

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2015/083035 A1

(43) International Publication Date

11 June 2015 (11.06.2015)

WIPO | PCT

(51) International Patent Classification:

G06F 19/00 (2011.01) A61N 5/10 (2006.01)

(21) International Application Number:

PCT/IB2014/066293

(22) International Filing Date:

24 November 2014 (24.11.2014)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/911,507 4 December 2013 (04.12.2013) US

(71) Applicant: KONINKLIJKE PHILIPS N.V. [NL/NL];
High Tech Campus 5, NL-5656 AE Eindhoven (NL).

(72) Inventors: BZDUSEK, Karl Antonin; c/o High Tech Campus 5, NL-5656 AE Eindhoven (NL). GO-PALAKRISHNAN, Sankara Hari; c/o High Tech Campus 5, NL-5656 AE Eindhoven (NL). KUMAR, Prashant; c/o High Tech Campus 5, NL-5656 AE Eindhoven (NL).

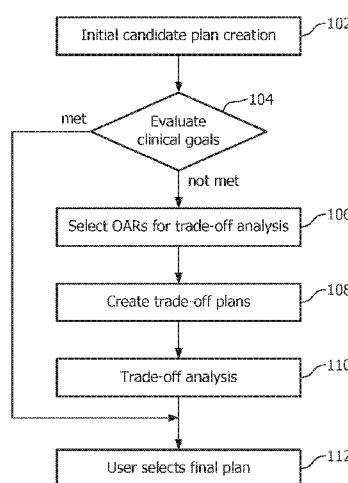
(74) Agents: STEFFEN, Thomas et al.; High Tech Campus Building 5, NL-5656 AE Eindhoven (NL).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:


- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report (Art. 21(3))

(54) Title: EFFICIENT TREATMENT PLAN TRADE-OFF ANALYSIS

FIG. 2

(57) **Abstract:** A planning image memory (14) stores a volume diagnostic image. A user inputs data defining clinical objectives including organs-at-risk with a user interface device (32). An auto-planning module (36) generates a candidate treatment plan. A trade-off module (38) having a processor evaluates the treatment plan against the clinical objectives. When one or more objectives is not met, the trade-off module (38) performs a trade-off analysis to determine an effect on other clinical objectives and generates at least one trade-off treatment plan which more closely meets the not met objectives. The candidate and at least one trade-off plan are displayed on a display device (30) and/or analyzed by the processor and a final treatment plan is selected from the at least one trade-off or candidate treatment plan.

WO 2015/083035 A1

EFFICIENT TREATMENT PLAN TRADE-OFF ANALYSIS

The present application relates generally to radiation therapy. It finds particular application in conjunction with radiation therapy planning and will be described with particular reference thereto. However, it is to be understood that it also finds application in other usage scenarios and is not necessarily limited to the aforementioned application.

5 In radiation therapy planning, creating a patient specific treatment plan can be a time consuming and tedious task. Many of the steps are redundant and vary little from patient to patient or plan to plan. Many of these steps can be automated using macro languages or scripts, but certain aspects are difficult without tools for writing logical expressions, loops, and other common programming functionality.

10 In the past decade, technological advancements have provided a big leap in the field of intensity modulated radiation therapy (IMRT), intensity modulated proton therapy (IMPT) and the like, to improve dose delivery. One area that is difficult to automate in current treatment planning is intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT) optimization. Recently the research interest has shifted 15 towards methods of automating various tasks involved in plan generation, starting from beam placement to dose optimization, to assist and reduce the workload burden on the clinical user. Optimization is an iterative process where a user attempts to specify planning goals in the form of dose or biological objectives to create an ideal dose to target structures, typically a uniform high dose, and minimize the dose to critical structures.

20 Plan evaluation is classified into three phases: 1. Physical evaluation, 2. Technical evaluation and 3. Clinical evaluation. The physical and technical aspects of a plan are generally examined by a technician after the completion of the plan. The clinical aspects of a plan are investigated by a radiation oncologist. Currently an IMRT plan is evaluated based on five categories that cover the physical, technical and clinical aspects of a plan: 1. 25 Geometric analysis, 2. Dose distribution analysis, 3. Dose Volume Histogram (DVH) analysis, 4. Parametric analysis and 5. Deliverability analysis.

The geometric analysis is performed to evaluate the optimality of beams placement. Beam placement is a very important step. The quality of optimization is mainly influenced by the number of beams and their angles. Rules have been formulated for optimal

beam placement in IMRT in view of increasing the optimality and deliverability of an IMRT plan.

The dose distribution analysis qualitatively verifies the optimality of dose distribution in axial, coronal and saggital planes. This analysis can be further split up into 2D analysis and 3D analysis. 2D dose distribution analysis implies the evaluation of dose distribution slice-by-slice. This type of analysis is used to evaluate the conformality of the prescribed dose with respect to the target volume in each slice. This type of analysis can also reveal the distribution of cold or hot spots in and around the target volume. Cold or hot spots are areas within the target and organs at risk that receive less or greater than the intended dose of radiation. The 3D distribution analysis is useful in determining how conformal a dose distribution is to the overall target volume with respect to a set of beam orientations.

Dose Volume Histograms (DVH) are a powerful tool for evaluating the optimality of a plan. A DVH represents a 3-dimensional dose distribution in a graphical 2-dimensional format. A DVH for target volume graphically represents the quality of the dose distribution in terms of coverage, conformity and homogeneity. The DVH curves for Organs-at-risk (OARs) represent the efficiency at which the OARs are spared in terms of mean and maximum dose.

The parametric analysis is performed to quantitatively verify the optimality of dose. The parameters used in this analysis are: (a) minimum, mean and maximum dose for target volume and OARs and (b) coverage, conformity and homogeneity indices for target volume. Apart from physical metrics for plan evaluation, a plurality of biological metrics are used in plan evaluation. These biological metrics include Equivalent Uniform Dose (EUD), Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) and the like.

Deliverability analysis is performed in order to evaluate how robust the plan is in terms of dose delivery. This analysis involves the verification of parameters such as number of segments, minimum or average monitor units (MU) per segment, Minimum Segment Area (MSA), total delivery time and the like. MU is a measure of machine output of a linear accelerator in radiation therapy. The deliverability analysis reveals whether or not a plan is realistically deliverable.

Various stages of plan generation have been automated with different techniques. These techniques reduce the burden on the clinical user, i.e. a radiation technician, by automating the plan generation process, such as dose objective manipulation and IMRT/VMAT optimization. Given the complexity involved with radiation therapy

treatment plan generation, it is imperative that the user wants a certain amount of manual control and review but at the same time it stops these techniques from being fully automatic. A current auto-planning solution offers one time configuration of user defined template which can be later applied to a new patient for automatically generating a treatment plan.

5 Specifically, it is difficult to determine the best plan to meet the goals since the definition of best is subjective and variable for the same user from patient to patient. After plan generation, the user weighs various tradeoffs between target goals and organs at risk goals and decides what is acceptable for each patient. Understanding the tradeoffs has been the focus of several technologies. However, one issue with the approaches is that the
10 user has too much more flexibility than needed which makes the workflow too general and less focused for physicians. Another issue is that it is exclusive to fluence based plans only.

15 In accordance with one embodiment, a treatment planning system comprising: a planning image memory which stores a volume diagnostic image; a memory for storing user defined clinical objectives configured for a user to input data defining clinical objectives including organs-at-risk; an auto-planning module configured to generate a candidate treatment plan; and a trade-off module having a processor configured to: evaluate the treatment plan against the clinical objectives; when one or more objectives not met, perform
20 a trade-off analysis to determine an effect on other clinical objectives; and generate at least one trade-off plan which more closely meets the not met objectives.

25 In accordance with one preferred method of the present application, a method for generating trade-off plans for radiation therapy treatment planning, comprising: generating a candidate treatment plan; evaluating the treatment plan against the clinical objectives; when one or more objectives not met, perform a trade-off analysis to determine an effect on other clinical objectives; and generating at least one trade-off plan which more closely meets the not met objectives.

30 In accordance with another embodiment, a treatment planning system comprising: a planning image memory which stores a volume diagnostic image; a memory for storing user defined clinical objectives configured for a user to input data defining organs-at-risk; an auto-planning module configured to generate a treatment plan; and a trade-off module having a processor configured to: evaluate the treatment plan against clinical goals; when goals not met, select organs at risk for trade-off analysis; create a copy of the treatment plan corresponding for each selected organ-at-risk; optimize the corresponding treatment

plan copy according to the clinical goals for the selected organ-at-risk; evaluate the at least one trade-off plan against the clinical goals for the selected organs at risk; and select a final plan from the at least one trade-off plan and optimized plan.

5 One advantage is streamlined tradeoff analysis for the physician.

Another advantage is that less candidate plans are generated for increased efficiency.

A further advantage is that IMRT/VMAT planning complexity is reduced.

10 Another advantage is that a deliverable plan trade-off space is created that focuses on the problem areas where clinical objectives are not met by the initial plan.

Still further advantages of the present invention will be appreciated to those of ordinary skill in the art upon reading and understand the following detailed description.

15 FIGURE 1 depicts an IMRT planning system implementing an improved method for automating plan generation.

FIGURE 2 depicts a method for generating trade-off plans.

With reference to FIGURE 1, a therapy system **10**, such as an intensity-modulated radiation therapy (IMRT) system or a volumetric-modulated arc therapy (VMAT) system, includes an imaging system **12** to generate one or more planning images of a region of interest of a patient. The image volume, i.e. the planning images, is volumetric (i.e., three-dimensional) and typically stored in a planning image memory **14** of the therapy system **10**. The region of interest includes one or more target structures and, typically, one or more critical structures or organs at risk (OARs). Each of the target structures is a lesion or other tissue region, such as a tumor, to be irradiated. Each of the critical structures is an organ or other tissue region which is at risk of damage from the radiation intended for the target structures, such as radiation traveling to the target structures, which has passed through the target structures, or which passes closely adjacent the target structures.

30 The imaging system **12** generates the planning images using one or more imaging modalities, such as computed tomography (CT), positron emission tomography (PET), magnetic resonance (MR), single photon emission computed tomography (SPECT), cone-beam computed tomography (CBCT), and the like. Hence, the imaging system **12** includes one or more scanners **16** corresponding to the imaging modalities, as well as a

backend system reconstructing raw image data from the scanners into the planning images. As illustrated, the imaging system **12** generates the planning images using for example CT and includes a CT scanner **16**.

A planning system **18** of the therapy system **10** generates an optimal treatment plan for the patient on the planning images, which are typically received from the planning image memory **14**. The optimal treatment plan suitably includes a plurality of treatment fractions, each identifying planning target volumes (PTVs) for the target structures, margins around the target structures, dose profiles for the target structures, dose limits for the critical structures, and therapy beam directions and intensities, and is typically stored in a treatment plan memory **20** of the therapy system **10**. The planning system **18** includes at least one processor **22** and at least one program memory **24**. The program memory **24** includes processor executable instructions that, when executed by the processor **22**, generate the optimal treatment plan. The processor **22** executes the processor executable instructions to generate the optimal treatment plan. The planning system **18** further includes at least one system bus **26** interconnecting the processor **22**, the program memory **24**, and any other components of the planning system **18**.

A control module **28** of the processor executable instructions controls overall operation of the planning system **18**, including generation of the optimal treatment plan. The control module **28** suitably displays a graphical user interface (GUI) to a user of the planning system **18** using a display device **30** of the planning system **18**. Further, the control module **28** suitably allows the user to interact with the GUI using a user input device **32** of the planning system **18**. For example, the user can interact with the GUI to specify parameters, controlling the generation of the optimal treatment plan. In particular, the user specifies regions of interest and organs-at-risk within the image volume located on the planning image memory **14** via the user input device **32** and other unique parameters. In one embodiment, a memory for storing user defined clinical objectives is used. The display device **30** also displays a visual presentation of trade-off values, met and unmet objectives, and specific areas of trade-off.

A therapy beam setup module **34** of the processor configures one or more therapy beams used for therapy delivery. This can be performed automatically and/or manually. As to automatic therapy beam setup, an appropriate routine is employed to automatically configure parameters configuring the therapy beam. It is also contemplated that therapy beam setup can be performed using a combination of automatic and manual therapy beam setup. Beam placement is achieved using beam angle optimization or selection

methodologies along with the beam configurations followed in standard clinical practice e.g. for head and neck a standard equally spaced 7-9 beam co-planar configurations are enough. Additional provision to accept the number of beams input from the user is also possible, in which case the system only optimizes on the beam angles. Iterative adjustment of beam 5 placements is also a possibility if the auto-plan results are not as desired. The automatically configured parameters can then be displayed to the user using the display device **30** and the user can modify the parameters, as appropriate, using the user input device **32**.

Once the parameters are finalized, an auto-planning module **36** generates a candidate treatment plan. The auto-planning module **36** includes receiving input parameters 10 for generation of the treatment parameter. The input parameters include the boundaries of the structures (i.e., the target structures and, typically, the critical structures) within the planning images, as well as therapy beam configuration parameters, which are determined using the therapy beam setup module **34**. In one embodiment, automatically generating optimal treatment plans uses an algorithm such as the one described in US Provisional 15 Application Ser. No. 61/719,528 to Bzdusek, et al. It automatically drives the IMRT optimizer by formulating dose objectives and manipulating them iteratively. The dose objective parameters define the clinical goals and priorities.

Often the candidate treatment plan does not meet every goal and objective. A trade-off module **38** generates alternate trade-off plans using the clinical goals and the 20 optimized treatment plan from the auto-planning module **36**. The trade-off module **38** receives the candidate treatment plan from the auto-planning module **36**. The trade-off module **38** receives clinical objectives defined by the user through the user input **32**. The trade-off module **38** evaluates the candidate treatment plan against the input clinical objectives and determines if the objectives are satisfied. If the objectives are satisfied, the 25 user selects the optimized treatment plan without the trade-off module **38** generating alternate trade-off plans.

If the trade-off module **38** determines the treatment plan does not meet all the clinical objectives, then a trade-off analysis is performed. The user reviews the trade-off determinations made by the trade-off module **38**. In one embodiment, the trade-off module 30 **38** controls the auto-planning module **36** to generate an alternate treatment plan with the unmet objectives constrained to be met or met more fully. In another embodiment, the trade-off module displays the determinations where goals are met or not met to the user on the display. The user uses the user input to explore alternate treatment plans further via a trade-

off analysis. In another embodiment, the organs-at-risk are automatically selected by the trade-off module **38**.

The user has the option to input priority rankings for specific objectives. In one embodiment, the priority rankings are categorized, i.e. low, medium, and high. In another embodiment, the priority rankings are relative numeric values, i.e. 1-10. The user can select the objectives and the priorities through the user input **32** and the auto-planning module **36** attempts to satisfy the higher priority goals first at the expense of lower priority goals. In one embodiment, the trade-off module **38** raises the ranking of the unmet objectives to see how the candidate treatment plan changes. In one embodiment, the priorities and selected organs-at-risk are selected to a predetermined plan template.

In one embodiment, the trade-off module **38** performs trade-off analysis by generating at least one alternate plan using the already generated treatment plan as a starting point. Using the generated plan saves time and effort in recreating plans from the beginning. In one embodiment, the trade-off module **38** copies original generated plan for each organ-at-risk or other goal that is not met or selected. The trade-off module **38** drives the optimization algorithm to meet, or more closely meet, the unmet goals by changing the optimization parameters for the specific organ-at-risk. Once the goals are met for the specific organ-at-risk, the trade-off module **38** attempts to meet the rest of the goals for the remaining organs-at-risk. In one embodiment, the trade-off module **38** attempts to meet the remaining goals while optimizing to meet the goals for the specific organ-at-risk. The trade-off module **38** creates a plurality of alternate trade-off plans corresponding to each unmet goal for each selected organ-at-risk. The generated trade-off plans show the effect of meeting one of the goals on the rest of the goals for the target and organ-at-risk structures. In one embodiment, trade-off plans are generated for a combination of unmet organ-at-risk goals. In another embodiment, the plans utilize anchor plans that consider all organs-at-risk and target structures in the optimization and only optimizes up to a minimum acceptable goal. For example, the generated candidate treatment plan exceeds the minimum acceptable dose for a lower priority objective by a large margin while a higher priority objective was not met. The trade-off module **38** uses the candidate treatment plan to meet the high priority objective first, then optimizes the lower priority objective to a minimum acceptable dose.

After the trade-off plans are generated, the trade-off module **38** performs further trade-off analysis for comparing plans to each other. The user uses plan comparison features such as dose volume histogram (DVH) overlap or side by side trial dose to evaluate the trade-offs in the trade-off plans. In one embodiment, dose estimates for plans are created

by interpolating between two dose grids using a mixing parameter to control the level of interpolation.

In one embodiment, the user selects from one of the alternate trade-off plans or the candidate plans to be delivered to the patient. In another embodiment, the final plan is 5 selected automatically by the trade-off module **38**. After the plan is selected, the trade-off module **38** optionally updates a machine learning database **40** with the selected plan for use in future IMRT planning. For example, the selected plan stored in the database can be used as an already generated trade-off plan in the future when the objectives for an organ-at-risk are not met.

10 A delivery system **42** executes the selected treatment plan to deliver therapy, such as ablation therapy, external beam radiation therapy and/or brachytherapy, to the patient. The therapy typically includes radiation, such as one or more of x-rays, protons, high-intensity focused ultrasound (HIFU), and the like. The delivery system **42** includes a delivery apparatus **44**, such as a linear particle accelerator, and a control system **44**, which 15 controls the delivery apparatus **46** in accordance with the optimal treatment plan. The optimal treatment plan is typically received from the treatment plan memory **20**, but other sources are contemplated.

20 FIGURE 2 depicts a method for generating trade-off plans. At a step **102**, an initial candidate optimized treatment plan is generated and accessed by the trade-off module **38**. At a step **104**, the candidate optimized treatment plan is evaluated against clinical objectives. The clinical objectives can be received by the trade-off module **38** from the user through the user input **32** or from a plan template that dictates the desired organ-at-risk goals. The optimized plan is evaluated to make a determination if all clinical goals are satisfied by the plans.

25 When at least one clinical goal is not met by the candidate optimized treatment plan, trade-off analysis is performed. At a step **106**, organs-at-risk are selected for trade-off analysis. The organs-at-risk are selected when the goals, typically maximum dose goals, for the organ-at-risk are not met. The user can select the organ-at-risk for analysis, or it can be selected through a template or predetermined criteria.

30 At a step **108**, at least one trade-off plan is created by the trade-off module **38**. The trade-off plans are generated by first using the optimized treatment plan as a basis for efficiency. In one embodiment, a new plan could be fully reoptimized from the start. The optimized treatment plan is copied by the trade-off module, and then optimized to satisfy the clinical goals for the selected organ-at-risk, e.g. reduce radiation dose to an organ-at-risk

which receives higher than optimal dose in the candidate treatment plan. It is appreciated that multiple plans can be created during this step, such as by reducing the dose for different organs-at-risk. In one embodiment, priority rankings are used when multiple organs-at-risk are selected and the trade-off plan is created based on the priority.

5 At a step **110**, further trade-off analysis is performed. In one embodiment, the trade-off module **38** performs the trade-off analysis. Alternatively, the user performs the trade-off analysis. The generated trade-off plans are compared to each other and the optimized treatment plan. Amongst the multiple options, at a step **112**, the user selects a final plan for delivery to the patient. Further during this step, a machine-learning database can be
10 updated according to the treatment plan selected. The machine learning database **40** can be consulted to recommend one or more of the treatment plans.

It is appreciated that a user may exercise increased control of the automatic plan generation by confirming automatically determined selections after some or all of the steps. As used herein, a memory includes one or more of a non-transient computer readable
15 medium; a magnetic disk or other magnetic storage medium; an optical disk or other optical storage medium; a random access memory (RAM), read-only memory (ROM), or other electronic memory device or chip or set of operatively interconnected chips; an Internet/Intranet server from which the stored instructions may be retrieved via the Internet/Intranet or a local area network; or so forth. Further, as used herein, a processor
20 includes one or more of a microprocessor, a microcontroller, a graphic processing unit (GPU), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA), and the like; a controller includes: (1) a processor and a memory, the processor executing computer executable instructions on the memory embodying the functionality of the controller; or (2) analog and/or digital hardware; a user input device includes one or more
25 of a mouse, a keyboard, a touch screen display, one or more buttons, one or more switches, one or more toggles, voice recognition engines, and the like; a database includes one or more memories; and a display device includes one or more of a liquid crystal display (LCD), a light emitting diode (LED) display, a plasma display, a projection display, a touch screen display, and the like.

30 Although the system and method of the present disclosure have been described with reference to exemplary embodiments thereof, the present disclosure is not limited to such exemplary embodiments. Rather, the system and method disclosed herein are susceptible to a variety of modifications, enhancements and/or variations, without departing from the spirit or scope hereof. Accordingly, the present disclosure embodies and

encompasses such modifications, enhancements and/or variations within the scope of the claims appended hereto.

CLAIMS:

1. A treatment planning system comprising:
 - a planning image memory (14) which stores a volume diagnostic image;
 - a memory for storing user defined clinical objectives (32) configured for a user to input data defining clinical objectives including a target and organs-at-risk;
 - an auto-planning module (36) configured to generate a candidate treatment plan; and
 - a trade-off module (38) having a processor configured to:
 - evaluate the treatment plan against the clinical objectives;
 - when one or more objectives are not met, perform a trade-off analysis to determine an effect on the met and other not met clinical objectives; and
 - generate at least one trade-off treatment plan which more closely meets the not met objectives.
2. The system according to claim 1, wherein the auto-planning module (36) is configured to:
 - automatically formulate including dose profiles and priorities, the dose profiles and the priorities corresponding the target and organs-at-risk;
 - optimize a plurality of treatment plan parameters based on the plurality of objectives to generate the candidate treatment plan; and
 - the trade-off module (38) configured to:
 - reformulate the plurality of objectives including at least one of modifying parameters of the plurality of objectives and/or adding one or more additional objectives to the plurality of objectives; and
 - repeat the optimizing based on the reformulated plurality of objectives to generate a reformulated trade-off plan.
3. The system according to either claim 1 or 2, wherein the trade-off module (38) is further configured to:

reevaluate the at least one trade-off plan against the clinical objectives for the at least one organ-at-risk.

4. The system according to claim 3, wherein the trade-off module (38) is further configured to:

select from the at least one trade-off plan or the candidate plan.

5. The system according to any one of claims 1-4, wherein the trade-off module (38) is further configured to:

receiving a priority ranking for each objective; and

generating a plurality of the trade-off plans which meet higher priority objectives and meet lower priority objectives to different degrees.

6. The system according to any one of claims 1-5, wherein the trade-off plans are displayed to user showing trade-off areas and values via a display device (30).

7. The system according to any one of claims 1-6, wherein the trade-off module (38) evaluates the trade-off plans using dose volume histogram overlap analysis.

8. The system according to any one of claims 1-7, wherein the trade-off module (36) is further configured to:

update a machine learning database (40) based on the generated trade-off plans.

9. A method for generating trade-off plans for radiation therapy treatment planning, comprising:

generating a candidate treatment plan based on clinical objectives including a target and organs-at-risk;

evaluating the treatment plan against the clinical objectives;

when one or more objectives are not met, performing a trade-off analysis to determine an effect on the met and not met clinical objectives; and

generating at least one trade-off plan which more closely meets the not met objectives.

10. The method according to claim 9, wherein generating the candidate plan includes:

automatically formulating a plurality of objectives including dose profiles and priorities, the dose profiles and the priorities corresponding to the target and organs-at-risk;

optimizing a plurality of treatment plan parameters based on the plurality of objectives to generate the candidate treatment plan; and

generating the trade-off plan includes:

reformulating the plurality of objectives including at least one of modifying parameters of the plurality of objectives and/or adding one or more additional objectives to the plurality of objectives; and

repeating the optimizing based on the reformulated plurality of objectives to generate a reformulated trade-off plan.

11. The method according to either of claims 9 or 10, further including:

reevaluating the at least one trade-off plan against the clinical objectives for the organs-at-risk.

12. The method according to claim 11, further including:

selecting from the at least one trade-off plan or the candidate plan.

13. The method according to any one of claims 9-12, further including:

generating a plurality of trade-off plans which meet higher priority objectives and meet lower priority objectives to different degrees based on a received priority ranking for each objective.

14. The method according to and one of claims 9-13, wherein the trade-off plans are displayed to user showing trade-off areas and values via a display device (30).

15. The method according to any one of claims 9-14, wherein evaluating the trade-off plans includes performing dose volume histogram (DVH) overlap analysis.

16. The method according to any one of claims 9-15, further including:

updating a machine learning database (40) based on the generated trade-off plan selection.

17. A non-transitory computer readable medium carrying software for controlling one or more processors to perform the method of any of claims 9-16.

18. An treatment planning system comprising:
a planning image memory (14) which stores a volume diagnostic image;
a memory for storing user defined clinical objectives (32) configured for a user to input data defining organs-at-risk and clinical goals regarding target radiation dose delivered to a target and organs-at-risk;
one or more processors (36, 38) configured to:
generate a first treatment plan based on the input;
evaluate the treatment plan by comparing the target radiation dose to the dose delivered to each of the organs-at-risk by the first treatment plan;
generate one or more subsequent treatment plans constraining the clinical goals to bring a difference between the target and delivered radiation dose closer for at least one of the organs-at-risk;
displaying the first and one or more subsequent treatment plans to a user to select a final plan from the first and at least one subsequent treatment plans.

19. The automated treatment planning system according to claim 18, wherein the one or more processors are configured to evaluate the first and one or more subsequent treatment plans using DVH overlap analysis.

20. The system according to either of claims 18 or 19 , wherein the one or more processors are further configured to:
receive a priority ranking for the target radiation dose delivered to each of the organs-at-risk; and
generate the at least one subsequent treatment plan adjusting the priority rankings.

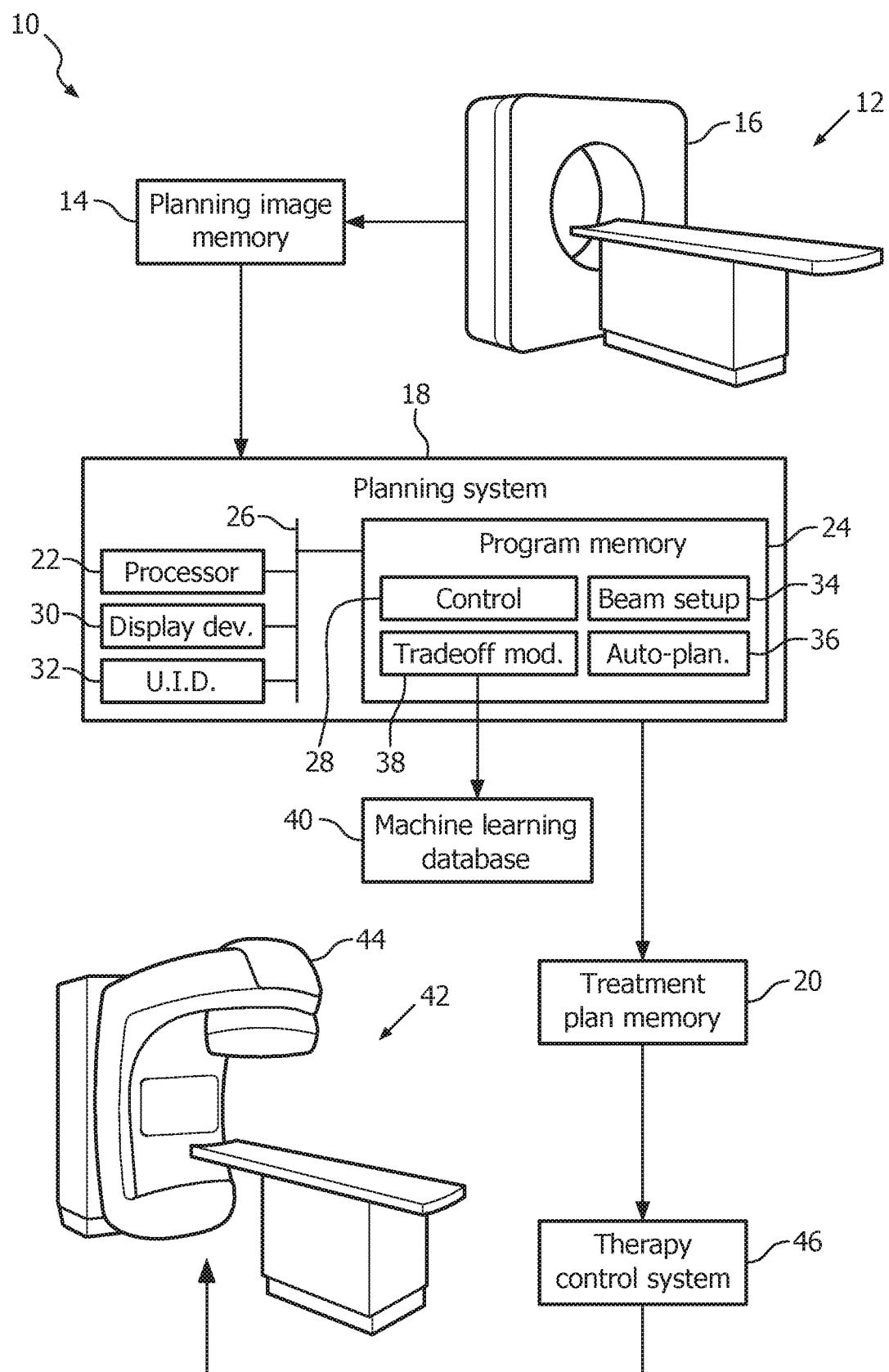


FIG. 1

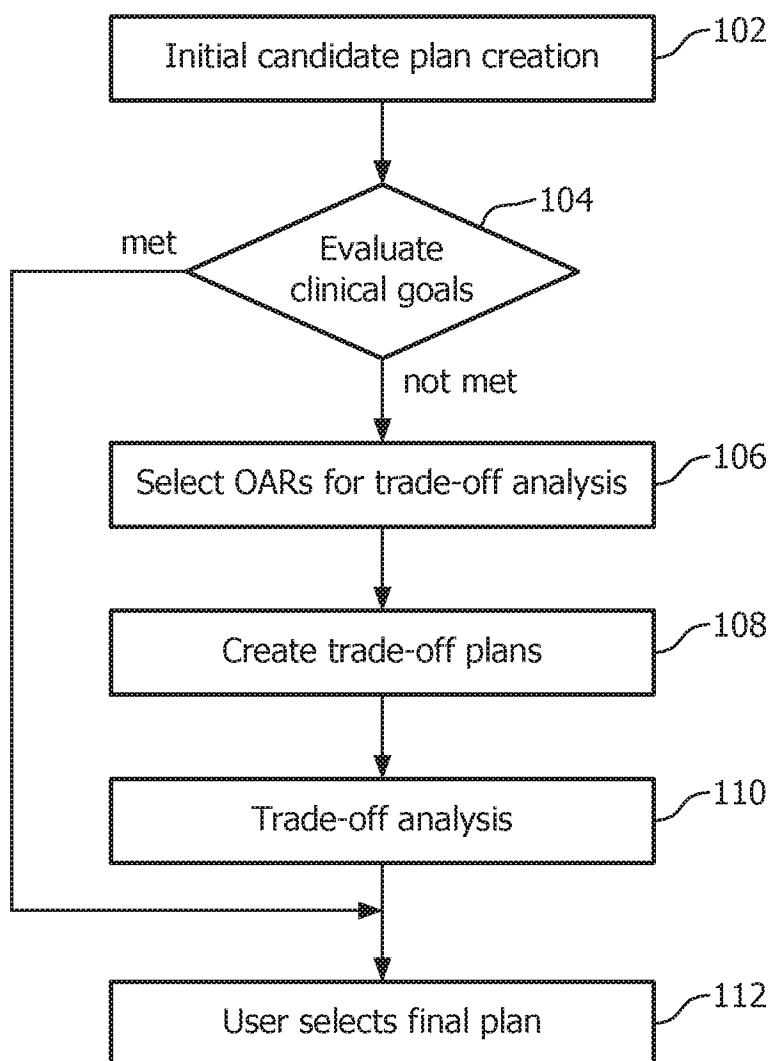


FIG. 2

INTERNATIONAL SEARCH REPORT

International application No
PCT/IB2014/066293

A. CLASSIFICATION OF SUBJECT MATTER
INV. G06F19/00 A61N5/10
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G06F A61N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2011/153547 A1 (MCNUTT TODD [US] ET AL MCNUTT TODD R [US] ET AL) 23 June 2011 (2011-06-23) abstract paragraph [0005] - paragraph [0014] paragraph [0018] - paragraph [0030] claims 1-4,7-12,15-18 figures 2,3,6 ----- US 2013/197878 A1 (FIEGE JASON [CA] ET AL) 1 August 2013 (2013-08-01) abstract paragraph [0002] - paragraph [0050] paragraph [0118] - paragraph [0135] paragraph [0152] - paragraph [0330] claims 1,29-31 paragraph [0387] - paragraph [0390] figures 1-3 ----- -/-	1-20
X		1-20

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
25 February 2015	06/03/2015
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Hilbig, Matthias

INTERNATIONAL SEARCH REPORT

International application No PCT/IB2014/066293

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	OELFKE U ET AL: "INVERSE PLANNING FOR PHOTON AND PROTON BEAMS", MEDICAL DOSIMETRY, ELSEVIER, US, vol. 26, no. 2, 21 June 2001 (2001-06-21), pages 113-124, XP009074229, ISSN: 0958-3947, DOI: 10.1016/S0958-3947(01)00057-7 the whole document -----	1-20
A	YONG YANG ET AL: "Clinical knowledge-based inverse treatment planning; IMRT inverse planning", PHYSICS IN MEDICINE AND BIOLOGY, INSTITUTE OF PHYSICS PUBLISHING, BRISTOL GB, vol. 49, no. 22, 21 November 2004 (2004-11-21), pages 5101-5117, XP020023962, ISSN: 0031-9155, DOI: 10.1088/0031-9155/49/22/006 the whole document -----	1-20

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/IB2014/066293

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
US 2011153547	A1 23-06-2011	US 2011153547	A1	23-06-2011	
		US	2014149335	A1	29-05-2014
US 2013197878	A1 01-08-2013	CA 2796159	A1	15-12-2011	
		EP 2575965	A2	10-04-2013	
		US 2013197878	A1	01-08-2013	
		WO 2011153639	A2	15-12-2011	