or proprietary infrastructure to perform data transforms. This
was done, in part, to accommodate unknown user infrastructures. For example, without knowing
what types of databases are being used, prior ETL systems were unable to anticipate what
transform operations would be available in a given system. However, this results in under-
utilized resources, such as the user’s existing databases and servers which are capable of
executing the appropriate data transforms without any dedicated and/or proprictary

infrastructure.

[0107] In accordance with an embodiment, the present invention leverages the user’s existing
infrastructure by enabling the user to customize a data integration process according to the user’s
particular needs. For example, when a data integration plan is designed, it can be divided into

discrete portions which are executable by a single system, referred to as execution units. Once a

22

10

15

20

25

30

WO 2014/186057 PCT/US2014/031919

data integration plan has been divided into a plurality of execution units, the user can be
presented with a physical plan based on the user’s infrastructure and system resources. This plan
can be further customized by the user to change which user systems execute which execution
units. For example, a user may be presented with a plan in which a join operation is executed on
a first database, and the user may customize the plan by moving the join operation to a second

database.

[0108] As shown in FIG. 6B, this results in an extract-load-transform (E-LT) architecture that
does not rely on a stand-alone transform server which characterized prior ETL systems. Instead,
as described above, data transforms can be performed on the user’s existing infrastructure. The
E-LT architecture provides users with greater flexibility while reducing costs associated with

acquiring and maintaining proprietary transform servers.

[0109] Referring again to FIG. 3, agents can be used to schedule and coordinate a set of
integration tasks associated with an integration process. For example, at runtime, an agent
coordinates the execution of integration processes. The agent may retrieve code stored in master
repository 304, connect to the various source and target systems and orchestrates an overall data
integration process or scenario. In various embodiments, there are two types of agents. In one
example, a standalone agent is installed on desktop 308, such as agent 316. In another example,
an application server agent can be deployed on application server 326 (such as a Java EE Agent
deployed on an Oracle WebLogic Server) and can benefit from the application server layer
features such as clustering for High Availability requirements. In yet another example, an agent

can be deployed on sources and targets 326, such as agent 342,

[0110] In this embodiment, data integration system 200 includes application server 344 that
may include one or more of the above discussed agents. Application server 344 is representative
of one or more application servers, web-servers, or hosted applications. In this example,
application server 344 includes FMW console 346, servlet container 348, web services container

350, and data sources connection pool 352.

[0111] FMW console 346 is representative of one or more hardware and/or software elements
configured to manage aspects of application server 344, such as information related to servlet
container 348, web services container 350, and data sources connection pool 334. For example,

FMW console 346 may be a browser-based, graphical user interface used to manage an Oracle

23

10

15

20

25

30

WO 2014/186057 PCT/US2014/031919

WebLogic Server domain. FMW console 346 may include functionality to configure, start, and
stop WebLogic Server instances, configure WebLogic Server clusters, configure WebLogic
Server services, such as database connectivity (JDBC) and messaging (JMS), configure security
parameters, including creating and managing users, groups, and roles, configure and deploy Java
EE applications, monitor server and application performance, view server and domain log files,
view application deployment descriptors, and edit selected run-time application deployment
descriptor elements. In some embodiments, FMW console 346 includes ODI plug-in 354
providing FMW console 346 with access to data integration processes in production and may
show execution logs with error counts, the number of rows processed, execution statistics, the

actual code that is executed, and so forth.

[0112] Servlet container 348 is representative of one or more hardware and/or software
elements configured to extend the capabilities of application server 344. Servlets are most often
used to process or store data that was submitted from an HTML form, provide dynamic content
such as the results of a database query, and manage state information that does not exist in the
stateless HTTP protocol, such as filling the articles into the shopping cart of the appropriate
customer. A servlet is typically a Java class in Java EE that conforms to the Java Servlet API, a
protocol by which a Java class may respond to requests. To deploy and run a servlet, servlet
container 348 is used as a component of a web server that interacts with servlets. Accordingly,
servlet container 348 may extend functionality provided by public web service 356 and data
services 358 of web services container 350 as well as access to data pools provided by data
sources connection pool 352. Servlet container 348 is also responsible for managing the
lifecycle of servlets, mapping a URL to a particular servlet and ensuring that the URL requester

has the correct access rights.

[0113] In this example, servlet container 348 includes Java EE application 360 associated with
ODI SDK 362, ODI console 364, and runtime web service 366 associated with Java EE agent
368. ODI SDK 362 provides a software development kit (SDK) for data integration and ETL
design. ODI SDK 362 enables automation of work that is common and very repetitive allowing

a user to script repetitive tasks.

[0114] ODI console 364 is a Java Enterprise Edition (Java EE) application that provides Web

access to repositories 302. ODI console 364 is configured to allow users to browse Design-Time

24

10

15

20

25

WO 2014/186057 PCT/US2014/031919

objects, including projects, models, and execution logs. ODI console 364 may allow users to
view flow maps, trace the source of all data, and even drill down to the field level to understand
the transformations used to build the data. In addition, end users can launch and monitor
scenario execution through ODI console 364. In one aspect, ODI console 364 provides
administrators with the ability to view and edit Topology objects such as Data Servers, Physical

and Logical Schemas as well as to manage repositories 302.
[0115] Data Scenario Design and Development

[0116] As discussed above, a scenario is designed to put a source component (mapping,
package, procedure, variable) into production. A scenario results from the generation of code
(SQL, shell, and so forth) for this component. A scenario can be exported and then imported into

different production environments.

[0117] FIG. 7 is a simplified block diagram of interactions between an ODI Studio and a
repository of the data integration system in one embodiment according to the present invention.
In the embodiment shown in FIG. 7, ODI Studio 312 of FIG. 3 uses metadata and rules to
generate data integration scenarios 700 for production. In general, designer module 318 is used
to design data integrity checks and to build transformations such as for example: automatic
reverse-engineering of existing applications or databases, graphical development and
maintenance of transformation and integration interfaces, visualization of data flows in the

interfaces, automatic documentation generation, and customization of generated code.

[0118] FIG. 8 depicts a flowchart of method 800 for creating a data integration scenario in
accordance with an embodiment of the present invention. Implementations of or processing in
method 800 depicted in FIG. 8 may be performed by software (e.g., instructions or code
modules) when executed by a central processing unit (CPU or processor) of a logic machine,
such as a computer system or information processing device, by hardware components of an
electronic device or application-specific integrated circuits, or by combinations of software and

hardware elements. Method 800 depicted in FIG. 8 begins in step 810.

[0119] In various embodiments, a user may initiate a session with designer module 318 of ODI
Studio 312 and connect to repositories 302. The user may interact with one or more user

interface features to create a new data integration project or select from existing data integration

25

10

15

20

25

WO 2014/186057 PCT/US2014/031919

projects stored in, for example, master repository 304. In general, designer module 318 is used
to manage metadata, to design data integrity checks, and to build transformations. In various
embodiments, the main objects handled through designer module 318 are models and projects.
Data models contain all of the metadata in a data source or target (e.g., tables, columns,
constraints, descriptions, cross-references, etc.). Projects contain all of the loading and

transformation rules for a source or target (e.g., mappings, procedures, variables, etc.).

[0120] In step 820, one or more data models are created. In step 830, one or more projects are
created. FIG. 9 is a screenshot of a user interface for creating a data integration scenario in
accordance with an embodiment of the present invention. In this example, navigation panel 910
displays information and includes functionality for interacting with data models. Navigation
panel 920 displays information and includes functionality for interacting with projects. As
discussed above, the user may not only create the data model, but also develop any data integrity
checks for the data in the data models. Additionally, the user may specify interfaces, procedures,
variables for projects that provide data integrity and transforms for the data in a flow that loads
data from a source into a target. In step 840, one or more data integration scenarios are

generated. FIG. 8 ends in step 850.

[0121] FIG. 10 depicts a flowchart of method 1000 for creating a mapping in accordance with
an embodiment of the present invention. Implementations of or processing in method 1000
depicted in FIG. 10 may be performed by software (e.g., instructions or code modules) when
executed by a central processing unit (CPU or processor) of a logic machine, such as a computer
system or information processing device, by hardware components of an electronic device or
application-specific integrated circuits, or by combinations of software and hardware elements.

Method 1000 depicted in FIG. 10 begins in step 1010.

[0122] In step 1020, target datastore information is received. For example, a user may interact
with one or more user interface features of designer module 318 to provide target datastore
information. In one embodiment, the user may drag and drop target datastore information
comprising one or more data models from navigation panel 910 onto a mapping or flow panel
that visually represents aspects of a selected data model and any associated transforms or data

integrity checks.

26

10

15

20

25

WO 2014/186057 PCT/US2014/031919

[0123] In step 1030, source datastore information is received. For example, a user may
interact with one or more user interface features of designer module 318 to provide source
datastore information. In one embodiment, the user may drag and drop source datastore
information comprising one or more data models from navigation panel 910 onto the same
mapping or flow panel of the target datastore information that visually represents aspects of a

selected data model and any associated transforms or data integrity checks.

[0124] In various embodiments, the source datastore information and the target data store
information may be composed of one or more data models and optionally operations. Some
examples of operations can include one or more data set operations (e.g., unions, joins,
intersections, etc.), data transformations, data filter operations, constraints, descriptions, cross-
references, integrity checks, or the like. In further embodiments, some of these operations may
be preconfigured and visually represented in designer module 318. In other embodiments,
custom operations may be provided allowing the user to specify logic, mappings, and the like

that implement an operation.

[0125] In step 1040, mapping information is received. For example, a user may interact with
one or more user interface features of designer module 318 to map the source datastore
information to the target datastore information. In one embodiment, the user may visually
connect attributes of data elements in the source datastore information with attributes of data
clements in the target datastore information. This may be done by matching column names of
tables in the source datastore information and the target datastore information. In further
embodiments, one or more automatic mapping techniques may be used to provide mapping

information.

[0126] FIG. 11 is a screenshot of a user interface for providing mapping information in a data
integration scenario in accordance with an embodiment of the present invention. In this
example, attributes of source datastore information in panel 1110 are mapped to attributes of

target datastore information in panel 1120.

[0127] Referring again to FIG. 10, in step 1050, data loading strategies are received. A data
loading strategy includes information on how the actual data from the source datastore

information is to be loaded during an extract phase. Data loading strategies can be defined in a

27

10

15

20

25

30

WO 2014/186057 PCT/US2014/031919

flow tab of designer 318. In some embodiments, a data loading strategy can be automatically

computed for a flow depending on a configuration of the mapping.

[0128] For example, one or more knowledge modules may be proposed for the flow. A
knowledge module (KM) is a component that implements reusable transformation and ELT
(extract, load, and transform) strategies across different technologies. In one aspect, knowledge
modules (KMs) are code templates. Each KM can be dedicated to an individual task in an
overall data integration process. The code in KMs appears in nearly the form that it will be
executed with substitution methods enabling it to be used generically by many different
integration jobs. The code that is generated and executed is derived from the declarative rules
and metadata defined in the designer module 318. One example of this is extracting data through
change data capture from Oracle Database 10g and loading the transformed data into a
partitioned fact table in Oracle Database 11g, or creating timestamp-based extracts from a

Microsoft SQL Server database and loading this data into a Teradata enterprise data warchouse.

[0129] The power of KMs lies in their reusability and flexibility—for example, a loading
strategy can be developed for one fact table and then the loading strategy can be applied to all
other fact tables. In one aspect, all mappings that use a given KM inherit any changes made to
the KM. In some embodiments, five different types of KMs are provided, each of them covering
one phase in a transformation process from source to target, such as an integration knowledge

module (IKM), a loading knowledge module (LKM), and a check knowledge module CKM.

[0130] Referring to FIG. 4, a user may define a way to retrieve the data from

SRC_AGE GROUP, SRC SALES PERSON files and from the SRC _CUSTOMER table in
environment 400. To define a loading strategies, a user may select a source set that corresponds
to the loading of the SRC_AGE GROUP file and select a LKM File to SQL to implement the
flow from a file to SQL. In one aspect, a LKM is in charge of loading source data from a remote

server to a staging area.

[0131] In step 1060, data integration strategies are received. After defining the loading phase,
the user defines a strategy to adopt for the integration of the loaded data into a target. To define
the integration strategies, the user may select a target object and select a IKM SQL Incremental

Update. An IKM is in charge of writing the final, transformed data to a target. When an IKM is

started, it assumes that all loading phases for remote servers have already carried out their tasks,

28

10

15

20

25

WO 2014/186057 PCT/US2014/031919

such as having all remote source data sets loaded by LKMs into a staging area, or the source

datastores are on the same data server as the staging area.

[0132] In step 1070, data control strategies are received. In general, a CKM is in charge of
checking that records of a data set are consistent with defined constraints. A CKM may be used
to maintain data integrity and participates in overall data quality initiative. A CKM can be used
in 2 ways. First, to check the consistency of existing data. This can be done on any datastore or
within interfaces. In this case, the data checked is the data currently in the datastore. In a second
case, data in the target datastore is checked after it is loaded. In this case, the CKM simulates the

constraints of the target datastore on the resulting flow prior to writing to the target.

[0133] FIG. 12 is a screenshot of a user interface for providing flow information in a data

integration scenario in accordance with an embodiment of the present invention.
[0134] In step 1080, an interface is generated. FIG. 10 ends in step 1090.
[0135] Data Integration Scenario Packages and Deployment

[0136] As discussed above, automation of data integration flows can be achieved in data
integration system 200 by sequencing the execution of the different steps (mappings, procedures,
and so forth) in a package and by producing a production scenario containing the ready-to-use
code for each of these steps. A package is made up of a sequence of steps organized into an
execution diagram. Packages are the main objects used to generate scenarios for production. A
scenario is designed to put a source component (mapping, package, procedure, variable) into
production. A scenario results from the generation of code (SQL, shell, and so forth) for this
component. A scenario can be exported and then imported into different production

environments.

[0137] FIG. 13 depicts a flowchart of a method for creating a package in accordance with an
embodiment of the present invention. Implementations of or processing in method 1300
depicted in FIG. 13 may be performed by software (e.g., instructions or code modules) when
executed by a central processing unit (CPU or processor) of a logic machine, such as a computer
system or information processing device, by hardware components of an electronic device or
application-specific integrated circuits, or by combinations of software and hardware elements.

Method 1300 depicted in FIG. 13 begins in step 1310.

29

10

15

20

25

WO 2014/186057 PCT/US2014/031919

[0138] In step 1320, package step information is received. Package step information includes
information identifying a step, elements, properties, components, and the like. In one example, a
user may interact with one or more user interface features of designer module 318 to create,
identify, or otherwise specify one or more steps for a package. In one embodiment, one or more
components are selected and placed on a diagram. These components appear as steps in the

package.

[0139] In step 1330, package step sequence information is received. Package step sequence
information includes information identifying an ordering for a step, dependencies, and the like.
Once steps are created, the steps are ordered or reordered into a data processing chain. In one
example, a user may interact with one or more user interface features of designer module 318 to
provide sequencing or ordering for one or more steps of a package. A data processing chain may
include a unique step defined as a first step. Generally, each step has one or more termination
states, such as success or failure. A step in some states, such as failure or success, can be
followed by another step or by the end of the package. In one aspect, in case of some states,
such as failure, sequence information may define a number of retries. In another aspect, a

package may have but several possible termination steps.

[0140] FIG. 14 is a screenshot of a user interface for providing package sequence information

in a data integration scenario in accordance with an embodiment of the present invention.
[0141] In step 1340, a package is generated. FIG. 13 ends in step 1350.

[0142] As discussed above, the automation of data integration flows can be achieved by
sequencing the execution of different steps (mappings, procedures, and so forth) in a package.
The package can then be produced for a production scenario containing the ready-to-use code for
cach of the package’s steps. In various embodiments, the package is deployed to run

automatically in a production environment.

[0143] FIG. 15 depicts a flowchart of method 1500 for deploying a data integration scenario in
accordance with an embodiment of the present invention. Implementations of or processing in
method 1500 depicted in FIG. 15 may be performed by software (e.g., instructions or code
modules) when executed by a central processing unit (CPU or processor) of a logic machine,

such as a computer system or information processing device, by hardware components of an

30

10

15

20

25

WO 2014/186057 PCT/US2014/031919

electronic device or application-specific integrated circuits, or by combinations of software and

hardware elements. Method 1500 depicted in FIG. 15 begins in step 1510.

[0144] In step 1520, an integration scenario is retrieved. In one embodiment, a package is
retrieved from repositories 302. In step 1530, the integration scenario is deployed to one or more
agents. In step 1540, the integration scenario is executed by the one or more agents. In one
aspect, the integration scenario can be executed in several ways, such as from ODI Studio 312,
from a command line, or from a web service. Scenario execution can be viewed and monitored,
for example, via operator module 320 and the like as discussed above. FIG. 15 ends in step

1550.
[0145] Combined Flow-based ETL and Entity Relationship-based ETL

[0146] In most data integration systems, a mapping requires an explicit definition of all input
and output attributes that form part of a map. In typical flow based ETL tools, connectors are
made at the attribute level. This results in a very concise mapping model. However, this also
generates a huge number of objects and makes constructing and maintaining maps cumbersome

due to the number of attribute level connectors.

[0147] In various embodiments, data integration system 200 incorporates one or more
techniques for easing the design and maintenance of a mapping. Components can be added to an
existing design simple without the need to specify all input and output attributes and allowing
component level connectors to be rerouted. In one aspect, a combination of datasets and flow
oriented design is provided to handle complexity along with change. Entity relationships can be
specified within a logical view of the design, thus allowing datastores, joins, filters and lookups

to be added or removed without requiring change to a map in general.

[0148] A dataset as used herein generally represents a data flow coming from a group of
datastores. Several datasets can be merged into an interface target datastore using operations,
such as set-based operators like Union and Intersect. In various embodiments, datasets can be
added, removed, and ordered in the logical view of a design. Accordingly, data integration
system 200 enables users to combine flow-based ETL and entity relationship-based ETL in a

single view. Therefore, data integration system 200 greatly eases the design and maintenance of

31

10

15

20

25

30

WO 2014/186057 PCT/US2014/031919

a mapping. Data integration system 200 further makes adding in components to an existing

design simple, typically just needing component level connectors to be rerouted.

[0149] FIG. 16 is a simplified block diagram of combined flow-based and entity-based
mapping 1600 in one embodiment according to the present invention. In this example, mapping
1600 includes component 1610 representing a data source SRC_EMP, dataset 1620 representing
a dataset DATASET, and component 1630 representing data target TGT _EMPDEPT. In order
to update data target TGT EMPDEPT, a join is needed for data source SRC_EMP and
DATASET. Component 1640 representing a JOIN is added to mapping 1600 that connects to
component 1610 and dataset 1620 as input and to component 1630 as output. Component 1640
is configured to provide a join expression, such has (SRC_EMP.DEPTNO =
DATASET.DEPTNO).

[0150] In traditional data integration systems, mapping 1600 requires an explicit definition of
all input and output attributes that form part of component 1640 representing the JOIN. In
contrast, in various embodiments, a map developer can define entity relationships in dataset 1620
to provide how columns of data target TGT EMPDEPT are populated directly from attributes of
data source SRC_EMP represented by component 1610 and attributes of DATASET represented
by dataset 1620 that flow through component 1640 and are thus visible to component 1630.

[0151] FIG. 17 depicts a flowchart of method 1700 for generating a combined flow-based and
entity-based mapping in accordance with an embodiment of the present invention.
Implementations of or processing in method 1700 depicted in FIG. 17 may be performed by
software (e.g., instructions or code modules) when executed by a central processing unit (CPU or
processor) of a logic machine, such as a computer system or information processing device, by
hardware components of an electronic device or application-specific integrated circuits, or by
combinations of software and hardware elements. Method 1700 depicted in FIG. 17 begins in

step 1710.

[0152] In step 1720, one or more components are received. As discussed above, some types of
components influence the shape of the data that flows through a map while other types of
components control the flow of the data but don’t fundamentally change the shape of the flow.

In step 1730, one or more datasets are received. For example, a map designer may add, edit, or

remove datasets from a design. A map designer may interact with a relationship editor to specify

32

10

15

20

25

WO 2014/186057 PCT/US2014/031919

entity relationships between various attributes in a dataset. In one aspect, data integration system
200 1s configured to extract defined entity relationships to determine the attributes that will be
exposed to downstream components of a design. In step 1740, a map is generated based on the
components and the datasets. In various embodiments, logical views and physical views of a
design can be updated to reflect changes to the components and datasets. In various aspects, data
integration system 200 automatically generates a physical design based on deriving relationships

in a flow’s dataset view. FIG. 17 ends in step 1750.

[0153] Data integration system 200 further makes adding in components and other datasets to
an existing design simple, typically just needing component level connectors to be rerouted. For
example, if a filter component were added into a design, changing component level connectors
would not require changes in attribute assignments of certain downstream components. In
another example, adding another dataset allows a map designer to specify or declare entity

relationships directly from within the design view of the map.

[0154] FIG. 18 is a simplified block diagram of mapping 1600 with a dataset view in one
embodiment according to the present invention. In this example, component 1620 includes one
or more entities 1810, 1820, and 1830. To add entity relationships into mapping 1600, a user
only needs to add or defined relationships between entity attributes, such as relationship 1840.
In various embodiments, such as change would not require changes to any downstream
assignments in mapping 1600 as the output attributes resulting from the one or more entity
relationships can be derived directly from the information provided in the design view. In
traditional flow tools, everything at the column level would need to be relinked by the

introduction of a new dataset.

[0155] FIGS. 19A and 19B are simplified block diagrams of logical and physical designs for a
combined flow-based and entity-based mapping in one embodiment according to the present
invention. In this example, view 1910 of FIG. 19A includes components A, B, and C
representing data sources and component T representing a data target in a flow view of a logical
design. Components A, B, and C are represented as a dataset that describes entity relationships
in as dataset view of a logical design. Therefore, the dataset has a declared set of attributes as

viewed from downstream components, such as component T that are described from entity

33

10

15

20

25

WO 2014/186057 PCT/US2014/031919

relationships defined by a map creator in the dataset view. Components J1 and J2 represent

logical operations between attributes of the components in the dataset view.

[0156] In this example, view 1920 of FIG. 19B includes components A, B, and C representing
data sources and component T representing a data target in a flow view of a physical design. A
set of attributes is derived from the entity relationships defined in the dataset view and used to

create the physical design.

[0157] FIG. 20 depicts a flowchart of method 2000 for generating a physical design of a
combined flow-based and entity-based mapping in accordance with an embodiment of the
present invention. Implementations of or processing in method 2000 depicted in FIG. 20 may be
performed by software (e.g., instructions or code modules) when executed by a central
processing unit (CPU or processor) of a logic machine, such as a computer system or information
processing device, by hardware components of an electronic device or application-specific
integrated circuits, or by combinations of software and hardware elements. Method 2000

depicted in FIG. 20 begins in step 2010.

[0158] In step 2020, a component definition is received. For example, a component definition
may include rules, operations, procedures, variables, sequences, and the like. In step 2030, a
dataset definition is received. For example, a map designer may add or edit entity relationships
within a flow view of a logical design. In step 2040, a physical design is generated based on

deriving relationship information from the flow design. FIG. 20 ends in step 2050.

[0159] Accordingly, data integration system 200 enables users to create a logical design which
is platform and technology independent. The user can create a logical design that defines, at a
high level, how a user wants data to flow between sources and targets. The tool can analyze the
logical design, in view of the user’s infrastructure, and create a physical design. The logical
design can include a plurality of components corresponding to each source and target in the
design, as well as operations such as joins or filters, and access points. Each component when
transferred to the physical design generates code to perform operations on the data. Depending
on the underlying technology (e.g., SQL Server, Oracle, Hadoop, etc.) and the language used
(SQL, pig, etc.) the code generated by each component may be different.

34

10

15

20

25

WO 2014/186057 PCT/US2014/031919

[0160] Thus, a user of data integration system 200 is not required to pre-defined dataset
component in the logical design. Data integration system 200 provides tools that allow map
designers to declare entity relationships in a dataset view of a logical design. Data integration
system 200 is able to decide what attributes are needed at operations represented by

predetermined component types. This simplifies both the design and maintenance.
[0161] Entity Relational Modeling

[0162] Relational database design has been based on entity relational modeling, or E-R
modeling. Traditionally, an E-R design has been used for describing the static configuration of a
problem domain. The more dynamic aspects, such as extracting data out of the data stores and
“massaging” them into shape, are generally considered a different problem. Since the mid-
1990s, there have been steady efforts toward these so-called “ETL tools.” An ETL tool can help
human designers create specifications about dynamic data flows, which are generally called ETL

models.

[0163] FIG. 21 is an illustration depicting relationships between static E-R and dynamic ETL
models. One interesting question is whether it is possible to eliminate the depicted human factor
in the ETL design process. Alternatively, to put the question in another way, does the E-R model
contain sufficient operational information so that a dynamic data flow model can be formed

automatically without human intervention?

[0164] There are many benefits from automating the ETL design process using the E-R model.
One such is the productivity of the ETL designer. The E-R model can be more easily made
correct than an ETL process. The E-R model also has a standard notational system understood
by database engineers. But the same cannot be said for any ETL tool. Most, if not all, require
steep learning curves on the part of designers. Another benefit is the better adaptability to

change. Without the “middleman,” when the E-R model is finalized, so is the ETL process.

[0165] In various embodiments, techniques are disclosed to provide an automatic conversion
from an E-R model to an ETL model. This is based on the observation that when a database
engineer reads an E-R diagram, a data flow model is usually built in his mind. Using this silent
data flow model, the engineer can understand the E-R model and is able to communicate with

others. The engineer even creates software based on this model. This phenomenon is more

35

10

15

20

25

30

WO 2014/186057 PCT/US2014/031919

apparent when the E-R model becomes complex. Accordingly, the inventors recognize that there
can be one or more hidden data flow models in every E-R model. In one aspect, the equivalent
data flow model is provided for the E-R model that has been proven to be accurate in guiding the

creation of an automatic conversion system.

[0166] FIG. 22 is an illustration providing a top-level design chart of automatic conversion
system 2200 in one embodiment. FIG. 22 may merely be illustrative of an embodiment or
implementation of an invention disclosed herein should not limit the scope of any invention as
recited in the claims. One of ordinary skill in the art may recognize through this disclosure and
the teachings presented herein other variations, modifications, and/or alternatives to those

embodiments or implementations illustrated in the figures.

[0167] As shown in FIG. 22, an E-R model is provided as input to automatic conversion
system 2200 together with a set of “user directives.” Automatic conversion system 2200 then
creates the equivalent data flow model for ETL purposes. As used herein, the “user directives”
are a set of requirements that a user expects the calculation of the data flow model to take into
consideration. For example, the user can ask for a specific order on a series of binary
relationships, ask for processing a relationship on a designated machine/location due to logical,

performance, or security considerations, or the like.

[0168] The “equivalent data flow” model as used herein represents a semantic model for the E-
R model. A semantic model is used to define unambiguously what a logical model means. The
semantic model can be expressed in vastly different ways, such as natural language, set theoretic
notations, algebraic equations, mathematical logic, or algorithmic notations (generally known as
operational semantic). In various embodiments, the semantic model for the E-R model is an
operational semantic model, referred to as a “CFO model.” In one aspect, defining meaning in
an operational semantic format provides a twofold benefit, the first being that the operational
semantic model is already in a step-by-step form consistent with the data flow model. Second,
the operational semantic model is easy for human to understand, compared with other formal

semantic models; and it is more rigorous than natural language explanations.

[0169] Binary relationships in an E-R model (or diagram) can be trivially mapped to joins in
an ETL model. However, a multi-way relationship needs some work, because there is a common

misconception around it. FIGS. 23A and 23B illustrate three-way relationships in two popular

36

10

15

20

25

WO 2014/186057 PCT/US2014/031919

E-R notations. Referring to FIG. 23A, model 2310 is drawn or otherwise represented using the
standard E-R notation. In this example, model 2310 includes three entities, PET, PET TYPE,
PET_OWNER are being related in a three-way relationship called “Pet-of-Type-and-Owner.”

The intuitive understanding of FIG. 23A is that the three entities can interact simultancously.

[0170] In practice, however, standard E-R notation is not used. Instead, it is more common to
see the so-called “Crow’s Feet” notation. The difference between the two notational systems is
only superficial. Referring to FIG. 23B, model 2320 is drawn or otherwise represented using
Crow’s Feet notation. In this example, model 2320 again includes the three entities, PET,

PET _TYPE, PET OWNER being related in a three-way relationship called “Pet-of-Type-and-
Owner” illustrated as a box in the middle with corner lines (also called an associative entity).

The associative entity is created to tie the three other entities together simultaneously.

[0171] One common misconception is the mistake of equating a multi-way relationship to a
series of binary relationships. FIGS. 24A and 24B illustrate an equivalent to the three-way
relationships in two popular E-R notations. Referring to FIG. 24A, model 2410 is drawn or
otherwise represented as an equivalent to model 2310 of FIG. 23A with two binary relationships
in standard E-R notation. Referring to FIG. 24B, model 2420 is drawn or otherwise represented

as an equivalent to model 2320 with the equivalent model in the crow’s feet notation.

[0172] Both of these models share the same problem in that they do not require that the two
binary relationships must always hold at the same time. For example, an instance in PET, call it
“Pet A” can relate to an instance in PET _TYPE, call it “PT A”, but it is not required that “Pet A”
must also relate to an instance from PET _OWNER.

[0173] It is, however, possible to model the fact that a pet must participate in two binary
relationships at the same time. FIG. 25 illustrates an equivalent to the three-way relationship
using a series of binary relationships. In this example, model 2500 represents the PET entity
differently than FIG. 24B as an associative entity. Each instance in an associative entity relates
to all other connected entities without exception. FIG. 25 may appear like a series of binary
relationships, but it is really the three-way relationship in FIG. 23B in disguise — the PET entity

absorbs the associative entity shown in FIG. 23B.

37

10

15

20

25

WO 2014/186057 PCT/US2014/031919

[0174] In one aspect, there are two special cases where it is possible for the PET entity to
absorb the associative entity. First, one possibility is that each PET instance participates in no
more than one relationship instance. Second, another possibility is if PET is a weak entity. (The
formal definition of a weak entity is an entity that does not have its own primary key.) Suppose
PET was a strong entity, its own primary key would have to be used to only identify pets. It
could not also be used to identify the relationship instances. For example, if a pet instance
participated in more than one relationship instance, there would be a primary key violation in the
strong PET entity. On the other hand, if PET is a weak entity, its partial key (not unique) can be
combined with the key (either partial or unique) of the ternary relationship. In this case, PET can

absorb the ternary relationship.

[0175] Thus, without making additional assumptions, FIG. 23B cannot be morphed to
resemble a series of binary relationships. Therefore, the focus turns to the general ternary

relationship depicted in FIG. 23B.

[0176] FIG. 26 illustrates three-way relationships using the standard E-R notation. The
schema for the example includes the PET, PET TYPE, PET_OWNER entities plus one or more
ternary relationships on them. Some additional information is also provided. In this example,
model 2600 represents PET as an optional participant of the ternary relationship, as indicated by
the cardinality range 0..m in the E-R diagram. The other two entities are both full participants of

the relationship.

[0177] Suppose p, t, o are instances of PET, PET TYPE, and PET OWNER, respectively.

The following are possible instances in the “Pet-of-Type-and-Owner” relationship:
y (b, t, 0)
. (<missing>, t, 0)

[0178] Here <missing> represents the absence of value from an entity. Whether these
candidate tuples are valid relationship instances is determined by a three-way join condition,

defined as:

PET.type id = PET TYPE.id and PET.owner id = PET OWNER.id

38

10

15

20

WO 2014/186057 PCT/US2014/031919

[0179] Note: the value <missing> is able to match any other value. So in this example, the
tuple (<missing>, t, 0) is a valid instance of the relationship because the following condition

evaluates to true.
<missing> = PET TYPE.id and <missing> = PET _OWNER.id
[0180] The three example tables for the entities are created by the following statements.
create table PET (
id number,
name varchar2(30),
tid number,

oid number);

create table PET _TYPE (
id number,

name varchar2(30));

create table PET _OWNER (
id number,
name varchar2(30));

[0181] FIG. 27 depicts the rows in each table. As shown, each entity has only one instance. In

one aspect, a user can input the three-way join condition:
PET.type id = PET TYPE.id and PET.owner id = PET OWNER.id

[0182] The user can also mark entity PET as optional. This is equivalent to having input an E-
R model shown in FIG. 26. One challenge is how to generate a SQL statement to best capture

the meaning of FIG. 26. In various embodiments, a determination is made as to the syntax that

39

WO 2014/186057 PCT/US2014/031919

will provide a good multi-way join implementation. In the following example, ANSI join syntax

18 used.

[0183] Since each ANSI join is pair-wise, to join three tables, two joins are needed. Also,
since PET is an optional entity, at least one of the two joins must be an outer join. Furthermore,
which two tables are joined first is also a factor to consider. Putting all these considerations
together, nine permutations are encountered, corresponding to nine possible implementations for
the multi-way join using ANSI syntax. These cases are drawn using data flow charts, and shown

with their SQL statements and results in Table 1 below.

Flow Chart | SQL Result
1 PET .. N gselect p.name “pet”, pet type owner
PET TypE o NI t.name “type”, [--mmemo cmmeeoo oo
- iOJ.; o.name “owner” Jeff
PET_owngr -~ from PET p

join PET TYPE t

on (p. tid = t.id) (Comment: Type is nullified. This is not a good
right outer join PET OWNER o result.)
on (p.oid = o.id)

2 PET - SN gselect p.name “pet”, no rows selected
t.name “type”,
LAY o.name “owner”
PET_OWNER from PET p
right outer join PET TYPE t
on (p.tid = t.id)
join PET_OWNER o
on (p.oid = o.id)

S

HONI AN
PET_TYPE -~

3 PET - oo gselect p.name “pet”, pet type owner
t.name “type”, 0| m----m-m mmmmmmmm oo
. o.name “owner” Jeff
PET_CWHNER - from PET p
right outer join PET TYPE t
on (p.tid = t.id) (Comment: Type is nullified. This is not a good
right outer join PET OWNER o result.)
on (p.oid = o.id)

gy~

PET_TYPE - St

(L

s,

select p.name “pet”, pet type owner
] t.name “type”, @ -------- mmmmmmm e o — -
N ©.name “owner” Cat
PET_TYPE - from PET p
join PET_OWNER o
on (p.oid = o.id) (Comment: Owner is nullified. This is not a good
right outer join PET TYPE t result.)
on (p.tid = t.id)

4 PET -

PET_OWNER --

5 PET o select p.name “pet”, no rows selected
04 t.name “type”

PET_OWNER - N~ . ype”,

- o.name “owner”

PET_TYPE -~ from PET p

right outer join PET OWNER o
on (p.oid = o.id)

join PET_TYPE t
on (p.tid = t.id)

6 N gselect p.name “pet”, pet type owner
PET_OWNER - -»'\Cy-':\ - ;63\' t.name ::type”’,’ __________________________
e o.name “owner Cat
PET_TYPE -~ from PET p

right outer join PET OWNER o

on (p.oid = o.id) (Comment: Owner is nullified. This is not a good
right outer join PET TYPE t result.)

on (p.tid = t.id)

40

10

15

WO 2014/186057 PCT/US2014/031919

gselect p.name “pet”, pet type owner
t.name “type”, =000 | mmmmmmmm mmmmmmmm —mmmmm - -
10U o.name “owner” Cat Jeff
per -~ 7 | from PET TYPE t
join PET_OWNER o
on (1 = 1) (Comment: This is the result we expect.
left outer join PET p Note that there is no direct join condition between
on (p.tid = t.id and PET TYPE and PET _OWNER. It defaults to true.)
p.oid = o.id)

7 PET_TYPE - . -

PET_OWNER -

8 PELTmEmeM\ select p.name “pet”, no rows selected
PET_OWNER L TET t.name ::type”,',
LAY o.name “owner
per~ " | from PET TYPE t
full outer join PET_OWNER o
on (1 = 1)
join PET p
on (p.tid t.id and
p.oid o.id)

9 PET_TYPE - . select p.name “pet”, pet type owner

PET OWNER - N ™ gt t.name “type”, =0l m------- m-----o- m---------
- 04 o.name “owner” Cat Jeff

oer | from PET TYPE t
full outer join PET_OWNER o
on (1 = 1) (Comment: The generated SQL is equivalent to the
left outer join PET p one in implementation #7.)
on (p.tid t.id and

p.oid o.id)

[0184] From the examination of all the possible implementations, implementation #7 appears
to match the expectation for the three-way relationship. Accordingly, in general, multi-way
relationship is not equivalent to a series of binary relationships. However, in various
embodiments, a multi-way relationship may be implemented using binary joins. Therefore, one
aspect, a model is created that is understandable for (casual) human users yet rigorous for use in

generating correct data flow implementations.

[0185] As discussed above, the equivalent data flow model fits in the category of “operational
semantic models.” Operating semantic model to unambiguously describe the meaning/intention
of a system have been created. However, one for equivalently representing the E-R model

provides new opportunities as discussed herein.

[0186] FIGS. 28A and 28B illustrate a three-way relationship in E-R notation and a data flow
with data originating from the three entities in one embodiment. Using the PET example of FIG.
28A, FIG. 28B describes a data flow with data originating from the three entities. Each entity
provides a set of tuples. Each tuple is composed of a list of columns/attributes. All the tuples go

through three stages: connect, filter, and output phases, defined below.

41

10

15

20

WO 2014/186057 PCT/US2014/031919

[0187] The Connect phase: Performs Cartesian product of all the input entities. If an entity is
an optional entity (defined shortly), a special tuple with all columns of value <missing> is first

added as an extra member of the entity before the Cartesian product is carried out.

[0188] The Filter phase: In the filter phase, all the tuples coming out of the Connect phase are

categorized into three groups:

. Group F includes tuples that fail the relationship condition.

. Group S1 includes tuples that satisfy the relationship condition, e.g.,
PET.tid = PET TYPE.id and PET.oid = PET _OWNER.id

without comparing any <missing> values.

. Group S2 includes all other tuples that satisfy the relationship condition, but the

supplemental value <missing> is used in comparison.

[0189] Intuitively, Group S1 includes rows that scored straight success. And group S2 passed

the join condition because of ignorable missing values from an optional entity.

[0190] The Output phase: output final result, which is a set of tuples, using the following rule:

. All tuples from Group F are discarded.
. All tuples from Group S1 are included in a final result set.
. A tuple from Group S2 is included in the final result set only if it has material

contribution to the final result.

[0191] A tuple is considered having no material contribution to the final result if it matches
one of the tuples in the result set. In checking if two tuples match, we assume <missing> value

matches any other value. For example the following two tuples match.
(‘ABC’, 123) vs (<missing>, 123)

[0192] Intuitively, the final output phase performs deduplication on tuples in Groups S1 and
S2.

42

10

15

20

25

WO 2014/186057 PCT/US2014/031919

[0193] Using the example data in FIG. 27, the result of the Connect phase contains the

following two tuples:
(pet 100, pet type 1, pet owner 10)
(<missing>, pet_type 1, pet owner 10)

[0194] Here, we use pet 100 to represent the row in PET table with id = 100. Notice that the

value <missing> is treated as a “valid” pet because PET is an optional entity.
[0195] In the second phase, the multi-way join condition

PET.tid = PET TYPE.id and PET.oid = PET_OWNER.id

is evaluated. And only the tuple

(<missing>, pet_type 1, pet owner 10)

satisfies the condition.

[0196] The final phase is trivial for this example since there is no need to do any

deduplication.

[0197] The reason for the implementation #7 in Table 1 being able to return the correct result
is it does Cartesian product of all tables before starting evaluating the join condition. It is the
only implementation that is consistent with the defined operational semantic model defined. By
making sure Cartesian product operation is well completed before rows are filtered in the data
flow, the simultaneity property inherent in multi-way relationship is protected against the

potentially destructive binary joins.

[0198] In some embodiments, users may be able to visually create models by drawing lines
between entities that indicate the need for the Connect phase operation. For example, suppose a
user only drew a connection between PET and PET OWNER, but he entered a relationship

condition as follows:
PET.tid = PET TYPE.id and PET.oid = PET _OWNER.id

[0199] Upon seeing the above 3-way relationship condition, a connection may be

automatically determined and created between PET and PET _TYPE. This is because the

43

10

15

20

25

WO 2014/186057 PCT/US2014/031919

Connect phase operation requires the Cartesian product of all entities involved. The join

condition on this derived join is 1 = 1 only for achieving the Cartesian product.

[0200] Supposing also that the user drew an additional line, from PET _OWNER to
PET_TYPE, forming a circle among the three entities. In one aspect, the new line that created
the circle can be ignored, since all the entities in the relationship have been sufficiently
connected. To a human user, he may think a line means “a binary relationship,” but by staying
truthful to the operational semantic model FIG. 28B all the time: a line only means to connect

entities together using Cartesian product.

[0201] After the entities are connected, the diagram can then be transformed into a tree of
binary joins where the join node for PET and PET TYPE carries the 1=1 condition. And the
multi-way join condition is delayed to the last join node. In the whole process, the join condition
is not dissembled, but rather, it is maximally delayed to ensure all the rows from all tables have

opportunities to interact.

[0202] In contrast, if the join condition is split into two parts (which is syntactically permitted),
and assigned the two subconditions to two join nodes, the operational semantic model would be

violated because the Filter phase would be started before the Connect phase has completed.

[0203] Accordingly, since the operational semantic model is specified in a detailed, step-by-
step manner, it can be easily transformed into a programmatic implementation using any existing

programming languages. There is no need to only use SQL to implement it.

[0204] FIG. 29 depicts a diagram that lays out relationships among various database modeling
methods and their semantic contents. In this example, the E-R model still needs help from
semantic models. The CFO model is one such semantic model for eliminating ambiguities in E-
R, particularly for multi-way relationships. As shown in FIG. 29, Object Oriented models can be
used for the same purpose. Many patents exist for correctly converting E-R to OO models. But
the OO model lacks the capability of integrating with data flow models. A data flow model
explicitly spells out step-by-step operations of the data from source to target. An OO model is
still too descriptive for that purpose. The CFO model is like an automaton, it is inherently

suitable for integrating with data flow models.

[0205] Conclusion

44

10

15

20

25

WO 2014/186057 PCT/US2014/031919

[0206] FIG. 30 is a simplified block diagram of computer system 3000 that may be used to
practice embodiments of the present invention. As shown in FIG. 30, computer system 3000
includes processor 3010 that communicates with a number of peripheral devices via bus
subsystem 3020. These peripheral devices may include storage subsystem 3030, comprising
memory subsystem 3040 and file storage subsystem 3050, input devices 3060, output devices
3070, and network interface subsystem 3080.

[0207] Bus subsystem 3020 provides a mechanism for letting the various components and
subsystems of computer system 3000 communicate with each other as intended. Although bus
subsystem 3020 is shown schematically as a single bus, alternative embodiments of the bus

subsystem may utilize multiple busses.

[0208] Storage subsystem 3030 may be configured to store the basic programming and data
constructs that provide the functionality of the present invention. Software (code modules or
instructions) that provides the functionality of the present invention may be stored in storage
subsystem 3030. These software modules or instructions may be executed by processor(s) 3010.
Storage subsystem 3030 may also provide a repository for storing data used in accordance with
the present invention. Storage subsystem 3030 may comprise memory subsystem 3040 and

file/disk storage subsystem 3050.

[0209] Memory subsystem 3040 may include a number of memories including a main random
access memory (RAM) 3042 for storage of instructions and data during program execution and a
read only memory (ROM) 3044 in which fixed instructions are stored. File storage subsystem
3050 provides persistent (non-volatile) storage for program and data files, and may include a
hard disk drive, a floppy disk drive along with associated removable media, a Compact Disk
Read Only Memory (CD-ROM) drive, a DVD, an optical drive, removable media cartridges, and

other like storage media.

[0210] Input devices 3060 may include a keyboard, pointing devices such as a mouse,
trackball, touchpad, or graphics tablet, a scanner, a barcode scanner, a touchscreen incorporated
into the display, audio input devices such as voice recognition systems, microphones, and other
types of input devices. In general, use of the term “input device” is intended to include all

possible types of devices and mechanisms for inputting information to computer system 3000.

45

10

15

20

25

WO 2014/186057 PCT/US2014/031919

[0211] Output devices 3070 may include a display subsystem, a printer, a fax machine, or non-
visual displays such as audio output devices, etc. The display subsystem may be a cathode ray
tube (CRT), a flat-panel device such as a liquid crystal display (LCD), or a projection device. In
general, use of the term “output device” is intended to include all possible types of devices and

mechanisms for outputting information from computer system 3000.

[0212] Network interface subsystem 3080 provides an interface to other computer systems,
devices, and networks, such as communications network 3090. Network interface subsystem
3080 serves as an interface for receiving data from and transmitting data to other systems from
computer system 3000. Some examples of communications network 3090 are private networks,
public networks, leased lines, the Internet, Ethernet networks, token ring networks, fiber optic

networks, and the like.

[0213] Computer system 3000 can be of various types including a personal computer, a
portable computer, a workstation, a network computer, a mainframe, a kiosk, or any other data
processing system. Due to the ever-changing nature of computers and networks, the description
of computer system 3000 depicted in FIG. 30 is intended only as a specific example for purposes
of illustrating the preferred embodiment of the computer system. Many other configurations

having more or fewer components than the system depicted in FIG. 30 are possible.

[0214] FIG. 31 is a simplified block diagram of data integration system 3100 for facilitating
generation of a data mapping in accordance with an embodiment of the present invention. The
blocks of the data integration system 3100 may be implemented by hardware, software, or a
combination of hardware and software to carry out the principles of the invention. It is
understood by persons of skill in the art that the blocks described in Figure 31 may be combined
or separated into sub-blocks to implement the principles of the invention as described above.
Therefore, the description herein may support any possible combination or separation or further

definition of the functional blocks described herein.

[0215] As shown in FIG. 31, the data integration system 3100 is shown containing a receiving
unit 3110, a determining unit 3220, and a generating unit 3130. Optionally, the data integration

system 3100 can also comprise a deriving unit 3140 and a exporting unit 3150.

46

10

15

20

25

WO 2014/186057 PCT/US2014/031919

[0216] In one embodiment, the receiving unit 3110 is configured to receive information
specifying a set of entity relationships as a component of the logical design. The determining
unit 3120 is configured to determine an equivalent data flow model based on the set of entity
relationships. The generating unit 3130 is configured to generate information indicative of the

equivalent data flow model in the logical flow design.

[0217] In one aspect of the embodiment, the deriving unit 3140 is configured to derive one or
more attributes of a dataset representing the set of entity relationships based on information
declaring relationships between attributes of data sources. In one aspect of the embodiment, the
receiving unit 3110 is further configured to receive information specifying one or more
components of the logical design that includes information indicative of an operation that

changes shape of the information flowing through the logical design.

[0218] In one aspect of the embodiment, the receiving unit 3110 is further configured to
receive information specifying one or more components of the logical design that includes
information indicative of an operation that controls the flow of information flowing through the
logical design but does not change shape of the information flowing through the logical design.
In one aspect of the embodiment, the receiving unit 3110 is further configured to receive
information specifying one or more components of the logical design that includes information
indicative of a target component having one or more attributes of data to be stored in a target

data store.

[0219] In one aspect of the embodiment, the generating unit 3130 comprises exporting unit
3150 configured to export a list of attributes to a downstream component. In one aspect of the
embodiment, the receiving unit 3110 is further configured to receive a change in the logical
design through the introduction of one or more relationships; and the determining unit 3120 is

further configured to determine an updated equivalent data flow model.

[0220] Although specific embodiments of the invention have been described, various
modifications, alterations, alternative constructions, and equivalents are also encompassed within
the scope of the invention. The described invention is not restricted to operation within certain
specific data processing environments, but is free to operate within a plurality of data processing

environments. Additionally, although the present invention has been described using a particular

47

10

15

20

25

30

WO 2014/186057 PCT/US2014/031919

series of transactions and steps, it should be apparent to those skilled in the art that the scope of

the present invention is not limited to the described series of transactions and steps.

[0221] Further, while the present invention has been described using a particular combination
of hardware and software, it should be recognized that other combinations of hardware and
software are also within the scope of the present invention. The present invention may be

implemented only in hardware, or only in software, or using combinations thereof.

[0222] The specification and drawings are, accordingly, to be regarded in an illustrative rather
than a restrictive sense. It will, however, be evident that additions, subtractions, deletions, and
other modifications and changes may be made thereunto without departing from the broader

spirit and scope of the invention as set forth in the claims.

[0223] Various embodiments of any of one or more inventions whose teachings may be
presented within this disclosure can be implemented in the form of logic in software, firmware,
hardware, or a combination thereof. The logic may be stored in or on a machine-accessible
memory, a machine-readable article, a tangible computer-readable medium, a computer-readable
storage medium, or other computer/machine-readable media as a set of instructions adapted to
direct a central processing unit (CPU or processor) of a logic machine to perform a set of steps
that may be disclosed in various embodiments of an invention presented within this disclosure.
The logic may form part of a software program or computer program product as code modules
become operational with a processor of a computer system or an information-processing device
when executed to perform a method or process in various embodiments of an invention presented
within this disclosure. Based on this disclosure and the teachings provided herein, a person of
ordinary skill in the art will appreciate other ways, variations, modifications, alternatives, and/or
methods for implementing in software, firmware, hardware, or combinations thereof any of the
disclosed operations or functionalities of various embodiments of one or more of the presented

inventions.

[0224] The disclosed examples, implementations, and various embodiments of any one of
those inventions whose teachings may be presented within this disclosure are merely illustrative
to convey with reasonable clarity to those skilled in the art the teachings of this disclosure. As
these implementations and embodiments may be described with reference to exemplary

illustrations or specific figures, various modifications or adaptations of the methods and/or

48

10

WO 2014/186057 PCT/US2014/031919

specific structures described can become apparent to those skilled in the art. All such
modifications, adaptations, or variations that rely upon this disclosure and these teachings found
herein, and through which the teachings have advanced the art, are to be considered within the
scope of the one or more inventions whose teachings may be presented within this disclosure.
Hence, the present descriptions and drawings should not be considered in a limiting sense, as it is
understood that an invention presented within a disclosure is in no way limited to those

embodiments specifically illustrated.

[0225] Accordingly, the above description and any accompanying drawings, illustrations, and
figures are intended to be illustrative but not restrictive. The scope of any invention presented
within this disclosure should, therefore, be determined not with simple reference to the above
description and those embodiments shown in the figures, but instead should be determined with

reference to the pending claims along with their full scope or equivalents.

49

N R R N =) T Ve L S N S B

—_—

BOWOND =

BOWOND =

—_—

WO 2014/186057 PCT/US2014/031919

WHAT IS CLAIMED I8S:

1. A method facilitating generation of a data mapping, the method
comprising:

receiving, at the one or more computer systems, information specifying a set of
entity relationships as a component of the logical design;

determining, with one or more processors associated with the one or more
computer systems, an equivalent data flow model based on the set of entity relationships; and

generating, with the one or more processors associated with the one or more
computer systems, information indicative of the equivalent data flow model in the logical flow

design.

2. The method of claim 1 further comprising deriving one or more attributes
of a dataset representing the set of entity relationships based on information declaring

relationships between attributes of data sources.

3. The method of claim 1 or 2 further comprising receiving information
specifying one or more components of the logical design that includes information indicative of

an operation that changes shape of the information flowing through the logical design.

4. The method of any of claims 1 to 3 further comprising receiving
information specifying one or more components of the logical design that includes information
indicative of an operation that controls the flow of information flowing through the logical

design but does not change shape of the information flowing through the logical design.

5. The method of any of claims 1 to 4 further comprising receiving
information specifying one or more components of the logical design that includes information
indicative of a target component having one or more attributes of data to be stored in a target

datastore.

6. The method of any of claims 1 to 5 wherein generating the information
indicative of the equivalent data flow model in the logical flow design comprises exporting a list

of attributes to a downstream component.

50

AW = —_— O 00 NN N W R W N [S S R

[S S R

WO 2014/186057 PCT/US2014/031919

7. The method of any of claims 1 to 6 further comprising;:

receiving, at the one or more computer systems, a change in the logical design
through the introduction of one or more relationships; and

determining, with the one or more processors associated with the one or more

computer systems, an updated equivalent data flow model.

8. A non-transitory computer-readable medium storing computer-executable

code for facilitating generation of a data mapping, the non-transitory computer-readable medium

comprising:

code for receiving information specifying a set of entity relationships as a
component of the logical design;

code for determining an equivalent data flow model based on the set of entity
relationships; and

code for generating information indicative of the equivalent data flow model in

the logical flow design.

9. The non-transitory computer-readable medium of claim 8 or 9 further
comprising code for deriving one or more attributes of a dataset representing the set of entity

relationships based on information declaring relationships between attributes of data sources.

10. The non-transitory computer-readable medium of any of claims 8 to 9
further comprising code for receiving information specifying one or more components of the
logical design that includes information indicative of an operation that changes shape of the

information flowing through the logical design.

11. The non-transitory computer-readable medium of any of claims & to 10
further comprising code for receiving information specifying one or more components of the
logical design that includes information indicative of an operation that controls the flow of
information flowing through the logical design but does not change shape of the information

flowing through the logical design.

12. The non-transitory computer-readable medium of any of claims 8§ to 11

further comprising code for receiving information specifying one or more components of the

51

AW N =

[S S R

N R I N =) N Vs L O S R

—_
—_ O

WO 2014/186057 PCT/US2014/031919

logical design that includes information indicative of a target component having one or more

attributes of data to be stored in a target datastore.

13. The non-transitory computer-readable medium of any of claims & to 12
wherein the code for generating the information indicative of the equivalent data flow model in
the logical flow design comprises code for exporting a list of attributes to a downstream

component.

14. The non-transitory computer-readable medium of any of claims 8 to 13
further comprising;:

code for receiving a change in the logical design through the introduction of one
or more relationships; and

code for determining an updated equivalent data flow model.

15. A system facilitating generation of a data mapping, the system
comprising:
a processor; and
a memory storing instructions which when executed by the processor configure
the processor to:
receive information specifying a set of entity relationships as a component
of the logical design;
determine an equivalent data flow model based on the set of entity
relationships; and
generate information indicative of the equivalent data flow model in the

logical flow design.

16. The system of claim 15 wherein the processor is further configured to
derive one or more attributes of a dataset representing the set of entity relationships based on

information declaring relationships between attributes of data sources.

17. The system of claim 15 or 16 wherein the processor is further configured

to receive information specifying one or more components of the logical design that includes

52

[S S R

AW N =

f—

[S S

WO 2014/186057 PCT/US2014/031919

information indicative of an operation that changes shape of the information flowing through the

logical design.

18. The system of any of claims 15 to 17 wherein the processor is further
configured to receive information specifying one or more components of the logical design that
includes information indicative of an operation that controls the flow of information flowing
through the logical design but does not change shape of the information flowing through the

logical design.

19. The system of any of claims 15 to 18 wherein the processor is further
configured to receive information specifying one or more components of the logical design that
includes information indicative of a target component having one or more attributes of data to be

stored in a target datastore.

20. The system of any of claims 15 to 19 wherein to generate the information
indicative of the equivalent data flow model in the logical flow design the processor is

configured to export a list of attributes to a downstream component.

21. The system of any of claims 15 to 20 wherein the processor is further
configured to:

receive a change in the logical design through the introduction of one or more
relationships; and

determine an updated equivalent data flow model.

53

WO 2014/186057

1/32

PCT/US2014/031919

USER
COMPUTER
110A

USER
COMPUTER
110B

USER
COMPUTER
110C

SERVER
COMPUTER
130A

o
v

DATABASE
140A

N—

COMM.
NETWORK
120

e—~——

DATABASE
140B

SERVER
COMPUTER
130B

\/

FIG. 1

WO 2014/186057

PCT/US2014/031919

200\ 2/32
INFORMATION DESTINATIONS
206
v
(- 224
APPS Y [REPOSITORIES
__ ~
226 ~_
v
A

INFORMATION INTEGRATION
204
DATA MASTER DATA
MIGRATION MANAGMENT FEDEZF;/ST'ON
212 216 =
DATA REAL-TIME
WAREHOUSING DAT;SSYNC MESSAGING
214 = 222
INFORMATION SOURCES
202
v
APPS [REPOSITORIES
__ ~
210 ~
v

FIG. 2

¢ Ol

PCT/US2014/031919

WO 2014/186057

3/32

F4ZS - -
_ _ 0g
INIOV vee %3 0ee 743
AELS Nd3 TNX HILSYI
0ve 19/MA Sddv /ST114 AQVOT]
SM JNILNNY
——— MHOM i
9cC
WAL B — o
92C
S1394VL ANV S304N0S || T———
= 70¢
T SIIYOLISOdTY
700d NOILOINNOD SIDHNOS V.Lvd
QG¢ 9oG¢ 89¢ 79¢ 29¢
S3DINY3S SM IN3IOV JTOSNOD MAs 1d0 == ac
IS I(TZe ic
v.ivd o1dand mm@ﬁ [afe) 09¢ ALlMNO3S N3OV
99¢ ddV 33 VAVP — —
SM JWILNNY
0%t e AD010dO1 SM SNLLNAE
"LNOO SAYS 83m YANIVLNOD 131AY3S (V43 _\A_W/w
HOLYYIdO
€ NIFONTd 100 mJmemw A aTe
YaANDISA]
77 Zre -
YIAYIS ddV OlanLs 1ao LOLMSIa

/ 00¢

PCT/US2014/031919

WO 2014/186057

4/32

v Old
TN

(57
ddVv
NINAQVY S3TVS

T

J\\

00¥
SOI4VYN3OS
NOILVHOILNI

80¥
314
d313AVdvd

90¥
ddVv
SH3Ad0

=

T

20¢
S3IHOLISOd3d

T

J\

~— V0¥

401%

[4%3
olants 1ao

WO 2014/186057

EXTRACT

ORDERS APP
406

PARAMETER
FILE
408

SOURCE

*
P

PCT/US2014/031919
5/32
TRANSFORM LOAD
-«
ETL SERVER SALES ADMIN
500 APP
- 410

" Conventional ETL Architecture |

WO 2014/186057 PCT/US2014/031919
6/32
EXTRACT LOAD/
TRANSFORM
ORDERS APP | |
406 I me
I
PARAMETER SALES ADMIN
FILE > APP
408 410
I, _
I
SOURCE {H— |

Next Generation Architecture

FIG. 6B

.\V

WO 2014/186057

7132

ODI STUDIO
312

DESIGNER
318

OPERATOR
320

TOPOLOGY
322

SECURITY
324

700

REPOSITORIES
302

FIG. 7

PCT/US2014/031919

WO 2014/186057 PCT/US2014/031919

8/32

/ 800

(BEGIN }/\810

Y
CREATE DATA MODELS — 820
CREATE PROJECTS — 830

'

GENERATE DATA INTEGRATION SCENARIOS 840

'
C END }/\ 850

FIG. 8

WO 2014/186057

9/32
900

910 SampleMappings
‘ ! Packages
Mappings
S BPELMap
D&|wirm&ithLEP
Flowdainithaqg
Flowd COJainith LKF
LoadCharnnzls

5?‘“ Uses

920 \ ;}'5.}? Ciagrams

R R TN
o DA R T R R R

\\
TR MR

GlohalOhjects

Clobal YVariables
; Glohal Sequences

PCT/US2014/031919

WO 2014/186057

PCT/US2014/031919

10/ 32

(1000

(BEGIN }/\ 1010

v

RECEIVE TARGET DATASTORE INFORMATION j— 1020
v

RECEIVE SOURCE DATASTORE INFORMATION p—— 1030
v

RECEIVE MAPPING INFORMATION — 1040
v

RECEIVE DATA LOADING STRATEGIES > 1050
v

RECEIVE DATA INTEGRATION STRATEGIES 1060
v

RECEIVE DATA CONTROL STRATEGIES — 1070
v

GENERATE MAPPING > 1080
v

(END }/\ 1090

FIG. 10

PCT/US2014/031919

WO 2014/186057

11/32

Ll Old

'N1d43a
TGS

Wiy Qr AKYRT 14371
WLy ap) Pl dr3
WL ap) T7a'dpr3
WY ap) AL7A34IH 4K3
Wi ap) dopdr3
Wiy o Ao dr3
WY ap) FHFHI dK3
CikldPI dri3

TYdIdIH

ELdebdy

SIS JOIFHULITD
SIUIEAIEUGT
cuizieuanaf

1afiae]

XEDEL]

[=3T TR o

G L3y
gl te
%8

78 AHD
- ALFA34IH

3K 7MLAIT
NOISSIMMDD
JdwTy
JIyaTaL
A EM R o ; e
a0 i o

N
Ohidig

L4307 dk3

EL kAl

00LL

PCT/US2014/031919

WO 2014/186057

12/32

ynegzg #5p)

BATLI e o

diiossq

- SN LI
BINpo sBRpapaauy Buipea
[CIEDELS

saluiadodd = 47 1430413

B R Rt

0ocl

WO 2014/186057 PCT/US2014/031919

13/32

/ 1300

(BEISIN }/\ 1310

RECEIVE STEP INFORMATION — 1320
RECEIVE SEQUENCE INFORMATION > 1330
GENERATE PACKAGE —> 1340

'
C END }/\ 1350

FIG. 13

PCT/US2014/031919

WO 2014/186057

14/32

vl "Old

Erahfiacst sldi o

SITFETOHL U0d pdnud sl ded T aadd ol dag

rery
reg

. mattl B D

s
- L
ALITBELE0d o YgiaayTadl rd o iunosTouL o
..\\\.
B o ow ‘ :
\\\b.n 4 \§ orrrmmnwis Qs annaie, N‘Mvwwﬁ sl (o3 D M.‘.\M.\\\u\u\&

LR DL ded

asbie] s1212q

7

aysrdeisann 07

e

e o T
sps, '

WO 2014/186057

15/ 32

/ 1500

PCT/US2014/031919

BEGIN

'

RETRIEVE INTEGRATION SCENARIO

'

DEPLOY INTEGRATION SCENARIO TO AGENT 1530

'

EXECUTE INTEGRATION SCENARIO

'

C END

FIG. 15

PCT/US2014/031919

WO 2014/186057

16/32

0gar
1d3adNT 191

91 "Old

0291
13svlivd

0091

0191

diN3 OdS

WO 2014/186057

17132

/ 1700

PCT/US2014/031919

BEGIN

'

RECEIVE COMPONENTS

'

RECEIVE DATASETS

'

GENERATE MAP

'

END

FIG. 17

PCT/US2014/031919

WO 2014/186057

18/32

0gar
1d3adNT 191

81 "Old

0091

0v8l
rASINAY/ w
RETNNY
A CH1LY
0c8l rASINA
RETNAY
G311V
pALIV orwr\\,
€311V
rASINAY/
RETNNY //omm: 0Z91
1d3a 24S
0197
dW3 DYS

WO 2014/186057

/1910

19/32

PCT/US2014/031919

FIG. 19A

WO 2014/186057
20/32

=
A
N
-

o

N

(o)
5

PCT/US2014/031919

FIG. 19B

WO 2014/186057

PCT/US2014/031919

21/32

/ 2000

'

(BEGIN }/\ 2010

RECEIVE COMPONENT DEFINITION

'

RECEIVE DATASET DEFINITION

'

DERIVE RELATIONSHIP INFORMATION IN FLOW
DESIGN TO GENERATE PHYSICAL DESIGN

'

FIG. 20

C END }/\ 2050

WO 2014/186057 PCT/US2014/031919

22 [32

! NS
£-R Rodsl N

"“‘“\Y‘X g*‘"“‘*? s\\\\&_“.

o N
SR \ Yy ¥
SNy ¥ i

& ooy PN, X R
&3 3 B3 3 28
N 3 3 R 3 e
I S T

i

Deseribas what
W have in the
protdera domain.

{Static}

WO 2014/186057

23 /32

2200

E-® Modsd

PCT/US2014/031919

L

} LS
a8 Fiow
Wodel

X s‘ E =
N . \\\\\\\\\\
% SN QT e
Ny, & =
S

PCT/US2014/031919
24/32

WO 2014/186057

P N R Ly by Lt
s Y

% 4% g $% %
VR, Y B I)

LI, %5 \w\m\\m\\m\\

Ll T %Y
LA, 2

24
% Z
Z G4

22

b

PRTTSSSSRRIII Y

7

_

PCT/US2014/031919

WO 2014/186057

25/32

dv¢ Old

V0N 1954 5 M7y L

Vv¢ Old

UOUREIN, W LIRS

7

Yy W

WO 2014/186057 PCT/US2014/031919

26 / 32

WO 2014/186057 PCT/US2014/031919

27 /32

IXARSI =

PCT/US2014/031919

28/32

A5DL B

Ao A AR AR DR Ao AR AT DA A AT AR AL SR A A I A A P A A LA e AL A G AR AT, AR A AT DA A A A

N 4%

823050

ELt 1

T R R T T HEE PRI PE PRI PO PEE PR IEL PO, O

A 1L

41 sty Avaus noy

b, A A, LA A P, A ALl b Al Al A A DA A AR A B R R A Al S LA b S R e

Ly ik IR 135

CHA R w BWTRE 4y

WO 2014/186057

PCT/US2014/031919

WO 2014/186057

29/32

ww. @w\ w W \\»,\\\\\ m O mmwx&\“\\\
O A\
gt gt £

d8¢ Ol

Bpopy MuBWSg jeusRisdy

.\ %

pouuos

V8¢ Old

diysuoneey Anug

PCT/US2014/031919

30/32

W G

WO 2014/186057

WO 2014/186057

31/32

v/ 3000

PCT/US2014/031919

STORAGE
PROCESSOR(S) 3030
3010 MEMORY
3040
S FILE
RaM I ROM 3050
42 44
3020 30 30
NETWORK OUTPUT
INTERFACE DEVICES 'NPUT3([))§OV ICES
3080 3070

COMM.
NETWORK
3090

FIG. 30

WO 2014/186057 PCT/US2014/031919

32 /32

Data Integration System 3100

Receiving Unit 3110

Determining Unit 3120

Generating Unit 3130

FIG. 31

International application No.

PCT/US2014/031919

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
GO6F 19/00(2011.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6F 19/00;, GO6F 17/00;, GO6F 9/44; GO6F 17/30

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KTIPO internal) & keywords: data mapping, specifying, logical design, model

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2013-0103705 A1 (SUSAN MARIE THOMAS) 25 April 2013 1-3,8-10,15-17
See paragraphs [0075]-[0087]; and figures 1, 3A.

A US 2008-0281849 A1 (KAZUO MINENO) 13 November 2008 1-3,8-10,15-17
See paragraphs [0094]1-[0096]; and figure 12.

A US 2005-0050068 A1 (ALEXANDER VASCHILLO et al.) 3 March 2005 1-3,8-10,15-17
See paragraphs [0037]-[0044]; and figures 1-2.

A US 2011-0295792 A1 (ALEXTAIR MASCARENHAS et al.) 1 December 2011 1-3,8-10,15-17
See paragraphs [0049]1-[0052]; and figure 5.

A US 2012-0096426 A1 (SERGHEI SARAFUDINOV) 19 April 2012 1-3,8-10,15-17

See paragraphs [0028]-[0042]; and figures 1-8.

|:| Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered
to be of particular relevance

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

the principle or theory undetlying the invention
nEn

eatlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priotity ¢claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

31 July 2014 (31.07.2014)

31 July 2014 (31.07.2014)

Name and mailing address of the [ISA/KR
International Application Division
« Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701,
Republic of Korea

Facsimile No, +82-42-472-7140

Authorized officer

\\-,\‘?\“\W\\\\
X SRR

JI, Jeong Hoon

Telephone No. +82-42-481-5688 \i{\.\\\w‘“

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2014/031919

Box No.II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: 4-7.11-14,18-21
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. Il Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. |:| As all required addtional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. |:| As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment
of any additional fees.

3. |:| As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. |:| No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest [l The additional search fees were accompanied by the applicant's protest and, where applicable, the
payment of a protest fee.
The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.
|:| No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2014/031919
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2013-0103705 Al 25/04/2013 US 2007-203923 Al 30/08/2007
US 8307012 B2 06/11/2012
US 2008-0281849 Al 13/11/2008 US 2012-323841 Al 20/12/2012
US 8280840 B2 02/10/2012
US 8639670 B2 28/01/2014
WO 2007-083371 Al 26/07/2007
US 2005-0050068 Al 03/03/2005 CN 100468396 CO 11/03/2009
CN 1604082 A 06/04/2005
EP 1519266 A2 30/03/2005
EP 1519266 A3 26/12/2007
JP 04847689 B2 28/12/2011
JP 2005-327232 A 24/11/2005
KR 10-1159311 B1 22/06/2012
KR 10-2005-0022272 A 07/03/2005
US 7739223 B2 15/06/2010
US 2011-0295792 Al 01/12/2011 CN 102918530 A 06/02/2013
EP 2577507 A2 10/04/2013
JP 2013-531844 A 08/08/2013
WO 2011-149666 A2 01/12/2011
WO 2011-149666 A3 19/01/2012
US 2012-0096426 Al 19/04/2012 None

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - claims
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - wo-search-report
	Page 88 - wo-search-report
	Page 89 - wo-search-report

