

1 564 388

(21) Application No. 28000/77 (22) Filed 4 July 1977
(31) Convention Application No. 51/080 274
(32) Filed 5 July 1976 in
(33) Japan (JP)
(44) Complete Specification published 10 April 1980
(51) INT CL³ C08F 291/06, 263/02; (C08F 263/02, 136/22, 263/04)
(C08F 291/06)
(52) Index at acceptance

(52) Index at acceptance

C3V ABX

C3J 104 108 AB

C3W 100 207 209 215 225 302

C3Y B230 B240 B243 F530

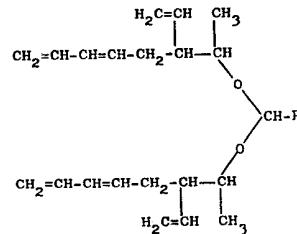
(54) IMPROVEMENTS IN OR RELATING TO AQUEOUS COATING COMPOSITIONS

(71) We, KANSAI PAINT CO., LTD., a Company of Japan, of 365, Kanzaki, Amagasaki-shi, Hyogo-ken, Japan and KUREHA CHEMICAL INDUSTRY CO., LTD., a Company of Japan, of 1-8, Nihonbashi-horidome-cho, Chuo-ku, Tokyo, Japan, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

This invention relates to an aqueous coating composition. More particularly, the invention relates to an aqueous coating composition of improved vinyl or vinylidene polymer emulsion prepared by radically polymerizing unsaturated vinyl or vinylidene monomer with a surface active agent of ionic or nonionic compound.

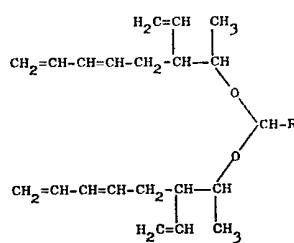
20 The emulsion is very useful as the resin material for preparing pollution-free coating compositions, so that it has been employed for various purposes. The emulsion has, however, a disadvantage in that the lowest film-forming temperature thereof is not compatible with the hardness of the coating film formed by using the emulsion. In other words, when the lowest film-forming temperature is lowered to a sufficient degree, the film hardness becomes insufficient; on the contrary, when the film hardness is made high enough, the emulsion cannot be used practically at lower temperatures. If an organic solvent is added to the emulsion to eliminate this defect, the advantage of non-pollution will be lost.

25


30

35

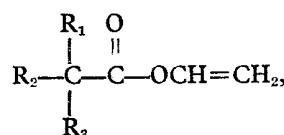
In order to eliminate the above-described defects in the prior art, the inventors of the present application have carried out various extensive studies, and as the result, it has been found out that the following compound (A) facilitates the rapid curing of emulsion


since the permeability and plasticizing effect of the compound (A) to the emulsion are quite excellent and the rate of oxidation curing is large. Further, the compound (A) is free from pollution as it does not evaporate.

According to the first aspect of the present invention there is provided an aqueous coating composition, which comprises an emulsion prepared by radically polymerizing unsaturated vinyl or vinylidene monomer in the presence of an ionic or nonionic surface active agent, the emulsion having impregnated therein from 0.1 to 150% by weight (based on the solids content of the emulsion) of a compound (A) having the general formula:

in which R represents a hydrogen atom or an alkyl radical having 1 to 18 carbon atoms, a phenyl radical, an alkyl (C_{1-18}) phenyl radical, a cyclohexyl radical or an alkyl (C_{1-18}) cyclohexyl radical.

According to the second aspect of the present invention there is provided a process of preparing an aqueous coating composition, which process comprises preparing an emulsion by radically polymerizing unsaturated vinyl or vinylidene monomer in the presence of an ionic or nonionic surface active agent, and impregnating the emulsion with from 0.1 to 150% by volume weight (based on the solids content of the emulsion) of a compound (A) having the general formula:


in which R represents a hydrogen atom or an alkyl radical having 1 to 18 carbon atoms, a phenyl radical, an alkyl (C_{1-18}) phenyl radical, a cyclohexyl radical or an alkyl (C_{1-18}) cyclohexyl radical.

The present invention enables the provision of an improved aqueous coating composition in which the lowest film-forming temperature is compatible with the hardness of the formed coating films, as well as an aqueous coating composition which can be applied to the surfaces of various articles without causing air pollution, an aqueous coating composition which can be cured rapidly but forms the coating films having excellent properties, and an aqueous coating composition which can be prepared without difficulty at relatively low cost in industrial practices.

The invention enables the provision of aqueous coating compositions having a lowest film-forming temperature of a sufficiently low value and which forms coating films having excellent properties including quite high hardness.

The surface active agents used for preparing the emulsion of the present invention are commonly used ones of anionic, cationic or nonionic and low molecular or polymeric compounds. Exemplified as the anionic surface active agents are fatty acid salts, salts of higher alcohol sulphuric esters, sulphates of aliphatic amines and aliphatic amides, salts of aliphatic alcohol phosphoric esters, aliphatic amide sulphonates and alkylaryl sulphonates. As the cationic surface active agents, there are exemplified salts of aliphatic amines, quaternary ammonium salts and alkylpyridinium salts. Further, the nonionic surface active agents are exemplified by polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ester and sorbitan alkyl ester.

The unsaturated vinyl or vinylidene monomers used for the preparation of the emulsion in the present invention, are radically polymerizable ones. For example, there are ethylene, propylene, butylene, vinyl chloride, vinylidene chloride, vinyl acetate, Veova monomer (made by Shell Chemical Co; the general formula is

wherein R_1 , R_2 and R_3 each represent saturated alkyl radicals), styrene, α -methylstyrene, vinyltoluene, vinylpyridine, butadiene, pentadiene, chloroprene, isoprene, acrylic acid, methacrylic acid, acrylic esters, methacrylic esters, glycidyl acrylate, glycidyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, acrylonitrile and methacrylonitrile. The word "Veova" is a Trade Mark.

The compound (A) used for the impregnation to the emulsion in the present invention can be prepared by the condensation of precursory material of 1-methyl-2-vinyl-4,6-heptadiene-1-ol with aldehydes that are represented by the general formula: $RCHO$. Such aldehyde to be used may be selected from the group consisting of aliphatic aldehydes, alicyclic aldehydes and aromatic aldehydes having 1 to 18 carbon atoms. Above all, preferable ones are aliphatic aldehydes, especially those having 8 or less carbon atoms such as formaldehyde, acetaldehyde, butyraldehyde and octylaldehyde.

The ratio of impregnation of the compound (A) is in the range of from 0.1 to 150% by weight, preferably from 3 to 50% by weight, based on the solids content of the emulsion.

When the compound (A) is impregnated, although it can be used by mixing as it stands, it is preferable that the compound (A) is previously emulsified or solubilized by adding oxidation curing water-soluble resin or common emulsifying agent so as to prevent the occurrence of troubles such as lump formation. The above oxidation curing water-soluble resin may be exemplified by maleinized polydiene, maleinized alkyd, maleinized fatty acid-modified epoxy resin, maleinized oil, maleinized stand oil, maleinized boiled oil, maleinized fatty acid-modified acrylic resin and fatty acid-modified acrylic resin. They are suitable for the emulsification of the compound (A) and they are advantageous in that they do not exert bad influence on the properties of coating film by self-curing since they have good storage stability. Further, water-soluble alkyd resin and oil-modified water-soluble epoxy resin can also be used. Furthermore, even when the above-mentioned anionic, cationic and nonionic surface active agents are used, the compound (A) does not receive any bad influence from the use of surface active agents be-

	the conventional method from a monomer mixture of Veova monomer/vinyl acetate in the ratio 40/60.	Test Items:	40
5	A homogeneous emulsion was prepared by mixing the materials in the ratio of emulsion (III)/emulsion (II) in Example 1 (as compound (A)) of 100/5 (as solid). The properties of the thus-obtained emulsion are shown in the following Table.	Lowest film-forming temperature: A commercially available emulsion paint of vinyl chloride-vinyl acetate copolymer was applied to the surface of test plates to form thereon absorptive surfaces and the film-forming temperatures were measured by applying the emulsions to be tested to the absorptive surfaces.	45
10	Example 6.	Hardness: The coated surface was scratched by using Mitsubishi UNI Pencils (trademark, made by Mitsubishi Pencil Co., Ltd.) of 6B to 9H in hardness. The value of hardness was represented by the hardest pencil with which any scratch was not made (the softer grade next to the pencil which made scratches on the coated surface).	50
15	An emulsion was prepared by using materials in the ratio of DM-60 (trademark of a styrene-butyl acrylate emulsion made by Hoechst Synthetics Co., Ltd.)/emulsion (II) (as compound (A)) of 100/5 (as solid). The properties of the thus-prepared emulsion are shown in the following Table.	Adhesiveness: 100 checkered squares (1×1 mm) were made by cutting the coating film with a knife. A piece of self-adhesive tape was then applied to the cut squares and quickly peeled off. When the number of remaining squares was n , the test result was indicated as ($n/100$).	55
20	Example 7.	Erichsen test: An Erichsen film tester was used at 20°C.	60
25	An emulsion was prepared by using materials in the ratio of P-3 Emulsion (trademark of vinyl acetate-ethylene emulsion made by Showa Highpolymer Co., Ltd.)/emulsion (II) (as compound (A)) of 100/5 (as solid). The properties of the thus-prepared emulsion are shown in the following Table.	Impact resistance: Measured at 20°C by using a weight of 500 g, 0.5 inch in diameter, and a Du Pont impact tester.	65
30	Comparative Example 1.	Gasoline resistance: Coating film was immersed in gasoline (made by Nippon Oil Co., Ltd.), and the time in which the coating film was not softened was measured.	70
35	The emulsion (I) in Example 1 was solely used.	Salt spray test: Measured according to JIS (Japanese Industrial Standards) Z 2371.	75
	Comparative Example 2.	Water resistance: Test piece was immersed in water at 20°C for 1 day, then the occurrence of change in coating film was observed.	80

TABLE

Items	Example	(*) Ex. 1	Ex. 2	Ex. 3	Ex. 4	(*) C. Ex. 1	(*) C. Ex. 2
Compounding ratio of compound (A) (by weight)	5	10	20	40	—	—	—
Lowest film-forming temperature (°C)	5	<-10	<-10	<-10	20	20	16
Hardness, 20°C, after 7 days	HB	F	B (* ³)	B (* ³)	2B	2B	B
Gel fraction, 20°C, after 1 day	0	5	14	25	0	0	0
After drying at 20°C for 7 days, Adhesiveness	100/100	100/100	100/100	100/100	100/100	100/100	100/100
Erichsen test (mm)	>8	>8	>8	>8	>8	>8	>8
Impact resistance (cm)	5	5	5	5	5	5	5
Gasoline resistance (min.)	5	10	10	15	5	5	5
Salt spray test (1 day) (* ⁴)	Δ	Δ	Δ	Δ	Δ	Δ	Δ
Water resistance (*)	∅	∅	∅	∅	∅	∅	∅

Notes: (*) : Ex. means Example. (**) : C. Ex. means Comparative Example.

(*) : After 2 weeks, hardness became F.

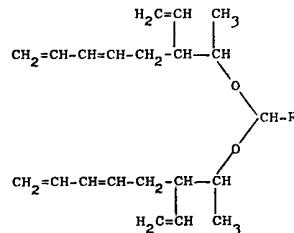
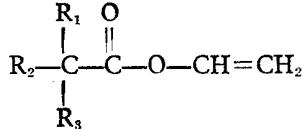

(*) : The mark Δ means fair and the mark ∅ means poor.

TABLE (Cont.)

Items	Examples	Ex. 5	C. Ex. 3	Ex. 6	C. Ex. 4	Ex. 7	C. Ex. 5
Compounding ratio of compound (A) (by weight)	5	—	5	—	5	5	—
Lowest film-forming temperature (°C)	-4	>20	<-10	-4	<-10	<-10	0
Hardness, 20°C after 7 days	HB	HB	HB	HB	HB	HB	HB
Gel fraction, 20°C, after 1 day	30	8	20	5	10	10	0
After drying at 20°C for 7 days, Adhesiveness	46/100	31/100	97/100	50/100	8/100	8/100	0/100
Erichsen test (mm)	>8	>8	>8	>8	>8	>8	>8
Impact resistance (cm)	20	5	>50	>50	>50	>50	45
Gasoline resistance (min.)	5	5	5	5	15	15	—
Salt spray test (1 day)	Δ	Δ	①	①	①	①	①
Water resistance	①	①	①	①	①	①	①

WHAT WE CLAIM IS:=

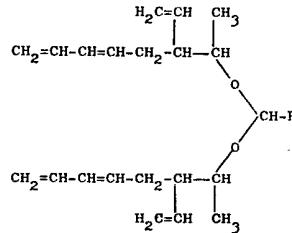
1. An aqueous coating composition, which
comprises an emulsion prepared by radically
polymerizing unsaturated vinyl or vinylidene
monomer in the presence of an ionic or non-
ionic surface active agent, the emulsion hav-
ing impregnated therein from 0.1 to 150%
by weight (based on the solids content of
the emulsion) of a compound (A) having the
general formula:


15 in which R represents a hydrogen atom or an alkyl radical having 1 to 18 carbon atoms, a phenyl radical, an alkyl (C_{1-18}) phenyl radical, a cyclohexyl radical or an alkyl (C_{1-18}) cyclohexyl radical.

20 2. An aqueous coating composition according to Claim 1, wherein compound (A) is 1,1 - bis(1' - methyl - 2' - vinyl - 4',6'-heptadienoxy) - alkane in which R' represents an alkyl radical having 1 to 18 carbon atoms or a hydrogen atom.

25 3. An aqueous coating composition according to Claim 1 or 2, wherein before being impregnated into the emulsion, compound (A) is dispersed or solubilized in an oxidation curing water-soluble resin or surface active agent.

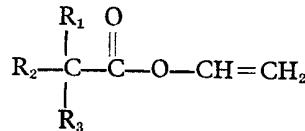
30 4. An aqueous coating composition according to Claim 1, 2 or 3, wherein the quantity of compound (A) added is in the range of from 3 to 50% by weight (based on the solids content of the emulsion).


35 5. An aqueous coating composition according to any one of Claims 1 to 4, wherein the unsaturated vinyl or vinylidene monomer is at least one of ethylene, propylene, butylene, vinyl chloride, vinylidene chloride, vinyl acetate, a compound having the general formula

wherein R₁, R₂ and R₃ each represent a saturated alkyl radical, styrene, α -methylstyrene, vinyltoluene, vinyl pyridine, butadiene, pentadiene, chloroprene, isoprene, acrylic acid, methacrylic acid, acrylic ester, methacrylic ester, glycidyl acrylate, glycidyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-

hydroxypropyl methacrylate, acrylonitrile and methacrylonitrile.

6. A process of preparing an aqueous coating composition, which process comprises preparing an emulsion by radically polymerizing unsaturated vinyl or vinylidene monomer in the presence of an ionic or nonionic surface active agent, and impregnating the emulsion with from 0.1 to 150% by weight (based on the solids content of the emulsion) of a compound (A) having the general formula:


in which R represents a hydrogen atom or an alkyl radical having 1 to 18 carbon atoms, a phenyl radical, an alkyl (C_{1-18}) phenyl radical, a cyclohexyl radical or an alkyl (C_{1-18}) cyclohexyl radical.

7. A process according to Claim 6, wherein compound (A) is 1,1 - bis(1' - methyl - 2' - vinyl - 4',6' - heptadienoxy) - alkane in which R represents an alkyl radical having 1 to 18 carbon atoms or a hydrogen atom.

8. A process according to Claim 6 or 7, wherein, before being impregnated into the emulsion, compound (A) is dispersed or solubilized in an oxidation curing water-soluble resin or surface active agent.

9. A process according to Claim 6, 7 or 8, wherein the quantity of compound (A) added is in the range of from 3 to 50% by weight (based on the solids content of the emulsion).

10. A process according to any one of Claims 6 to 9, wherein the unsaturated vinyl or vinylidene monomer is at least one of ethylene, propylene, butylene, vinyl chloride, vinylidene chloride, vinyl acetate, a compound having the general formula

wherein R_1 , R_2 and R_3 each represent a saturated alkyl radical, styrene, α -methylstyrene, vinyltoluene, vinylpyridine, butadiene, pentadiene, chloroprene, isoprene, acrylic acid, methacrylic acid, acrylic ester, methacrylic ester, glycidyl acrylate, glycidyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, acrylonitrile and methacrylonitrile. 90 95

11.	11. An aqueous coating composition, substantially as described in foregoing Example 1.	21. A process of preparing an aqueous coating composition, substantially as described in foregoing Example 4.
5	12. An aqueous coating composition, substantially as described in foregoing Example 2.	22. A process of preparing an aqueous coating composition, substantially as described in foregoing Example 5. 35
	13. An aqueous coating composition, substantially as described in foregoing Example 3.	23. A process of preparing an aqueous coating composition, substantially as described in foregoing Example 6.
10	14. An aqueous coating composition, substantially as described in foregoing Example 4.	24. A process of preparing an aqueous coating composition, substantially as described in foregoing Example 7. 40
15	15. An aqueous coating composition, substantially as described in foregoing Example 5.	25. An aqueous coating composition whenever prepared by the process of any one of Claims 6 to 10 and 18 to 24. 45
	16. An aqueous coating composition, substantially as described in foregoing Example 6.	
20	17. An aqueous coating composition, substantially as described in foregoing Example 7.	
	18. A process of preparing an aqueous coating composition, substantially as described in foregoing Example 1.	
25	19. A process of preparing an aqueous coating composition, substantially as described in foregoing Example 2.	
30	20. A process of preparing an aqueous coating composition, substantially as described in foregoing Example 3.	

FORRESTER, KETLEY & CO.,
 Chartered Patent Agents,
 Forrester House,
 52 Bounds Green Road,
 London, N11 2EY,
 — and also at —
 Rutland House,
 148 Edmund Street,
 Birmingham B3 2LD.
 Scottish Provident Building,
 29 St. Vincent Place,
 Glasgow G1 2DT.
 Agents for the Applicants.

Printed for Her Majesty's Stationery Office by the Courier Press, Leamington Spa, 1980.
 Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from
 which copies may be obtained.